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Abstract

Polysemanticity—neurons activating for seemingly unrelated features—has long
been viewed as a key obstacle for interpretable AI. We show instead that it fol-
lows a structured, hierarchical developmental trajectory, offering a principled per-
spective on how networks allocate scarce representational capacity. We present
three interdependent analyses of Pythia 70M-2.8B across training checkpoints:
clustering of top-activating excerpts, Jensen—Shannon divergence over frequency
buckets, and a geometric characterization (polytope density and participation ra-
tio). First, we trace representational dynamics over training: early layers encode
token- and frequency-specific signals, with high- and low-frequency n-grams oc-
cupying distinct regions of activation space that mostly re-converge over train-
ing; deeper layers—and larger models—progressively shift toward representa-
tions that are invariant to token frequency and organized by semantic content.
Second, we identify a coverage principle: neuron coverage (the fraction of po-
sitions in which a neuron participates), not raw frequency preference, predicts
specialization. High-coverage neurons specialize, while low-coverage neurons
remain generalists. Third, we observe that activation manifolds transition from
fragmented to consolidated. Together, these results recast polysemanticity not
as a static nuisance, but as a structured, evolutionary process that distributes
scarce capacity efficiently and abstracts towards meaning. Our code is available
at |https://anonymous.4open.science/r/from-tokens-to-semantics/.

1 Introduction

In a perfectly interpretable neural network, every neuron would represent a unique and understand-
able feature. Yet, constructing such models beyond toy sizes has proven to be a hard task, even when
one enforces a sparse architecture [2]]. This is because neurons often encode (or activate strongly to)
a set of unrelated features—a phenomenon known as polysemanticity [[18}[17]. As stated by the su-
perposition explanation, this is probably to avoid the storage concerns of a purely linear architecture,
which can only represent as many features as it has neurons [7].

So why is this a concern? It is not only that predicting network behavior is harder when the basis
of representations is non-standard. Adversarial techniques can target shared topological structures
(arising out of superposition) even when model internals are black boxes, presenting an Al safety
risk [9]. Recent work has also diagnosed superposition as a key factor underlying observed neural
scaling laws[[12]]. Thus, frontier models are by nature vulnerable to these consequences.

Past work on the topic has focused on disentangling representations in neural networks. One popular
perspective is to use sparse autoencoders (SAEs) or transcoders to extract interpretable features
[3L 100 15)]. Alternatively, O’Mahony et al. [19] trained linear classifiers for concept discovery, and
Dreyer et al. [4] sought to extract distinct circuits that match a “pure feature.”
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Yet, no existing work tracks the evolution of feature superposition. This paper strives to fix that
gap, providing a longitudinal, multi-scale geometric account of representation consolidation during
model pretraining. First, we present a study of how neuron behaviors evolve during pretraining,
using cluster geometry as a proxy for polysemanticity. We discover consistent trajectories in neuron
specialization that appear to be shared across model sizes. To enhance clarity, we also release an
interactive web app that displays the highest-activating text clusters of each neuron over 15 check-
points for Pythia-70M and Pythia-160M [l]P_-] Next, to test theories that input frequency drives
polysemanticity, we curate a dataset of country n-grams with varying corpus frequencies, and apply
Jensen-Shannon divergence to track the evolution of frequency groups during pretraining. Lastly,
we characterize the shape of activation spaces via polytope analysis, revealing how representational
geometry transitions from fragmented token-level to consolidated semantic manifolds.

2 Related Works

Neuron-Level Interpretability. Beyond sparse autoencoders, linear probes, and circuit analyses,
researchers have developed additional tools for probing individual neurons. Recent work on con-
tinual sparse autoencoders, such as the SAE-Track framework [21]], has shown that feature rep-
resentations reorganize substantially across training checkpoints: some features emerge, split, or
vanish, while others shift from token-level patterns to more semantic abstractions. Complemen-
tary approaches, including neuron embeddings and clustering of top-activating text excerpts, extract
interpretable semantic features from high-activation contexts [8]. While these methods excel at
characterizing learned representations and have begun to illuminate feature dynamics, they focus
primarily on feature-level changes rather than on how neurons systematically transition from encod-
ing multiple unrelated features to more specialized representations across the network.

Frequency and Statistical Analyses. Token frequency and co-occurrence statistics remain central
to how language models internalize linguistic structure [20, [16]]. Tools like infini-gram [11]] en-
able efficient corpus frequency retrieval, while studies demonstrate that frequency-based regularities
dominate early-layer representations [20] and that transformers exhibit sensitivity to token statistics
at multiple granularities [16]. However, existing analyses focus primarily on static frequency effects
rather than probing how frequency interacts with representational geometry, neuron specialization,
or how these relationships evolve across training checkpoints and model scales.

Geometric Interpretability Frameworks. The polytope lens framework [? ] advanced geomet-
ric analysis of neural networks by proposing that activation spaces be understood through convex
polytope structures rather than individual neurons. Polytopes naturally emerge in ReLU networks
as regions of identical affine transformations, providing principled geometric foundations for inter-
pretability. Despite their analytical power, geometric lenses have not been systematically applied to
study temporal dynamics or developmental patterns in language model training.

Neuron-level probes, corpus statistics, and geometric lenses elucidate complementary aspects of
representation, yet each leaves open the question of dynamics. Our work unifies these threads into a
longitudinal framework that explains how polysemanticity evolves with training and scale.

3 Methods

3.1 Tracking Feature Clusters over Pretraining

Neuron embeddings is a metric that preserves, for a given neuron and input, the feature directions

that drive its activation [8]. Let h!~1)(z) € R be the representation of input z before layer I, and

let w,il) € R? be the input weight vector of neuron k in layer . Then, the neuron embedding is

ed() = V(@) 0w, (1)

where © is the Hadamard product. For a dataset, iteratively applying this operation generates an
embedding space in which a notion of distance can be defined. Given any data points x;, x;, let

d(zi,z;) = 1— cos(e,(cl)(a:i), e,(f)(xj)). )

"https://modelevolution.streamlit.app
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This procedure enables us to sort a set of highly activating excerpts into clusters of high density and
separation—each representing a clear-cut feature [§]]. Thus, cluster statistics (e.g. average clusters
per neuron) can serve as proxy metrics for a neuron’s polysemanticity. Our paper expands on
past work by iterating over checkpoints, thereby revealing novel evolutionary trends.

At each checkpoint € {3,000, 13,000, ..., 143,000} for Pythia-70M, Pythia-160M, and Pythia-
410M, 30,000 excerpts of WikiText-2 were digested [13]]. The first 100 (or, for very specialized
neurons, any) for which the activation of neuron k exceeded 0.6 - max_act; (where max_acty, is
the max activation of k as reported by Neuroscope [14]) were kept and clustered using hierarchical
agglomerative clustering with a distance threshold of 7 = O.75E] Neuron activations were extracted
using the TransformerLens library [15].

To balance cost concerns with coverage, we subsample evenly by index: for Pythia-70M we select
every 20th neuron and for Pythia-160M every 60th. This yields ~600 neurons per model and covers
every layer. For Pythia-410M, we analyze Layer O only, selecting every 200th neuron.

3.2 n-gram Selection and Frequency Grouping

We index unigrams-trigrams (n € {1,2,3}) in the deduplicated, preshuffled THE PILE using
tokengrams [6]. To isolate frequency from semantics, we restrict to one semantic family (e.g.,
capital-country) and template prompts so the same entity appears in multiple n-gram forms. At
each checkpoint s, we compute cumulative frequency fs(p) (raw and per-million), bin phrases into
eight empirical buckets, and—unless noted—contrast b=0 vs. b=7. This holds semantics roughly
fixed while varying only frequency, so any downstream differences we measure can be attributed
to frequency rather than meaning.

3.3 Activation Collection

We probe Pythia models at multiple scales (70M, 160M) across fixed training checkpoints
(13k—145k steps). Each phrase p is embedded into templated sentences:

“The capital of {phrase} is”,
“The people of {phrase} speak”

and the anchor token is the final token of the phrase. For each layer L at step s, we extract the
anchor token’s post-activation MLP input, yielding as, 1, (p) € R¥ for hidden size H. We normalize
activations into probability distributions,

maxyag ’0
Por(h|p) = —5 {as,.(p)n,0} |
> j=1 max{as 1 (p);, 0} + &

with ¢ = 1072, interpreting each phrase as allocating probability mass across neurons. These
activations give us a unified, quantitative view of how phrases are routed through the network,
enabling the study of representation and specialization across layers and stages of training.

3)

3.4 Affinity and Coverage Metrics

Let log fs(p) be the log frequency of phrase p at step s. We study three neuron-level quantities:

(Sum affinity) AY7(h) = > P.p(h|p)log fu(p), )
PEUL Sy
(Participation coverage) C’S,L(h) = Z P, (k| p), 5)
PEULSy
. - AZT(h)
(Mean affinity) A, 1 (h) = : = Epwp(in [1og fs(p)]. (6)

éS7L(h) + e

Here, A®™ blends two factors: coverage (C‘), the overall mass a neuron allocates across phrases, and
affinity (A), its average tilt toward common vs. rare items. These metrics highlight how strongly
each neuron participates and whether it tends toward high- or low-frequency phrases.

2The value of 7 was decided by trial and error; looser and stricter thresholds gave poor empirical results.
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3.5 Group distributions and Jensen—Shannon divergence

For any bucket b, define the average per-neuron firing distribution

_ 1 .
PS(bL)(h) = Sl Z Ps (b p), Sy = {p : pinbucket b}. (7

PESy
We measure separability of two buckets by, b; with the Jensen—Shannon divergence

5(b b 1 5(b
L%+ PU)) + S KL (P

g’

1 _
JSD; 1, (bo, 1) = §KL<P§,I]E)

L%+ PY)) . ®

Because these are discrete over neurons, we also track a per-neuron contribution

p(bo)(h) ~ P(bl)(h)
2,k + %Ps(?g) (h)log s,L

ann(bo b)) = $PY (h)log =2t ek
C ,L,h( 0> 1) 2+ s,L ( )Ong7L(h) Ms7L(h)

(P 4RY),
)
with Zh Cs,L,h = JSD&L.

Here, PS(’bL) encodes how each bucket spreads its activation mass across neurons in a layer, and JSD
quantifies how distinct those patterns are: its value is 0 only if buckets excite neurons identically and
increases as they diverge. The vector c; 1, ;, breaks this difference down neuron by neuron, flagging
the cells that are most discriminative for one group versus another. This highlights separability,
indicating whether rare and common phrases live in overlapping circuits or are routed to
different subnetworks.

3.6 Polytope Analysis

To study the evolution of neural representations during training, we add a temporal dimension to
the polytope lens framework. Each phrase is represented by its firing distribution, and collections of
phrases form convex polytopes in activation space. We analyze how the geometry of these polytopes
changes with training and frequency, focusing on two complementary metrics. Polytope density to-
gether with participation ratio captures the geometry of consolidation—how activation mani-
folds compress and align over training toward frequency-invariant, semantic representations.

Polytope Density. We measure the compactness of representations by comparing distances be-
tween activations. For a random pair of activations (4, j):

deucl(i»j) = ||A2 - Aj||2a (10)
dham (¢, j) = Hamming(A;, A;), (11)
dham(iaj)

Density(i, j) = (12)

deucl(i:j) .

High density indicates that activations are similar in Euclidean geometry but differ in sparse support
patterns, suggesting more entangled representations.

Participation Ratio We quantify the effective dimensionality of activations via principal compo-
nent analysis. Given eigenvalues { )\ } of the covariance matrix of activations, let the

(e Aw)?

IR
A higher participation ratio indicates that variance is distributed over many directions, while a lower
participation ratio suggests collapse into a lower-dimensional subspace.

Participation Ratio = 13)

4 Results

4.1 Temporal Dynamics of Polysemanticity

Across model sizes, neurons share a consistent trajectory: an exploratory regime with rising cluster
counts (many features multiplexed per unit), superseded by consolidation into fewer clusters, and
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Figure 1: Scale effects on polysemanticity dynamics. Larger models exhibit higher polysemantic-
ity early in training (spiking behavior) but also stronger convergence (low plateaus).
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Figure 2: Cluster trajectory by neuron type (specialized if clusters = 1 at last checkpoint and
highly polysemantic if clusters > 8 at last checkpointﬂ). Pythia-70M (left) and Pythia-160M (right).

culminating in stabilized representations that persist over late checkpoints. Larger models exhibit
more pronounced early exploration and stronger eventual consolidation, as presented in Figure 1.

Next, stratifying by neuron type (Figure 2) underscores distinct trajectories: specialized neurons
converge regularly to a unique feature, while highly polysemantic neurons exhibit early spikes and
gradual consolidation—echoing the trend displayed in Figure 1. This observation aligns with the
superposition hypothesis that networks allocate different computational strategies based on feature
frequency and importance [[7].

Case studies of cluster evolution over checkpoints are available in the Appendix (Figs. [0 [I0), and
can be generated for 1200+ neurons in Pythia-70M and Pythia-160M using the web app providedE]

4.2 The Coverage Principle Governs Neuron Specialization

Throughout training, models allocate representational capacity along a clear trajectory: early on,
low-coverage neurons multiplex rare and diverse features; as training progresses, coverage expands
and features consolidate; ultimately, high-coverage neurons dominate with monosemantic, stable
representations. This explore—consolidate—stabilize arc is robust across scales (70M, 160M) and
checkpoints, aligning directly with superposition theory’s prediction that broad features are anchored
in high-capacity units.

Evidence across models confirms this principle. Across Pythia-70M and Pythia-160M, coverage
shows a strong negative relationship with polysemanticity: neurons that activate frequently are far

3The standard of “> 8” was chosen to be notably above the average clusters at final checkpoint for both
Pythia models, but can be shifted in either direction without changing the shape of the graph.
*https://modelevolution.streamlit.app
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Figure 3: Layer-wise stratification. For Pythia-70M (left) and Pythia-160M (right), Layer O has
sharp spikes and fast convergence, early layers display persistent elevation, and later layers exhibit
steady consolidation. This motivates our study of hierarchical layer organization in Section 4.4.

more likely to represent a single concept, while polysemantic units almost always live in the low-
coverage regime (Figs. [} [5). This pattern is stable across layers and persists even as overall capacity
grows, demonstrating that specialization is driven by usage breadth, not token frequency alone.
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Figure 4: Coverage and mean-affinity scatters (Pythia-70M). Coverage anticorrelates with poly-
semanticity; mean affinity is largely uninformative.

Frequency preference adds little beyond coverage. When controlling for coverage, a neuron’s
bias toward high- or low-frequency phrases (mean affinity) is minimally informative (|p| < 0.05)
and inconsistent across steps. Even sum-affinity, which might appear predictive, largely inherits its
signal from coverage because it scales mean affinity by activation mass (Appendix Fig. [I3).

Robustness checks isolate coverage as the driver. Partial correlations leave only a small residual
for sum affinity, while coverage remains predictive (Appendix Fig. [[4). Permutation tests confirm
the causal role: shuffling coverage breaks the association with polysemanticity, but shuffling affinity
does not (Appendix Fig. [I3).

Takeaway. Coverage emerges as the central organizing principle: specialization is not about fre-
quency preference but how often a neuron engages with diverse contexts. This principle will reap-
pear in our layer-wise and geometric analyses, where it scales from individual neurons to whole
representational manifolds.

4.3 Hierarchical Layer Organization

As training unfolds, different depths play distinct roles: early blocks handle raw frequency signals,
while deeper layers abstract away from surface statistics toward semantic representations. This
mirrors the model’s overall trajectory from exploration to consolidation.
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Figure 5: Coverage and mean-affinity scatters (Pythia-160M). Mirrors 70M: strong cover-
age—polysemanticity anticorrelation; weak mean-affinity signal.

Early layers are frequency-sensitive. Comparing activations for rare vs. common phrases (bin O vs.
bin 7) shows that separation emerges almost immediately and peaks in the first few layers (Fig. [6).
Jensen—Shannon divergence between frequency groups rises rapidly in the first 1020k steps, in-
dicating that shallow layers function as frequency routers, gating diverse token statistics before
semantic features stabilize downstream. Beyond these early layers, divergence flattens, suggesting
that mid-to-deep layers gradually suppress raw frequency differences.

Polysemantic units drive the distinction. Within these layers, the neurons that most differentiate
frequency groups are also the most polysemantic. Stratifying JSD contributions by polysemantic-
ity reveals that highly cluster-rich units dominate the divergence signal, and their influence grows
stronger over training (Appendix Fig. 7). This links the frequency-routing behavior of shallow
layers to the same exploratory units identified in our coverage analysis.

Coupling strengthens with training. This relationship is not static. The correlation between a neu-
ron’s frequency-separation contribution and its polysemanticity rises steadily, with several check-
points showing statistically significant positive correlations (Fig. [7). As the network consolidates,
its frequency-sensitive signals are increasingly concentrated in exploratory neurons.
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Figure 6: Layerwise frequency separation. Early layers amplify frequency-group differences;
deeper layers dampen them.

Takeaway. Frequency information is routed and transformed hierarchically: shallow layers multi-
plex frequency-sensitive, polysemantic units; deeper layers converge toward semantic integration.
Combined with our coverage results, this suggests a unified representational story: the same low-
coverage, high-polysemantic neurons that explore rare features also serve as frequency routers early
on, before the network stabilizes into abstract semantic manifolds.
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Figure 8: Geometric convergence reveals hierarchical abstraction. Difference heatmaps (high
minus low frequency) across layers and training steps. Early layers show persistent frequency-based
segregation (darker regions), while deeper layers achieve frequency-invariant processing (lighter
convergence). The systematic progression from segregation to unification provides direct geometric
evidence for the network’s transition from token-level statistics to semantic representations.

4.4 Geometric Transformation of Representations

Activation spaces undergo a universal representational transformation from fragmented token-level
manifolds to unified, frequency-invariant semantic manifolds.

Layer-wise geometric convergence pattern. Difference heatmaps (Fig. [8) reveal a systematic
progression across depth. Early layers maintain strong geometric segregation between frequency
groups: low-frequency n-grams exhibit higher polytope density and participation ratio, reflecting
fragmented, distributed activations where rare features require broader neural engagement (consis-
tent with exploratory multiplexing). This separation emerges after a brief warm-up where groups
appear similar, suggesting networks first develop basic representational capacity.

Middle layers exhibit progressive convergence as polytope density declines and participation ratios
approach each other. This transition reflects the network’s shift from statistical token processing
toward shared semantic abstractions. Deep layers achieve geometric unification with near-identical
metrics across frequency buckets, indicating frequency-invariant semantic processing.

Quantitative patterns. Across layers and checkpoints for Pythia-70M and Pythia-2.8B, polytope
density and participation ratio reveal three transitions: (1) Early divergence in shallow layers where
low-frequency items show higher fragmentation—elevated density (frequent support changes de-
spite small Euclidean distances) and higher participation (distributed processing), consistent with
superposition-based encoding of rare features. (2) Progressive convergence in middle regimes as
bucket gaps narrow: participation ratios approach similar dimensionalities and density steadily falls,
marking a shift toward shared semantic abstractions. (3) Global consolidation in deeper layers
where geometric unification is achieved—density reaches minimal values while participation ratios
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converge and stabilize, evidencing compression into compact, frequency-invariant semantic repre-
sentations beyond token-level statistics.

Interpretation. This geometric evolution substantiates the coverage principle and the global tra-
jectory: rare n-grams initially occupy fragmented regions requiring multiple neurons (low-coverage,
polysemantic, exploratory), while common patterns consolidate into concentrated representations
(high-coverage, monosemantic, stabilization). With depth, both frequency groups map into shared
geometries, completing the transition to frequency-invariant semantic representations.

5 Conclusion

This work establishes three principles governing polysemanticity in transformer language models.
First, polysemanticity is a dynamic developmental process: networks follow a universal trajec-
tory from early, frequency-sensitive token statistics in shallow layers toward frequency-invariant,
semantic representations at depth, with consolidation stabilizing across training checkpoints. Sec-
ond, coverage—not raw n-gram frequency—governs specialization: high-coverage neurons become
monosemantic generalists, while low-coverage neurons multiplex many rare features, consistent
with capacity-allocation predictions from superposition theory. Third, geometric analysis reveals the
transition from fragmented token-level structure to consolidated semantic manifolds: polytope den-
sity and participation ratio jointly show activation spaces compressing and aligning into frequency-
invariant geometries in deeper layers.

These principles connect directly to broader concerns. For interpretability, coverage provides a
practical diagnostic for prioritizing neurons in analysis, attribution, and editing, with low-coverage,
highly polysemantic units disproportionately mediating frequency-conditioned differences. For
safety and robustness, such units represent potential attack surfaces; monitoring and potentially spar-
sifying low-coverage neurons may reduce distributional fragility and stabilize out-of-distribution
behavior. For scaling, larger models consolidate earlier and more stably, motivating scaling curves
that incorporate polysemanticity and geometric metrics (e.g., JSD, polytope density, participation
ratio) alongside accuracy.

6 Limitations

There are several key caveats to our work. First, our cluster evolution analyses focused on toy
models (Pythia-70M, Pythia-160M, a partial slice of Pythia-410M). Moreover, due to cost concerns,
not every neuron was probed. Our polytope studies, which were not as expensive, extended to
Pythia-2.8B. These scales are far from frontier LLMs, and conclusions may shift with considerably
larger models and datasets.

Second, our n-gram analyses were deliberately narrow. We restricted ourselves to unigrams, bi-
grams, and trigrams, and examined only a single semantic family (country—capital pairs) under
templated prompts with an anchor token. While this clarifies frequency effects, it limits generality.
Frequencies were computed on a deduplicated and preshuffled snapshot of THE PILE, which may
not reflect the model’s true training distribution.

Lastly, we do not provide a normative explanation of emergence: although we observe regularities
in temporal dynamics, coverage, and geometry, we do not derive these from an optimality principle
or learning-theoretic objective. Our causal claims are therefore limited.

7 Future Work

Thus, future work should extend and operationalize this framework across architectures (e.g.,
LLaMA-family, state-space models), domains (multilingual settings, beyond country-related n-
grams), and training paradigms (fine-tuning, instruction-tuning, RLHF) to test how coverage pat-
terns and frequency-invariance evolve by depth. Mechanistically, mapping JSD-contributing neu-
rons and polytopes to concrete circuits can link geometric consolidation to algorithmic function.
Practically, standardizing coverage-based metrics and polytope diagnostics as training-time tools
could monitor consolidation and abstraction in situ, turning polysemanticity from an interpretability
obstacle into a measurable, controllable aspect of neural development.
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A Appendix

A.1 Temporal Dynamics of Polysemanticity: A Case Study

In this section of the Appendix, we present a case study of feature cluster evolution for a specialized
neuron. This consists of its feature clusters at the first and last checkpoints, and a figure that plots
its cluster counts over every publicly available checkpoint.

Checkpoint 3000 Checkpoint 143000

poetic writing |, nearly |fifteen hundred poems have been what|[is known of [Bu P4l 's 1ife comes

WAt 1|[nave|[lived through , [1if| even [1||HOW

what|[i5| [Aow| Baidicheng , chongg

of both [soldiers| and [civilians| produced by [BEI[# throughout

worst [habitability of any |Japanese [capital [ship| . The

Diﬁ

Figure 9: Case study: cluster consolidation for a specialized neuron. Multiple heterogeneous
clusters (poetic writing, Du Fu, the Beach Boys...) at Checkpoint 3,000 coalesce into a cluster
focused on (i) Du Fu and (ii) the token-level pattern “what...” by Checkpoint 143,000.

101 --= Trend (slope: -0.000046)

Clusters

14

0 20000 40000 60000 80000 100000 120000 140000
Training Step

Figure 10: Case study: cluster consolidation for a specialized neuron. For the neuron visualized
in Figure 9, we track its convergence towards a single cluster in high-resolution: across 143 check-
points. Such resolution was not viable for our global analyses due to cost concerns.
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A.2  Group-level Polysemanticity and Volatility

In this section of the Appendix, we present an experiment looking into group-level polysemanticity
and an associated volatility metric.

A.3 Method

For any frequency group G at step s, we summarize polysemanticity with a weighted average,

. Z(L,h)ey ws, 1.1 (G) - #elusterss 1, p

e TS
#clusters, (G) > men Ws,Lh(G)

. wera(G) o Y Por(h]p),
peG
14)
so neurons that respond more strongly to a group’s phrases contribute more to its score.

To track these group-level trends’ stability, we use the median absolute percent change (MAPC),

5)

MAPC(G) = median, < #clusters, | (G) — Fclusters, (G) )

#clusters, (G) + ¢

which quantifies the step-to-step volatility of each group’s representation. Together, these metrics
capture the distinct features a group evokes and how consistently they stabilize over training.

A.3.1 Result

Frequency plays a transient and unstable role in this trajectory. Contrary to common assumptions,
frequency alone does not drive sustained polysemanticity differences; instead, both high- and low-
frequency groups converge as consolidation proceeds, challenging frequency-centric explanations.

Across checkpoints, weighted average polysemanticity decreases for both high- and low-frequency
groups in Pythia-70M and Pythia-160M (Appendix Fig. [T T)), often converging late or even crossing
mid-training. Thus, frequency is not a stable predictor of group-level polysemanticity once training
progresses; the dominant signal is global consolidation of features.

Despite similar endpoints, stability differs: high-frequency n-grams exhibit larger median abso-
lute percent change (MAPC) than low-frequency n-grams in both sizes (Appendix Fig.[12). High-
frequency content is updated/rewired more often during training, even as both groups compress to
similar polysemanticity.

High vs Low frequency groups — weighted averages (Pythia-70M) High vs Low frequency groups — weighted averages (Pythia-160M)

e~ High-frequency (weighted) .\ e~ High-requency (weighted)

Low-frequency (weighted) Low-frequency (weighted)

o

2

; <N

20000 40000 60000 80000 100000 120000 140000 20000 40000 60000 80000 100000 120000 140000
Training step Training step

(a) Pythia-70M (b) Pythia-160M

Weighted avg #clusters

Weighted avg #clusters

Figure 11: Group trajectories. Weighted average #clusters for high- vs. low-frequency n-grams
across training. Both groups contract; the gap is small, sometimes reverses, and diminishes late.
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Figure 12: Relative volatility (MAPC). High-frequency groups show higher median absolute %
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change than low-frequency groups, indicating more step-to-step rewiring.

A.4 Figures on Sum Affinity and Coverage Analysis

Because AS'™

from frequency preference per se.

Polysemanticity vs freq affinity (all checkpoints colored by step)
Pythia-70M

50

40

w
s

#clusters

~
S

-3 -2
freq affinity

(a) Pythia-70M

Figure 13: Sum-affinity scatters Sum affinity vs. #clusters. The trend largely mirrors coverage

because A"™=m - A with A<0.
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Polysemanticity vs freq affinity (all checkpoints colored by step)
Pythia-160M

=17.5 -15.0 =125 -10.0 =7.5

freq affinity

(b) Pythia-160M
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C - A, and because A is mostly negative on our phrase set, A™'™ is effectively a
monotone transform of C'; the observed correlation with #clusters thus comes from coverage, not

normalized training step
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Partial correlations with #clusters (Pythia-160M)

Partial correlations with #clusters (Pythia-70M) 015
0.100{ —#— partial: affinity | coverage —e— partial: affinity | coverage
~m- partial: coverage | affinity ~m- partial: coverage | affinity
0.075
0.10
= 0050 =
g g
£ E
£ o025 /_‘\’—/\ 5 005
3 3
& &
2 0.000 i
=} I}
k= €
8 -0025 g o0
~0.050
-0.05
-0.075
20000 40000 60000 80000 100000 120000 140000 20000 40000 60000 80000 100000 120000 140000
Training step Training step
(a) Pythia-70M (b) Pythia-160M

Figure 14: Partial correlations with polysemanticity. Blue: p(sum-affinity, #clusters | coverage).
Orange: p(coverage, #clusters | sum-affinity). Coverage retains a positive association after control-
ling for affinity; affinity’s residual association is small or negative.
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Figure 15: Coverage drives A"™’s association. Shuffling the coverage term m largely destroys the
sum-affinity correlation with #clusters; shuffling the mean-affinity component A has minimal effect.

A.5 More Figures for JSD Analysis

Rank-biserial effect: very high vs low polysemanticity Rank-biserial effect: very high vs low polysemanticity
04 030
03 0.25
0.20
w 02 w
0 o
& £ o01s
O o1 o
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00
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20000 40000 60000 80000 100000 120000 140000 20000 40000 60000 80000 100000 120000 140000
training step training step

(a) Clift’s § (70M) (b) Cliff’s 6 (160M)

Figure 16: Effect size (very-high vs. low polysemanticity). Polysemantic neurons increasingly
dominate frequency separation, with positive, growing distribution-free effect sizes.
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Stratified JSD contribution by polysemanticity (step=143000, Pythia-70M)
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(a) Pythia-70M (143k)
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Figure 17: Stratified JSD contributions by polysemanticity. Higher #clusters contribute more to
inter-bucket JSD; nonparametric tests indicate significant stratification at representative steps.

A.6 More Figures for Polytope Density and Participation Ratios
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(b) Pythia-70M Participation Ratio

Figure 18: Geometric convergence reveals hierarchical abstraction. Difference heatmaps (high
minus low frequency) across layers and training steps.
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Per-Layer Time Series — Polytope Density
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Figure 19: Layer-wise progression over training. Small-multiple plots across 5 layers showing
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the temporal evolution of geometric metrics.
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