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Abstract001

Transformer-based language models (LMs)002
can perform a wide range of tasks, and003
mechanistic interpretability (MI) aims to004
reverse engineer the components responsi-005
ble for task completion to understand their006
behavior. Previous MI research has focused007
on linguistic tasks like Indirect Object Iden-008
tification (IOI). In this paper, we investi-009
gate the ability of GPT-2 small to handle010
binary truth values by analyzing its behav-011
ior with syllogistic prompts, such as “State-012
ment A is true. Statement B matches state-013
ment A. Statement B is”, which requires014
more complex logical reasoning compared015
to IOI. Through our analysis of several syllo-016
gism tasks of varying difficulty, we identify017
multiple circuits that mechanistically ex-018
plain GPT-2’s logical-reasoning capabilities019
and uncover binary mechanisms that facili-020
tate task completion, including the ability021
to produce a negated token that does not022
appear in the input prompt through nega-023
tive heads. Our evaluation using a faithful-024
ness metric shows that a circuit comprising025
five attention heads achieves over 90% of026
the original model’s performance. By relat-027
ing our findings to IOI analysis, we provide028
new insights into the roles of certain atten-029
tion heads and MLPs in LMs. We believe030
these insights contribute to a broader un-031
derstanding of model reasoning and benefit032
future research in mechanistic interpretabil-033
ity.034

1 Introduction035

Despite the success of Large Language Models036
(LLMs) and their amazing capabilities, these mod-037
els remain largely opaque and function as black038
boxes. Mechanistic interpretability has emerged as039
a field dedicated to mitigate this conceptual gap.040
By analyzing how LMs solve specific tasks (Wang041
et al., 2022; Hanna et al., 2023; Merullo et al., 2024),042
studying emergent behaviors (Arditi et al., 2024),043
and identifying patterns within their architectures044
(Gurnee et al., 2024), researchers aim to unravel045
the inner workings of LMs. Even though great046

progress has been made, significant gaps remain in 047
understanding LMs even on basic tasks. 048
GPT-2 is a family of representative LLMs that 049

has been frequently studied in mechanistic inter- 050
pretability literature. An exemplary case is analyz- 051
ing its ability to do Indirect Object Identification 052
task (Wang et al., 2022), which reverse engineers 053
how GPT-2 correctly predicts the final token in 054
sentences like “When Mary and John went to the 055
shops, John gave a bottle of milk to”. Such mech- 056
anistic analysis begins with the output and traces 057
back to identify the architectural components rele- 058
vant to the task, termed as circuit. GPT-2 small 059
has been shown to be competent in such linguistic 060
tasks, however its ability and mechanism to perform 061
logic reasoning remains uncertain. Specifically, it 062
lacks the capability to coherently answer true-false 063
questions, such as “True or False? Dogs have four 064
legs.”. To investigate how GPT-2 represents and 065
processes truth values, we utilize syllogism tasks — 066
a classic form of logical reasoning involving premises 067
and a conclusion. By applying similar mechanistic 068
analysis to syllogistic prompts, we aim to discover 069
the circuits that are relevant to the task and in- 070
terpret the internal mechanisms GPT-2 uses when 071
handling truth values. 072

This paper builds on previous interpretability re- 073
search by focusing on how GPT-2 handles syllogistic 074
prompts. We use true-false syllogism tasks where 075
truth values are assigned to premise statements and 076
the model is prompted to predict the truth value 077
of the conclusion. We define three prompt formats 078
to probe binary reasoning. The Simple Syllogism 079
(SS) presents direct entailment, e.g., “Statement A 080
is true. Statement B matches statement A. State- 081
ment B is”. The Opposite Syllogism (OS) inverts 082
this logic, requiring negation, e.g., “Statement A 083
and Statement B are opposite. Statement A is true. 084
Statement B is”. The Complex Syllogism (CS) adds 085
one or more distractor premises irrelevant to the 086
inference, e.g., “Statement A is true. Statement B 087
matches statement A. Statement C is false. State- 088
ment B is”, where the distractor is “Statement C 089
is false”. 090

Our approach includes two mechanistic inter- 091
pretability techniques: Path Patching and Logit 092
Lens. Path patching (Wang et al., 2022) determines 093
the importance of a computational component in 094
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solving a task by replacing part of the model’s095
forward pass with activations from a different dis-096
tribution. Logit Lens (Nostalgebraist, 2020) applies097
the model’s unembedding matrix at different stages098
of the residual stream, exposing logits and offering099
insights into the function of specific components100
during the model’s processing. Using these tech-101
niques, we apply a mechanistic lens to uncover how102
LMs perform complex reasoning tasks and iden-103
tify the key components that drive their decisions.104
Specifically, we examine the internal mechanisms105
responsible for negation and reinforcement of106
truth values. Evaluation with a circuit faithfulness107
metric shows that a circuit of three attention heads108
can recover 90% of the original model’s performance109
on SS prompts. For OS prompts, a circuit of five110
attention heads and four MLPs nearly recovers the111
performance of the full GPT-2 model, achieving112
roughly 85% faithfulness. The structure of the OS113
circuit is shown in Figure 1.114

Throughout our investigation into how GPT-2115
processes syllogisms, we uncover several insights116
into its internal mechanisms and reasoning capabil-117
ities. Our contributions include:118

1. Discover Syllogism-Specific Circuits: We119
discover circuits that represent the internal120
mechanisms through which GPT-2 solves syl-121
logisms of varying complexity.122

2. Identify A Negation Mechanism: We iden-123
tify a novel mechanism for outputting the124
negation of a truth value. Attention heads125
suppress the truth logit and MLPs modulate126
the negation of the truth logit in the output127
distribution.128

3. Explain Importance of Negative Com-129
ponents: Through analysis of a pair of se-130
mantically opposite tasks (SS and OS), we131
demonstrate that components critical for one132
task often have corresponding negative coun-133
terparts that play a causally important role134
in the opposite task. This provides new in-135
sights into how language models process and136
represent binary pairs of tokens.137

2 Preliminary138

Transformers Circuits139

We provide a brief overview of GPT-2 following140
the notation from Elhage et al. (2021). GPT-2 is a141
decoder-only transformer with 12 layers; each layer142
contains 12 attention heads and one MLP. Input to-143
kens t are embedded into the initial residual stream144
state x0. The residual stream, a core intermediate145
representation, is updated additively as it passes146
through each layer’s components147

At layer i, the residual stream xi−1 is processed148

by the layer’s components and updated as follows: 149

xi = xi−1

+AttentionHeads(xi−1)

+MLP
(
xi−1 +AttentionHeads(xi−1)

)
.

150

Here, the attention heads process xi−1 in parallel, 151
and their combined output is added back to the 152
residual stream before passing through the MLP, 153
whose output is then added residually to form xi. 154

Each attention head is parameterized by four ma- 155
trices: query WQ, key WK , value WV , and output 156
WO, which form the following composite matrices: 157

WQK := W⊤
QWK , WOV := WOWV . 158

Using these matrices, along with the embedding 159
matrix WE and the unembedding matrix WU , the 160
attention computation for each head decomposes 161
into two core circuits. 162
The Query-Key (QK) circuit, defined as 163

W⊤
E WQKWE , provides the attention scores for ev- 164

ery query–key token pair. Intuitively, each entry 165
describes how much a given query token wants to at- 166
tend to a given key token, providing insights where 167
information flows within the model. 168
The Output-Value (OV) circuit, defined as 169

WUWOV WE , determines what information is trans- 170
ferred to the output logits when a token is attended 171
to. 172
This formulation also allows transformers to be 173

represented as a computational graph, where nodes 174
correspond to components like attention heads or 175
MLPs, and edges represent learned weights. Cir- 176
cuits, subgraphs specialized for particular tasks, 177
can then be identified and studied mechanistically. 178
Indirect Object Identification Wang et al. 179
(2022) analyzed GPT-2 small’s performance on the 180
IOI task, where the model must predict the indirect 181
object (IO) in sentences like: “When Mary and 182
John went to the store, John gave a bottle of milk 183
to Mary.” The correct prediction is “Mary”, not 184
the repeated subject “John”. 185
A human-interpretable strategy to solve IOI in- 186

volves three steps: (1) identify all names in the 187
sentence, (2) remove duplicates, and (3) output the 188
remaining name. GPT-2 small mirrors this algo- 189
rithm through three distinct attention head groups: 190
Duplicate Token Heads detect repeated names, at- 191
tending from the second mention back to the first; 192
S-Inhibition Heads suppress repeated tokens; and 193
Name Mover Heads copy the correct IO into the 194
output via attention. 195
Path Patching Path patching is an intervention- 196
based interpretability method for circuit discovery 197
(Wang et al., 2022). It utilizes two prompt distri- 198
butions: the original task distribution porig, and 199
a corrupted distribution pnew designed to break 200
task-relevant behavior. First, the model is run on 201
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Figure 1: Opposite Syllogism Circuit. The blue arrow represents queries, and the yellow arrow represents
values. Negative Truth Heads perform negation of the truth value present in the prompt while the Truth
Logit Rescaler MLPs rescale the residual stream to select the correct truth value.

both distributions and each computational node’s202
activations are cached. Then, a forward pass is per-203
formed on porig where the activation at a specific204
node F (e.g., an attention head) is replaced with its205
counterpart from pnew, while the rest of the model206
remains unchanged. Next, the resulting activation207
at a downstream node G is cached and patched into208
a forward pass on pnew. The causal impact of the209
path F → G is quantified by measuring the change210
in logit difference. A substantial drop indicates that211
F is causally important for the model’s behavior212
on the task.213
Logit Lens The logit lens (Nostalgebraist, 2020) is214
an interpretability method that projects the hidden215
state of a computational node, h, into the model’s216
token space. It applies layer normalization followed217
by the unembedding matrix:218

LogitLens(h) = LayerNorm(h)WU .219

This yields a distribution over tokens, revealing220
which outputs the model would favor if it predicted221
directly from that point.222

3 Understand How GPT-2 Process223

Syllogisms224

Syllogisms (Aristotle, c. 350 BC) offer an effective225
way to analyze a LM’s reasoning capacity. Rather226
than analyzing a broad range of facts in a syllo-227
gistic format, we narrow our focus to a simpler228
set of propositions and declarative statements such229
as: “Statement A is true. Statement B matches230
statement A. Statement B is true.” We define three231
types of syllogisms: Simple Syllogism (SS), Op-232
posite Syllogism (OS), and Complex Syllo-233
gism (CS). A complete example of each type is234
provided in Table 1. We define the logit difference235
for the syllogism task family as follows. Let the236
answer set be S = {true, false} with the correct237
answer x ∈ S, and the incorrect answer ¬x ∈ S.238
The logit difference (LD) is then given by:239

LD = logit(x)− logit(¬x).240

A positive logit difference indicates that the first 241
logit is more probable, while a negative logit dif- 242
ference suggests the second logit is more probable. 243
eLD represents how many times more likely the 244
model will predict x compared to ¬x. Thus, for 245
the SS format, GPT-2 small is 6.4077 times more 246
likely to predict the correct truth value. 247
To quantify how well a circuit preserves model 248

behavior, we use the faithfulness metric. Let 249
LD(M) denote the average logit difference (ALD) 250
of the full model M, and LD(C) that of a circuit 251
C. The faithfulness metric is defined as: 252

Faithfulness = |ALD(M)−ALD(C)| . 253

A lower value indicates that the circuit faithfully 254
recovers the model’s behavior on the task. 255

3.1 Simple Syllogism 256

We frame the SS task with the following human- 257
interpretable algorithm: (1) Identify the single 258
truth value token in the prompt; (2) Output the 259
truth value token. Construction of the SS dataset 260
can be found in Appendix A. 261
Truth Heads We begin by applying path patch- 262
ing to determine which attention heads and MLPs 263
influence the model’s output logits on SS prompts. 264
As shown in Figure 2a, MLP layers have minimal 265
direct effect on the logits, suggesting they are not 266
essential for solving the SS task. We explore this 267
further in Appendix C. 268

In contrast, Figure 2b reveals that several atten- 269
tion heads in the later layers, particularly heads 270
7.2, 9.1, 9.9, 10.1, and 10.4, contribute substantially 271
to logit differences. To understand the behavior 272
of these heads, we analyze their attention patterns 273
using their QK circuits. Specifically, for each atten- 274
tion head h, we compute the raw attention score: 275

Ah = t⊤W⊤
E Wh

QKWEt, 276

which captures how much each query token at- 277
tends to each key token in the vocabulary space. 278
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Type Example Syllogism Avg. Logit Diff.

Simple Statement A is true. Statement B matches statement A. Statement B
is true

1.8575

Opposite Statement A and statement B are opposites. Statement A is true.
Statement B is false

1.2123

Complex Statement A is true. Statement B matches statement A. Statement C
is false. Statement B is true

1.3105

Table 1: Examples of syllogism types with their corresponding average logit differences over datasets of
500 prompts. The LM is expected to predict the red tokens. We create these distributions of syllogism by
replacing letters and truth values.

We find that these heads exhibit similar induction-279
like attention patterns: they predominantly attend280
to the final token corresponding to the truth value.281

We provide a visualization of the most influential282
head, 7.2, in Figure 2c, along with the top K = 3283
query–key token pairs in Table 2. For reference,284
we use the example SS prompt: “Statement E is285
true. Statement S matches statement E. Statement286
S is true”. Across top heads we consistently ob-287
serve two high-scoring token pairs: (S, matches)288
and (is, true). The first pair indicates that GPT-2289
has developed a logical understanding of equiva-290
lence between the two statements—effectively com-291
putingmatches(S,E)—while the second pair shows292
it retrieving the correct truth value based on this293
relationship. This consistent behavior leads us to294
call these attention heads Truth Heads.295

To test whether Truth Heads depend on earlier296
attention heads, we repeat path patching on their297
query, key, and value inputs. We find that ear-298
lier heads have minimal effect, suggesting that the299
Truth Heads operate independently. To verify their300
sufficiency we build a minimal circuit CSS consist-301
ing only of the Truth Heads. CSS faithfully recovers302
the predictions of the model, achieving an average303
logit difference of 1.9286, effectively matching the304
performance of the GPT-2 small on the task. The305
Truth Heads’ QK circuit consistently directs atten-306
tion to the correct truth value earlier in the prompt307
while their OV circuit copies that value into the308
residual stream at the final token. Using the logit309
lens on truth heads confirms their output strongly310
favors the correct truth value.311

Negative Heads in Simple Syllogism In addi-312
tion to the Truth Heads, we identify a distinct group313
of heads—such as 9.7, 10.7, and 11.10—that exhibit314
attention patterns similar to the Truth Heads but315
are not essential for solving the task. Notably,316
mean-ablating head 10.7 improves model perfor-317
mance beyond the baseline. Head 10.7 has previ-318
ously been characterized as a negative head in prior319
work (Wang et al., 2022) where it was shown to320
reduce the logit of specific output tokens. We hy-321
pothesize these negative heads encode the logit of322

the incorrect class in a binary setting. This aligns 323
with findings from the copy suppression literature 324
(McDougall et al., 2023) where head 10.7 was also 325
found to suppress certain tokens. To test this, we 326
turn to the Opposite Syllogism format. 327

3.2 Opposite Syllogism 328

To test our hypothesis surrounding negative heads, 329
we investigate the model’s behavior on opposite 330
syllogisms (OS). We define a human-interpretable 331
algorithm for this task in three steps: (1) Identify 332
the single truth value token in the prompt, (2) 333
Negate the truth value token, and (3) Output the 334
negated token. Details on dataset construction are 335
provided in Appendix A. For reference, we use the 336
example OS prompt: “Statement E and statement 337
S are opposites. Statement E is true. Statement S 338
is false”. 339
Negative Truth Heads. We begin by identify- 340
ing components that directly influence the model’s 341
output on OS prompts. Path patching shows that 342
ablating attention heads 7.3, 8.8, 8.10, 9.7, and 343
10.7 leads to a significant drop in logit difference 344
(Figure 3b). To understand their role, we analyze 345
each head’s output by applying its OV matrix to 346
the MLP-extended embedding basis, following prior 347
techniques from Wang et al. (2022) and McDougall 348
et al. (2023): 349

WU Wh
OV MLP0

(
WE

)
. 350

These heads consistently attend to the truth value 351
token in the prompt (e.g., is, true)—mirroring 352
behavior observed in the SS setting. However, their 353
influence on the logits differs. Some heads, like 8.8 354
and 5.1, promote the truth token to the top logits 355
and function as standard Truth Heads. In contrast, 356
heads such as 7.3, 8.10, 9.7, 10.7, and 11.10 suppress 357
the truth token into the bottom logits (Table 3). 358
We refer to this group as Negative Truth Heads. 359

Unlike the SS format, MLPs corresponding to 360
these heads are crucial: ablating them significantly 361
reduces performance (Figure 3a). Furthermore, 362
path patching the queries of these Negative Truth 363
Heads confirms they operate independently, with 364
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Head 1st Highest Q–K Pair 2nd Highest 3rd Highest

7.2 0.8304: [’S’, ’matches’] 0.5749: [’is’, ’true’] 0.2750: [’true’, ’.’]

10.1 0.7139: [’is’, ’true’] 0.5524: [’S’, ’matches’] 0.4258: [’S’, ’true’]

10.4 0.6833: [’is’, ’true’] 0.6637: [’S’, ’matches’] 0.5063:
[’.’, ’Statement’]

Table 2: Top 3 highest-scoring query–key token pairs from the attention pattern scores of the most
influential heads in the SS format.
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Figure 2: Path Patching and QK Analysis on Simple Syllogism Prompts.

no significant upstream influence—mirroring earlier365
findings from SS where only components with direct366
logit impact matter.367

Mechanistic Interpretation The QK circuit of368
each Negative Truth Head reliably identifies the369
truth token—fulfilling Step 1 of the OS algorithm.370
However, their OV projection suppresses this to-371
ken into the bottom logits. The associated MLP372
then rescales the residual stream to promote the373
opposite of the suppressed token into the top log-374
its, completing Steps 2 and 3. We refer to these375
components as Truth Logit Rescaler MLPs.376

This attention–MLP sequence forms a mechanis-377
tic pathway for learned negation: the model sup-378
presses a truth token and then elevates its negation379
for output. Table 3 captures the entire trajectory of380
such a token: from attention-induced suppression to381
MLP-driven recovery. This reveals how the model382
predicts a correct token not seen in the prompt, us-383
ing the suppression of the incorrect token as a signal384
for its opposite. While this attention–MLP mecha-385
nism effectively negates the truth value in opposite386
syllogisms, we observe a consistent asymmetry: the387
negation process is more reliably triggered when the388
input token is true, resulting in false predictions.389
In contrast, when the prompt contains false, the390
model often retains false as the dominant logit391
rather than flipping to true.392

Circuit Faithfulness To test sufficiency, we con-393
struct a circuit COS using only the Negative Truth394
Heads and their associated MLPs. This circuit395

recovers approximately 85% of GPT-2 small’s per- 396
formance, demonstrating it is a faithful subcircuit 397
for solving the OS task. A schematic of this circuit 398
is shown in Figure 1. 399

Reversal of Head Behavior Between Tasks In- 400
terestingly, the same heads that negatively affected 401
logit difference in the SS task—like 10.7—now play 402
a constructive role in OS. This reversal demon- 403
strates that the model reuses certain components 404
in complementary tasks where their function flips to 405
support inverse outcomes. We extend this finding 406
in Appendix B, where we test circuit generaliza- 407
tion and transferability across other binary pairs 408
beyond true/false, further supporting the idea 409
that GPT-2 small represents logical negation via 410
attention and MLPs. 411

3.3 Complex Syllogism 412

The complex syllogism task expands on the previ- 413
ous setups by introducing a misleading, redundant 414
statement. The objective is to determine whether 415
GPT-2 Small can still arrive at the correct conclu- 416
sion in the presence of potentially confusing infor- 417
mation. 418

We begin with path patching to identify which 419
attention heads and MLPs directly influence the 420
model’s output logits. The results are similar to the 421
path patching results of the OS format. More specif- 422
ically, MLPs in layers 8,9, and 10 positively influ- 423
ence the logit difference. Similar heads—specifically, 424
heads 7.3, 8.8, 8.10, 9.7, and 10.7— were found to 425
positively influence logit difference but with differ- 426
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Top QK Pairs (Head 10.7)

0.892: (‘is’, ‘true’), 0.772: (‘statement’, ‘E’), 0.685: (‘Statement’, ‘S’), 0.662: (‘Statement’, ‘S’),
0.459: (‘is’, ‘oppos’)

Stage Top Logits Bottom Logits

After OV from Head 10.7 depot, rink, carp, Dj, Hack, DJ, Gaz,
Phillips, District, TTC

‘true’, ‘True’, ‘TRUE’, ‘true’,
‘untrue’, ‘Null’

After MLP Layer 10 ‘true’, ‘false’, ‘True’, ‘False’, infi-
nite, truly

blitz, ombo, plateau, corrid,
tradem, emale, Citiz, sugg

Table 3: Top QK pairs in Head 10.7 strongly attend to truth-related tokens (e.g., ‘is’, ‘true’). Initially,
the OV output does not rank truth tokens highly. However, after the MLP layer, both ‘true’ and ‘false’
become top-ranked, indicating the MLP can help produce the opposite token, even when it is not in the
prompt
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Figure 3: Path Patching and QK Analysis on Opposite Syllogism Prompts.

ent behavior. Heads 9.7, 10.7, and 11.10 attend to427
both truth tokens in the prompt but place greater428
emphasis on the incorrect (redundant) truth to-429
ken. Inspecting their logits, we find these heads430
continue to perform a suppression operation as ob-431
served previously, and we therefore classify them as432
Negative Truth Heads in the CS format and do not433
investigate them further. In contrast, heads 7.3,434
8.8, and 8.10 exclusively attend to the incorrect435
truth value, and we study them more closely to436
understand their contribution. We refer to these as437
Truth Modulation Heads.438

To interpret the behavior of the Truth Modula-439
tion Heads, we analyze how their outputs project440
onto the unembedding vectors of the truth tokens.441
Let WU [true] and WU [false] represent the un-442
embedding directions for the correct and incor-443
rect truth tokens respectively. For a head output444
hi(X), we compute the logit contribution to token445
t ∈ {true, false} as446

⟨hi(X),WU [t]⟩.447

This dot product reflects how strongly head hi448
pushes the residual stream toward generating token449
t. We scatter plot each head’s attention probability450
on the truth value token against the corresponding451

logit contribution along the true direction. Two dis- 452
tinct patterns emerge across the heads. First, the 453
correct token is consistently ignored by these heads, 454
receiving very low attention probability. Second, 455
the incorrect token shows two opposing trends de- 456
pending on the head: in some cases, the attention 457
probability and logit contribution are positively 458
correlated, suggesting that the head reinforces the 459
incorrect truth value. We refer to such heads as 460
Correct Truth Inhibition Heads. In other cases, 461
the relationship is negative—the more attention 462
the head gives to the incorrect token, the more 463
it pushes away from the incorrect truth direction. 464
This effectively reinforces the correct token and 465
we refer to these as Correct Truth Reinforcement 466
Heads. 467

These behaviors are further supported by exam- 468
ining the top and bottom logits. In inhibition heads, 469
the incorrect token consistently appears among the 470
top logits while in reinforcement heads it appears 471
among the bottom logits. This supports the inter- 472
pretation that Truth Modulation Heads implement 473
a binary operation: either reinforcing or inhibiting 474
the direction of the incorrect token, which indirectly 475
determines the correct output. 476

We then investigate whether the Negative Truth 477
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Heads and Truth Modulation Heads influence one478
another. Path patching reveals that neither group479
affects the other directly, although both are in-480
fluenced by similar upstream sources. Moreover,481
ablating one group does not destroy faithfulness,482
confirming that the groups can operate indepen-483
dently. This redundancy is consistent with the484
findings of McGrath et al. (2023), who describe the485
Hydra Effect in language models, where multiple486
pathways can implement the same behavior.487

Path patching reveals that both the Negative488
Truth Heads and the Truth Modulation Heads re-489
ceive input from a shared set of upstream heads,490
primarily located in Layers 0 and 5. In Layer 5,491
heads 5.1 and 5.5 exhibit classic induction patterns492
as described by Elhage et al. (2021), attending493
from the conclusion line (e.g., “Statement B is”)494
back to a matching premise. This effectively links495
the conclusion to its logical source. In Layer 0,496
other heads attend to repeated statement identi-497
fiers (e.g., “Statement B”) and influence both the498
key vectors of downstream heads and the values499
used by the Induction Heads. These heads ap-500
pear to detect repeated statements and function as501
Duplicate Statement Identifier Heads, marking the502
reuse of information—an essential step in a natural503
deduction process.504

At inference time, the Induction Heads serve505
as a routing mechanism: they either connect the506
conclusion to the premise via the “matches” relation507
or directly extract the incorrect truth value from the508
conclusion line. This information is then processed509
by the Negative Truth Heads or Truth Modulation510
Heads to generate the final token.511

4 Discussion512

Connection to IOI Despite overlap with the513
Name Mover Heads from the IOI task, we find514
(Negative) Truth Heads reflect broader function-515
ality, particularly negate rather than simply copy.516
From an IOI perspective, the Negative Truth Heads517
were initially interpreted as negative copy heads518
due to their tendency to replicate the tokens they519
attend to. However, in the opposite syllogism task,520
the correct answer is not explicitly present in the521
prompt. Consequently, these heads cannot simply522
copy the attended truth value to produce the cor-523
rect answer. This provides strong evidence that524
Negative Truth Heads encode the direction of the525
less contextualized logit in a binary setting, effec-526
tively operating in the antidirection. We believe527
this behavior remained unnoticed in IOI because,528
in that context, Mary ̸= ¬John. Similarly, many529
of the Truth Modulation Heads align with the S-530
Inhibition category from IOI, suggesting a shared531
functional role. We identify the Correct Truth532
Inhibition Heads as the original inhibition heads533
from IOI, given their role in reinforcing focus on534

the incorrect token. This expanded understanding 535
highlights how heads previously characterized in 536
IOI tasks can exhibit more nuanced and adaptable 537
behaviors in different contexts. 538

Clustering of Truth Modulation Heads We ob- 539
serve distinct clusters in both groups of Modulation 540
Heads. To refine our truth types, we categorize 541
truth values into four types: correct true (CT), 542
correct false (CF), incorrect true (IT), and incor- 543
rect false (IF). This results in two natural pairings: 544
(CT, IF) and (CF, IT). As shown in Figure 4a and 545
4b, false (IF or CF) has larger projections on 546
the truth embedding. We believe that this asym- 547
metrynot only reflects the internal bias of truth 548
values learned from the training ccorpus, but also 549
resembles the behavior observed in the Opposite 550
Syllogism task, where negation was easier with true. 551
Although we do not rigorously analyze this connec- 552
tion, it may reflect a broader model bias toward 553
negative truth values or a negation-like structure 554
in its internal representations. 555

Scalability of Results We extend our simple 556
and opposite syllogism formats to larger models 557
such as GPT-2 XL, Pythia 1.4B, Qwen3-1.7B, and 558
LLaMA3.2-1B. (See Appendix D). 559

5 Related Works 560

Mechanistic Interpretability Mechanistic In- 561
terpretability research offers various techniques to 562
reverse-engineer model behavior and identify im- 563
portant components responsible for a model’s per- 564
formance. In addition to Path Patching (Wang 565
et al., 2022), there are other patching methods in- 566
cluding Attribution Patching (Nanda, 2023), causal 567
mediation analysis (Meng et al., 2023; Pearl, 2022; 568
Vig et al., 2020), and AtP* (Kramár et al., 2024). 569
Sparse Autoencoders (SAEs) have become increas- 570
ingly popular for interpreting features (Bricken 571
et al., 2023; Marks et al., 2025). Earlier works 572
such as Neuron Shapley (Ghorbani and Zou, 2020) 573
introduce a framework that quantifies each neu- 574
ron’s contribution to a deep network’s performance 575
by considering interactions among neurons. Other 576
earlier works such as Cao et al. (2021); Csordás 577
et al. (2021) employ subnetworks to investigate 578
what model internals are needed to perform a task 579
through probing and masking. 580

Circuit Discovery in GPT-2 IOI has inspired 581
many other circuit analysis works. (Hanna et al., 582
2023) identify a circuit that explains GPT2’s abil- 583
ity to predict correct year tokens when prompted 584
with task like ”The war lasted from the year 1732 585
to 17”. (Merullo et al., 2024) rediscover the IOI 586
circuit in GPT2-Medium and show that much of 587
the circuit can be reused to solve the Colored Ob- 588
ject task introduced by (Srivastava et al., 2023). 589
(Nainani et al., 2024) explore IOI’s generality by 590
extending the prompt to include more instances 591
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Figure 4: The Truth Modulation group with refined truth types

of the indirect object. Conmy et al. (2023) gener-592
alize and automate the IOI-style analysis within593
GPT-2 small, ultimately recovering many already594
discovered circuits.595

Syllogisms for Assessing LLMs Recent stud-596
ies have explored assessing LLMs with syllogisms.597
Eisape et al. (2024); Ando et al. (2023) provide a598
comparative analysis on how humans and LLMs599
perform syllogistic reasoning. Kim et al. (2025) con-600
duct a mechanistic analysis of standard syllogisms.601
In contrast, our work explores syllogisms with as-602
signed truth values, offering a distinct perspective.603
Furthermore, we provide novel insights into the604
role of MLPs in facilitating syllogistic reasoning605
and handling logical negation.606

6 Conclusion607

In this work, we reverse-engineered GPT-2 for three608
syllogism tasks of varying complexity, uncovering609
key insights into how GPT-2 handles binary truth610
values within logical tasks. In the simplest case,611
high faithfulness was achieved with just Truth612
Heads, highlighting the model’s ability to main-613
tain correct truth values with minimal components.614
In the opposite syllogism case, the inclusion of Neg-615
ative Truth Heads and MLPs allowed the model616
to properly negate the truth value, demonstrating617
the novel negation mechanism in handling binary618
outcomes. In the complex case, while negation re-619
mained a key mechanism, additional heads were620
needed to identify and process the correct truth621
value to negate, reflecting the increased complexity622
of the task. Our findings reveal significant overlap623
with the IOI circuit, expanding the understanding624
of these computational nodes’ capabilities.625

7 Limitations626

Our study focuses on GPT-2 Small, a relatively627
early and compact language model. While this628

model is widely used in mechanistic interpretabil- 629
ity research due to its manageable size, its age and 630
scale may limit the generalizability of our findings to 631
more modern and larger models. Although we per- 632
form limited extensions to larger models, a deeper 633
analysis across model families and scales remains 634
an open direction for future work. Additionally, 635
our syllogism datasets are synthetic and templated, 636
which may not reflect the full diversity and ambi- 637
guity of natural language logical reasoning. 638

8 Ethical Considerations 639

This work does not involve human subjects, private 640
user data, or any personally identifiable informa- 641
tion. Our experiments are conducted entirely on 642
publicly available models and synthetic prompts. 643
However, we acknowledge that large language mod- 644
els can encode and amplify societal biases present 645
in their training data. While our work does not 646
directly address such issues, future investigations 647
into the interaction between logical circuits and bias 648
propagation could be valuable. We also note that 649
reverse-engineering model internals, while useful for 650
scientific understanding, should be accompanied by 651
considerations of responsible disclosure when vul- 652
nerabilities or harmful behaviors are uncovered. 653
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A Syllogism Dataset Construction794

Syllogistic prompts were created using templates.795
[TRUTH VALUE] ∈ {true, false}, and [A], [B],796
[C] are sampled from capital letters. See table 4797
for templates of each syllogism format798

B Generality Across Binary799

Contrasts800

Having established mechanistic evidence for circuits801
supporting binary truth tasks in both the simple802
and opposite syllogism settings, we next evaluate803
the generality of these circuits beyond the original804
true/false framing. Specifically, we test whether805
the same circuits generalize to analogous binary806
pairs: (right, wrong), (good, bad), (positive,807
negative), and (correct, incorrect).808

To do so, we apply both the simple syllogism809
circuit (CSS) and opposite syllogism circuit (COS)810
to each pair and compare their performance to811
the full GPT-2 Small model. As shown by tables812
5 and 6 we find that the original circuits often813
match or even outperform the full model in logit814
difference between most binary pairs of tokens. This815
provides compelling evidence that the binary task816
is not specific to a particular token pair, but instead817
reflects a transferable reasoning mechanism.818

To further validate generalization, we visualize819
direct path patching attention results across each820
binary pair. As seen in Figures 5–8, across the821
binary pairs of tokens, the core attention heads822
relevant to the simple and opposite syllogism cases823
are opposite in their effect on logit difference.824

C Disentangling MLP825

Contributions via Patching826

To assess the contribution of MLPs to the model’s827
output, we perform path patching both with and828
without attention restored. Figure 10b shows that829
early-layer MLPs—particularly MLP0—appear to830
significantly affect the logits when patched in iso-831
lation. This aligns with prior observations that832
MLP0 functions as an extended embedding layer,833
especially when attention is absent (McDougall834
et al., 2023; Wang et al., 2022).835

However, once attention is also restored, the influ-836
ence of these early MLPs sharply diminishes. This837
suggests their apparent impact in the no-attention838
condition is largely an artifact of missing context,839
rather than a reflection of GPT2 semantic ability840
to complete syllogisms.841

For this reason, in all subsequent experiments842
analyzing MLP effects, we report results with at-843
tention paths patched in. This allows us to isolate844
the true downstream influence of MLPs under more845
realistic model conditions.846

D Extension to Larger Models 847

To assess whether the findings observed in GPT-2 848
Small generalize across model scale and architec- 849
ture, we extend our experiments to several larger 850
models: GPT-2 XL, Pythia 1.4B, Qwen3-1.7B, and 851
LLaMA3.2-1B. 852

Across all models, we continue to observe empir- 853
ical signatures of binary behavior: heads relevant 854
to the simple and opposite syllogism tasks tend to 855
exert opposing effects on the logits. MLP layers 856
remain important in the opposite syllogism task 857
for all models except Pythia 1.4B, mirroring the 858
behavior observed in GPT-2 Small. Notably, Table 859
7 shows that performance on the simple syllogism 860
format degrades significantly in larger models, sug- 861
gesting that task generalization does not uniformly 862
scale with model size. 863
All models retain some attention heads exhibit- 864

ing negative-copy behavior. However, the influence 865
of these heads on output logits is more muted com- 866
pared to GPT-2 Small. In particular, the heads 867
most responsible for enabling opposite syllogism 868
performance in the larger models are not the neg- 869
ative heads. Qwen3-1.7B, for instance, contains 870
relatively few negative heads, and those it has do 871
not drive logit differences in either task. An ex- 872
ception is Pythia 1.4B, whose success on the oppo- 873
site task remains closely tied to the activity of its 874
negative-copy heads. 875
Interestingly, across all models, the heads most 876

influential on model output tend to exhibit strong 877
induction behavior (e.g., ABA → B), regardless of 878
whether they also contribute to the task-relevant 879
distinction. Yet despite this variability in attention 880
head dynamics, the consistent involvement of MLPs 881
in the opposite task—and their near absence in the 882
simple task—suggests a robust division of labor: 883
negation appears to depend more heavily on the 884
feedforward path than on attention alone. This 885
may help constrain future hypotheses about the 886
mechanistic implementation of logical inversion and 887
contextual negation in transformer models. 888

These findings remain empirical and exploratory. 889
Figures 11-14 illustrate the direct effects of atten- 890
tion heads and MLPs across the syllogism tasks. A 891
deeper investigation into how architectural scale af- 892
fects circuit behavior remains a promising direction 893
for follow-up work. 894
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Figure 5: Binary task results of Right/Wrong
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Figure 6: Binary task results of Correct/Incorrect
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Type Template

Simple
Syllogism

1. Statement [A] is [TRUTH VALUE 1]. Statement [B] has the same truth value
as [A]. Statement [B] is [TRUTH VALUE 1].

2. Statement [A] is [TRUTH VALUE 1]. Statement [B] matches statement A.
Statement B is [TRUTH VALUE 1].

3. (Extended) Statement [A] is [TRUTH VALUE 1]. Statement [B] must match
[A]. Statement [C] doesn’t matter. Statement [B] is [TRUTH VALUE 1].

Opposite
Syllogism

1. Statement [B] has the opposite truth value of [A]. Statement [A] is
[TRUTH VALUE 1]. Statement [B] is [TRUTH VALUE 2].

2. Statement [A] and statement [B] are opposites. Statement [A] is
[TRUTH VALUE 1]. Statement [B] is [TRUTH VALUE 2].

Complex
Syllogism

1. Statement [A] is [TRUTH VALUE 1]. Statement [B] has same truth value as
[A]. Statement [C] is [TRUTH VALUE 2]. Statement [B] is [TRUTH VALUE 3].

(Harder constraint): [TRUTH VALUE 2] = ¬[TRUTH VALUE 1].

Complex
Opposite
Syllogism

1. Statement [A] is [TRUTH VALUE 1]. Statement [B] has the opposite truth value
of [A]. Statement [C] is [TRUTH VALUE 2]. Statement [B] is [TRUTH VALUE 3].

2. Statement [A] and [B] are opposites. Statement [C] has the same truth value as
[A]. Statement [B] is [TRUTH VALUE 3].

3. Statement [A] is [TRUTH VALUE 1]. Statement [A] and [B] are opposites.
Statement [C] is [TRUTH VALUE 2]. Statement [B] is [TRUTH VALUE 3].

Table 4: Templates used for generating syllogistic prompts.

Original Good/Bad Pos/Neg Correct/Incorrect Right/Wrong

GPT-2 Small 1.8399 1.7738 0.6958 2.1221 2.0309

CSS 1.9234 1.9940 1.1584 1.6785 2.1599

Table 5: Transferability of CSS to other binary token pairs

Original Good/Bad Pos/Neg Correct/Incorrect Right/Wrong

GPT-2 Small 1.2632 2.1163 3.0032 0.7986 1.3469

COS 1.3136 1.7136 1.0113 0.8142 1.2481

Table 6: Transferability of COS to other binary token pairs

GPT-2 XL Qwen3-1.7B LLaMA 3.2-1B Pythia 1.4B

Simple Syllogism 0.1112 0.5322 −0.4357 1.0105

Opposite Syllogism 2.6114 1.5257 −0.1807 2.1098

Table 7: Average logit difference across models and tasks.
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(a) Simple Syllogism with Good/Bad
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(b) Opposite Syllogism with Good/Bad

Figure 8: Binary task results of Good/Bad
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(a) MLP effects with attention context
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(b) MLP effects without attention context

Figure 9: Path patching MLPs in the opposite syllogism task. (a) shows effects when MLPs are patched
with attention context preserved; (b) shows isolated MLP contributions without attention context.
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(a) MLP effects with attention context
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(b) MLP effects without attention context

Figure 10: Path patching MLPs in the simple syllogism task. (a) shows effects when MLPs are patched with
attention context preserved. No MLPs have significant importance; (b) shows isolated MLP contributions
without attention context. Early MLPs, specifically MLP0, appear relevant for the task
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Figure 11: Direct effects of attention heads and MLPs for GPT-2 XL across syllogism tasks.
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Figure 12: Direct effects of attention heads and MLPs for Pythia 1.4B across syllogism tasks.

15



0 5 10 15 20 25 30
15

10

5

0

−200%

−100%

0%

100%

200%

Logit diff. variation

Layer

0 5 10 15 20 25 30
15

10

5

0

−100%

−50%

0%

50%

100%

Logit diff. variation

Head

La
ye

r
0 5 10 15

0.5
0

−0.5

−200%

−100%

0%

100%

200%

Logit diff. variation

Layer

0 5 10 15
0.5

0
−0.5

−80%

−60%

−40%

−20%

0%

20%

40%

60%

80%
Logit diff. variation

Layer

Figure 13: Direct effects of attention heads and MLPs for LLaMA 3.2B across syllogism tasks.
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Figure 14: Direct effects of attention heads and MLPs for Qwen 1.7B across syllogism tasks.
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