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Abstract

Transformer-based language models (LMs)
can perform a wide range of tasks, and
mechanistic interpretability (MI) aims to
reverse engineer the components responsi-
ble for task completion to understand their
behavior. Previous MI research has focused
on linguistic tasks like Indirect Object Iden-
tification (IOI). In this paper, we investi-
gate the ability of GPT-2 small to handle
binary truth values by analyzing its behav-
ior with syllogistic prompts, such as “State-
ment A is true. Statement B matches state-
ment A. Statement B is”, which requires
more complex logical reasoning compared
to IOI. Through our analysis of several syllo-
gism tasks of varying difficulty, we identify
multiple circuits that mechanistically ex-
plain GPT-2’s logical-reasoning capabilities
and uncover binary mechanisms that facili-
tate task completion, including the ability
to produce a negated token that does not
appear in the input prompt through nega-
tive heads. Our evaluation using a faithful-
ness metric shows that a circuit comprising
five attention heads achieves over 90% of
the original model’s performance. By relat-
ing our findings to IOI analysis, we provide
new insights into the roles of certain atten-
tion heads and MLPs in LMs. We believe
these insights contribute to a broader un-
derstanding of model reasoning and benefit
future research in mechanistic interpretabil-

ity.
1 Introduction

Despite the success of Large Language Models
(LLMs) and their amazing capabilities, these mod-
els remain largely opaque and function as black
boxes. Mechanistic interpretability has emerged as
a field dedicated to mitigate this conceptual gap.
By analyzing how LMs solve specific tasks (Wang
et al., 2022; Hanna et al., 2023; Merullo et al., 2024),
studying emergent behaviors (Arditi et al., 2024),
and identifying patterns within their architectures
(Gurnee et al., 2024), researchers aim to unravel
the inner workings of LMs. Even though great

progress has been made, significant gaps remain in
understanding LMs even on basic tasks.

GPT-2 is a family of representative LLMs that
has been frequently studied in mechanistic inter-
pretability literature. An exemplary case is analyz-
ing its ability to do Indirect Object Identification
task (Wang et al., 2022), which reverse engineers
how GPT-2 correctly predicts the final token in
sentences like “When Mary and John went to the
shops, John gave a bottle of milk to”. Such mech-
anistic analysis begins with the output and traces
back to identify the architectural components rele-
vant to the task, termed as circuit. GPT-2 small
has been shown to be competent in such linguistic
tasks, however its ability and mechanism to perform
logic reasoning remains uncertain. Specifically, it
lacks the capability to coherently answer true-false
questions, such as “True or False? Dogs have four
legs.”. To investigate how GPT-2 represents and
processes truth values, we utilize syllogism tasks —
a classic form of logical reasoning involving premises
and a conclusion. By applying similar mechanistic
analysis to syllogistic prompts, we aim to discover
the circuits that are relevant to the task and in-
terpret the internal mechanisms GPT-2 uses when
handling truth values.

This paper builds on previous interpretability re-
search by focusing on how GPT-2 handles syllogistic
prompts. We use true-false syllogism tasks where
truth values are assigned to premise statements and
the model is prompted to predict the truth value
of the conclusion. We define three prompt formats
to probe binary reasoning. The Simple Syllogism
(SS) presents direct entailment, e.g., “Statement A
is true. Statement B matches statement A. State-
ment B is”. The Opposite Syllogism (OS) inverts
this logic, requiring negation, e.g., “Statement A
and Statement B are opposite. Statement A is true.
Statement B is”. The Complex Syllogism (CS) adds
one or more distractor premises irrelevant to the
inference, e.g., “Statement A is true. Statement B
matches statement A. Statement C is false. State-
ment B is”, where the distractor is “Statement C
is false”.

Our approach includes two mechanistic inter-
pretability techniques: Path Patching and Logit
Lens. Path patching (Wang et al., 2022) determines
the importance of a computational component in



solving a task by replacing part of the model’s
forward pass with activations from a different dis-
tribution. Logit Lens (Nostalgebraist, 2020) applies
the model’s unembedding matrix at different stages
of the residual stream, exposing logits and offering
insights into the function of specific components
during the model’s processing. Using these tech-
niques, we apply a mechanistic lens to uncover how
LMs perform complex reasoning tasks and iden-
tify the key components that drive their decisions.
Specifically, we examine the internal mechanisms
responsible for negation and reinforcement of
truth values. Evaluation with a circuit faithfulness
metric shows that a circuit of three attention heads
can recover 90% of the original model’s performance
on SS prompts. For OS prompts, a circuit of five
attention heads and four MLPs nearly recovers the
performance of the full GPT-2 model, achieving
roughly 85% faithfulness. The structure of the OS
circuit is shown in Figure 1.

Throughout our investigation into how GPT-2
processes syllogisms, we uncover several insights
into its internal mechanisms and reasoning capabil-
ities. Our contributions include:

1. Discover Syllogism-Specific Circuits: We
discover circuits that represent the internal
mechanisms through which GPT-2 solves syl-
logisms of varying complexity.

2. Identify A Negation Mechanism: We iden-
tify a novel mechanism for outputting the
negation of a truth value. Attention heads
suppress the truth logit and MLPs modulate
the negation of the truth logit in the output
distribution.

3. Explain Importance of Negative Com-
ponents: Through analysis of a pair of se-
mantically opposite tasks (SS and OS), we
demonstrate that components critical for one
task often have corresponding negative coun-
terparts that play a causally important role
in the opposite task. This provides new in-
sights into how language models process and
represent binary pairs of tokens.

2 Preliminary

Transformers Circuits

We provide a brief overview of GPT-2 following
the notation from Elhage et al. (2021). GPT-2 is a
decoder-only transformer with 12 layers; each layer
contains 12 attention heads and one MLP. Input to-
kens ¢ are embedded into the initial residual stream
state xg. The residual stream, a core intermediate
representation, is updated additively as it passes
through each layer’s components

At layer 4, the residual stream xz;_1 is processed

by the layer’s components and updated as follows:

T = Tj—1
+ AttentionHeads(x;—1)
+ MLP (xl-, 1 + AttentionHeads(x; 1 )) .

Here, the attention heads process x;_1 in parallel,
and their combined output is added back to the
residual stream before passing through the MLP,
whose output is then added residually to form x;.

Each attention head is parameterized by four ma-
trices: query Wg, key Wik, value Wy, and output
Wo, which form the following composite matrices:

WQK = WgWK, WOV = WOWV.
Using these matrices, along with the embedding
matrix Wg and the unembedding matrix Wy, the
attention computation for each head decomposes
into two core circuits.

The Query-Key (QK) circuit, defined as
WA WorWg, provides the attention scores for ev-
ery query—key token pair. Intuitively, each entry
describes how much a given query token wants to at-
tend to a given key token, providing insights where
information flows within the model.

The Output-Value (OV) circuit, defined as
WuWovWg, determines what information is trans-
ferred to the output logits when a token is attended
to.

This formulation also allows transformers to be
represented as a computational graph, where nodes
correspond to components like attention heads or
MLPs, and edges represent learned weights. Cir-
cuits, subgraphs specialized for particular tasks,
can then be identified and studied mechanistically.
Indirect Object Identification Wang et al.
(2022) analyzed GPT-2 small’s performance on the
IOl task, where the model must predict the indirect
object (IO) in sentences like: “When Mary and
John went to the store, John gave a bottle of milk
to Mary.” The correct prediction is “Mary”, not
the repeated subject “John”.

A human-interpretable strategy to solve 101 in-
volves three steps: (1) identify all names in the
sentence, (2) remove duplicates, and (3) output the
remaining name. GPT-2 small mirrors this algo-
rithm through three distinct attention head groups:
Duplicate Token Heads detect repeated names, at-
tending from the second mention back to the first;
S-Inhibition Heads suppress repeated tokens; and
Name Mover Heads copy the correct 10 into the
output via attention.

Path Patching Path patching is an intervention-
based interpretability method for circuit discovery
(Wang et al., 2022). It utilizes two prompt distri-
butions: the original task distribution peig, and
a corrupted distribution ppey designed to break
task-relevant behavior. First, the model is run on
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Figure 1: Opposite Syllogism Circuit. The blue arrow represents queries, and the yellow arrow represents
values. Negative Truth Heads perform negation of the truth value present in the prompt while the Truth
Logit Rescaler MLPs rescale the residual stream to select the correct truth value.

both distributions and each computational node’s
activations are cached. Then, a forward pass is per-
formed on porie Where the activation at a specific
node F' (e.g., an attention head) is replaced with its
counterpart from pyew, while the rest of the model
remains unchanged. Next, the resulting activation
at a downstream node G is cached and patched into
a forward pass on ppew. The causal impact of the
path F' — G is quantified by measuring the change
in logit difference. A substantial drop indicates that
F is causally important for the model’s behavior
on the task.

Logit Lens The logit lens (Nostalgebraist, 2020) is
an interpretability method that projects the hidden
state of a computational node, h, into the model’s
token space. It applies layer normalization followed
by the unembedding matrix:

LogitLens(h) = LayerNorm(h) Wy .

This yields a distribution over tokens, revealing
which outputs the model would favor if it predicted
directly from that point.

3 Understand How GPT-2 Process
Syllogisms

Syllogisms (Aristotle, c. 350 BC) offer an effective
way to analyze a LM’s reasoning capacity. Rather
than analyzing a broad range of facts in a syllo-
gistic format, we narrow our focus to a simpler
set of propositions and declarative statements such
as: “Statement A is true. Statement B matches
statement A. Statement B is true.” We define three
types of syllogisms: Simple Syllogism (SS), Op-
posite Syllogism (OS), and Complex Syllo-
gism (CS). A complete example of each type is
provided in Table 1. We define the logit difference
for the syllogism task family as follows. Let the
answer set be S = {true, false} with the correct
answer x € S, and the incorrect answer —x € S.
The logit difference (LD) is then given by:

LD = logit(z) — logit(—x).

A positive logit difference indicates that the first
logit is more probable, while a negative logit dif-
ference suggests the second logit is more probable.
el’P represents how many times more likely the
model will predict z compared to —x. Thus, for
the SS format, GPT-2 small is 6.4077 times more
likely to predict the correct truth value.

To quantify how well a circuit preserves model
behavior, we use the faithfulness metric. Let
LD(M) denote the average logit difference (ALD)
of the full model M, and LD(C) that of a circuit
C. The faithfulness metric is defined as:

Faithfulness = |[ALD(M) — ALD(C)|.

A lower value indicates that the circuit faithfully
recovers the model’s behavior on the task.

3.1 Simple Syllogism

We frame the SS task with the following human-
interpretable algorithm: (1) Identify the single
truth value token in the prompt; (2) Output the
truth value token. Construction of the SS dataset
can be found in Appendix A.

Truth Heads We begin by applying path patch-
ing to determine which attention heads and MLPs
influence the model’s output logits on SS prompts.
As shown in Figure 2a, MLP layers have minimal
direct effect on the logits, suggesting they are not
essential for solving the SS task. We explore this
further in Appendix C.

In contrast, Figure 2b reveals that several atten-
tion heads in the later layers, particularly heads
7.2,9.1,9.9, 10.1, and 10.4, contribute substantially
to logit differences. To understand the behavior
of these heads, we analyze their attention patterns
using their QK circuits. Specifically, for each atten-
tion head h, we compute the raw attention score:

AM = tTW L Wl Wt,

which captures how much each query token at-
tends to each key token in the vocabulary space.



Type Example Syllogism Avg. Logit Diff.
Simple Statement A is true. Statement B matches statement A. Statement B 1.8575
18 true
Opposite  Statement A and statement B are opposites. Statement A is true. 1.2123
Statement B is false
Complex  Statement A is true. Statement B matches statement A. Statement C 1.3105

is false. Statement B is true

Table 1: Examples of syllogism types with their corresponding average logit differences over datasets of
500 prompts. The LM is expected to predict the red tokens. We create these distributions of syllogism by

replacing letters and truth values.

We find that these heads exhibit similar induction-
like attention patterns: they predominantly attend
to the final token corresponding to the truth value.

We provide a visualization of the most influential
head, 7.2, in Figure 2c, along with the top K =3
query—key token pairs in Table 2. For reference,
we use the example SS prompt: “Statement E is
true. Statement S matches statement E. Statement
S is true”. Across top heads we consistently ob-
serve two high-scoring token pairs: (S,matches)
and (is,true). The first pair indicates that GPT-2
has developed a logical understanding of equiva-
lence between the two statements—effectively com-
puting matches(S, E)—while the second pair shows
it retrieving the correct truth value based on this
relationship. This consistent behavior leads us to
call these attention heads Truth Heads.

To test whether Truth Heads depend on earlier
attention heads, we repeat path patching on their
query, key, and value inputs. We find that ear-
lier heads have minimal effect, suggesting that the
Truth Heads operate independently. To verify their
sufficiency we build a minimal circuit C'sg consist-
ing only of the Truth Heads. Cgg faithfully recovers
the predictions of the model, achieving an average
logit difference of 1.9286, effectively matching the
performance of the GPT-2 small on the task. The
Truth Heads” QK circuit consistently directs atten-
tion to the correct truth value earlier in the prompt
while their OV circuit copies that value into the
residual stream at the final token. Using the logit
lens on truth heads confirms their output strongly
favors the correct truth value.

Negative Heads in Simple Syllogism In addi-
tion to the Truth Heads, we identify a distinct group
of heads—such as 9.7, 10.7, and 11.10—that exhibit
attention patterns similar to the Truth Heads but
are not essential for solving the task. Notably,
mean-ablating head 10.7 improves model perfor-
mance beyond the baseline. Head 10.7 has previ-
ously been characterized as a negative head in prior
work (Wang et al., 2022) where it was shown to
reduce the logit of specific output tokens. We hy-
pothesize these negative heads encode the logit of

the incorrect class in a binary setting. This aligns
with findings from the copy suppression literature
(McDougall et al., 2023) where head 10.7 was also
found to suppress certain tokens. To test this, we
turn to the Opposite Syllogism format.

3.2 Opposite Syllogism

To test our hypothesis surrounding negative heads,
we investigate the model’s behavior on opposite
syllogisms (OS). We define a human-interpretable
algorithm for this task in three steps: (1) Identify
the single truth value token in the prompt, (2)
Negate the truth value token, and (3) Output the
negated token. Details on dataset construction are
provided in Appendix A. For reference, we use the
example OS prompt: “Statement E and statement
S are opposites. Statement E is true. Statement S
is false”.

Negative Truth Heads. We begin by identify-
ing components that directly influence the model’s
output on OS prompts. Path patching shows that
ablating attention heads 7.3, 8.8, 8.10, 9.7, and
10.7 leads to a significant drop in logit difference
(Figure 3b). To understand their role, we analyze
each head’s output by applying its OV matrix to
the MLP-extended embedding basis, following prior
techniques from Wang et al. (2022) and McDougall
et al. (2023):

Wy Wiy, MLPo(Wg).

These heads consistently attend to the truth value
token in the prompt (e.g., is, true)—mirroring
behavior observed in the SS setting. However, their
influence on the logits differs. Some heads, like 8.8
and 5.1, promote the truth token to the top logits
and function as standard Truth Heads. In contrast,
heads such as 7.3, 8.10, 9.7, 10.7, and 11.10 suppress
the truth token into the bottom logits (Table 3).
We refer to this group as Negative Truth Heads.
Unlike the SS format, MLPs corresponding to
these heads are crucial: ablating them significantly
reduces performance (Figure 3a). Furthermore,
path patching the queries of these Negative Truth
Heads confirms they operate independently, with



Head 1st Highest Q—-K Pair 2nd Highest 3rd Highest
7.2 0.8304: [’S’, ’matches’] 0.5749: [’is’, ’true’] 0.2750: [’true’, ’.’]
10.1 0.7139: [’is’, ’true’] 0.5524: [’S’, ’matches’] 0.4258: [’S’, ’true’]
10.4 0.6833: [’is’, ’true’] 0.6637: [’S’, ’matches’] 0.5063:

[>.”, ’Statement’]

Table 2: Top 3 highest-scoring query—key token pairs from the attention pattern scores of the most

influential heads in the SS format.
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Figure 2: Path Patching and QK Analysis on Simple Syllogism Prompts.

no significant upstream influence—mirroring earlier
findings from SS where only components with direct
logit impact matter.

Mechanistic Interpretation The QK circuit of
each Negative Truth Head reliably identifies the
truth token—fulfilling Step 1 of the OS algorithm.
However, their OV projection suppresses this to-
ken into the bottom logits. The associated MLP
then rescales the residual stream to promote the
opposite of the suppressed token into the top log-
its, completing Steps 2 and 3. We refer to these
components as Truth Logit Rescaler MLPs.

This attention-MLP sequence forms a mechanis-
tic pathway for learned negation: the model sup-
presses a truth token and then elevates its negation
for output. Table 3 captures the entire trajectory of
such a token: from attention-induced suppression to
MLP-driven recovery. This reveals how the model
predicts a correct token not seen in the prompt, us-
ing the suppression of the incorrect token as a signal
for its opposite. While this attention-MLP mecha-
nism effectively negates the truth value in opposite
syllogisms, we observe a consistent asymmetry: the
negation process is more reliably triggered when the
input token is true, resulting in false predictions.
In contrast, when the prompt contains false, the
model often retains false as the dominant logit
rather than flipping to true.

Circuit Faithfulness To test sufficiency, we con-
struct a circuit Cog using only the Negative Truth
Heads and their associated MLPs. This circuit

recovers approximately 85% of GPT-2 small’s per-
formance, demonstrating it is a faithful subcircuit
for solving the OS task. A schematic of this circuit
is shown in Figure 1.

Reversal of Head Behavior Between Tasks In-
terestingly, the same heads that negatively affected
logit difference in the SS task—like 10.7—now play
a constructive role in OS. This reversal demon-
strates that the model reuses certain components
in complementary tasks where their function flips to
support inverse outcomes. We extend this finding
in Appendix B, where we test circuit generaliza-
tion and transferability across other binary pairs
beyond true/false, further supporting the idea
that GPT-2 small represents logical negation via
attention and MLPs.

3.3 Complex Syllogism

The complex syllogism task expands on the previ-
ous setups by introducing a misleading, redundant
statement. The objective is to determine whether
GPT-2 Small can still arrive at the correct conclu-
sion in the presence of potentially confusing infor-
mation.

We begin with path patching to identify which
attention heads and MLPs directly influence the
model’s output logits. The results are similar to the
path patching results of the OS format. More specif-
ically, MLPs in layers 8,9, and 10 positively influ-
ence the logit difference. Similar heads—specifically,
heads 7.3, 8.8, 8.10, 9.7, and 10.7— were found to
positively influence logit difference but with differ-



Top QK Pairs (Head 10.7)

0.892: (‘is’, ‘true’), 0.772: (‘statement’, ‘E’), 0.685: (‘Statement’, ‘S’), 0.662: (‘Statement’, ‘S’),

0.459: (‘is’, ‘oppos’)

Stage Top Logits

Bottom Logits

After OV from Head 10.7

depot, rink, carp, Dj, Hack, DJ, Gaz,
Phillips, District, TTC

‘true’, ‘True’, ‘TRUE’, ‘true’,
‘untrue’, ‘Null’

After MLP Layer 10
nite, truly

‘true’, ‘false’, ‘True’, ‘False’, infi-

blitz, ombo, plateau, corrid,
tradem, emale, Citiz, sugg

Table 3: Top QK pairs in Head 10.7 strongly attend to truth-related tokens (e.g., ‘is’, ‘true’). Initially,
the OV output does not rank truth tokens highly. However, after the MLP layer, both ‘true’ and ‘false’
become top-ranked, indicating the MLP can help produce the opposite token, even when it is not in the

prompt
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Figure 3: Path Patching and QK Analysis on Opposite Syllogism Prompts.

ent behavior. Heads 9.7, 10.7, and 11.10 attend to
both truth tokens in the prompt but place greater
emphasis on the incorrect (redundant) truth to-
ken. Inspecting their logits, we find these heads
continue to perform a suppression operation as ob-
served previously, and we therefore classify them as
Negative Truth Heads in the CS format and do not
investigate them further. In contrast, heads 7.3,
8.8, and 8.10 exclusively attend to the incorrect
truth value, and we study them more closely to
understand their contribution. We refer to these as
Truth Modulation Heads.

To interpret the behavior of the Truth Modula-
tion Heads, we analyze how their outputs project
onto the unembedding vectors of the truth tokens.
Let Wy[true] and Wy [false] represent the un-
embedding directions for the correct and incor-
rect truth tokens respectively. For a head output
h;(X), we compute the logit contribution to token
t € {true,false} as

(hi(X), Wy [t]).

This dot product reflects how strongly head h;
pushes the residual stream toward generating token
t. We scatter plot each head’s attention probability
on the truth value token against the corresponding

logit contribution along the true direction. Two dis-
tinct patterns emerge across the heads. First, the
correct token is consistently ignored by these heads,
receiving very low attention probability. Second,
the incorrect token shows two opposing trends de-
pending on the head: in some cases, the attention
probability and logit contribution are positively
correlated, suggesting that the head reinforces the
incorrect truth value. We refer to such heads as
Correct Truth Inhibition Heads. In other cases,
the relationship is negative—the more attention
the head gives to the incorrect token, the more
it pushes away from the incorrect truth direction.
This effectively reinforces the correct token and
we refer to these as Correct Truth Reinforcement
Heads.

These behaviors are further supported by exam-
ining the top and bottom logits. In inhibition heads,
the incorrect token consistently appears among the
top logits while in reinforcement heads it appears
among the bottom logits. This supports the inter-
pretation that Truth Modulation Heads implement
a binary operation: either reinforcing or inhibiting
the direction of the incorrect token, which indirectly
determines the correct output.

We then investigate whether the Negative Truth



Heads and Truth Modulation Heads influence one
another. Path patching reveals that neither group
affects the other directly, although both are in-
fluenced by similar upstream sources. Moreover,
ablating one group does not destroy faithfulness,
confirming that the groups can operate indepen-
dently. This redundancy is consistent with the
findings of McGrath et al. (2023), who describe the
Hydra Effect in language models, where multiple
pathways can implement the same behavior.

Path patching reveals that both the Negative
Truth Heads and the Truth Modulation Heads re-
ceive input from a shared set of upstream heads,
primarily located in Layers 0 and 5. In Layer 5,
heads 5.1 and 5.5 exhibit classic induction patterns
as described by Elhage et al. (2021), attending
from the conclusion line (e.g., “Statement B is”)
back to a matching premise. This effectively links
the conclusion to its logical source. In Layer 0,
other heads attend to repeated statement identi-
fiers (e.g., “Statement B”) and influence both the
key vectors of downstream heads and the values
used by the Induction Heads. These heads ap-
pear to detect repeated statements and function as
Duplicate Statement Identifier Heads, marking the
reuse of information—an essential step in a natural
deduction process.

At inference time, the Induction Heads serve
as a routing mechanism: they either connect the
conclusion to the premise via the “matches” relation
or directly extract the incorrect truth value from the
conclusion line. This information is then processed
by the Negative Truth Heads or Truth Modulation
Heads to generate the final token.

4 Discussion

Connection to IOI Despite overlap with the
Name Mover Heads from the IOI task, we find
(Negative) Truth Heads reflect broader function-
ality, particularly negate rather than simply copy.
From an IOI perspective, the Negative Truth Heads
were initially interpreted as negative copy heads
due to their tendency to replicate the tokens they
attend to. However, in the opposite syllogism task,
the correct answer is not explicitly present in the
prompt. Consequently, these heads cannot simply
copy the attended truth value to produce the cor-
rect answer. This provides strong evidence that
Negative Truth Heads encode the direction of the
less contextualized logit in a binary setting, effec-
tively operating in the antidirection. We believe
this behavior remained unnoticed in IOI because,
in that context, Mary # —John. Similarly, many
of the Truth Modulation Heads align with the S-
Inhibition category from IOI, suggesting a shared
functional role. We identify the Correct Truth
Inhibition Heads as the original inhibition heads
from IOI, given their role in reinforcing focus on

the incorrect token. This expanded understanding
highlights how heads previously characterized in
IOI tasks can exhibit more nuanced and adaptable
behaviors in different contexts.

Clustering of Truth Modulation Heads We ob-
serve distinct clusters in both groups of Modulation
Heads. To refine our truth types, we categorize
truth values into four types: correct true (CT),
correct false (CF), incorrect true (IT), and incor-
rect false (IF). This results in two natural pairings:
(CT, IF) and (CF, IT). As shown in Figure 4a and
4b, false (IF or CF) has larger projections on
the truth embedding. We believe that this asym-
metrynot only reflects the internal bias of truth
values learned from the training ccorpus, but also
resembles the behavior observed in the Opposite
Syllogism task, where negation was easier with true.
Although we do not rigorously analyze this connec-
tion, it may reflect a broader model bias toward
negative truth values or a negation-like structure
in its internal representations.

Scalability of Results We extend our simple
and opposite syllogism formats to larger models
such as GPT-2 XL, Pythia 1.4B, Qwen3-1.7B, and
LLaMA3.2-1B. (See Appendix D).

5 Related Works

Mechanistic Interpretability Mechanistic In-
terpretability research offers various techniques to
reverse-engineer model behavior and identify im-
portant components responsible for a model’s per-
formance. In addition to Path Patching (Wang
et al., 2022), there are other patching methods in-
cluding Attribution Patching (Nanda, 2023), causal
mediation analysis (Meng et al., 2023; Pearl, 2022;
Vig et al., 2020), and AtP* (Kramdr et al., 2024).
Sparse Autoencoders (SAEs) have become increas-
ingly popular for interpreting features (Bricken
et al., 2023; Marks et al., 2025). Earlier works
such as Neuron Shapley (Ghorbani and Zou, 2020)
introduce a framework that quantifies each neu-
ron’s contribution to a deep network’s performance
by considering interactions among neurons. Other
earlier works such as Cao et al. (2021); Csordds
et al. (2021) employ subnetworks to investigate
what model internals are needed to perform a task
through probing and masking.

Circuit Discovery in GPT-2 IOI has inspired
many other circuit analysis works. (Hanna et al.,
2023) identify a circuit that explains GPT2’s abil-
ity to predict correct year tokens when prompted
with task like ”The war lasted from the year 1732
to 17”. (Merullo et al., 2024) rediscover the I0I
circuit in GPT2-Medium and show that much of
the circuit can be reused to solve the Colored Ob-
ject task introduced by (Srivastava et al., 2023).
(Nainani et al., 2024) explore IOI’s generality by
extending the prompt to include more instances
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Figure 4: The Truth Modulation group with refined truth types

of the indirect object. Conmy et al. (2023) gener-
alize and automate the IOI-style analysis within
GPT-2 small, ultimately recovering many already
discovered circuits.

Syllogisms for Assessing LLMs Recent stud-
ies have explored assessing LLMs with syllogisms.
Eisape et al. (2024); Ando et al. (2023) provide a
comparative analysis on how humans and LLMs
perform syllogistic reasoning. Kim et al. (2025) con-
duct a mechanistic analysis of standard syllogisms.
In contrast, our work explores syllogisms with as-
signed truth values, offering a distinct perspective.
Furthermore, we provide novel insights into the
role of MLPs in facilitating syllogistic reasoning
and handling logical negation.

6 Conclusion

In this work, we reverse-engineered GPT-2 for three
syllogism tasks of varying complexity, uncovering
key insights into how GPT-2 handles binary truth
values within logical tasks. In the simplest case,
high faithfulness was achieved with just Truth
Heads, highlighting the model’s ability to main-
tain correct truth values with minimal components.
In the opposite syllogism case, the inclusion of Neg-
ative Truth Heads and MLPs allowed the model
to properly negate the truth value, demonstrating
the novel negation mechanism in handling binary
outcomes. In the complex case, while negation re-
mained a key mechanism, additional heads were
needed to identify and process the correct truth
value to negate, reflecting the increased complexity
of the task. Our findings reveal significant overlap
with the IOI circuit, expanding the understanding
of these computational nodes’ capabilities.

7 Limitations

Our study focuses on GPT-2 Small, a relatively
early and compact language model. While this

model is widely used in mechanistic interpretabil-
ity research due to its manageable size, its age and
scale may limit the generalizability of our findings to
more modern and larger models. Although we per-
form limited extensions to larger models, a deeper
analysis across model families and scales remains
an open direction for future work. Additionally,
our syllogism datasets are synthetic and templated,
which may not reflect the full diversity and ambi-
guity of natural language logical reasoning.

8 Ethical Considerations

This work does not involve human subjects, private
user data, or any personally identifiable informa-
tion. Our experiments are conducted entirely on
publicly available models and synthetic prompts.
However, we acknowledge that large language mod-
els can encode and amplify societal biases present
in their training data. While our work does not
directly address such issues, future investigations
into the interaction between logical circuits and bias
propagation could be valuable. We also note that
reverse-engineering model internals, while useful for
scientific understanding, should be accompanied by
considerations of responsible disclosure when vul-
nerabilities or harmful behaviors are uncovered.
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A Syllogism Dataset Construction

Syllogistic prompts were created using templates.
[TRUTH_-VALUE] € {true,false}, and [A], [B],
[C] are sampled from capital letters. See table 4
for templates of each syllogism format

B Generality Across Binary
Contrasts

Having established mechanistic evidence for circuits
supporting binary truth tasks in both the simple
and opposite syllogism settings, we next evaluate
the generality of these circuits beyond the original
true/false framing. Specifically, we test whether
the same circuits generalize to analogous binary
pairs: (right, wrong), (good, bad), (positive,
negative), and (correct, incorrect).

To do so, we apply both the simple syllogism
circuit (Csg) and opposite syllogism circuit (Cog)
to each pair and compare their performance to
the full GPT-2 Small model. As shown by tables
5 and 6 we find that the original circuits often
match or even outperform the full model in logit
difference between most binary pairs of tokens. This
provides compelling evidence that the binary task
is not specific to a particular token pair, but instead
reflects a transferable reasoning mechanism.

To further validate generalization, we visualize
direct path patching attention results across each
binary pair. As seen in Figures 5-8, across the
binary pairs of tokens, the core attention heads
relevant to the simple and opposite syllogism cases
are opposite in their effect on logit difference.

C Disentangling MLP
Contributions via Patching

To assess the contribution of MLPs to the model’s
output, we perform path patching both with and
without attention restored. Figure 10b shows that
early-layer MLPs—particularly MLPO—appear to
significantly affect the logits when patched in iso-
lation. This aligns with prior observations that
MLPO functions as an extended embedding layer,
especially when attention is absent (McDougall
et al., 2023; Wang et al., 2022).

However, once attention is also restored, the influ-
ence of these early MLPs sharply diminishes. This
suggests their apparent impact in the no-attention
condition is largely an artifact of missing context,
rather than a reflection of GPT2 semantic ability
to complete syllogisms.

For this reason, in all subsequent experiments
analyzing MLP effects, we report results with at-
tention paths patched in. This allows us to isolate
the true downstream influence of MLPs under more
realistic model conditions.

11

D Extension to Larger Models

To assess whether the findings observed in GPT-2
Small generalize across model scale and architec-
ture, we extend our experiments to several larger
models: GPT-2 XL, Pythia 1.4B, Qwen3-1.7B, and
LLaMA3.2-1B.

Across all models, we continue to observe empir-
ical signatures of binary behavior: heads relevant
to the simple and opposite syllogism tasks tend to
exert opposing effects on the logits. MLP layers
remain important in the opposite syllogism task
for all models except Pythia 1.4B, mirroring the
behavior observed in GPT-2 Small. Notably, Table
7 shows that performance on the simple syllogism
format degrades significantly in larger models, sug-
gesting that task generalization does not uniformly
scale with model size.

All models retain some attention heads exhibit-
ing negative-copy behavior. However, the influence
of these heads on output logits is more muted com-
pared to GPT-2 Small. In particular, the heads
most responsible for enabling opposite syllogism
performance in the larger models are not the neg-
ative heads. Qwen3-1.7B, for instance, contains
relatively few negative heads, and those it has do
not drive logit differences in either task. An ex-
ception is Pythia 1.4B, whose success on the oppo-
site task remains closely tied to the activity of its
negative-copy heads.

Interestingly, across all models, the heads most
influential on model output tend to exhibit strong
induction behavior (e.g., ABA — B), regardless of
whether they also contribute to the task-relevant
distinction. Yet despite this variability in attention
head dynamics, the consistent involvement of MLPs
in the opposite task—and their near absence in the
simple task—suggests a robust division of labor:
negation appears to depend more heavily on the
feedforward path than on attention alone. This
may help constrain future hypotheses about the
mechanistic implementation of logical inversion and
contextual negation in transformer models.

These findings remain empirical and exploratory.
Figures 11-14 illustrate the direct effects of atten-
tion heads and MLPs across the syllogism tasks. A
deeper investigation into how architectural scale af-
fects circuit behavior remains a promising direction
for follow-up work.
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Type

Template

Simple 1. Statement [A] is [TRUTH_VALUE_1]. Statement [B] has the same truth value
Syllogism as [A]. Statement [B] is [TRUTH_VALUE_1].
2. Statement [A] is [TRUTH_.VALUE_1]. Statement [B] matches statement A.
Statement B is [TRUTH_VALUE_1].
3. (Extended) Statement [A] is [TRUTH_-VALUE_1]. Statement [B] must match
[A]. Statement [C] doesn’t matter. Statement [B] is [TRUTH_-VALUE_1].
Opposite 1. Statement [B] has the opposite truth value of [A]. Statement [A] is
Syllogism [TRUTH_.VALUE_1]. Statement [B] is [TRUTH_VALUE_2].
2. Statement [A] and statement [B] are opposites.  Statement [A] is
[TRUTH_VALUE_1]. Statement [B] is [TRUTH_VALUE_2].
Complex 1. Statement [A] is [TRUTH_VALUE_1]. Statement [B] has same truth value as
Syllogism [A]. Statement [C] is [TRUTH_VALUE_2]. Statement [B] is [TRUTH_VALUE_3].
(Harder constraint): [TRUTH_.VALUE_2] = -[TRUTH_VALUE_1].
Complex 1. Statement [A] is [TRUTH_VALUE_1]. Statement [B] has the opposite truth value
Opposite of [A]. Statement [C] is [TRUTH_-VALUE_2]. Statement [B] is [TRUTH_VALUE_3].
Syllogism
2. Statement [A] and [B] are opposites. Statement [C] has the same truth value as
[A]. Statement [B] is [TRUTH_VALUE_3].
3. Statement [A] is [TRUTH_.VALUE_1]. Statement [A] and [B] are opposites.
Statement [C] is [TRUTH_VALUE_2]. Statement [B] is [TRUTH_VALUE_3].
Table 4: Templates used for generating syllogistic prompts.
Original Good/Bad Pos/Neg Correct/Incorrect Right/Wrong
GPT-2 Small 1.8399 1.7738 0.6958 2.1221 2.0309
Css 1.9234 1.9940 1.1584 1.6785 2.1599
Table 5: Transferability of C'sg to other binary token pairs
Original Good/Bad Pos/Neg Correct/Incorrect Right/Wrong
GPT-2 Small 1.2632 2.1163 3.0032 0.7986 1.3469
Cos 1.3136 1.7136 1.0113 0.8142 1.2481

Table 6: Transferability of Cpg to other binary token pairs

GPT-2 XL Qwen3-1.7B LLaMA 3.2-1B Pythia 1.4B

Simple Syllogism

0.1112 0.5322 —0.4357 1.0105

Opposite Syllogism 2.6114 1.5257 —0.1807 2.1098

Table 7: Average logit difference across models and tasks.
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Figure 13: Direct effects of attention heads and MLPs for LLaMA 3.2B across syllogism tasks.
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