
AGE: Enhancing the Convergence on GANs using
Alternating extra-gradient with Gradient

Extrapolation

Huan He
Department of Computer Science

Emory University
Atlanta, GA 30033

huan.he@emory.edu

Shifan Zhao
Department of Computer Science

Emory University
Atlanta, GA 30033

shifan.zhao@emory.edu

Yuanzhe Xi
Department of Computer Science

Emory University
Atlanta, GA 30033

yuanzhe.xi@emory.edu

Joyce C Ho
Department of Computer Science

Emory University
Atlanta, GA 30033

joyce.c.ho@emory.edu

Abstract

Generative adversarial networks (GANs) are notably difficult to train since the
parameters can get stuck in a local optimum. As a result, methods often suffer
not only from degeneration of the convergence speed but also from limitations in
the representational power of the trained network. Existing optimization methods
to stabilize convergence require multiple gradient computations per iteration. We
propose AGE, an alternating extra-gradient method with nonlinear gradient ex-
trapolation, that overcomes these computational inefficiencies and exhibits better
convergence properties. It estimates the lookahead step using a nonlinear mixing
of past gradient sequences. Empirical results on CIFAR10, CelebA and several
synthetic datasets demonstrate that the introduced approach significantly improves
convergence and yields better generative models.

1 Introduction

Generative adversarial networks (GANs) have become the standard approach to generate plausible
new samples [14]. Typically, GANs are trained by a generator and a discriminator in an adversarial
way. Generators are trained to mimic real samples, whereas discriminators are trained to classify
between real samples and fake samples drawn from the generators. While very powerful, GANs
are notoriously hard to train and often fail to converge. One reason for non-convergence is cycling
around the optimum or even slow outward spiraling [24, 30]. There have been attempts to improve
stability and tackle this training issue by proposing new formulations of the GAN objective [3, 29,
22]. [33] uses historical averaging of both generator and discriminator parameters as a regularization
term in the objective function to improve stability. Wasserstein GANs (WGANs) [3] remedy the
mode collapse that appears in the standard GANs by using the Wasserstein distance.

Orthogonal to the above strategies to make the GAN-game well-defined and stable, a few studies
have focused on developing specific optimization methods for GAN training. In particular, the
extra-gradient method has drawn significant attention [11, 25, 10, 13]. These algorithms treat GANs
as a variational inequality problem and aim to find the Nash equilibrium of a minimax problem from
a game theory perspective. One key idea behind the extra-gradient method is to update the parameter
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using a lookahead gradient at each iteration. Although these attempts have provided better results,
there is still scope to improve the convergence of GANs. Of particular interest is to accelerate the
convergence of extra-gradient as it provides better guarantees. In addition, the extra-gradient method
requires multiple gradient computations which are computationally expensive.

We propose AGE (Alternating extra-gradient with Gradient Extrapolation), a novel alternating update
scheme that can accelerate the convergence of several minimax optimization problems. Tangential
to the previous approaches, it uses an adaptive gradient extrapolation procedure to replace the
extrapolation step in extra-gradient by an adaptive nonlinear mixing of previous gradient sequences.
This avoids multiple gradient computations while also mitigating the noise arising from gradient
computations. In addition, AGE uses an alternating update scheme to obtain better generative models.
We summarize our main contributions:

• A method to extrapolate the current gradient based on an efficient and adaptive nonlinear
mixing of previous gradient sequences.

• Convergence and stability analysis of AGE. An asymptotic quadratic convergence rate
is provided as an illustrative example and asymptotically optimal convergence rates for
optimizing stochastic problems are proved in Sec 4.

• Empirical evaluation of the advantages of AGE on both toy settings and two real datasets. For
all tasks, using AGE leads to improved convergence and higher-quality generative models.

Outline: We present the background on GANs and extra-gradient, and show a nonlinear extrapolation
technique in Sec 2. Then we propose our method AGE in Sec 3 and give its convergence properties
in Sec 4. We review the related work in Sec A.4 and provide experimental results in Sec 5.

2 Background

In this section, we first review the extra-gradient method. We then briefly describe the standard
nonlinear extrapolation algorithm, which will be used to extrapolate gradient sequences.

2.1 Extra-gradient method

GANs consist of two models: a generator Gθ, that aims to generate samples from a noise distribution
qθ that best matches the true distribution p of the data, and a discriminator Dφ whose purpose is to
classify genuine samples against generated ones, thereby training the generator. It can be seen as a
saddle point problem and solved by finding the Nash equilibrium (stationary point) [25]. However,
saddle point problems are known to be hard to optimize. Both simultaneous and alternating gradient
methods fail to converge but instead exhibit a cycling behavior. Solving GAN can be considered as a
variational inequality problem [2, 13]. First introduced in [20], extra-gradient method (EG) performs
a “prediction” step to obtain an extrapolated point (θt+ 1

2
, φt+ 1

2
), and then applies the gradients at the

extrapolated point to the current iterate (θt, φt) as follows:

Extrapolation:
{
θt+ 1

2
= θt − η∇θLθ (θt, φt)

φt+ 1
2

= φt + η∇φLφ (θt, φt)
(1)

Update:

 θt+1 = θt − η∇θLθ
(
θt+ 1

2
, φt+ 1

2

)
φt+1 = φt + η∇φLφ

(
θt+ 1

2
, φt+ 1

2

) (2)

where η denotes the step size.

In the concept of a two-player game, extrapolation corresponds to an opponent shaping step: each
player anticipates its opponent’s next moves to update its strategy. For bilinear games, a slightly more
generalized version was proposed in [23] with linear convergence proved. It guarantees convergence
for any convex-concave function L and any closed convex sets [16]. It has been shown that EG
converges to saddle points sublinearly for smooth convex-concave games [27].
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2.2 Nonlinear Extrapolation Acceleration

Extrapolation techniques are designed to accelerating an arbitrary sequence of objects in a vector
space, such as vectors, matrices or tensors. These methods perform a linear combination of previous
k iterates of a given sequence to obtain one which can converge faster to the solution. One such tech-
nique for matrices is the Vector Epsilon Algorithm (VEA) [38]. The algorithm uses the generalized
matrix inverse to extend the scalar ε-algorithm to sequences of matrices. Assuming that {xt} is a
sequence of matrices, VEA produces an extrapolated matrix from every k consecutive iterates xt and
can be implemented by an elegant recursive formula without performing the unstable determiannt
computations.

Let εn2k denote the output of VEA algorithm at iteration n. It can be shown that εn2k essentially
represents the k-term Shanks transforms of the original sequence {xt}:ε(n)

2k = ek (xn) , where
ek (xn) =

∑k
t=0 γtxn+t with γt being the solution to the linear system

k∑
t=0

γt∆xm+t = 0, m = n, . . . , n+ k − 1,

k∑
t=0

γt = 1

and ∆xt = xt+1 − xt. When the sequence satisfies the k-term Shanks kernel exactly, VEA will
yield a constant sequence equal to the limit value. In general, the extrapolated sequence has been
shown to converge faster in various nonlinear problems [7, 32]. Under the assumption that the size of
the epsilon table k is equal to the degree of minimal polynomial with respect to initial point during
the beginning of each iteration, it can be shown that extrapolated sequence can achieve quardratic
convergence rate asymptotically [36].

3 Proposed Method

3.1 Gradient extrapolation via VEA

Inspired by recent advances in parameter averaging and variance reduction schemes [1, 17], we
propose an adaptive gradient extrapolation procedure on top of the VEA framework. Different
from most parameter averaging schemes that use an inner-outer pullback fashion, we apply VEA on
gradient sequences directly during the training procedure. This framework also mitigates the noise
arising from gradient computation over different batches.

Assuming that {xt} is a sequence of gradient matrices, VEA produces an extrapolated gradient from
every k consecutive iterates xt in the following manner:

ε
(t)
−1 = 0, ε

(t)
0 = xt

ε
(t)
k+1 = ε

(t+1)
k−1 +

(ε
(t+1)
k −ε(t)k )∥∥∥ε(t+1)
k −ε(t)k

∥∥∥2

F

for k > 0. (3)

The final output of those sequences defined in ε-algorithm equivalently represents the k-term Shanks
transforms of the original sequence {xt} as shown in (2.2) [6]. As soon as a new gradient xt becomes
available, we can immediately compute ε(t−1)

1 , ε
(t−2)
2 , . . . based on (3). The final output will be used

as the extra-gradient in the next iteration. Since the procedure is highly parallel and is dominated
by dense matrix/vector operations, this extrapolation can be effectively implemented on GPUs. [34]
showed that the complexity of VEA is O(Nk2), in which N is the parameter size and k is the
sequence length (set as 3 in all experiments). The relationship between ε-algorithm and Shanks
transformation and implementation details can be found in the Appendix.

The relation between the gradient extrapolation via VEA and the one-step linear extrapolation
proposed in [13] is shown in the following theorem.
Theorem 3.1. Assume xi’s are the gradient sequence generated by the extra-gradient method. Then
we have e0(xi−1) = xi.

This theorem shows that when k is set to be 0, the gradient extrapolation via VEA is equivalent to
alternating gradient descent with one-step linear extrapolation. For general k, we can show that the
gradient extrapolation via VEA leads to faster convergence than the linear extrapolation extra-gradient
method in Sec 4.
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Algorithm 1 AGE

1: Given θ, φ, maximum iteration number T and learning rate η
2: Set γ = 0.5. Build a empty list for θ and φ, Aθ, Aφ
3: Let V EA(xt) denote ek(xn−k−1).
4: while t < T do
5: Use VEA to extrapolate gradients of θ and φ at t with the length size k:
6: ∇θL∗θ (θt, φt) = V EA(∇θLθ

(
θt− 1

2
, φt− 1

2

)
)

7: ∇φL∗φ (θt, φt) = V EA(∇φLφ
(
θt, φt− 1

2

)
)

8: ηθ = min{η, γη
‖∇θL∗θ(θt,φt)‖}

9: ηφ = min{η, γη
‖∇φL∗φ(θt,φt)‖}

10: θt+ 1
2

= θt − ηθ∇θL∗θ (θt, φt)

11: φt+ 1
2

= φt + ηφ∇φL∗φ (θt, φt)

12: Calculate gradient of θt+ 1
2

using θt+ 1
2

and φt+ 1
2

13: θt+1 = θt − η∇θLθ
(
θt+ 1

2
, φt+ 1

2

)
14: Store ∇θLθ

(
θt+ 1

2
, φt+ 1

2

)
15: Calculate gradient of φt+ 1

2
using θt+1 and φt+ 1

2

16: φt+1 = φt + η∇φLφ
(
θt+1, φt+ 1

2

)
17: Store ∇φLφ

(
θt+1, φt+ 1

2

)
18: end while
19: return θ and φ

3.2 AGE

AGE combines the gradient extrapolation technique proposed in the previous section with the extra-
gradient method for solving the minimax problem. First, we replace the extrapolation step in
extra-gradient with gradient extrapolation. After we obtain the extrapolated gradient using (2.2), we
use it to update model parameters with the same learning rate as the baseline optimizer. Different
from extra-gradient method where the parameters are updated simultaneously as shown in (2), we
propose an alternating extra-gradient updating scheme. That is, after the gradient extrapolation, we
update the parameters in an alternating way since well-performing GAN generators are closer to a
saddle-point instead of a local minimum, which suggests that the local Nash, the typical solution
concept for simultaneous games, may not be the most appropriate one for GANs [5].

The AGE algorithm is summarized in Algorithm 1. Lines 4-6 perform gradient extrapolation where
gradients computed up to iteration t− 1 (Lines 12 and 15) are used by VEA to estimate the gradients
at iteration t. Note that when two consecutive gradient sequences are too close, VEA may encounter
numerical stability issues. To resolves these issues, clipping (Lines 7-8) is used as a safeguard [41].
An extrapolation step is performed on the estimated (clipped) gradients in Lines 9-10. We then
calculate the gradient of θt+ 1

2
in Line 11 and the gradient of φt+ 1

2
using the latest θt in Line 14. We

repeat this procedure until convergence or the max iteration number is reached. Note that the gradient
extrapolation step in Lines 5-6 has a constant computational overhead by fixing the length of the VEA
sequence for each parameter. The latest gradient information is discarded once VEA extrapolation is
completed.

4 Theoretical analysis

In this section, we demonstrate the convergence properties of the proposed method (AGE) for solving
several minmax optimization problems with detailed comparisons to the extra-gradient method [13].
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4.1 Uni-dimensional game

We first consider the following simple model problem:

min
θ∈R

max
φ∈R

θ · φ (4)

This toy example has been extensively studied for illustrating the properties of the methods of interest
[13, 8, 26]. We compare several optimization methods on solving this problem and plot the results
in Fig 1. The plots show that extra-gradient methods are more preferable for solving this kind of
problem. In particular, AGE shows a significant improvement of convergence over all methods.
Proposition 4.1. The squared norm N2

t for one dimensional min-max problem solved by alternating
extra-gradient has the convergence rate N2

t+1 = O(1− η2)N2
t .

The above proposition shows the convergence rate of alternating extra-gradient without VEA. Next,
we analyze the convergence rate of AGE for solving (4). Applying Algorithm 1 to solve (4) leads to
the following updating rule:

Extrapolation:
{
θt+ 1

2
= θt − ηθV EA(φt)

φt+ 1
2

= φt + ηφV EA(θt)
Update:

{
θt+1 = θt − ηφt+ 1

2

φt+1 = φt + ηθt+1
(5)

Note that applying VEA on a separable minimax problem like (4) is equivalent to applying VEA
only on one variable θ. Notice that the Nash equilibrium of this problem is (θ∗, φ∗) = (0, 0). Denote
N2
t

def
= θ2

t + φ2
t as the squared two norm of the gradient sequence. The convergence rate can be

monitored by the magnitude of N2
t and is analyzed in the next theorem.

Theorem 4.1. When t is large enough, N2
t computed based on the updating rule (5) decreases for

any η < 1 as

N2
t+1 = O(1− η2)N2

t (6)

In the next theorem, we show that the extrapolated sequence ek(θt) has the asymptotic quadratic
convergence rate.
Theorem 4.2. When (θt, φt) is near the optimum (θ∗, φ∗), ek(θt) has the convergence rate

|ek(θt)| = O(|ek(θt−1)|2).

Finally we can show that AGE can achieve quadratic convergence in certain cases.
Proposition 4.2. Suppose θt, φt and ek(θt) have the same order. Then quadratic convergence for
gradient norm Nt = CtN

2
t−1 can be achieved for some bounded constant Ct.

[13] analyzes the convergence rates of two extra-gradient methods for solving (4). These results are
are summarized in the next theorem to facilitate the theoretical comparison.
Theorem 4.3 (EG [13]). N2

t computed based on the following two updating rules decreases geomet-
rically for any 0 < η < 1 as

Implicit : N2
t+1 =

(
1− η2 + η4 +O

(
η6
))
N2
t ,

Extrapolation : N2
t+1 =

(
1− η2 + η4

)
N2
t , ∀t ≥ 0.

A comparison among the convergence rates of these methods further confirms that the proposed
method shown in Algorithm 1 can be faster than standard extra-gradient methods for solving (4)
when t is large.

4.2 Bilinear problem and Stochastic optimization

Next, we study the convergence property of the proposed method on a more general unconstrained
bilinear problem:

min
θ∈Rl

max
ϕ∈Rm

θ>Aϕ− b>θ − c>ϕ (7)
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Figure 1: Left: A simple example of a minimax problem as described in Sec 4.1: minθ maxφ θ · φ.
Right: Another nontrival two-dimensional quadratic problem minx maxy = (x − 1

2 )(y − 1
2 ) +

e(−(x− 1
4
)2−(y− 3

4
)2)

3 , which is arguably the simplest nontrivial problem. For each problem, the left
subplot depicts the trajectory of our method and other algorithms in low dimensional toy problems.
The right subplot shows the distance to the Nash equilibrium (0, 0) and (0.4028, 0.5972) for each
method using the best learning rate respectively. We can observe that our method significantly
improves the convergence rate of extra-gradient methods on two illustrative examples.

whereA ∈ Rl×m, b ∈ Rl and c ∈ Rm. Assuming the existence of the optimal solution allows us to
rewrite the problem as

min
θ∈Rl

max
ϕ∈Rm

(θ − θ∗)>A (ϕ−ϕ∗) + c

where c := −θ∗>Aϕ∗ is a constant that does not depend on θ and ϕ. If we define N̂2
t :=

dist (θt,Θ
∗)

2
+dist (ϕt,Φ

∗)
2
, where (Θ∗, Φ∗) is the solution, we can obtain the following estimate

on the bound of N̂2
t for the above bilinear unconstrained problem.

Theorem 4.4. When t is large enough, for any 0 < η < 1
σmax(A) we have

N̂2
t+1 < O

(
1− (σmin(A)η)

2
)
N̂2
t , ∀t ≥ 0

Particularly, for η = 1
2σmax(A) , N̂

2
t+1 < O

(
1− 1

4κ

)t
N̂2

0 , ∀t ≥ 0, where σmax and σmin are the

maximal and minimal singular values of A, respectively, and κ := σmax(A)2

σmin(A)2 is the condition number

ofA>A.

A similar convergence rate has been proved in Corollary 1 of [13] for extra-gradient methods as

N̂2
t+1 ≤

(
1− (σmin(A)η)

2
+ (σmin(A)η)

4
)
N̂2
t , ∀t ≥ 0.

Thus, AGE can converge faster on this unconstrained bilinear problem than extra-gradient methods
when t is large.

5 Experiments

In this section, we investigate whether the theoretical guarantees of AGE carry over from simple to
practical problems. Particularly, our experiments have three main aims: (1) to test if AGE converges
to local minimax and improves the convergence rate compared to extra-gradient methods, (2) to test
the capability of AGE to address the notorious mode collapse problem in GAN training, (3) to test
the effectiveness of generating images in GANs via AGE.

5.1 Motivating examples

First, we verify our claim on improved local convergence rates as suggested by Proposition 4.2. We
run AGE on the simple low-dimensional problems in (4). It is a simple two-dimensional problems,
yet traditional gradient methods (e.g., Sim GD and Alt GD) fail to converge to the Nash equilibrium.
The results are shown in Figure 1, which empirically confirms the improved convergence rate of AGE.

6



Table 1: Averaged best Wasserstein-1 (W-1) distance under different learning rates (LR) over 5 runs
for GAN trained on mixture of Gaussians.

LR SGD ExtraSGD AGE-SGD

1× 10−3 0.75 ± 0.018 0.73 ± 0.020 0.32 ± 0.035
5× 10−3 0.21 ± 0.042 0.18 ± 0.041 0.08 ± 0.015

5.2 Generative adversarial networks

One particularly promising application of minimax optimization algorithms is training GANs. The
goal in this experimental section is to show that our proposed method achieves faster convergence of
GANs and its capability of yielding better generative models across different tasks. It is important to
note that our method will not provide new state-of-the-art results with architectural improvements
or a new GAN formulation. We demonstrate our method on mixtures of Gaussians, the CIFAR10
dataset, and the CelebA dataset. All experiments were run on a NVIDIA V100 GPU.

5.2.1 Mixture of Gaussians

To test our proposed method, we evaluate our method on a simple 2-D example from a mixture of
8 Gaussians with standard deviations equal to 1 × 10−2 and modes uniformly distributed around
the unit circle. For both generator and discriminator, we use fully connected neural networks with 3
hidden layers and 64 hidden units in each layer. Except for the output layer of discriminator that uses
a sigmoid activation, we use tanh-activation for all other layers. We use an 8-dimensional Gaussian
prior and the original GAN objective function as in [14].

The details of the experiment are as follows. We run alternating SGD, Extra-gradient (denoted
ExtraSGD) [13], and AGE with SGD for 40000 steps since simultaneous SGD suffers from mode
collapse [4]. The learning rate is set as 5× 10−3 after an extensive grid search which is close to the
maximal possible stepsize under which the methods rarely diverge. Fig 2a shows the output after
{0, 10K, 20K, 30K, 40K} iterations. It can be seen that our method converges faster to the target
distribution without oscillation (see step 10K) and offers a significant improvement over baselines.

(a) Evolution plot (b) W-1 distance

Figure 2: Left:From top to bottom: SGD, ExtraSGD, AGE-SGD. The images depict from left
to right the resulting densities (in blue) and generated samples (in red) of the algorithm after
0, 10000, 20000, 30000 and 40000 iterations as well as the target density (in red). The former two
methods performed extremely similarly, although when zooming it should be clear that Extra-SGD
converges better. On the other hand, our method converges fastest and leads to the best result. The
generated samples using our method gather around the circle and are less connected with other circles.
Right: Mean and standard deviation of the Wasserstein-1 distance (the lower the better) computed
over 5 runs for each method on GAN trained on mixture of Gaussians.
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Table 2: Best inception scores achieved on CIFAR10 (averaged over 5 runs) for different learning
rates.

Learning rate Method
ηdis ηgen ExtraAdam AGE-Adam

1× 10−4 1× 10−5 7.65 ± .09 7.85 ± .08
3× 10−4 3× 10−5 7.82 ± .08 8.21 ± .06
5× 10−4 5× 10−5 7.90 ± .11 7.98 ± .09

Similar to [40], we measure the Wasserstein-1 distance1, a metric of the difference between two
distributions [12], with 2048 samples from the original 8-dimensional Gaussian mixture and the
estimated mixture distributions at every 1000 iterations. The averaged Wasserstein-1 distance curves
of each method are shown in Fig 2b. We can observe that our method is closer to the true Gaussian
mixture model (i.e., better results) and also converges faster than the baselines.

Since different learning rates can impact the convergence, we also run the 3 methods with a less
aggressive learning rate 1× 10−3. Table 1 reports the averaged best Wasserstein-1 distance achieved
for each method over 5 runs.

The results demonstrate that our method outperforms SGD and ExtraSGD for both learning rates.

5.2.2 CIFAR-10

In our second experiment, we apply our method to the CIFAR10 dataset [21] and use the ResNet
architecture with the WGAN-GP objective as in [15, 13]. We compare with Adam [19] and ExtraAdam
[13] which offers significant improvements over OMD [25, 10].

Since the loss serves as an ambiguous metric for method comparison, we use the Inception score
[33] and FID [18] as the performance measure for generative models. The Inception score (IS) and
FID are computed on 50,000 samples every 5,000 iterations. Experiments were run with 5 random
seeds for 100,000 updates of the generator. For all methods, we did an extensive search over the
hyperparameters of Adam. It turns out the best performing learning rate is ηdis = 2× 10−4, ηgen =
2× 10−4. We set β1 = 0.0, β2 = 0.9 for Adam and λ = 10 for gradient penalty.

Figure 3a and 3b depict the IS and FID obtained by each method. We note that our method converges
to a better FID (from 21.45 to 19.32) and IS (from 7.76 to 8.02). Furthermore, we observe AGE-Adam
exhibits smaller variance during training. We postulate the gradient obtained by gradient extrapolation
is less noisy.

(a) Inception Score for CIFAR10 (b) FID for CIFAR10 (c) FID for CelebA

To understand the impact of learning rates, we ran AGE-Adam and AGE-Adam with three different
learning rates as reported in Table 2. We also conduct experiments using a more common training
technique, TTUR [18]. It uses different learning rates for discriminator and generator. Experiments
were run with 5 random seeds for 500,000 updates of the generator. The results indicate that AGE-
Adam generally yields better IS than ExtraAdam regardless of the learning rate. A comparison of
wall-clock time of the two methods also support the claim that AGE improves the training as it
achieves a lower wall-clock time (16 hours to 22 hours).

1https://pythonot.github.io/

8



(a) CIFAR10 (b) CelebA

Figure 4: Random samples from a generator trained with the WGAN-GP objective using AGE-Adam

5.2.3 CelebA

We also test our method’s effectiveness on the cropped CelebA data (64 × 64) which is a higher-
resolution image dataset compared to CIFAR10. We use the ResNet architecture with the WGAN-GP
objective as described previously.

Since the Inception score serves as an less informative metric for CelebA, we use FID [18] as the
performance measure for generative models. The FID is computed on 50,000 samples every 1,000
iterations. The pre-calculated statistics is computed on the cropped images for the purpose of FID
evaluation. Experiments were run with 5 random seeds for 50,000 updates of the generator. For all
methods, we did an extensive search over the hyperparameters and use the same setting used for
CIFAR-10 as it still provides best performance. Figure 3c depicts the FID obtained by each method
and Figure 4b shows the generated images using AGE-Adam. It can be observed that AGE-Adam still
outperforms the baselines as our method achieves a lower FID (from 8.2 to 7.88).

6 Conclusion

We have proposed a new way to extrapolate gradient using AGE that enhances the convergence rate
of adversarial training. Because AGE is based on mixing past gradient information nonlinearly, it
can avoid noise in the gradient estimate. We have also proven the fast convergence rate of AGE on a
motivating example and bilinear problems. We empirically show better performance using AGE on
both toy datasets and a real-world deep learning setting.
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Algorithm 2 Extrapolation of gradient sequence

1: Set a window size k, 3 in this work. For the first time: Initialize a table T with 2k + 1 columns
2: Input: The latest gradient matrix ∆Ai, current iteration number i, table T
3: Output: Extrapolated gradient E, table T
4: j = 1, z = 0 and an empty array Y
5: Set Y(:, 1) = ∆Ai

6: while j < 2k + 1 and j < i do
7: Compute4ε = Y(:, j)−T(:, j)

8: Calculate z = z +4ε/ ‖4ε‖2F
9: Y(:, j + 1) = z

10: Reset z = T(:, j)
11: j = j + 1
12: end while
13: Set T = Y and E = T(:, 2k + 1)
14: if i ≤ 2k and j mod 2 == 1 then {when i is too small}
15: E = E/ ‖E‖2F
16: end if
17: return E, T

A Appendix

A.1 Detailed algorithm for Vector Epsilon Algorithm (VEA)

In Sec 3, we proposed a gradient extrapolation technique that adopts the vector epsilon algorithm
to extrapolate gradient and achieves faster convergence in the context of extra-gradient method. A
general form of vector epsilon algorithm is shown in Eq 2.2. As it can be quite effective if we
implement it correctly, we present a brief summarization of efficient implementation in Algorithm 1.

A.2 Relationship between Shanks Transformation and VEA

The relationship between VEA and Shanks transformation is illustrated in the following theorem:
Theorem A.1 ([39]). Let {xm} be an arbitrary sequence. Then, for any two integers n and k, the
Shanks transformation produces an approximation to the limit or antilimit of this sequence that is
given by

ek (xn) =

k∑
i=0

γixn+i

with the γi being the solution to the linear system
k∑
i=0

γi∆xm+i = 0, m = n, n+ 1, . . . , n+ k − 1, ∆xm+i = xm+i+1 − xm+i,

k∑
i=0

γi = 1

and ek (xn) has the determinant representation

ek (xn) =

∣∣∣∣∣∣∣∣
xn xn+1 . . . xn+k

∆xn ∆xn+1 . . . ∆xn+k

...
...

...
∆xn+k−1 ∆xn+k . . . ∆xn+2k−1

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
1 1 . . . 1

∆xn ∆xn+1 . . . ∆xn+k

...
...

...
∆xn+k−1 ∆xn+k . . . ∆xn+2k−1

∣∣∣∣∣∣∣∣
A.3 Theoretical analysis

In this section, we demonstrate the convergence properties of the proposed method (AGE) for solving
several minmax optimization problems with detailed comparisons to the extra-gradient method [13].
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A.3.1 Uni-dimensional game

We first consider the following simple model problem:

min
θ∈R

max
φ∈R

θ · φ (8)

Proposition A.1. The squared norm N2
t for one dimensional min-max problem solved by alternating

extra-gradient has the convergence rate N2
t+1 = O(1− η2)N2

t .

The above proposition shows the convergence rate of alternating extra-gradient without VEA. Next,
we analyze the convergence rate of AGE for solving (8). Applying Algorithm 1 to solve (8) leads to
the following updating rule:

Extrapolation:
{
θt+ 1

2
= θt − ηθV EA(φt)

φt+ 1
2

= φt + ηφV EA(θt)
(9)

Update:
{
θt+1 = θt − ηφt+ 1

2

φt+1 = φt + ηθt+1
(10)

Note that applying VEA on a separable minimax problem like (8) is equivalent to applying VEA
only on one variable θ. Notice that the Nash equilibrium of this problem is (θ∗, φ∗) = (0, 0). Denote
N2
t

def
= θ2

t + φ2
t as the squared two norm of the gradient sequence. The convergence rate can be

monitored by the magnitude of N2
t and is analyzed in the next theorem.

Theorem A.2. When t is large enough, N2
t computed based on the updating rule (9)-(10) decreases

for any η < 1 as

N2
t+1 = O(1− η2)N2

t (11)

Proof Sketch. When t is large enough, the iterations satisfy the following equation[
θt+1

φt+1

]
=

[
1− η2 −η
η − η2 1− η2

] [
θt
φt

]
+

[
η2

η3

]
(θt − ek(θt−k−1)). (12)

We can show that, θt ∼ O(1− η2)t and θt − ek(θt−k−1) ∼ o
(
η2(k+1)(t−k−1)

)
∼ o(θt). Thus for t

large enough, the convergence rate is at least N2
t+1 = O(1− η2)N2

t .

In the next theorem, we show that the extrapolated sequence ek(θt) has the asymptotic quadratic
convergence rate.
Theorem A.3. When (θt, φt) is near the optimum (θ∗, φ∗), ek(θt) has the convergence rate

|ek(θt)| = O(|ek(θt−1)|2).

Proof Sketch. This proof is mainly based on Sec 8 of [36]. Firstly, we can show the error in the intial
data will propagate linearly using epsilon algorithm. We decompose the computed value into

e∗k(xn) = ek(xn) + εnk , (13)

where ek(xn) is the value extrapolated using {xi}ni=n−2k−1. εnk is the error in the computation of last
entry in epsilon table defined in (2.2). Thus the errors in the initial data is given by ‖εn0‖ = ‖x∗n−xn‖.
Define ‖ε‖ = max0≤n≤2k ‖εn0‖,where k is the degree of the minimal polynomial of iteration law
with respect to xj − x, it implies the following recursion formula

∑k
i=0 cixi = (

∑k
i=0 ci)x, where x

is the limit of the sequence. Then by induction we can show that

‖εnk‖ = O(‖ε‖) (14)

for all k, n if the epsilon table exits. In fact, this is true for εn2k which is the error for the extrapolated
value we will use from the epsilon table. According to the VEA algorithm, the computed entries of
epsilon table satisfy

e∗k(xn) = e∗k−1(xn+1) +
∆e∗k(xn)

‖∆e∗k(xn)‖
. (15)
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Extracting the exact values, we have
εnk+1 = εn+1

k−1 + [(α− 1)∆ēk(xn) + α∆ε̄nk ] (16)
where

α =
‖∆ek(xn)‖2

‖∆e∗k(xn)‖2
(17)

and

α− 1 =
(‖∆ek(xn)‖2 − ‖∆e∗k(xn)‖2)

‖∆e∗k(xn)‖2
. (18)

According to the induction hypothesis Eq.(14), we know α − 1 = O(‖εnk‖) = O(‖ε‖). Thus we
finally have ‖εnk+1‖ = O(‖ε‖), which means the errors during the process of epsilon algorithm is
controlled linearly by errors in the initial data. Given the sequence generated through the nonlinear
iteration defined by xj+1 = F (xj), where F is a vector-valued function defined on an open and
connected domainD with a Lipschitz continuous derivative. If s is a fixed point inD of F, then Taylor
expansion yields F (x)− s = F

′
(s)(x− s) +O(‖x− s‖2) for all x ∈ D. Then we can consider the

following iteration xj+1 = Axj + b+ rj , where A = F
′
(s) and rj is the error in a linearly generated

sequence xj+1 = Axj . Now we consider the extrapolation in Eq.(9), and for each cycle, we know
‖ek(θt)‖ ∼ Ck‖ek(θt−1)‖2, since (θ∗, φ∗) = (0, 0).

Finally we can show that AGE can achieve quadratic convergence in certain cases.
Proposition A.2. Suppose θt, φt and ek(θt) have the same order. Then quadratic convergence for
gradient norm Nt = CtN

2
t−1 can be achieved for some bounded constant Ct.

Proof Sketch. θt, φt and ek(θt) have the same order, θt+1 ∼ O(ek(θt)). According to the quadratic
convergence of ek(θt), θt+1 inherits the quadratic convergence directly. Since safeguard constants
are used to clip extrapolated gradient and gradients, Ct is bounded. Thus we can derive the desired
result.

[13] analyzes the convergence rates of two extra-gradient methods for solving (8). These results are
are summarized in the next theorem to facilitate the theoretical comparison.
Theorem A.4 (EG [13]). N2

t computed based on the following two updating rules decreases geo-
metrically for any 0 < η < 1 as

Implicit : N2
t+1 =

(
1− η2 + η4 +O

(
η6
))
N2
t ,

Extrapolation : N2
t+1 =

(
1− η2 + η4

)
N2
t , ∀t ≥ 0.

A comparison among the convergence rates of these methods further confirms that the proposed
method shown in Algorithm 1 can be faster than standard extra-gradient methods for solving (4)
when t is large.

A.3.2 Bilinear problem and Stochastic optimization

Next, we study the convergence property of the proposed method on a more general unconstrained
bilinear problem:

min
θ∈Rl

max
ϕ∈Rm

θ>Aϕ− b>θ − c>ϕ (19)

where A ∈ Rl×m, b ∈ Rl and c ∈ Rm. We assume the optimal solution (θ∗,ϕ∗) exists which is
equivalent to {

Aϕ∗ = b

A>θ∗ = c

Assuming the existence of the optimal solution allows us to rewrite the problem as

min
θ∈Rl

max
ϕ∈Rm

(θ − θ∗)>A (ϕ−ϕ∗) + c

where c := −θ∗>Aϕ∗ is a constant that does not depend on θ and ϕ. If we define

N̂2
t := dist (θt,Θ

∗)
2

+ dist (ϕt,Φ
∗)

2

where (Θ∗, Φ∗) is the solution, we can obtain the following estimate on the bound of N̂2
t for the

above bilinear unconstrained problem.
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Theorem A.5. When t is large enough, for any 0 < η < 1
σmax(A) we have

N̂2
t+1 < O

(
1− (σmin(A)η)

2
)
N̂2
t , ∀t ≥ 0

Particularly, for η = 1
2σmax(A) ,

N̂2
t+1 < O

(
1− 1

4κ

)t
N̂2

0 , ∀t ≥ 0

where σmax and σmin are the maximal and minimal singular values of A, respectively, and κ :=
σmax(A)2

σmin(A)2 is the condition number ofA>A.

Proof Sketch. For our updating rule, the iterates can be written in the following form:

θt+1 = θ0 +

t+1∑
s=0

γstA (ϕs − ϕ∗)

ϕt+1 = ϕ0 +
t+1∑
s=0

ρstA
> (θs − θ∗)

where γst, ρst ∈ R. Using the SVD of A A = U>ΣV , we can get the following update:
θ̃t+1 = θ̃0 +

t+1∑
s=0

λstΣϕ̃s

ϕ̃t+1 = ϕ̃0 +

t+1∑
s=0

µstΣ
>θ̃s

Since Σ is a diagonal matrix of singular values of A, this can be

transformed into the following equivalent problem:
[
θ̃t+1

]
i

=
[
θ̃t

]
i
− σiη

[
φ̃t

]
i
− (σiη)2ek

[
θ̃t−k−1

]
i

[ϕ̃t+1]i = [ϕ̃t]i + σiη
[
θ̃t+1

]
i

For the coordinates that are vanishing, they can be set to
[
θ̃∗
]
i

and
[
φ̃∗
]
i
, which yields

N2
it < (1 − (σiη)2)N2

i(t−1), where N2
it = (

[
θ̃t

]
i
−
[
θ̃∗
]
i
)2 + ([ϕ̃t]i − [ϕ̃∗]i)

2. Since N̂2
t :=

dist (θt,Θ
∗)

2
+ dist (ϕt,Φ

∗)
2

=
∑r
i=1N

2
it and N2

it < (1 − (σiη)2)N2
i(t−1), we have N̂2

t+1 <(
1− (σmin(A)η)

2
)
N̂2
t , ∀t ≥ 0.

A similar convergence rate has been proved in Corollary 1 of [13] for extra-gradient methods as

N̂2
t+1 ≤

(
1− (σmin(A)η)

2
+ (σmin(A)η)

4
)
N̂2
t , ∀t ≥ 0.

Thus, AGE can converge faster on this unconstrained bilinear problem than extra-gradient methods
when t is large.

We now consider a stochastic version of Algorithm 1. Define ω def
= (θ,ϕ),Ω

def
= Θ× Φ, an exact

gradient operator F (ω) and a stochastic estimate of it, F (ω, ξ), where ξ is a mini-batch of points
coming from θ and φ. Similar to the variational inequality perspective in [13], we consider the
following merit function:

Err(ω)
def
=


max(θ′,ϕ′)∈Ω L (θ,ϕ′)− L

(
θ′,ϕ

)
if F (θ,ϕ) = [∇θL(θ,ϕ)−∇ϕL(θ,ϕ)]

>

maxω′∈Ω F (ω′)
>

(ω − ω′) ,
otherwise

(20)
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If the following four assumptions hold, we can prove an upper bound for the merit function (20) in
the following theorem. Note that assumptions 1 and 2 are standard for the convergence of SGD and
assumptions 3 and 4 make a zero-sum game well-defined.

Assumption 1. Bounded variance by σ2 : Eξ
[
‖F (ω)− F (ω, ξ)‖2

]
≤ σ2, ∀ω ∈ Ω .

Assumption 2. Bounded expected squared norm by M2 : Eξ
[
‖F (ω, ξ)‖2

]
≤M2,∀ω ∈ Ω.

Assumption 3. F is monotone almost surely : 〈F (x)− F (y), x− y〉 ≥ 0 for all x, y ∈ Rd.

Assumption 4. Ω is a compact convex set with max
ω,ω′∈Ω

‖ω − ω′‖2 ≤ R2.

Theorem A.6. Under Assump. 1, 2, 3 and 4, the SGD version of Algorithm 1 with averaging and a
constant step-size gives

E [Err (ωT )] ≤ R2

2ηT
+ η

M2 + σ2

2

where ωT
def
= 1

T

∑T−1
t=0 ωt, ∀T ≥ 1.

Proof Sketch. We adopt the variational inequality perspective by taking the merit function introduced
in [13] to measure the error of the iterates. Using a result from [35] about VEA and assuming the
gradient function is L-Lipschitz, we can obtain the following inequality:

‖ωt+1 − ω‖22 ≤‖ωt − ω‖
2
2 − 2ηtF (ω′t, ξt)

>
(ω′t − ω)

− ‖ωt − ω′t‖
2
2

+ 3η2
t (‖F (ωt)− ek (F (ωt−k−1, ξt−k−1))‖22

+ ‖F (ω′t)− F (ω′t, ξt)‖
2
2 + L2 ‖ωt − ω′t‖

2
2).

If we define Nt = ‖ωt − ω‖22 , M1 (ωt, ξt) = 3 ‖F (ωt)− ek(F (ωt−k−1, ξt−k−1)‖22, we obtain
the following inequality where L is the Lipschitz constant of F and CΩ is the diameter of Ω:

‖F (ωt)− ek(F (ωt−k−1, ξt−k−1))‖22 ≤ 3σ2 + LCΩ.

By Assump. 1, M1 = M2 = 3σ2 and E [F (ω′t)− F (ω′t, ξt) | ω′t,∆0, . . . ,∆t−1] =
E [E [F (ω′t)− F (ω′t, ξt) | ω′t] | ∆0, . . . ,∆t−1] = 0,

E [ErrR (ω̄T )] ≤ R2

ST
+

12σ2 + 3LCΩ

2ST

T−1∑
t=0

η2
t .

A suitable choice of η then yields

E [Err (ωT )] ≤ R2

2ηT
+ η

M2 + σ2

2

Although the stochastic version of AGE has a similar theoretical convergence bound with the extra-
gradient methods [13], we can show that AGE still outperforms extra-gradient methods empirically
on both real and synthetic datasets in Sec 5.

A.4 Related Work

There is a rich literature on different strategies to improve GAN training, such as using different
objectives [3, 29, 22], using inner-outer update fashion [9], adding an asymmetric preconditioner
on top of gradient descent ascent (GDA) [37], or keeping an average over iterates outside of the
training loop [28, 40].Particularly, [13] proposed to apply extragradient to overcome the cycling
behaviour of GDA. One issue with the existing extra-gradient method is that it requires computing
the gradient at two different positions for every single update which is likely to be inefficient for large
scale problems. Optimistic gradient descent (OGD), originally proposed in [31] and rediscovered
in [10], is more efficient by storing and re-using the extrapolated gradient for the extrapolation step.
Without projection, OGD is equivalent to extrapolation from past. Nevertheless, its performance in a
stochastic setting is worse than extra-gradient. This is because the method only uses the most recent
gradient information for extrapolation and may be subject to noisy updates as well.
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