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Abstract

Polysemanticity—neurons activating for seemingly unrelated features—has long1

been viewed as a key obstacle for interpretable AI. We show instead that it fol-2

lows a structured, hierarchical developmental trajectory, offering a principled per-3

spective on how networks allocate scarce representational capacity. We present4

three interdependent analyses of Pythia 70M–2.8B across training checkpoints:5

clustering of top-activating excerpts, Jensen–Shannon divergence over frequency6

buckets, and a geometric characterization (polytope density and participation ra-7

tio). First, we trace representational dynamics over training: early layers encode8

token- and frequency-specific signals, with high- and low-frequency n-grams oc-9

cupying distinct regions of activation space that mostly re-converge over train-10

ing; deeper layers—and larger models—progressively shift toward representa-11

tions that are invariant to token frequency and organized by semantic content.12

Second, we identify a coverage principle: neuron coverage (the fraction of po-13

sitions in which a neuron participates), not raw frequency preference, predicts14

specialization. High-coverage neurons specialize, while low-coverage neurons15

remain generalists. Third, we observe that activation manifolds transition from16

fragmented to consolidated. Together, these results recast polysemanticity not17

as a static nuisance, but as a structured, evolutionary process that distributes18

scarce capacity efficiently and abstracts towards meaning. Our code is available19

at https://anonymous.4open.science/r/from-tokens-to-semantics/.20

1 Introduction21

In a perfectly interpretable neural network, every neuron would represent a unique and understand-22

able feature. Yet, constructing such models beyond toy sizes has proven to be a hard task, even when23

one enforces a sparse architecture [2]. This is because neurons often encode (or activate strongly to)24

a set of unrelated features—a phenomenon known as polysemanticity [18, 17]. As stated by the su-25

perposition explanation, this is probably to avoid the storage concerns of a purely linear architecture,26

which can only represent as many features as it has neurons [7].27

So why is this a concern? It is not only that predicting network behavior is harder when the basis28

of representations is non-standard. Adversarial techniques can target shared topological structures29

(arising out of superposition) even when model internals are black boxes, presenting an AI safety30

risk [9]. Recent work has also diagnosed superposition as a key factor underlying observed neural31

scaling laws[12]. Thus, frontier models are by nature vulnerable to these consequences.32

Past work on the topic has focused on disentangling representations in neural networks. One popular33

perspective is to use sparse autoencoders (SAEs) or transcoders to extract interpretable features34

[3, 10, 5]. Alternatively, O’Mahony et al. [19] trained linear classifiers for concept discovery, and35

Dreyer et al. [4] sought to extract distinct circuits that match a “pure feature.”36
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Yet, no existing work tracks the evolution of feature superposition. This paper strives to fix that37

gap, providing a longitudinal, multi-scale geometric account of representation consolidation during38

model pretraining. First, we present a study of how neuron behaviors evolve during pretraining,39

using cluster geometry as a proxy for polysemanticity. We discover consistent trajectories in neuron40

specialization that appear to be shared across model sizes. To enhance clarity, we also release an41

interactive web app that displays the highest-activating text clusters of each neuron over 15 check-42

points for Pythia-70M and Pythia-160M [1].1 Next, to test theories that input frequency drives43

polysemanticity, we curate a dataset of country n-grams with varying corpus frequencies, and apply44

Jensen-Shannon divergence to track the evolution of frequency groups during pretraining. Lastly,45

we characterize the shape of activation spaces via polytope analysis, revealing how representational46

geometry transitions from fragmented token-level to consolidated semantic manifolds.47

2 Related Works48

Neuron-Level Interpretability. Beyond sparse autoencoders, linear probes, and circuit analyses,49

researchers have developed additional tools for probing individual neurons. Recent work on con-50

tinual sparse autoencoders, such as the SAE-Track framework [21], has shown that feature rep-51

resentations reorganize substantially across training checkpoints: some features emerge, split, or52

vanish, while others shift from token-level patterns to more semantic abstractions. Complemen-53

tary approaches, including neuron embeddings and clustering of top-activating text excerpts, extract54

interpretable semantic features from high-activation contexts [8]. While these methods excel at55

characterizing learned representations and have begun to illuminate feature dynamics, they focus56

primarily on feature-level changes rather than on how neurons systematically transition from encod-57

ing multiple unrelated features to more specialized representations across the network.58

Frequency and Statistical Analyses. Token frequency and co-occurrence statistics remain central59

to how language models internalize linguistic structure [20, 16]. Tools like infini-gram [11] en-60

able efficient corpus frequency retrieval, while studies demonstrate that frequency-based regularities61

dominate early-layer representations [20] and that transformers exhibit sensitivity to token statistics62

at multiple granularities [16]. However, existing analyses focus primarily on static frequency effects63

rather than probing how frequency interacts with representational geometry, neuron specialization,64

or how these relationships evolve across training checkpoints and model scales.65

Geometric Interpretability Frameworks. The polytope lens framework [? ] advanced geomet-66

ric analysis of neural networks by proposing that activation spaces be understood through convex67

polytope structures rather than individual neurons. Polytopes naturally emerge in ReLU networks68

as regions of identical affine transformations, providing principled geometric foundations for inter-69

pretability. Despite their analytical power, geometric lenses have not been systematically applied to70

study temporal dynamics or developmental patterns in language model training.71

Neuron-level probes, corpus statistics, and geometric lenses elucidate complementary aspects of72

representation, yet each leaves open the question of dynamics. Our work unifies these threads into a73

longitudinal framework that explains how polysemanticity evolves with training and scale.74

3 Methods75

3.1 Tracking Feature Clusters over Pretraining76

Neuron embeddings is a metric that preserves, for a given neuron and input, the feature directions77

that drive its activation [8]. Let h(l−1)(x) ∈ Rd be the representation of input x before layer l, and78

let w(l)
k ∈ Rd be the input weight vector of neuron k in layer l. Then, the neuron embedding is79

e
(l)
k (x) = h(l−1)(x)⊙ w

(l)
k , (1)

where ⊙ is the Hadamard product. For a dataset, iteratively applying this operation generates an80

embedding space in which a notion of distance can be defined. Given any data points xi, xj , let81

d(xi, xj) = 1− cos
(
e
(l)
k (xi), e

(l)
k (xj)

)
. (2)
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This procedure enables us to sort a set of highly activating excerpts into clusters of high density and82

separation—each representing a clear-cut feature [8]. Thus, cluster statistics (e.g. average clusters83

per neuron) can serve as proxy metrics for a neuron’s polysemanticity. Our paper expands on84

past work by iterating over checkpoints, thereby revealing novel evolutionary trends.85

At each checkpoint ∈ {3,000, 13,000, . . . , 143,000} for Pythia-70M, Pythia-160M, and Pythia-86

410M, 30,000 excerpts of WikiText-2 were digested [13]. The first 100 (or, for very specialized87

neurons, any) for which the activation of neuron k exceeded 0.6 · max actk (where max actk is88

the max activation of k as reported by Neuroscope [14]) were kept and clustered using hierarchical89

agglomerative clustering with a distance threshold of τ = 0.75.2 Neuron activations were extracted90

using the TransformerLens library [15].91

To balance cost concerns with coverage, we subsample evenly by index: for Pythia-70M we select92

every 20th neuron and for Pythia-160M every 60th. This yields ∼600 neurons per model and covers93

every layer. For Pythia-410M, we analyze Layer 0 only, selecting every 200th neuron.94

3.2 n-gram Selection and Frequency Grouping95

We index unigrams–trigrams (n ∈ {1, 2, 3}) in the deduplicated, preshuffled THE PILE using96

tokengrams [6]. To isolate frequency from semantics, we restrict to one semantic family (e.g.,97

capital–country) and template prompts so the same entity appears in multiple n-gram forms. At98

each checkpoint s, we compute cumulative frequency fs(p) (raw and per-million), bin phrases into99

eight empirical buckets, and—unless noted—contrast b=0 vs. b=7. This holds semantics roughly100

fixed while varying only frequency, so any downstream differences we measure can be attributed101

to frequency rather than meaning.102

3.3 Activation Collection103

We probe Pythia models at multiple scales (70M, 160M) across fixed training checkpoints104

(13k–145k steps). Each phrase p is embedded into templated sentences:105

“The capital of {phrase} is”,
“The people of {phrase} speak”

and the anchor token is the final token of the phrase. For each layer L at step s, we extract the106

anchor token’s post-activation MLP input, yielding as,L(p)∈RH for hidden size H . We normalize107

activations into probability distributions,108

Ps,L(h | p) = max{as,L(p)h, 0}∑H
j=1 max{as,L(p)j , 0}+ ε

, (3)

with ε = 10−12, interpreting each phrase as allocating probability mass across neurons. These109

activations give us a unified, quantitative view of how phrases are routed through the network,110

enabling the study of representation and specialization across layers and stages of training.111

3.4 Affinity and Coverage Metrics112

Let log fs(p) be the log frequency of phrase p at step s. We study three neuron-level quantities:113

(Sum affinity) Asum
s,L(h) =

∑
p∈∪bSb

Ps,L(h | p) log fs(p), (4)

(Participation coverage) C̃s,L(h) =
∑

p∈∪bSb

Ps,L(h | p), (5)

(Mean affinity) Ās,L(h) =
Asum

s,L(h)

C̃s,L(h) + ε
= Ep∼P (·|h)

[
log fs(p)

]
. (6)

Here, Asum blends two factors: coverage (C̃), the overall mass a neuron allocates across phrases, and114

affinity (Ā), its average tilt toward common vs. rare items. These metrics highlight how strongly115

each neuron participates and whether it tends toward high- or low-frequency phrases.116

2The value of τ was decided by trial and error; looser and stricter thresholds gave poor empirical results.
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3.5 Group distributions and Jensen–Shannon divergence117

For any bucket b, define the average per-neuron firing distribution118

P̄
(b)
s,L(h) =

1

|Sb|
∑
p∈Sb

Ps,L(h | p), Sb = {p : p in bucket b}. (7)

We measure separability of two buckets b0, b1 with the Jensen–Shannon divergence119

JSDs,L(b0, b1) =
1

2
KL
(
P̄

(b0)
s,L

∥∥∥ 1
2 (P̄

(b0)
s,L + P̄

(b1)
s,L )

)
+

1

2
KL
(
P̄

(b1)
s,L

∥∥∥ 1
2 (P̄

(b0)
s,L + P̄

(b1)
s,L )

)
. (8)

Because these are discrete over neurons, we also track a per-neuron contribution120

cs,L,h(b0, b1) = 1
2 P̄

(b0)
s,L (h)log

P̄
(b0)
s,L (h)

Ms,L(h)
+ 1

2 P̄
(b1)
s,L (h)log

P̄
(b1)
s,L (h)

Ms,L(h)
, Ms,L=

1
2

(
P̄

(b0)
s,L +P̄

(b1)
s,L

)
,

(9)
with

∑
h cs,L,h = JSDs,L.121

Here, P̄ (b)
s,L encodes how each bucket spreads its activation mass across neurons in a layer, and JSD122

quantifies how distinct those patterns are: its value is 0 only if buckets excite neurons identically and123

increases as they diverge. The vector cs,L,h breaks this difference down neuron by neuron, flagging124

the cells that are most discriminative for one group versus another. This highlights separability,125

indicating whether rare and common phrases live in overlapping circuits or are routed to126

different subnetworks.127

3.6 Polytope Analysis128

To study the evolution of neural representations during training, we add a temporal dimension to129

the polytope lens framework. Each phrase is represented by its firing distribution, and collections of130

phrases form convex polytopes in activation space. We analyze how the geometry of these polytopes131

changes with training and frequency, focusing on two complementary metrics. Polytope density to-132

gether with participation ratio captures the geometry of consolidation—how activation mani-133

folds compress and align over training toward frequency-invariant, semantic representations.134

Polytope Density. We measure the compactness of representations by comparing distances be-135

tween activations. For a random pair of activations (i, j):136

deucl(i, j) = ∥Ai −Aj∥2, (10)
dham(i, j) = Hamming(Ai, Aj), (11)

Density(i, j) =
dham(i, j)

deucl(i, j)
. (12)

High density indicates that activations are similar in Euclidean geometry but differ in sparse support137

patterns, suggesting more entangled representations.138

Participation Ratio We quantify the effective dimensionality of activations via principal compo-139

nent analysis. Given eigenvalues {λk} of the covariance matrix of activations, let the140

Participation Ratio =
(
∑

k λk)
2∑

k λ
2
k

. (13)

A higher participation ratio indicates that variance is distributed over many directions, while a lower141

participation ratio suggests collapse into a lower-dimensional subspace.142

4 Results143

4.1 Temporal Dynamics of Polysemanticity144

Across model sizes, neurons share a consistent trajectory: an exploratory regime with rising cluster145

counts (many features multiplexed per unit), superseded by consolidation into fewer clusters, and146
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Figure 1: Scale effects on polysemanticity dynamics. Larger models exhibit higher polysemantic-
ity early in training (spiking behavior) but also stronger convergence (low plateaus).
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Figure 2: Cluster trajectory by neuron type (specialized if clusters = 1 at last checkpoint and
highly polysemantic if clusters ≥ 8 at last checkpoint 3). Pythia-70M (left) and Pythia-160M (right).

culminating in stabilized representations that persist over late checkpoints. Larger models exhibit147

more pronounced early exploration and stronger eventual consolidation, as presented in Figure 1.148

Next, stratifying by neuron type (Figure 2) underscores distinct trajectories: specialized neurons149

converge regularly to a unique feature, while highly polysemantic neurons exhibit early spikes and150

gradual consolidation—echoing the trend displayed in Figure 1. This observation aligns with the151

superposition hypothesis that networks allocate different computational strategies based on feature152

frequency and importance [7].153

Case studies of cluster evolution over checkpoints are available in the Appendix (Figs. 9, 10), and154

can be generated for 1200+ neurons in Pythia-70M and Pythia-160M using the web app provided.4155

4.2 The Coverage Principle Governs Neuron Specialization156

Throughout training, models allocate representational capacity along a clear trajectory: early on,157

low-coverage neurons multiplex rare and diverse features; as training progresses, coverage expands158

and features consolidate; ultimately, high-coverage neurons dominate with monosemantic, stable159

representations. This explore–consolidate–stabilize arc is robust across scales (70M, 160M) and160

checkpoints, aligning directly with superposition theory’s prediction that broad features are anchored161

in high-capacity units.162

Evidence across models confirms this principle. Across Pythia-70M and Pythia-160M, coverage163

shows a strong negative relationship with polysemanticity: neurons that activate frequently are far164

3The standard of “≥ 8” was chosen to be notably above the average clusters at final checkpoint for both
Pythia models, but can be shifted in either direction without changing the shape of the graph.
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Figure 3: Layer-wise stratification. For Pythia-70M (left) and Pythia-160M (right), Layer 0 has
sharp spikes and fast convergence, early layers display persistent elevation, and later layers exhibit
steady consolidation. This motivates our study of hierarchical layer organization in Section 4.4.

more likely to represent a single concept, while polysemantic units almost always live in the low-165

coverage regime (Figs. 4, 5). This pattern is stable across layers and persists even as overall capacity166

grows, demonstrating that specialization is driven by usage breadth, not token frequency alone.167
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Figure 4: Coverage and mean-affinity scatters (Pythia-70M). Coverage anticorrelates with poly-
semanticity; mean affinity is largely uninformative.

Frequency preference adds little beyond coverage. When controlling for coverage, a neuron’s168

bias toward high- or low-frequency phrases (mean affinity) is minimally informative (|ρ| ≲ 0.05)169

and inconsistent across steps. Even sum-affinity, which might appear predictive, largely inherits its170

signal from coverage because it scales mean affinity by activation mass (Appendix Fig. 13).171

Robustness checks isolate coverage as the driver. Partial correlations leave only a small residual172

for sum affinity, while coverage remains predictive (Appendix Fig. 14). Permutation tests confirm173

the causal role: shuffling coverage breaks the association with polysemanticity, but shuffling affinity174

does not (Appendix Fig. 15).175

Takeaway. Coverage emerges as the central organizing principle: specialization is not about fre-176

quency preference but how often a neuron engages with diverse contexts. This principle will reap-177

pear in our layer-wise and geometric analyses, where it scales from individual neurons to whole178

representational manifolds.179

4.3 Hierarchical Layer Organization180

As training unfolds, different depths play distinct roles: early blocks handle raw frequency signals,181

while deeper layers abstract away from surface statistics toward semantic representations. This182

mirrors the model’s overall trajectory from exploration to consolidation.183
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Figure 5: Coverage and mean-affinity scatters (Pythia-160M). Mirrors 70M: strong cover-
age–polysemanticity anticorrelation; weak mean-affinity signal.

Early layers are frequency-sensitive. Comparing activations for rare vs. common phrases (bin 0 vs.184

bin 7) shows that separation emerges almost immediately and peaks in the first few layers (Fig. 6).185

Jensen–Shannon divergence between frequency groups rises rapidly in the first 10–20k steps, in-186

dicating that shallow layers function as frequency routers, gating diverse token statistics before187

semantic features stabilize downstream. Beyond these early layers, divergence flattens, suggesting188

that mid-to-deep layers gradually suppress raw frequency differences.189

Polysemantic units drive the distinction. Within these layers, the neurons that most differentiate190

frequency groups are also the most polysemantic. Stratifying JSD contributions by polysemantic-191

ity reveals that highly cluster-rich units dominate the divergence signal, and their influence grows192

stronger over training (Appendix Fig. 17). This links the frequency-routing behavior of shallow193

layers to the same exploratory units identified in our coverage analysis.194

Coupling strengthens with training. This relationship is not static. The correlation between a neu-195

ron’s frequency-separation contribution and its polysemanticity rises steadily, with several check-196

points showing statistically significant positive correlations (Fig. 7). As the network consolidates,197

its frequency-sensitive signals are increasingly concentrated in exploratory neurons.198
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Figure 6: Layerwise frequency separation. Early layers amplify frequency-group differences;
deeper layers dampen them.

Takeaway. Frequency information is routed and transformed hierarchically: shallow layers multi-199

plex frequency-sensitive, polysemantic units; deeper layers converge toward semantic integration.200

Combined with our coverage results, this suggests a unified representational story: the same low-201

coverage, high-polysemantic neurons that explore rare features also serve as frequency routers early202

on, before the network stabilizes into abstract semantic manifolds.203
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Figure 7: Polysemantic coupling strengthens. Correlation between frequency-separation contri-
butions and polysemanticity grows with training.
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Figure 8: Geometric convergence reveals hierarchical abstraction. Difference heatmaps (high
minus low frequency) across layers and training steps. Early layers show persistent frequency-based
segregation (darker regions), while deeper layers achieve frequency-invariant processing (lighter
convergence). The systematic progression from segregation to unification provides direct geometric
evidence for the network’s transition from token-level statistics to semantic representations.

4.4 Geometric Transformation of Representations204

Activation spaces undergo a universal representational transformation from fragmented token-level205

manifolds to unified, frequency-invariant semantic manifolds.206

Layer-wise geometric convergence pattern. Difference heatmaps (Fig. 8) reveal a systematic207

progression across depth. Early layers maintain strong geometric segregation between frequency208

groups: low-frequency n-grams exhibit higher polytope density and participation ratio, reflecting209

fragmented, distributed activations where rare features require broader neural engagement (consis-210

tent with exploratory multiplexing). This separation emerges after a brief warm-up where groups211

appear similar, suggesting networks first develop basic representational capacity.212

Middle layers exhibit progressive convergence as polytope density declines and participation ratios213

approach each other. This transition reflects the network’s shift from statistical token processing214

toward shared semantic abstractions. Deep layers achieve geometric unification with near-identical215

metrics across frequency buckets, indicating frequency-invariant semantic processing.216

Quantitative patterns. Across layers and checkpoints for Pythia-70M and Pythia-2.8B, polytope217

density and participation ratio reveal three transitions: (1) Early divergence in shallow layers where218

low-frequency items show higher fragmentation—elevated density (frequent support changes de-219

spite small Euclidean distances) and higher participation (distributed processing), consistent with220

superposition-based encoding of rare features. (2) Progressive convergence in middle regimes as221

bucket gaps narrow: participation ratios approach similar dimensionalities and density steadily falls,222

marking a shift toward shared semantic abstractions. (3) Global consolidation in deeper layers223

where geometric unification is achieved—density reaches minimal values while participation ratios224
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converge and stabilize, evidencing compression into compact, frequency-invariant semantic repre-225

sentations beyond token-level statistics.226

Interpretation. This geometric evolution substantiates the coverage principle and the global tra-227

jectory: rare n-grams initially occupy fragmented regions requiring multiple neurons (low-coverage,228

polysemantic, exploratory), while common patterns consolidate into concentrated representations229

(high-coverage, monosemantic, stabilization). With depth, both frequency groups map into shared230

geometries, completing the transition to frequency-invariant semantic representations.231

5 Conclusion232

This work establishes three principles governing polysemanticity in transformer language models.233

First, polysemanticity is a dynamic developmental process: networks follow a universal trajec-234

tory from early, frequency-sensitive token statistics in shallow layers toward frequency-invariant,235

semantic representations at depth, with consolidation stabilizing across training checkpoints. Sec-236

ond, coverage—not raw n-gram frequency—governs specialization: high-coverage neurons become237

monosemantic generalists, while low-coverage neurons multiplex many rare features, consistent238

with capacity-allocation predictions from superposition theory. Third, geometric analysis reveals the239

transition from fragmented token-level structure to consolidated semantic manifolds: polytope den-240

sity and participation ratio jointly show activation spaces compressing and aligning into frequency-241

invariant geometries in deeper layers.242

These principles connect directly to broader concerns. For interpretability, coverage provides a243

practical diagnostic for prioritizing neurons in analysis, attribution, and editing, with low-coverage,244

highly polysemantic units disproportionately mediating frequency-conditioned differences. For245

safety and robustness, such units represent potential attack surfaces; monitoring and potentially spar-246

sifying low-coverage neurons may reduce distributional fragility and stabilize out-of-distribution247

behavior. For scaling, larger models consolidate earlier and more stably, motivating scaling curves248

that incorporate polysemanticity and geometric metrics (e.g., JSD, polytope density, participation249

ratio) alongside accuracy.250

6 Limitations251

There are several key caveats to our work. First, our cluster evolution analyses focused on toy252

models (Pythia-70M, Pythia-160M, a partial slice of Pythia-410M). Moreover, due to cost concerns,253

not every neuron was probed. Our polytope studies, which were not as expensive, extended to254

Pythia-2.8B. These scales are far from frontier LLMs, and conclusions may shift with considerably255

larger models and datasets.256

Second, our n-gram analyses were deliberately narrow. We restricted ourselves to unigrams, bi-257

grams, and trigrams, and examined only a single semantic family (country–capital pairs) under258

templated prompts with an anchor token. While this clarifies frequency effects, it limits generality.259

Frequencies were computed on a deduplicated and preshuffled snapshot of THE PILE, which may260

not reflect the model’s true training distribution.261

Lastly, we do not provide a normative explanation of emergence: although we observe regularities262

in temporal dynamics, coverage, and geometry, we do not derive these from an optimality principle263

or learning-theoretic objective. Our causal claims are therefore limited.264

7 Future Work265

Thus, future work should extend and operationalize this framework across architectures (e.g.,266

LLaMA-family, state-space models), domains (multilingual settings, beyond country-related n-267

grams), and training paradigms (fine-tuning, instruction-tuning, RLHF) to test how coverage pat-268

terns and frequency-invariance evolve by depth. Mechanistically, mapping JSD-contributing neu-269

rons and polytopes to concrete circuits can link geometric consolidation to algorithmic function.270

Practically, standardizing coverage-based metrics and polytope diagnostics as training-time tools271

could monitor consolidation and abstraction in situ, turning polysemanticity from an interpretability272

obstacle into a measurable, controllable aspect of neural development.273

9



References274

[1] Stella Biderman, Hailey Schoelkopf, Quentin Gregory Anthony, Herbie Bradley, Kyle O’Brien,275

Eric Hallahan, Mohammad Aflah Khan, Shivanshu Purohit, USVSN Sai Prashanth, Edward276

Raff, et al. Pythia: A suite for analyzing large language models across training and scaling. In277

International Conference on Machine Learning, pages 2397–2430. PMLR, 2023.278

[2] Trenton Bricken, Adly Templeton, Joshua Batson, Brian Chen, Adam Jermyn, Tom Con-279

erly, Nicholas L Turner, Cem Anil, Carson Denison, Amanda Askella, Robert Lasenby, Yifan280

Wu, Shauna Kravec, Nicholas Schiefer, Tim Maxwell, Nicholas Joseph, Alex Tamkin, Karina281

Nguyen, Brayden McLean, Josiah E Burke, Tristan Hume, Shan Carter, Tom Henighan, and282

Christopher Olah. Towards monosemanticity: Decomposing language models with dictionary283

learning. Transformer Circuits Thread, 2023.284

[3] Hoagy Cunningham, Aidan Ewart, Logan Riggs, Robert Huben, and Lee Sharkey. Sparse285

autoencoders find highly interpretable features in language models. arXiv Preprint, 2023.286

[4] Maximilian Dreyer, Erblina Purelku, Johanna Vielhaben, Wojciech Samek, and Sebastien La-287

puschkin. Pure: Turning polysemantic neurons into pure features by identifying relevant cir-288

cuits. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recogni-289

tion Workshops (CVPRW), 2024.290

[5] Jacob Dunefsky, Philippe Chlenski, and Neel Nanda. Transcoders enable fine-grained inter-291

pretable circuit analysis for language models. AI Alignment Forum, 2024.292

[6] EleutherAI. tokengrams. https: // github. com/ EleutherAI/ tokengrams , 2024.293

[7] Nelson Elhage, Tristan Hume, Catherine Olsson, Nicholas Schiefer, Tom Henighan, Shauna294

Kravec, Zac Hatfield-Dodds, Robert Lasenby, Dawn Drain, Carol Chen, Roger Grosse, Sam295

McCandlish, Jared Kaplan, Dario Amodei, Martin Wattenberg, and Christopher Olah. Toy296

models of superposition. Transformer Circuits Thread, 2022.297

[8] Alex Foote. Tackling polysemanticity with neuron embeddings. arXiv Preprint, 2024.298

[9] Bofan Gong, Shiyang Lai, and Dawn Song. Probing the vulnerability of large language models299

to polysemantic interventions. arXiv Preprint, 2025.300

[10] Connor Kissane, Robert Krzyzanowski, Arthur Conmy, and Neel Nanda. Sparse autoencoders301

work on attention layer outputs. AI Alignment Forum, 2024.302

[11] Jiacheng Liu, Sewon Min, Luke Zettlemoyer, Yejin Choi, and Hannaneh Hajishirzi. Infini-303

gram: Scaling unbounded n-gram language models to a trillion tokens. arXiv preprint304

arXiv:2401.17377, 2024.305

[12] Yizhou Liu, Ziming Liu, and Jeff Gore. Superposition yields robust neural scaling. arXiv306

Preprint, 2025.307

[13] Stephen Merity, Caiming Xiong, James Bradbury, and Richard Socher. Pointer sentinel mixture308

models. In 5th International Conference on Learning Representations, 2017.309

[14] Neel Nanda. Neuroscope. neuroscope. io/ index. html. , 2022.310

[15] Neel Nanda and Joseph Bloom. Transformerlens: A library for mechanistic interpretability of311

generative language models. https: // github. com/ TransformerLensOrg/ , 2022.312

[16] V. Nandakumar, Peng Mi, and Tongliang Liu. State space models can express n-gram lan-313

guages. Trans. Mach. Learn. Res., 2025, 2023.314

[17] Chris Olah, Nick Cammarata, Ludwig Schubert, Gabriel Goh, Michael Petrov, and Shan315

Carter. Zoom in: An introduction to circuits. Distill, 2020.316

[18] Chris Olah, Alexander Mordvintsev, and Ludwig Schubert. Feature visualization. Distill,317

2017.318

10

https://github.com/EleutherAI/tokengrams
neuroscope.io/index.html.
https://github.com/TransformerLensOrg/


[19] Laura O’Mahony, Vincent Andrearczyk, Henning Müller, and Mara Graziani. Disentangling319

neuron representations with concept vectors. In 2023 IEEE/CVF Conference on Computer320

Vision and Pattern Recognition Workshops (CVPRW), 2023.321

[20] Basri Ronen, David Jacobs, Yoni Kasten, and Shira Kritchman. The convergence rate of neu-322

ral networks for learned functions of different frequencies. Advances in Neural Information323

Processing Systems, 32, 2019.324

[21] Yang Xu, Yi Wang, and Hao Wang. Tracking the feature dynamics in llm training: A mecha-325

nistic study. arXiv Preprint, 2024.326

A Appendix327

A.1 Temporal Dynamics of Polysemanticity: A Case Study328

In this section of the Appendix, we present a case study of feature cluster evolution for a specialized329

neuron. This consists of its feature clusters at the first and last checkpoints, and a figure that plots330

its cluster counts over every publicly available checkpoint.331

Checkpoint 3000

Cluster 0

poetic writing , nearly fifteen hundred poems have been

preserved

Cluster 1

what is known of Du Fu 's life comes

Cluster 2

young . He also had three half brothers and one

Cluster 3

iro was laid down later that year , the IJ

Cluster 4

by the Beach Boys , cult surfing films , old

Cluster 5

greatest ambition was to serve his country as a successful

Checkpoint 143000

Cluster 0

what is known of Du Fu 's life comes

what I have lived through , if even I know

what is now Baidicheng , Chongq

of both soldiers and civilians produced by Du Fu throughout

worst habitability of any Japanese capital ship . The

Token Activation:

• High : Pattern tokens

• Medium : Related words

• Low : Other tokens

→

Figure 9: Case study: cluster consolidation for a specialized neuron. Multiple heterogeneous
clusters (poetic writing, Du Fu, the Beach Boys...) at Checkpoint 3,000 coalesce into a cluster
focused on (i) Du Fu and (ii) the token-level pattern “what...” by Checkpoint 143,000.
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Figure 10: Case study: cluster consolidation for a specialized neuron. For the neuron visualized
in Figure 9, we track its convergence towards a single cluster in high-resolution: across 143 check-
points. Such resolution was not viable for our global analyses due to cost concerns.
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A.2 Group-level Polysemanticity and Volatility332

In this section of the Appendix, we present an experiment looking into group-level polysemanticity333

and an associated volatility metric.334

A.3 Method335

For any frequency group G at step s, we summarize polysemanticity with a weighted average,336

#clusterss(G) =

∑
(L,h)∈H ws,L,h(G) · #clusterss,L,h∑

(L,h)∈H ws,L,h(G)
, ws,L,h(G) ∝

∑
p∈G

Ps,L(h | p),

(14)
so neurons that respond more strongly to a group’s phrases contribute more to its score.337

To track these group-level trends’ stability, we use the median absolute percent change (MAPC),338

MAPC(G) = mediant

(∣∣∣∣∣#clusterst+1(G)−#clusterst(G)

#clusterst(G) + ε

∣∣∣∣∣
)
, (15)

which quantifies the step-to-step volatility of each group’s representation. Together, these metrics339

capture the distinct features a group evokes and how consistently they stabilize over training.340

A.3.1 Result341

Frequency plays a transient and unstable role in this trajectory. Contrary to common assumptions,342

frequency alone does not drive sustained polysemanticity differences; instead, both high- and low-343

frequency groups converge as consolidation proceeds, challenging frequency-centric explanations.344

Across checkpoints, weighted average polysemanticity decreases for both high- and low-frequency345

groups in Pythia-70M and Pythia-160M (Appendix Fig. 11), often converging late or even crossing346

mid-training. Thus, frequency is not a stable predictor of group-level polysemanticity once training347

progresses; the dominant signal is global consolidation of features.348

Despite similar endpoints, stability differs: high-frequency n-grams exhibit larger median abso-349

lute percent change (MAPC) than low-frequency n-grams in both sizes (Appendix Fig. 12). High-350

frequency content is updated/rewired more often during training, even as both groups compress to351

similar polysemanticity.352
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Figure 11: Group trajectories. Weighted average #clusters for high- vs. low-frequency n-grams
across training. Both groups contract; the gap is small, sometimes reverses, and diminishes late.
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Figure 12: Relative volatility (MAPC). High-frequency groups show higher median absolute %
change than low-frequency groups, indicating more step-to-step rewiring.

A.4 Figures on Sum Affinity and Coverage Analysis353

Because Asum = C̃ · Ā, and because Ā is mostly negative on our phrase set, Asum is effectively a354

monotone transform of C̃; the observed correlation with #clusters thus comes from coverage, not355

from frequency preference per se.356
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Figure 13: Sum-affinity scatters Sum affinity vs. #clusters. The trend largely mirrors coverage
because Asum=m · Ā with Ā<0.
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Figure 14: Partial correlations with polysemanticity. Blue: ρ(sum-affinity,#clusters | coverage).
Orange: ρ(coverage,#clusters | sum-affinity). Coverage retains a positive association after control-
ling for affinity; affinity’s residual association is small or negative.

20000 40000 60000 80000 100000 120000 140000
Training step

0.10

0.08

0.06

0.04

0.02

0.00

Sp
ea

rm
an

 r 
wi

th
 #

clu
st

er
s

Permutation ablations of sum-affinity (Pythia-70M)

baseline r(A,sum)
shuffle  (keep S)
shuffle S (keep )

(a) Permutation ablations (70M)
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Figure 15: Coverage drives Asum’s association. Shuffling the coverage term m largely destroys the
sum-affinity correlation with #clusters; shuffling the mean-affinity component Ā has minimal effect.

A.5 More Figures for JSD Analysis357

(a) Cliff’s δ (70M) (b) Cliff’s δ (160M)

Figure 16: Effect size (very-high vs. low polysemanticity). Polysemantic neurons increasingly
dominate frequency separation, with positive, growing distribution-free effect sizes.
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Figure 17: Stratified JSD contributions by polysemanticity. Higher #clusters contribute more to
inter-bucket JSD; nonparametric tests indicate significant stratification at representative steps.

A.6 More Figures for Polytope Density and Participation Ratios358
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(a) Pythia-70M Polytope Density
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(b) Pythia-70M Participation Ratio

Figure 18: Geometric convergence reveals hierarchical abstraction. Difference heatmaps (high
minus low frequency) across layers and training steps.
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(a) Pythia-70M Polytope Density (layer progression)
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Figure 19: Layer-wise progression over training. Small-multiple plots across 5 layers showing
the temporal evolution of geometric metrics.
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