Under review as a conference paper at ICLR 2025

3D PERCEPTION WITH DIFFERENTIABLE MAP PRIORS

Anonymous authors
Paper under double-blind review

ABSTRACT

Human drivers rarely travel where no person has gone before. After all, thousands
of drivers use busy city roads every day, and only one can claim to be the first. The
same holds for autonomous computer vision systems. The vast majority of the
deployment area of an autonomous vision system will have been visited before.
Yet, most autonomous vehicle vision systems act as if they are encountering each
location for the first time. In this work, we present Differentiable Map Priors
(DMP), a simple but effective framework to learn spatial priors from historic
traversals. Differentiable Map Priors easily integrate into leading 3D perception
systems at little to no extra computational costs. We show that they lead to a
significant and consistent improvement in 3D object detection and semantic map
segmentation tasks on the nuScenes dataset across several architectures.

1 INTRODUCTION

Autonomous vehicles rarely visit a truly unseen location. Current deployments are typically geo-
fenced to operate within a known, carefully mapped area. Later, fleet deployments will cover the same
area over and over again, collecting massive amounts of rich sensor data from the same locations.
Yet, current perception systems mostly treat the static world as never been seen before, and jointly
infer both static and dynamic scene structures from sensor inputs alone Liu et al.[(2022d)); |Peng et al.
(2023); [Wang et al.|(2023a)); [Liu et al.| (2022c); Huang & Huang|(2022)).

In this work, we equip vision models with a persistent memory of the world. We build up this
memory as part of the training of the perception system in a Differentiable Map Prior (DMP). Our
map prior is trained end-to-end for the downstream task, allowing a 3D perception system to utilize
its knowledge of location and past experiences to enhance its predictions. At test time, the perception
system leverages the learned map, which is enriched with a wealth of features built up during training.
This comprehensive prior knowledge serves to augment the capabilities of the underlying perception
stack, allowing the system to make more informed and accurate inferences about the surrounding
environment. We design our map with a compact and memory-efficient representation to ensure
scalability for real-world applications.

To validate the efficacy of our approach, we conduct extensive experiments on the nuScenes (Caesar
et al.| (2020) dataset and incorporate DMP into three distinct multi-view perception stacks. These
baselines include both transformer-based |Liu et al.[(2022b) and convolutional [Huang et al.[(2021)); Li
et al.| (2022b)) perception systems. Our experiments show that incorporating our Differentiable Map
Prior yields consistent performance gains across all evaluated baselines.

2 RELATED WORKS

Camera-based 3D Perception. Camera-only perception systems are a compelling choice for
autonomous vehicles due to their high resolution and cost-effectiveness. While many highly accurate
perception systems focused on monocular 3D object detection Wang et al.| (2021)); |[Zhou et al.|(2019);
Park et al.|(2021), modern autonomous vehicles utilize multiple cameras with potentially overlapping
fields of view. To this extent, an increasing number of research efforts have shifted towards multi-view
approaches [Liu et al.[(2022b); [Li et al.| (2022b)); Xiong et al.| (2023a); Huang et al.| (2021)); [Yang
et al.| (2023b); Zhou & Krihenbiihl| (2022)) which enable perception systems to construct a more
comprehensive internal representation of the environment.
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Figure 1: Visualization of overlapping routes in the nuScenes benchmark. Left: A visual example
of different traversals of the same scene in nuScenes. Each captures the same intersection from a
slightly different vantage point. Center: A visualization of the routes driven. Right: The fraction of
validation scenes with no overlap (0) with the training set, or with an overlap with n > 0 training
routes. The vast majority of validation scenes heavily overlap with training scenes.
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One line of work [Philion & Fidler (2020); [Li et al.| (2022a); Reading et al.| (2021)) aggregates image

features to a canonical “BEV frame” by predicting dense categorical depth for each image and
pooling image features from a virtual frustum. Alternatively, BEV representations can be built using
attention across camera views with geometric positional embeddings (2023a);
et al] (20224)); [Zhou & Kréhenbiihl (2022). Another approach [Liu et al.| (2022b)); Wang et al.| (2022)

bypasses the explicit BEV representation, directly performing attention across the multi-view images

in a DETR |Carion et al. (2020)) fashion.

These models have been applied to a variety of tasks, showcasing their versatility and effectiveness in
understanding the surrounding environment. Object detection [Liu et al.| (2022b); [Li et al.| (2022al);
[Wang et al|(2022); /Chen et al.| (2022b)) has been a primary focus, serving as a key role for autonomous
vehicles. In addition, these models have been applied to HD-Map creation via semantic map
prediction [Philion & Fidler| (2020); [Li et al.| (2022b); Zhou & Krahenbiihl| (2022); (2022d);
Hu et al.| (2021)), and vectorized map prediction |Li et al.| (2021)); [Liu et al.| (2022a); [Liao et al.

(2022). These methods assume that each scene is encountered for the first time, overlooking valuable
information from prior traversals. Our proposed DMP augments these models by integrating a
persistent view of static scene elements from past traversals into the perception pipeline.

Perception with Historical Context. Recent works [Saha et al.| (2021); Wang et al.| (2023b)); [Yang

et al.[(2022); Huang & Huang| (2022)) have developed models that incorporate temporal context,
demonstrating improvements over their single-frame counterparts. While these approaches focus on

modeling temporal information, our work focuses on the spatial aspect, leveraging the fact that the
same area is traversed multiple times.

For LiDAR-based detection, Hindsight|You et al | precomputes and stores quantized features
from historical point cloud data. At test time, they augment the current scene with geo-indexed
historical features, resulting in an improved detection performance. This closely resembles our
differentiable map prior: Features computed at training time, help inference at test time. The key
difference is the representation of the prior. Hindsight uses an explicit point-based prior, while DMP
uses a much more compact implicit function-based representation that is learned jointly with the
perception system during training.

A recent line of work has explored incorporating historical data into camera-based perception systems.
NMP [Xiong et al.|(2023b)) targets static semantic map segmentation from multi-view camera inputs
by augmenting live sensor features with historical features using a GRU-based fusion module. They
recursively update their prior by directly storing the features into the global map, represented as
a set of dense “tiles”, and show this external memory improves segmentation performance. In
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Figure 2: Overview of Differentiable Map Priors (DMP). The framework employs a global map
that implicitly encodes useful information as latent vectors for future traversal. During training, the
latent vector of a particular location is used in combination with the sensory feature. The maps are
modeled with learnable parameters and are thus fully differentiable. During testing, we leverage the
learned map priors to enhance the features for downstream tasks.

contrast, PreSight[Yuan et al.| (2024) utilizes historical data to model entire cities as a collection of
neural fields Miiller et al.| (2022)); [Yang et al.| (20234d). They optimize for this representation using
a photometric reconstruction loss and at test time, they voxelize these reconstructed features and
incorporate them into online perception models. While these methods showcase the benefits of
incorporating historical data into camera-based vision models, they rely on learning and storing these
features in a procedural manner with substantial memory requirements. DMP learn the map features
in an end-to-end differentiable manner as part of the overall training pipeline of the perception system.
This allows the model to implicitly learn what features are useful for the downstream task, and how
to store them in the most compact implicit representation.

3 PRELIMINARIES

Multi-view 3D detectors ingest n camera images I, . .. I,, with I;, € R7*Wx3 and corresponding
2D pose information py, to 3D bounding boxes B = {b1, ba, . .., b,,, }, where each bounding box b;
is represented by its center, dimensions, orientation, and class score. Internally, the model extracts
feature X; from each image, then builds an intermediate representation X ., 50 Using an encoder
E and finally decodes each intermediate representation into a potential detection with a decoder D.
3D detectors fall in two broad categories: Dense map-based detectors [Huang et al.|(2021)); [Li et al.
(2022b); |[Yang et al.|(2022); [Liu et al.|(2022d) and transformer based detectors Wang et al.|(2022);
Liu et al (2022bc).

A dense map-based detector encodes a feature map Xsensor € Rev X Wpew X that represents a local
map-region of size hpe, X Wpe,, around the vehicle. The decoder operates directly on this intermediate
map representation and translates each spatial location into a potential detection with an associated
score. Transformer-based detectors use a much sparser intermediate representation. They start
from a set of m learned queries Q@ = {qu, ..., ¢m } Which cross-attend to image features X;. The
resulting sparse feature representation Xgens0r € R”7*¢ forms the input to a transformer-based
decoder. BEVFormer [Li et al uses concepts from both: a map-based BEV representation
forms queries for a transformer-based multi-view encoder-decoder. Our differentiable map prior
applies to both kids of architecture, albeit with a slightly different fusion architecture.

Maps. The simplest maps are dense 2D grids, where each cell contains a d—dimensional feature.
Dense representations quickly become memory-bound and are less suitable for large-scale appli-
cations. Similar challenges have been observed for neural scene representations of complete 3D

scenes Miiller et al.[(2022); |Yu et al.| (2022). For 3D scenes, sparse representations Miiller et al.




Under review as a conference paper at ICLR 2025

Global Map 1

F—eE - blend |

Hash Embedding Xprior

Figure 3: Prior map represention. We start from a regularly sampled grid of locations around the
vehicle. For each grid point, we sample its four nearest grid points and bilinearly interpolate their
corresponding embeddings. We repeat this process at multiple levels of resolutions and concatenate
the embeddings across levels. Finally, we use an MLP to project the multi-level feature into a
fixed-sized prior feature.

(2022); |Yu et al.| (2022) have gained popularity due to their memory efficiency, with one of the most
popular being multi-resolution hash embeddings Miiller et al.[|(2022)). These hash embeddings map
an input x € RP to a series of L hash maps at different resolutions, where each hash map contains
a learned embedding of size T'. The result is a feature m(x) € R? that concatenates hash lookups
across all hash levels. Finally, an MLP projects these hashed feature values into a representation
used by a neural renderer. Our differentiable map priors directly build on multi-resolution hash
maps as their underlying representation. Specifically, we use a sparse 2D multi-resolution hash map
m : R? — R< to store spatial map-view feature representations.

4 DIFFERENTIABLE MAP PRIORS

Our differentiable map prior has two components: A sparse and differentiable map representation
builds up a feature representation X,,..;,, of the static scene. A fusion module then splices spatial
map features into an existing 3D detection architecture. See Figure 2]for an overview.

At training time, we differentiate through the map representation to learn a persistent static map
representation that helps the 3D detector improve its accuracy. At inference time, we simply augment
the detector with a spatial map prior when available, or fall back to a map-less model in novel areas.

Map Representation. Our global map representation X0, € RAxwxd directly builds on a

multi-resolution hash map m : R? — R? Miiller et al.[(2022). For each location x € R? the hash
map returns a potentially interpolated feature m(x) € R%. To retrieve the prior features X,,;o, We
start from the vehicle pose p. We discretize a w x h region of interest around the vehicle into a grid
glocal € Rh>*wx2 wwhere each cell gi°* corresponds to a point in the coordinate frame relative to the
ego-vehicle. The prior features then éample and inflate the multi-resolution hash map representation

Xprior(r) = MLP(m(M,g'*c™)),
where M), is the affine transformation corresponding to the vehicle pose p. The multi-layer perceptron
MLP allows the hash map to use a much smaller dimensionality d < d than the actual prior X0
This saves a significant amount of memory and allows for large scale city-wide map representations.
Figure [3|shows an overview of the process. We implement the multiresolution hash embedding in

pure PyTorch, resulting in a map query time with negligible computational overhead (less than 2% of
the overall detector’s runtime).

Prior Fusion. We use a fusion module I’ to incorporate the map prior features X,,.;o, into the
onboard sensor features X ., s0-. The onboard sensor features X e, 0 are extracted from the
multi-view camera images and are used as input to the 3D detector.

For dense map-based detectors [Huang et al.| (2021])), including BEVFormer |Li et al.| (2022b), we
align the size of the map representation X,,.;o, to the size of the intermediate birds-eye-view sensor
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Figure 4: Prior fusion. Convolutional Fusion (a) concatenates the sensor feature and the map prior
feature and fuses them with a residual module. Token Fusion (b) uses the map prior feature to query
the sensor feature with a cross-attention module. Both sensor features and map prior features are
modulated with positional embeddings before the fusion operation.

representation X, s0-- We then concatenate the two and fuse them using a single 3 x 3 convolution
with ReLU. We make sure the number of output channels if X t,,5;,, matches the number of sensor
channels X, 50 fOr seamless integration into existing detection architectures. We experimentally
found that adding a positional embedding to both the map prior X,,;, and sensor representation
Xsensor improved the model’s performance. We apply this fusion step exactly once onto the final
sensor features.

For transformer-based detectors Wang et al.|(2022); Liu et al.| (2022bjc), we fuse the map-prior into
the sparse sensor embeddings X, 50 fOr each query. We use a cross-attention layer to join the
sensor and map prior features. Since the sparse sensor features X ey, 50, do not align with our map
prior X,,.ior, We Use a positional embedding for both sensor and prior features. For prior features, we
learn the positional embedding as a set of free parameters E,,.jo € RZ*"*4. For sensor embeddings,
we use a linear projection of the learned positional embedding of the query in the original detector.
Figure [4b]shows an overview of the transformer-based fusion process. We again apply this fusion
step exactly once in one of the last transformer blocks.

Despite its simplicity our differentiable map prior yields a significant improvement in performance
across all baseline architectures.

5 EXPERIMENTS

We evaluate the efficacy of adding historical priors with DMP for 3D object detection from multi-view
camera images across a variety of architectures.

5.1 DATASET

We conduct experiments on the nuScenes Caesar et al.| (2020) dataset, which consists of 850 scenes
(700 training, 150 validation), covering two cities - Boston and Singapore. Each scene is 20 seconds
long, with 3D bounding box annotations at 2 Hz for a total of 40 frames per scene. For each frame,
we use the six multi-view camera images with their calibrated intrinsics and pose information and
ego-pose. A large proportion of the scenes in the dataset have been traversed multiple times, as shown
in Figure[5] For these, our map prior natively applies. For scenes without any overlap with training,
we fall back onto the baseline algorithm.

Metrics. Aligning with the standard 3D detection evaluation methodology, we report mean Average
Precision (mAP) across all 10 classes, calculated using ground plane center distance for matching
predicted and ground truth results. Additional metrics include five true positive metrics (ATE, ASE,
AOE, AVE, AAE) for measuring errors in translation, scale, orientation, velocity, and attributes. The
nuScenes Detection Score (NDS) Caesar et al.| (2020) is a weighted sum of the mAP and the true
positive metrics and provides a comprehensive evaluation of a model’s performance.
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Figure 5: Map visualization of the nuScenes |Caesar et al. (2020) dataset. We delineate the
traversals from the training and validation split of the dataset in bold colors. “Both” denotes scenes
that have been traversed in both the training and validation splits. refers to scenes that
have no significant overlap (within 50m) with any training scenes and are geographically disjoint
from the training/validation set. “Train-only” refers to scenes that have no significant overlap with
any validation scenes.

5.2 IMPLEMENTATION DETAILS

We apply our method to three different 3D object detection architectures: BEVDet Huang et al.
(2021), BEVFormer |L1 et al.| (2022b)), and PETR |Liu et al.[|(2022b). These models represent the
best-performing models for 3D object detection and cover the two most used architectural paradigms:
dense BEV architectures and end-to-end transformer architectures. For each baseline, we use the
single-timestamp model variant with only multi-view camera inputs and pose information for a fair
comparison.

For our prior storage, as described in Section [ we use a multi-level hash embedding with L = 4
levels each with T = 2!¢ learned embedding of size 8 for a total of 32 dimensions. The finest
resolution has a size of 0.5 meters per voxel, and the coarsest resolution has a size of 25 meters per
voxel. The MLP consists of 3 layers and projects the retrieved embeddings to X0, € RW*h* 128
where the width w and height i match the baseline algorithms internal feature resolution. BEVDet
Huang et al.| (2021) has a resolution w = h = 128 and BEVFormer L1 et al.[(2022b) uses a resolution
of w = h = 150. For PETR |L1u et al.|(2022b), we use a coarser resolution w = h = 64.

Both the BEVDet and BEVFormer models use a ResNet-101 image backbone initialized with weights
from a pre-trained FCOS3D Wang et al.| (2021), and PETR uses a VoVnet-99 Lee et al.| (2019)
initialized from a DD3D |Park et al.| (2021) checkpoint. In BEVDet and BEVFormer, we use the same
BEV augmentations (flipping, scaling, rotating) and apply the same augmentation accordingly when
retrieving the prior features.

Table 1: nuScenes 3D object detection with Differential Map Priors, reported on the official
validation split. Incorporating learned priors with DMP improves performance across all baselines.

Method DMP NDS 1 mAP T mASE | mAAE | mAVE | mAOE | mATE |

0.338 0.262 0299 0.238 0.860 0.758  0.776
v 0381 0302 0301 0234 0751 0.786  0.629

0403 0339 0279 0.182 0931 0531  0.793
v 0422 0349 0.277 0.168 0.836  0.530 0.766

0.419 0320 0279 0145 0763 0448 0.776
v 0438 0348 0280 0.164 0.763  0.439 0.678

BEVDet|Huang et al.| (2021)

PETR |Liu et al.|(2022b)

BEVFormer|Li et al. (2022b)
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Across all models, we train for 24 epochs using the AdamW [Loshchilov & Hutter] (2019) optimizer
using a learning rate 2 x 10~* with a cosine annealing schedule. All experiments are performed on a
single-node machine with 8 Titan-V GPUs and a total batch size of 8. The full training duration is
approximately 1 day.

5.3 MAIN RESULTS

Shown in Table m we compare the performance of adding DMP across BEVFormer [Li et al.| (2022b),
BEVDet Huang et al. (2021) and PETR |Liu et al.| (2022b) on the nuScenes validation set. We
use the predictions from the corresponding baseline without the prior for any location that has not
been traversed during training. Across all baselines, we observe consistent improvements across all
evaluation metrics.

‘We observe that the two BEV-based architectures, BEVFormer and BEVDet, benefit the most from
the addition of the prior, with BEVDet showing the largest improvement (relative 13% NDS and 15%
mAP). The architectures with explicit spatial BEV representations are likely to benefit more from the
prior as the prior features are well aligned with the model’s internal representation. In contrast, the
fully transformer architecture (PETR) has to perform additional spatial reasoning to connect the prior
features with its detection queries.

Comparison with prior work. We compare DMP to NMP [Xiong et al.[(2023b)), which similarly
enhances online map perception with learned priors. NMP uses location information to retrieve a
local BEV feature map from external dense storage and fuse it with online sensor features. In their
framework, they build separate priors for training/testing. To closer match our setting, where we
are interested in improving performance in areas previously traveled, we modify NMP and use the
training prior during evaluation.

We apply the adapted method, denoted as NMP*, for 3D object detection and train DMP on for
semantic map prediction. The map segmentation task consists of three classes: divider, pedestrian
crossing, and road boundaries, and we report mean Intersection over Union (mloU) across these
classes. For this comparison, we use BEVFormer with a slightly smaller spatial resolution of
w = h = 100 as the base architecture and use the original detection head along with an extra head
for predicting map segmentation. We train the model jointly with the original detection loss and a
weighted cross-entropy loss for segmentation.

Table 2: Comparison with NMP [Xiong et al.|(2023b) on joint object detection and map segmentation.
NMP#* denotes that the prior learned during training is used during evaluation.

Prior NDSt mAP{T mloU?t

- 0.334  0.258 0.217
NMP* 0347  0.273 0.297
DMP 0.368 0.284 0.568

We show the comparison with their alternative prior model in Table[2] While both learned priors show
improvements over the baseline in both tasks, our method achieves a more significant improvement
in both detection and segmentation. For the map prediction task, all the segmentation classes (divider,
pedestrian crossing, road boundaries) are static, and our method can trivially learn to embed the map
into the prior features. Moreover, using DMP shows a larger improvement in detection performance,
demonstrating the effectiveness of our method as a prior for autonomous driving perception.

We hypothesize this performance boost for detection is a result of the end-to-end learned prior
features, allowing the model to learn what features are useful for the downstream task. In contrast,
NMP captures prior features in a non-differentiable manner.

5.4 ABLATIONS

Performance with Multiple Traversals. We study how the number of traversals seen during training
affects model performance in Figure[6] A traversal is defined as each sample being <50m from
any other sample seen during training. We split the dataset into 3 subsets based on the number of
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Figure 6: Performance with different numbers of training traversals. Both the baseline and our
method do much better as the number of traversals increases, suggesting that even a baseline learns to
recognize its training environment and a potential static prior. An explicit prior in the form of DMP
performs significantly better.

traversals: (1) a single traversal, (2) 2-4 traversals, and (3) 5+ traversals. We can see that DMP
consistently improves the baseline without the map prior when more than one traversals are given.
The gain magnifies as the number of traversals increases, demonstrating the effectiveness of explicitly
modeling map priors in 3D perception.

Map Embedding Size. As described in Section {4} the

historical feature storage utilizes a multi-level hash embed- 0.40 -
ding with several hyperparameters. In Figure[7] we ablate
the impact of varying the sparsity level of the underlying

0.39
map storage on the overall performance of our method.
We adjust the number of embeddings per hash level T, af-
fecting the granularity of the learned spatial representation = 0-38 ]
with respect to the resolution. In this setting, we keep the
rest of the encoder hyperparameters fixed, as specified in 0.37 A
Section[3.2]
Increasing the embedding size enhances the expressive- 0.36 2'12 2'1 A 2'16 218

ness of prior features, leading to better detection accuracy.
However, this comes at the cost of increased memory re-
quirements for storing the embeddings and experimental
results show an embedding size 7' = 2'6 balances perfor-
mance and memory, with diminishing returns for larger
embedding sizes.

Embedding Size T

Figure 7: Resolution of the underlying hash
table in our learned map representation.

Model Latency. Table [3]shows the computation overhead of our method with respect to the baseline
model’s total latency. We provide timing results over 100 samples, measured on a single Titan-V
GPU using a batch size of 1. Incorporating our prior incurs a relatively small overhead, about ~ 3%
of the full model’s latency.

Table 3: Computational Overhead. Execution time of the prior sampling.

Operation Time (ms) % Total
Prior Sampling  7.63 £0.09 2.50%
Prior Fusion 1.57+0.03 0.51%
Forward Pass  305.17 + 0.37 -

Distance Falloff. We conduct an analysis across three distinct distance thresholds: “close” (0-10
meters), “medium” (10-25 meters), and “far” (25-50 meters). We measure the detection precision of
two representative classes: “car” and “barrier” in Figure
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Figure 8: Performance over different distances. We compare the performance of DMP across three
different distance thresholds: close (0-10 meters), medium (10-25 meters), and far (25-50 meters).

Our approach demonstrates a more graceful degradation in performance with respect to distance,
suggesting that the prior aids in the detection of objects located farther away. Barriers are inherently
static objects, it should thus not come as a surprise that the incorporation of prior knowledge about
their location and geometry from previous traversals allows models equipped with our priors to
achieve significantly higher detection accuracy.

Figure 9: Qualitative Results. Predictions from BEVFormer+DMP on the nuScenes validation set.

6 CONCLUSION

We present a new framework for incorporating historical context into perception models with Differ-
entiable Map Priors (DMP). We evaluate our method on the nuScenes dataset and show consistent
improvements across a variety of architectures, showing that it is indeed possible to leverage previous
traversals for detection from multi-view images. Our framework is simple and effective and designed
with scalability in mind for real-world applications.
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