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ABSTRACT

Neural Ordinary Differential Equations (NODEs) are a novel neural architecture,
built around initial value problems with learned dynamics which are solved during
inference. Thought to be inherently more robust against adversarial perturbations,
they were recently shown to be vulnerable to strong adversarial attacks, high-
lighting the need for formal guarantees. However, despite significant progress in
robustness verification for standard feed-forward architectures, the verification of
high dimensional NODEs remains an open problem. In this work, we address this
challenge and propose GAINS, an analysis framework for NODEs combining
three key ideas: (i) a novel class of ODE solvers, based on variable but discrete
time steps, (ii) an efficient graph representation of solver trajectories, and (iii) a
novel abstraction algorithm operating on this graph representation. Together, these
advances enable the efficient analysis and certified training of high-dimensional
NODEs, by reducing the runtime from an intractable O(exp(d) + exp(T)) to
O(d + T?log® T) in the dimensionality d and integration time 7". In an exten-
sive evaluation on computer vision (MNIST and FMNIST) and time-series fore-
casting (PHYSIO-NET) problems, we demonstrate the effectiveness of both our
certified training and verification methods.

1 INTRODUCTION

As deep learning-enabled systems are increasingly deployed in safety-critical domains, developing
neural architectures and specialized training methods that increase their robustness against adversar-
ial examples (Szegedy et al., 2014; |Biggio et al.,|2013)) — imperceptible input perturbations, causing
model failures — is more important than ever. As standard neural networks suffer from severely
reduced accuracies when trained for robustness, novel architectures with inherent robustness prop-
erties have recently received increasing attention (Winston & Kolter, [2020; |[Miiller et al., [2021])).

Neural Ordinary Differential Equations One particularly interesting such architecture are neu-
ral ODEs (NODEs) (Chen et al., 2018). Built around solving initial value problems with learned
dynamics, they are uniquely suited to time-series-based problems (Rubanova et al., 2019} [Brouwer
et al.,[2019) but have also been successfully applied to image classification (Chen et al.,[2018]). More
importantly, NODEs have been observed to exhibit inherent robustness properties against adversarial
attacks (Yan et al.| 2020; |[Kang et al., [2021; Rodriguez et al.| [2022; Zakwan et al., [2022). However,
recently [Huang et al.|(2020) found that this robustness is greatly diminished against stronger attacks.
They suggest that adaptive ODE solvers, used to solve the underlying initial value problems, cause
gradient obfuscation (Athalye et al.|[2018), which, in turn, causes weaker adversarial attacks to fail.
This highlights the need for formal robustness guarantees to rigorously evaluate the true robustness
of a model or architecture.

Robustness Verification For standard neural networks, many robustness verification methods
have been proposed (Katz et al., 2017; Tjeng et al., 2019; [Singh et al., |2018b; |Raghunathan et al.,
2018 |Wang et al., 2021} [Ferrari et al.| [2022). One particularly successful class of such methods
(Gehr et al., 2018} [Singh et al., 2019a} Zhang et al., [2018)) propagates convex shapes through the
neural network that capture the reachable sets of every neuron’s values and uses them to check
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Figure 1: Overview of NODE inference in both the standard and certified (our) setting. In both settings ODE
solvers are used to evaluate learned dynamics. We introduce controlled adaptive solvers (CAS) as a modifi-
cation of adaptive solvers, which reduce the reachable time/step-size pairs from a continuous area to discrete
points. This enables GAINS to compute worst-case bounds on NODE outputs given small input ranges, allow-
ing both inference with guarantees and provable training. For example, in the time-series forecasting setting
shown on the right, standard NODE inference predicts the blue points given the concrete red inputs. In contrast
GAINS computes all possible outputs (blue error bars), for inputs in the red input ranges.

whether a given robustness property holds. Unfortunately, none of these methods can be applied to
NODE:s as the underlying adaptive solvers yield a continuous range of possible step-sizes (illustrated
in the top panel of Fig.[I)), which existing analysis techniques can not handle. First works towards
NODE verification (Lopez et al., 2022)) have avoided this issue by disregarding the solver behavior
and analyzing only the underlying NODE dynamics in extremely low dimensional settings. How-
ever, both scaling to high-dimensional NODE architectures and taking the effect of ODE solvers
into account remain open problems preventing NODE robustness verification.

This Work We tackle both of these problems, thereby enabling the systematic verification and
study of NODE robustness (illustrated in Fig. E]) as follows: (i) We introduce a novel class of ODE
solvers, based on the key insight that we can restrict step-sizes to an exponentially spaced grid with
minimal impact on solver efficiency, while obtaining a finite number of time/step-size trajectories
from the initial to final state (see the second column in Fig.[I). We call these Controlled Adaptive
ODE Solvers (CAS). Unfortunately, CAS solvers still yield exponentially many trajectories in the
integration time. (ii) We, therefore, introduce an efficient graph representation, allowing trajectories
to be merged, reducing their number to quadratically many. (iii)) We develop a novel algorithm
for the popular DEEPPOLY convex relaxation (Singh et al., |2019a), effective for standard neural
network verification, that enables the efficient application of DEEPPOLY to the trajectory graph by
handling trajectory splitting in linear instead of exponential time. Combining these core ideas, we
propose GAINS/'| a novel framework for certified training and verification of NODEs that leverages
key algorithmic advances to achieve polynomial runtimes and allows us to faithfully assess the
robustness of NODE:s.

Main Contributions Our main contributions are:

* A novel class of ODE solvers, CAS solvers, retaining the efficiency of adaptive step size
solvers while enabling verification (§d)).

* An efficient linear bound propagation based framework, GAINS, which leverages CAS to
enable the efficient training and verification of NODEs (§5).

* An extensive empirical evaluation demonstrating the effectiveness of our method in abla-
tion studies and on image classification and time-series problems (§6).

' Graph based Abstract Interpretation for NODEs
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2 ADVERSARIAL ROBUSTNESS
In this section, we discuss the necessary background relating to adversarial robustness.

Adversarial Robustness We consider both classification and regression models fg: R% — R®
with parameters @ that, given an input € X C R%, predict ¢ numerical values y := f(x), inter-
preted as class confidences or predictions of the regression values, respectively. In the classification
setting, we call f adversarially robust on an £,-norm ball B’ () of radius €,, if it predicts target
class  for all perturbed inputs =’ € 5,7 (z). More formally, we define adversarial robustness as:
argmaxh(x'); =t, Vo' € By (x):={z' e X ||z —2'|, < ¢} (1)
J
In the regression setting, we evaluate v-d-robustness by checking whether the worst-case mean
absolute error MAE,q () for 2’ € B;7 () is linearly bounded by the original input’s MAE(z):
MAE;p(z) < (1 +v)MAE(z) + 6, with MAEp(x) = max MAE(z'). (2)

x'€BP (x)

Adversarial Attacks aim to disprove robustness properties by finding a concrete counterexample
x’. A particularly successful such method is the PGD attack (Madry et al., 2018)), which computes
x' by initializing {, uniformly at random in B;7 () and then updating it in the direction of the
gradient sign of an auxiliary loss function £, using NV projected gradient descent steps:

Ty, 1 = g @), + asign(Vay L(fo(,,). 1)), 3)

where I1g denotes projection on S and « the step size. We say an input & is empirically robust if no
counterexample x’ is found.

Neural Network Verification aims to decide y

whether the robustness properties defined above

hold. To this end, a wide range of methods has been y< g —l) y = max (0, z)
proposed, many relying on bound propagation, i.e.,

determining a lower and upper bound for each neu- | _
ron [ < z < u, or in vector notation for the whole . [ y> e { ‘ Ug .

layer I < = < wu. Here, we discuss two ways of ) )
obtaining such bounds: First, Interval Bound Propa- Figure 2: Linear bounds for ReLU(z).
gation (Gehr et al., 2018; [Mirman et al.,[2018) where [ and u are constants, bounding the reachable
values of neurons. For details, we refer to|Gowal et al.| (2018)). Second, Linear Bound Propagation
(Singh et al., 20194} [Zhang et al.| 2018), where every layer’s neurons x; are lower- and upper-
bounded depending only on the previous layer’s neurons:

Arzig+c; =<z, x <wu =Alzi1+c. €]
Given these linear constraints, we can recursively substitute x;_; with its linear bounds in terms of

x;_o until we have obtained bounds depending only on the input xy. This allows us to compute
concrete bounds I and w on any linear expression over network neurons.

For a linear layer ; = W;x;_; + b; we simply have AiﬂE = W, and cgt = b,. For a ReLU function
x; = ReLU(x;_1), we first compute the input bounds I < x;_; < u. If the ReLU is stably inactive,
i.e. u < 0, we can replace it with the zero-function. If the ReLU is stably active, i.e. [ > 0, we
can replace it with the identity-function. In both cases, we can use the bounding for a linear layer.
If the RelU is unstable, i.e., I < 0 < u, we compute a convex relaxation with parameter A\ as
illustrated in Fig. 2] Using this backsubstitution approach, we can now lower bound the difference
Yyt — Y;, Vi # t to determine whether the target class logit y; is always greater than all other logits in
the classification setting and similarly bound the elementwise output range in the regression setting.

Provable Training Special training is necessary to obtain networks that are provably robust. Con-
sidering the classification setting with a data distribution (x,t) ~ D. Provable training now aims to
choose the network parametrization 0 that minimizes the expected worst case loss:

O.0p = argeminED[ max )/.:CE(fe(x’), t)} with  Lcg(y,t) =In (1—!—2 exp(yi—yt)). 5)

z’' €B,F (x ikt

The inner maximization problem is generally intractable, but can be upper bounded using bound
propagation (Mirman et al., 2018} |Gowal et al.,|2018; Zhang et al., | 2020; Miiller et al., 2023).
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3 NEURAL ORDINARY DIFFERENTIAL EQUATIONS
In this section, we discuss the necessary background relating to NODEs (Chen et al., 2018).

Neural Ordinary Differential Equations are built around an initial value problem (IVP), defined
by an input state z(0) = zo and a neural network gy defining the dynamics of an ordinary differential
equation (ODE) V:z(t) = go(z(t), t). We obtain its solution z(7T') at time T as

T
z(T) = 2(0) —|—/0 go(z(t), t)dt. (6)

Generally, z( can either be the raw input or come from an encoder neural network. For both clas-
sification and regression tasks, we output y = fy(2(Tena)) for an input zo and a predefined Tr;q,
where f is an additional decoder, usually a linear layer.

Time series forecasting is a special case of the regression setting where the input is a time-series
wl, = {(x;,t;)} 5, defined as a sequence of L entries, each consisting of a data point z; € R%»
and an observation time ¢;. We aim to predict the value of the last observed data point x ,, using only

the first L’ < L data points as input. To this end, we employ the so-called latent-ODE architecture,
where a recurrent encoder network reads the data sequence {(x;, tj)}jL;l and outputs the initial
state zg for a decoder NODE that is then integrated up to the desired time-step T¢,q = t1, before its
output z;, is passed through a linear layer f. For further details, we refer to App.

ODE Solvers are employed to approximate Eq. (6, as analytical solutions often don’t exist. These
solvers split the integration interval [0, 7] into sub-intervals, for which the integral is numerically
approximated by evaluating gy at multiple points and taking their weighted average. We let I'(z)
denote the trajectory of an ODE solver, which we define as the sequence of tuples (¢, h) with time
t and step-size h.

ODE solvers are characterized by their order p, indicating how quickly approximation errors dimin-
ish as the step size is reduced (Shampine, |2005)). We distinguish between fixed (h constant) (Euler,
1792; |[Runge, [1895) and adaptive solvers (h varies; discussed below) (Dormand & Princel [1980;
Bogacki & Shampinel [1989). Note that for adaptive solvers, the trajectory depends on the exact
input. [Huang et al.|(2020) found that the supposedly inherent robustness of NODEs to adversarial
attacks (Kang et all, 2021} |Yan et al.| [2020) is only observed for adaptive ODE solvers and may
stem, partially or entirely, from gradient obfuscation (Athalye et al.,[2018) caused by the solver.

Adaptive ODE Solvers Adaptive step-size solvers (Dormand & Prince) [1980; Bogacki &
Shampine, 1989) use two methods of different order to compute the proposal solutions 2 (¢ + h)

and 2%(t + h) and derive an error estimate § = || M 1, normalized by the absolute

error tolerance 7. This error estimate J is then used to update the step size h < hd~ /7. Next, we
discuss the challenges this poses for robustness verification and how we tackle them.

4 CONTROLLED ADAPTIVE ODE SOLVERS

Step Size

Adaptive ODE solvers (AS) update their step-size h continuously depend-
ing on the error estimate §. For continuous input regions, this generally
yields infinitely many trajectories, making their abstraction intractable. We
illustrate this in Fig. [3] (details in App. [C.2)), where the blue regions (M)
mark all (time, step-size) tuples that are reachable after two steps. To over-
come this, we propose controlled adaptive solvers (CAS), which restrict ‘
step-sizes to a discrete set (©), making them amenable to certification (. ‘
Next, we show how any adaptive ODE solver can be converted into a cor-

responding CAS solver. Figure 3: We com-
pare CAS and adaptive

solvers (AS) with re-
spect to the reachable
time/step-size tuples af-
ter one (0, M) and two
solver steps (*7, H).

Time

Step-Size Update We modify the step-size update rule of any AS as
h-a, ifd <y,

h < < h, if 7, <6 <1, 0=
h/a,  otherwise.

ZYt+h)—22(t+h)
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with update factor « € N >1and the a-induced decision threshold 7, = a~P. Intuitively, we
increase the step size by a factor « if we expect the normalized error after this increase to still be
acceptable, i.e., 6 < o~ P, we decrease the step size by a factor « and repeat the step if the error
exceeds our tolerance, i.e., & > 1, and we keep the same step size otherwise. If the time ¢ + h
after the next step would exceed the final time T¢q, we clip the step size to h < min(h, Tepg — t).
Additionally, we enforce a minimum step-size. For more details, see App.[C.1]

We contrast the update behaviors of CAS and AS solvers in Fig.[3] We initialize both solvers with
the same state (@) and after one step, the CAS solver can reach exactly three different states (@)
while the adaptive solver can already reach continuous states (). After two steps this difference
becomes even more clear with the CAS solver reaching only 9 states (@) while the adaptive solver
can reach a large region of time/step-size combinations (H).

Initial Step-Size During training, the initial step size hg is computed based on the initial state and
corresponding gradient. To avoid this dependence during inference, we always use its exponentially
weighted average, computed during training (details in App. [C.T).

Comparison to Adaptive Solvers CAS solvers can be seen as adaptive

. . . . Absolute Error
solvers with discretized step-sizes of the same order. Due to the exponen- 10

tially spaced step-sizes, CAS can approximate any step-size chosen by an 2% igs
AS up to a factor of at most «, with the CAS always choosing the smaller

steps. Thus, CAS will need at most a-times as many steps as an adaptive 107 .

solver, assuming that the adaptive solver will never update the step size by Tt

more than « in one step. Empirically, we confirm this on a conventional i P o,
non-linear ODE, plotting mean absolute errors over the mean number of 1% 15 30

solver steps depending on the error threshold in Fig.[] There, we see that a # Solver Steps

dopri5-based CAS solver performs similarly to an unmodified dopri5 (AS). Figure 4: AS and CAS
For more details and additional comparisons between the solvers, we refer error over solver steps.

to App.[C.2]and App.[H.T]

5 VERIFICATION OF NEURAL ORDINARY DIFFERENTIAL EQUATIONS

While the discrete step sizes of CAS, discussed in §4] yield a finite number of trajectories for
any input region, there are still exponentially many in the integration time. Naively computing
bounds for all of them independently is thus still intractable. To tackle this challenge, we introduce
the analysis framework GAINS, short for Graph based Abstract Interpretation for NODEs, which
allows us to efficiently propagate bounds through the ODE solver using a graph representation of all
trajectories. We discuss two instantiations, one using interval bounds, the other linear bounds.

Let us consider a NODE with input Z, either obtained from an encoder or directly from the data. We
now define the trajectory graph G(Z) = (V, £), representing all trajectories I'(z{)) for z{, € Z. The
nodes v € V represent solver states (¢, h) with time ¢ and step-size h and aggregate interval bounds
on the corresponding z(t). The directed edges e € £ connect consecutive states in possible solver
trajectories. This representation allows us to merge states z(t) with identical time and step-size,
regardless of the trajectory taken to reach them. This reduces the number of trajectories or rather
solver steps we have to consider from exponential O(exp(Tea)) to quadratic O(T2log?(Tena))
(given at most O(Tepg log(Tenq)) nodes in V as derived in App. , making the analysis tractable.

Verification with Interval Bounds We first note that each solver step only consists of computing
the weighted sum of evaluations of the network g, allowing standard interval bound propagation to
be used for its abstraction. We call this evaluation of a solver on a set of inputs an abstract solver
step. Now, given an input Z, we construct our trajectory graph G(Z) as follows: We do an abstract
solver step, compute the interval bounds of the local error estimate d;, 1), and check which step
size updates (increase, accept, or decrease) could be made according to the CAS. Depending on the
looseness of the bounds, multiple updates might be chosen; we call this case trajectory splitting.
For each possible update, we obtain a new state tuple (¢', 4') and add the node (¢, h’) to V and an
edge from (¢, h) to (¢, h') to £. If the node (', h’) already existed, we update its state to contain the
convex hull of the interval bounds. We repeat this procedure until all trajectories have reached the
termination node (T¢nq, 0). This yields a complete trajectory graph and interval bounds for z(Tenq)-
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Figure 5: An example trajectory graph G(Z) construction for a controlled adaptive ODE solver with ho = %,
a = 2and T.,q = 1. Note how trajectory splitting occurs in all vertices except the last two states.

(c) @)

If there are further layers after the NODE, standard interval propagation can be employed to obtain
the network output y.

We illustrate this construction process in Fig. [5] where we highlight newly added edges and nodes
in red and the processed node in blue: We initialize the graph with the node (0, hg), in our case
ho = 1/2 (see Fig. a)). We now do an abstract solver step for this node and find that § > 7. Thus,
we either accept the step, yielding the next node (1/2, 1/2), or we reject the step and decrease the step-
size by a = 2, yielding the node (0, 1/4), both are connected to the current node (see Fig. [5[(b)). We
now choose among the nodes without outgoing edges the one with the smallest current time ¢ and
largest step-size h (in that order), (0, 1/4) in our case, and do another abstract solver step, yielding
d < 1. We thus either accept the step, yielding the node (1/4,1/4), or additionally increase the step-
size, yielding the node (1/1,1/2) (see Fig.|3|(c)). We proceed this way until the only node without
outgoing edges is the termination node (Teng, 0) with Ting = 1 in our case (see Fig. [5|(d)).

ﬁySszHrm

y < ul = Alzg + ¢!

1
y STUM a

y<u?:= A%z +c?

LyiAzzerCQ

Figure 6: Example upper bounds for

Verification with Linear Bounds To compute more pre-
cise linear bounds on z(7,q), we first construct the trajectory
graph G(Z) as discussed above, using either interval bounds or
the linear bounding procedure described below, retaining con-
crete element-wise upper and lower bounds at every state. We
can now derive linear bounds on z(T¢nq) in terms of the NODE
input z( by recursively substituting bounds from intermediate
computation steps. Starting with the bounds for (T¢ng, 0), we
backsubstitute them along every incoming edge, yielding a set

() ¥

of bounds in every preceding node. We recursively repeat this
procedure until we arrive at the input node. We illustrate this
in Fig. @ where we, starting at 7,4, backsubstitute y to ¢; and
to, obtaining bounds in terms of z; and z,. In contrast to the

y = 2z(Twa) via GAINS. (Lower
bounds analogous.) Blue arrows show
the backward substitution resulting in
LCAP at to.

standard DEEPPOLY backward substitution procedure, a node

in G(Z) can have multiple successors which reach the final node via different trajectories. We can
thus obtain several sets of linear constraints bounding the same expression with respect to the same
state, which we need to merge in a sound manner without losing too much precision. We call this the
linear constraint aggregation problem (LCAP) and observe that it arises in Fig. [6]after an additional
backsubstitution step to ( yields two bounds, u' and u2, on y both in terms of 2.

Linear Constraint Aggregation Problem The Y
LCAP requires us to soundly merge a set of different
linear constraints bounding the same variable. As an
example, we consider a variable y = z(T") for which
we have m upper bounds {u’}2; linear in zp, which ;
in turn can take values in Z. In this case, we want (a) (b)
to obtain a single linear upper bound y < azy + ¢ u
that minimizes the volume between the constraint gigyre 7: Visualization of the LCAP with m =
and the y = 0 plane over zp € Z, while soundly 3, shown in (a). In (b) the constraints u', u?

over-approximating all constraints. More formally, we (dashed) are over-approximated by u'? via
want to solve: CURLS, which also bounds «® (dotted).
argmin/ azy+ cdzg, s.t. azg+c> maxajzo +d, Vzoe Z. @)
a,c z J
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Table 1: Means and standard deviations of the standard (Std.), adversarial (Adv.), and certified (Cert.) accuracy obtained with
GAINS depending on the training method and evaluated on the first 1000 test set samples.

o e =0.10 e=0.15 e=10.20
Dataset Training Method € Std. [%)]

Adv. [%] Cert. [%] Adv. [%] Cert. [%] Adv.[%] Cert. [%]
Standard 98.8i0‘4 23213.5 O‘Oi0.0 2.5i1.6 O'OiU.O 0‘3i0.2 0.0i0.0
MNIST ~ Adv. 0.11 992+0-1  954+04 (00 88306 (00 594432 (00
GAINS 0.11 95.5+0-1 9] 5+06 g9 0Ll 4027 47279 21418 2402
0.22 91.8*13  88.5t18  86.8+20 868t  837%23  84.5%32 797434

Standard 88.6t12  0.1%01 0.0%00  0,0%00  0,0%00

Adv. 0.11 80.9£0-7  70.2%05 000 471#37 0,000

FMNIST

0.11 75.1F82 65710 2,5+ 2]1.1#59 3331

GAINS 0.16 715507 64.0%27  61.3%27  60.1%35  55,0%43

While this can be cast as a linear program by enumerating all exponentially many corners of Z, this
becomes intractable even in modest dimensions. To overcome this challenge, we propose Constraint
Unification via ReLU Simplification (CURLS), translating the max{u’ }7L., into a composition of
ReLUs, which can be handled using the efficient DEEPPOLY primitive proposed by [Singh et al.
(2019a). For a pair of constraints u}, u? we can rewrite their maximum as

max w! = ul + max(0,u? — u}) = u! + ReLU(u? — u}). (8)
Jel,

In the case of m constraints, this rewrite can be applied multiple times. We note that lower bounds
can be merged analogously and visualize CURLS for a 1-d problem in Fig. There, the first

iteration already yields the constraint u!-2, dominating the remaining u3.

Training In order to train NODEs amenable to verification we utilize the box bounds discussed
above and sample « trajectories form G(Z). For more details, please see App.

Bound Calculation During the computation of the bounds, GAINS combines verification with
interval and linear bounds by using the tighter bound of either approach (more details in App.[C.3).

6 EXPERIMENTAL EVALUATION

Experimental Setup We implement GAINS in PyTorcl'E] (Paszke et al.l [2019) and evaluate all
benchmarks using single NVIDIA RTX 2080Ti. We conduct experiments on MNIST (LeCun et al.|
1998), FMNIST (Xiao et al.,2017), and PHYSIO-NET (Silva et al.;,2012)). For image classification,
we use an architecture consisting of two convolutional and one NODE layer (see Table[5]in App.[D]
for more details). For time-series forecasting, we use a latent ODE (see Table[6]in App. [E]for more
details). We provide detailed hyperparameter choices in App. [D|and[E]

6.1 CLASSIFICATION

We train NODE based networks with standard, adversarial, and provable training (¢; € {0.11,0.22})
and certify robustness to £,,-norm bounded perturbations of radius e as defined in Eq. (I)). We report
means and standard deviations across three runs at different perturbation levels (e € {0.1,0.15,0.2})
depending on the training method in Table[I] Both for MNIST and FMNIST, adversarial accura-
cies are low (0.0% to 23.2%) for standard trained NODEs, agreeing well with recent observations
showing vulnerabilities to strong attacks (Huang et al., [2020). While adversarial training can sig-
nificantly improve robustness even against these stronger attacks, we can not certify any robustness.
Using provable training with GAINS significantly improves certifiable accuracy (to up to 89% de-
pending on the setting) while reducing standard accuracy only moderately. This trade-off becomes
more pronounced as we consider increasing perturbation magnitudes for training and certification.

6.2 TIME-SERIES FORECASTING

For time-series forecasting, we consider the PHYSIO-NET (Silva et al., [2012) dataset, containing
8000 time-series of up to 48 hours of 35 irregularly sampled features. We rescale most features

2We release our code at|https://github.com/eth-sri/GAINS
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Table 2: Comparison of the mean absolute errors for the unperturbed samples (Std. MAE), and the adversarial (Adv.), and certifiable
(Cert.) v-d-robustness with v = 0.1 and § = 0.01 obtained using different provable training methods on the full PHYSIO-NET test set.

) o . e=0.05 e=0.10 €=10.20
Setting  Training Method ¢, Std. MAE [x1072]
Adv. [%] Cert. [%] Adv. [%] Cert. [%] Adv.[%] Cert. [%]
Standard 47.4+0:3 54338 0000 37F29 %00 2.3%12 0.0%00
6h ol 51.1£2:0 977407 93027 770473 604E109 4 QEIL0 94 oETT
GAINS 0.2 57.6%25 100.0%00  998+01 96 4+21 93145 g0 ELT  70,5%18.9
Standard 49.9+0-2 65.2%20 0000 16.6%23 0,000 2.0%0-4 0.0%0-0
2 e 01 50.9%0:4 08.0%02  04.5%07  743E35  558ELS  9goER6 701
GAINS 0.2 52.9%0-1 99,101 983+02  g78+08 g0 3+08 53 3+£08 38 5ELT
Standard 51.2%03 69.719 0000 236%28 (000 3.7%1.0 0.00-0
24h 0.1 51.5i“-1 97.9j:0.2 96.2i0'4 78_3j:2,3 68_0j:1.6 32.6i0'6 22.7j:1.[]
GAINS 0.2 53.7%07 99.7+0-1 99 1+0-3 93 31T g9 424 598+77  5(,5E51

to mean ;¢ = 0 and standard deviation o = 1 (before applying perturbations) and refer to App.
for more details. We consider three settings, where we predict the last measurement L, without
having access to the preceding 6, 12, or 24 hours of data. In Table 2] we report the mean absolute
prediction error (MAE) for the unperturbed samples and v-d-robustness (see Eq. (2)) for relative
and absolute error tolerances of ¥ = 0.1 and § = 0.01, respectively, at perturbation magnitudes € =
{0.05,0.1,0.2}. We observe only a minimal drop in standard precision, when certifiably training
with GAINS at moderate perturbation magnitudes (e; = 0.1) while increasing both adversarial and
certified accuracies substantially. Interestingly, the drop in standard precision is the biggest for the
6h setting, despite having the shortest forecast horizon among all settings. We hypothesize that this
is due to the larger number of input points and thus abstracted embedding steps leading to increased
approximation errors. Further, while we can again not verify any robustness for standard trained
NODEs, they exhibit non-vacuous empirical robustness. However, without guarantees it remains
unclear whether this is due to adversarial examples being harder to find or NODESs being inherently
more robust. Across settings, we observe that training with larger perturbation magnitudes leads to
slightly worse performance on unperturbed data, but significantly improves robustness.

6.3 ABLATION

Trajectory Sensitivity We investigate whether the Table 3: Mean and standard deviation of the at-
solver trajectory, i.e., the chosen step-sizes, of CAS  tack success [%] on the first 1000 samples of the
solvers are susceptible to adversarial perturbations MNIST test set.

by conducting an adversarial attack aiming directly Training € Attack Success [%]
to change the trajectory I'(zg) (see App. [F|for more e=01 =015 €=02
details). In Table[3] we report the success rate of this Standard 989503 100.0%01  100.020-0

attack for MNIST, showing that even at moderate ;om0 0034000 00,0200 1000400
perturbation magnitudes (¢ = 0.1) attacks are (al- T 01l 734%35 86335 g55+ls
most) always successful if models are trained using GAINS 022 652575 753462 g7 950
standard or adversarial training. While training with
GAINS reduces this susceptibility notably, it remains significant. This highlights the need to con-
sider the effect of a chosen solver on robustness, motivating both the use of CAS solvers and the
trajectory graph-based approach of GAINS.

Linear Constraint Aggregation
To evaluate CURLS on the Linear Volume Ratio vol, Running Time [s]

Constraint  Aggregation problem 1.02 102-
(LCAP), we compare it to an LP- / 100- /—’PPA
1.00

based approach based on Eq. (/) and -00- 10-2-

implemented using a commercial \/—/

LP solver (GUROBI (Gurobi Opti- 0.98: ‘ L1074, \ \
mization, LLC| 2022))). However, 0 5d0 100 0 5d0 100

considering all soundness constraints
associated with the 2¢ corner points
is intractable. Therefore, we use
an iterative sampling strategy (see
App.[Glfor more details).

— LP CURLS

Figure 8: Comparison of the CURLS and LP solution to the LCAP
with respect to normalized volume (left) and runtime (right).
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To compare the obtained relational constraints, we consider the volumes induced by the two methods
and report mean normalized abstraction volumes vol** / volURES in Fig. [8| for sets of m = 4
randomly generated constraints in d = [5,100] dimensions (see App. [G] for more details). We
observe that while the LP based solutions are more precise for up to 75 dimensional problems, they
take around 5 orders of magnitude longer to compute. For higher dimensional problems, CURLS is
both faster and more precise. During the certification of a single input, we consider multiple hundred
up to 512 dimensional LCAP problems, making even the sampling based LP solution infeasible in
practice and highlighting the importance of the efficient constraint aggregation via CURLS for the
GAINS framework.

7 RELATED WORK

Empirical Robustness of NODEs |Yan et al.| (2020) introduce TisODEs, by adding a regular-
ization term to the loss which penalizes differences between neighboring trajectories to improve
empirical robustness. A range of work (Kang et al., 2021 Rodriguez et al., [2022; Huang et al.,
2020} [Zakwan et al.,[2022)) trains NODEs which satisfy different forms of Lyapunov stability (Jus-
tus, 2008), yielding increased empirical robustness. However, [Huang et al.| (2020) have shown that
these empirical robustness improvements might be due to gradient obfuscation (Athalye et al.| [2018))
caused by the use of adaptive step-size solvers. Furthermore, Carrara et al.| (2022) have shown that
varying the solver tolerance during inference can increase empirical robustness.

Verification and Reachability Analysis of NODEs [Lopez et al.| (2022) analyze the dynamics of
very low dimensional (d < 10) NODEs using CORA (Althoff},|2013)) and the (polynomial) Zonotope
domain, and those of higher dimensional linear NODEs using the star set domain. In contrast to our
work, they analyze only the learned dynamics, excluding the solver behavior, which has a signifi-
cant effect on practical robustness (Huang et al.,|2020). |Grunbacher et al.|(2021) introduce stochastic
Lagrangian reachability to approximate the reachable sets of NODEs with high confidence by prop-
agating concrete points sampled from the boundary of the input region. However, the number of
required samples depends exponentially on the dimension of the problem, making it intractable for
the high-dimensional setting we consider. [Huang et al.[(2022) propose forward invariance ODE, a
sampling-based verification approach leveraging Lyapunov functions. Moreover, when using fixed
step size ODE solvers the verification of NODEs can be seen as verifying neural network dynamic
models (Adams et al.,[2022; We1 & Liul 2022) or by unrolling them even conventional feed-forward
neural networks.

Neural Network Verification Deterministic neural network verification methods, typically ei-
ther translate the verification problem into a linear (Palma et al., 2021; Miiller et al., 2022; Wang
et al.| 2021} Xu et al.,|2021), mixed integer (Tjeng et al.l 2019} [Singh et al.l 2019b)), or semidefinite
(Raghunathan et al.l [2018; |Dathathri et al., 2020) optimization problem, or propagate abstract ele-
ments through the network (Singh et al., |2019a; \Gowal et al.l 2019} Singh et al., 2018a) To obtain
models amenable to certification, certified training (Mirman et al2018};|Gowal et al.,[2018; Zhang
et al.,|2020) methods use the latter class of approaches to compute and optimize a worst-case over-
approximation of the training loss. However, none of these methods support the analysis of NODEs
without substantial extensions.

8 CONCLUSION

In this work, we propose the analysis framework GAINS, Graph based Abstract Interpretation for
NODEs, which, for the first time, allows the verification and certified training of high dimensional
NODEs based on the following key ideas: i) We introduce CAS solvers which retain the efficiency
of adaptive solvers but are restricted to discrete instead of continuous step-sizes. ii) We leverage
CAS solvers to construct efficient graph representations of all possible solver trajectories given an
input region. iii) We build on linear bound propagation based neural network analysis and propose
new algorithms to efficiently operate on these graph representations. Combined, these advances
enable GAINS to analyze NODEs under consideration of solver effects in polynomial time.
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9 ETHICS STATEMENT

As GAINS, for the first time, enables the certified training and verification of NODEs, it could
help make real-world Al systems more robust to both malicious and random interference. Thus
any positive and negative societal effects these systems have already could be amplified. Further,
while we obtain formal robustness guarantees for /.,-norm bounded perturbations, this does not
(necessarily) indicate sufficient robustness for safety-critical real-world applications, but could give
practitioners a false sense of security.

10 REPRODUCIBILITY STATEMENT

We publish our code, all trained models, and detailed instructions on how to reproduce our results at
https://github.com/eth-sri/GAINS and provide an anonymized version to the reviewers. Further
algorithmic details can be found in App.[A]and[B] Additionally, in App.[CHE we provide implemen-
tation details and further discussions for our general method, classification tasks, and time-series
forecasting tasks resistively. Lastly, details on the adversarial attacks and LCAP dataset used in
can be found App.[F]and [G]respectively.
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