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Abstract

Competition-level code generation tasks pose
significant challenges for current state-of-the-
art large language models (LLMs). For ex-
ample, on the LiveCodeBench-Hard dataset,
models such as Ol1-Mini and Ol-Preview
achieve pass@1 rates of only 0.366 and
0.143, respectively. While tree search tech-
niques have proven effective in domains
like mathematics and general coding, their
potential in competition-level code genera-
tion remains under-explored. In this work,
we propose a novel token-level tree search
method specifically designed for code gen-
eration. Leveraging Qwen2.5-Coder-32B-
Instruct, our approach achieves a pass rate
of 0.305 on LiveCodeBench-Hard, surpassing
the pass@100 performance of GPT40-0513
(0.245). Furthermore, by integrating Chain-
of-Thought (CoT) prompting, we improve our
method’s performance to 0.351, approaching
O1-Mini’s pass @1 rate. To ensure reproducibil-
ity, we report the average number of genera-
tions required per problem by our tree search
method on the test set. Our findings underscore
the potential of tree search to significantly en-
hance performance on competition-level code
generation tasks. This opens up new possibil-
ities for large-scale synthesis of challenging
code problems supervised fine-tuning (SFT)
data, advancing competition-level code genera-
tion tasks.

1 Introduction

Competition-level code generation tasks present a
unique set of challenges for large language models
(LLMs). These tasks require models to not only
comprehend complex problem statements but also
generate executable code that adheres to logical
and syntactical constraints. While existing state-of-
the-art LLMs have achieved remarkable success in
general-purpose programming benchmarks, their
performance on competitive programming datasets,
such as LiveCodeBench-Hard (Naman Jain et al.,

2024), remains far from satisfactory. For exam-
ple, recent models like O1-Mini and O1-Preview
exhibit pass@]1 rates of only 0.366 and 0.143, re-
spectively. This performance gap highlights the
need for novel methodologies to enhance model
capabilities in solving these challenging tasks.

Recent research has demonstrated the potential
of tree search techniques in reasoning tasks like
mathematics and general programming. However,
their application to competition-level code genera-
tion remains under-explored. Existing approaches
primarily rely on large-scale proprietary LLMs
within tree search frameworks, overlooking the pos-
sibility that smaller, open-source models—when
paired with an effective search strategy—could
achieve superior results. Moreover, while data aug-
mentation through techniques such as distillation
from stronger LLMs has been widely used, gener-
ating solutions directly from the target model itself
offers the potential for higher-quality supervised
fine-tuning (SFT) data, as these solutions are di-
rectly generated by the target model, ensuring con-
sistency with its inherent capabilities and output
characteristics.

In this work, we propose a novel token-level
Monte Carlo Tree Search (MCTS) method tailored
specifically for competition-level code generation.
Leveraging the open-source Qwen2.5-Coder-32B-
Instruct model, as shown in Figure 1, our approach
achieves a pass rate of 0.305 on LiveCodeBench-
Hard, surpassing the pass@100 performance of
GPT40-0513 (0.245). By incorporating Chain-of-
Thought (CoT) prompting, our method further im-
proves to 0.351, approaching O1-Mini’s pass@1
rate. These results demonstrate that our method
not only enhances the ability of models to solve
previously unsolvable problems but also provides
high-quality outputs that can be directly used to
synthesize new SFT data. Compared to distillation-
based approaches that rely on external models, our
framework allows for a more intrinsic and effec-
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Figure 1: Pass rates of MCTS with DeepSeekCoder-
6.7B-Instruct and  Qwen2.5-32B-Instruct  on
LiveCodeBench-Hard: each model surpasses it’s own
pass@ 100 rates at max_rollouts = 8. Notably, MCTS
with Qwen2.5-32B-Instruct and max_rollouts = 16
outperforms pass @ 100 of both Qwen2.5-72B-Instruct
and GPT40-0513. In addition, when combined with
CoT prompting, MCTS with Qwen2.5-32B-Instruct
achieves a pass rate of 0.351 nearing O1-Mini’s pass@1
rate of 0.366.

tive alignment of the data with the target model’s
capabilities.

Experiment results revealed that when combined
with MCTS search, CoT prompting significantly
outperforms its non-CoT counterpart. In the MCTS
framework, CoT prompting helps guide the search
process by providing structured intermediate rea-
soning, and this structured guidance, in turn, en-
ables the model to find higher-quality solutions, as
MCTS can evaluate multiple reasoning paths and
select the most promising ones. This finding sug-
gests that for CoT prompting to achieve optimal
performance in competition-level code generation,
it must be integrated with an effective search strat-
egy, highlighting the need for a combination of
reasoning and search approaches to fully leverage
LLM’s potential.

We summarize our contributions as follows:

* A novel token-level MCTS framework with
Cot Prompting: We propose a token-level
tree search framework that combines MCTS
with CoT prompting, enabling iterative refine-
ment of both reasoning and code generation
for competition-level tasks.

* Enhancing open-source models for compet-
itive programming tasks: We demonstrate
that open-source models like Qwen2.5-Coder-

32B-Instruct can achieve substantial perfor-
mance improvements on competitive program-
ming datasets when paired with our method.
This showcases the potential to elevate the ca-
pabilities of open-source models to rival or
surpass proprietary counterparts in challeng-
ing domains.

* Comprehensive experimental analysis: We
demonstrate the efficacy of the proposed
framework while reporting efficiency metrics
such as average generations per problem to
ensure reproducibility and fairness.

2 Related Work

2.1 LLMs for Code Generation

Large language models (LLMs), with their pow-
erful reasoning capabilities, have been widely
adopted in code-related research and applications.
The primary approach to building code LLMs in-
volves pre-training or fine-tuning them on large
code datasets, such as CodeX (Chen et al., 2021),
AlphaCode (Li et al., 2022), WizardCoder (Luo
et al., 2023), CodeGeeX (Zheng et al., 2023), Star-
coder (Li et al., 2023) and Code LLama (Roziere
et al.,, 2023). Foundation models, like GPT-
4 (Achiam et al.,, 2023) and Claude!, exhibit
remarkable code generation capabilities despite
lacking additional fine-tuning on code-specific
data. Additionally, building upon the robust plan-
ning capabilities (Yao et al., 2022) and reflection
mechanisms (Shinn et al., 2024) of LLMs, LLM-
powered autonomous agents have shown signifi-
cant potential in advancing automated code gen-
eration (Huang et al., 2023b; Hong et al., 2023;
Wang et al., 2024c; Zhang et al., 2024b). For ex-
ample, Agentcoder (Huang et al., 2023b) proposes
a multi-agent framework that includes program-
mer agents, test designer agents, and test execution
agents to collaboratively generate and test code,
MetaGPT (Hong et al., 2023) imitates the main
roles in software companies in the real world, using
different Al agents to play and ultimately produce
a project.

2.2 Prompt Engineering

Designing effective prompts to seamlessly com-
municate with LLMs to fully harness their full
potential can significantly improve LLMs perfor-
mance without additional training. Some represen-
tative technologies of prompt engineering include
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Chain-of-Thought (CoT) (Wei et al., 2022), Self-
Consistency (Wang et al., 2022), Tree-of-Thought
(ToT) (Yao et al., 2024), Reasoning via Planning
(RAP) (Hao et al., 2023) and Self-Refine (Madaan
et al., 2024). This technique can be directly applied
in LLM for iterative and self improving (refining)
code generation. For instance, CodeCoT (Huang
et al., 2023a) integrates chain-of-thought reasoning
with a self-examination process, iteratively refin-
ing code based on execution feedback to ensure
both logical correctness and syntactic validity. Self-
planning (Jiang et al., 2024) enhances code genera-
tion by using LLMs to first plan solution steps from
intent and then generate code step-by-step. Self-
debugging (Chen et al., 2023), an LLM is prompted
to iteratively refine code predictions by utilizing
feedback from explanations and execution results
to identify and fix errors.

2.3 Monte Carlo Tree Search (MCTS) for
Reasoning

Chen et al. (2021) showed that repeated sampling
can produce correct code solutions, suggesting the
answer lies within the LLMs’ output space with no-
table probability, motivating the use of tree search
for efficient exploration (Li et al., 2024; Qi et al.,
2024; Wang et al., 2024a; Hui et al., 2024). PG-
TD (Zhang et al., 2023) introduces a planning-
guided Transformer decoding algorithm that uses
MCTS and test-case evaluation to iteratively refine
code generation, Zhang et al. (2024a) proposed
ReST-MCTS*, a method that integrates process re-
ward guidance with tree search to infer high-quality
reasoning traces and per-step rewards, enabling
more effective self-training of policy. Another com-
mon method is LATS (Zhou et al., 2023), which
leverages LLMs as agents, value functions, and op-
timizers, incorporating MCTS to enhance decision-
making through external feedback and experience.
PlanSearch (Wang et al., 2024b) improves code
generation by searching over diverse natural lan-
guage plans instead of directly over code.

3 Method

3.1 Preliminary

Neural code generation aims to automatically
transform natural language descriptions into exe-
cutable source code through large language models
(LLMs). Here we provide a formal definition of
the code generation task.

Let D represent a natural language description

of a programming task, which may include prob-
lem statements, requirements, and additional pro-
gramming context such as function signatures or
assertions. The code generation task can be formal-
ized as learning a model 7y parameterized by 6 that
generates code solution C' given description D:

C ~my(-| D). )

To evaluate the correctness of generated code,
we define a test suite 7' = {(z;, y;) }-; where each
test case consists of an input z; and its expected
output y;. The test suite is typically divided into
two subsets

T = Tpub U Tpriw (2)

where T}, represents public test cases visible dur-
ing development, and 7}y represents private test
cases held out for evaluation.

Given a code solution C, we define an execution
function Exec(C, x) that returns the output of run-
ning C' on input x. The correctness of C can then
be measured by comparing its outputs against the
expected outputs across all test cases:

1
Correct(C'| D,T) = —:

7T Z 1(Exec(C,z) =y),

(z,y)eT
(3)

where 1(-) is the indicator function.

The objective of code generation is to find model
parameters 0* that maximize the expected correct-
ness across a distribution of programming tasks:

§* = argmaxEp r[Correct(mg(D))]. (4)
0

3.2 MCTS with CoT Prompting

The proposed method is motivated by the desire to
integrate Chain-of-Thought (CoT) reasoning with
Monte Carlo Tree Search (MCTS). Specifically,
the approach enables LLMs to first generate inter-
mediate reasoning steps, followed by code gener-
ation. Through iterative refinement and optimiza-
tion of both the reasoning and code components via
MCTS, the method aims to enhance the model’s
performance on challenging competition-level code
generation tasks. Next, we will provide a detailed
description of our methods in each key component
of MCTS.

CoT Prompting. To improve the performance
of LLMs on challenging competition-level code
generation tasks, we introduce a structured CoT



prompting methodology, which guides the model
through a two-step reasoning process planning and
coding to ensure logical and syntactically correct
outputs. MCTS iteratively refines and optimizes
both the planning and coding stages, improving per-
formance in complex code generation tasks. The
prompt explicitly instructs the model to:

* Solution Planning: Analyze the problem
specification and create a detailed step-by-
step plan. This step includes outlining the
problem-solving logic, choosing appropriate
data structures, and determining the functions
required for implementation.

* Code Generation: Based on the detailed plan,
write Python code adhering to coding stan-
dards and ensuring proper syntax.

Here is an example in AppendixC.

Selection. The selection phase in MCTS strives to
balance exploration and exploitation by selecting
actions that are most likely to yield beneficial re-
sults. At the selection stage, the algorithm starts
from the root node sy and traverses the tree until it
reaches a leaf node. Our method use a token-level
MCTS so that each state s represents a candidate
token. At each node s, the action a € A(s), where
A(s) denotes the set of available actions in state s
taken by the LLM 7, is chosen by maximizing the
P-UCB score:

P-UCB(s,a) = Q(s,a) + B(s) - p(a|s) - Hme
&)
B(s) =log (%) +c. (6)

Here:

* (Q(s,a) represents the average reward (de-
fined in Simulation) of action a at state s.

* N(s) is the total number of visits to state s.

* N(s,a) is the number of times action a has
been taken from state s.

* p(a|s) is the prior probability of action a at
s, proposed by the LLM 7.

* cpase and c are hyperparameters that balance
exploration and exploitation.

This formula combines three essential components:
exploitation through Q(s, a), exploration driven

by v/In N(s)/(1 + N(s,a)), and prior guidance
from P(s, a). The algorithm iteratively applies this
criterion until it encounters a leaf node sy, defined
as a state either not fully expanded or terminal.
Expansion. When the selection process reaches
a node s in the search tree, the expansion phase
creates new child nodes by considering potential
next tokens. Unlike standard MCTS which might
randomly sample actions, we leverage the LLM’s
predictions to guide expansion:

Given the current state s, we obtain the k most
probable next tokens using the TOP-K function:

Ti(s) = TOP_K(s, k), (M

where k is a hyperparameter that limits the maxi-
mum number of children per node, and 7(s) re-
turns the set of k£ most likely next tokens according
to the LLM’s probability distribution.

For the new child node s’, the visit count
N(s',a’) and the average reward Q(s’, a’) for all
a’ € A(s') are initialized to zero:

N(s',a') =0, Q(s',d")=0, Vd € A(s).

(®)
The use of priors p(s’ | a’) derived from the policy
7 enables the tree to bias future expansions toward
promising regions of the search space.
Simulation. Once a new node s’ is added to the
tree, the algorithm estimates its value through a
simulation, also called a rollout. Starting from s’,
actions are sampled according to the policy 7 until
a terminal state st is reached or a predefined depth
limit dp,x is exceeded. In this paper, we use two
methods to estimate the quality for the state s’, we
call it as hard reward (HR) and partial reward (PR).
Normally, we use all public test cases to validate
the generated code. HR supposes that if everything
passes, the code is considered correct, and if there
exist errors, it is incorrect. Assume that 7" is the set
of all test cases, the HR can be formalized as:

JrEa
S O7
©)

However, when addressing challenging coding
problems, the distinction between partial success
and complete failure is critical. Accordingly, our
method leverages the pass rate on the test set as the
reward signal, denoted as PR:

otherwise.

1

T

RPR =

> 1(Bxec(C,z) = y).

(z,y)ET

10)

if 1(Exec(C,z) =y) = 1,V(z,y) € T}



Backpropagation. The backpropagation stage up-
dates the statistics of all nodes along the path from
the newly expanded node s’ back to the root sq. For
each node-action pair (s, a) on the path, the visit
count N (s, a) and the average reward (s, a) are
updated as follows:

N(s,a) + N(s,a)+ 1, (11)

(N(s,a) —1)-Q(s,a) + R(s')
Q(s,a) N (s, a) .

12)

These updates propagate the simulation result R(s”)
upward, refining the action-value estimates Q(s, a)
and balancing the contributions of exploration and
exploitation.

4 Experiment

We use LiveCodeBench (Naman Jain et al., 2024)
as the test dataset, which comprises 659 problems
collected between May 1, 2023, and September 1,
2024. The dataset categorizes problems into three
difficulty levels: easy, medium, and hard, with 245
medium-level problems and 151 hard-level prob-
lems. We expand 5 child nodes in the expansion
phase. In the simulation phase, we set the tem-
perature = 0.7, top_p = 0.8 and repetition_penalty
= 1.05 to balance randomness, diversity, and co-
herence. Given that state-of-the-art models, such
as Claude-3.5-Sonnet-20240620, have achieved a
pass@1 rate of 0.869 on the easy subset, evaluat-
ing the impact of alternative inference techniques
on these problems would likely be uninformative.
Therefore, our study focuses on the medium and
hard subsets, where there is greater scope for im-
provement and more meaningful differences in in-
ference performance.

To validate the model-agnostic nature of the pro-
posed MCTS approach, we employ four generative
models, DeepSeekCoder-6.7B-Instruct, Qwen2.5-
7B-Instruct, Qwen2.5-14B-Instruct, and Qwen?2.5-
32B-Instruct, in our experiment.

4.1 MCTS on LiveCodeBench

In this section, we evaluate the performance of
MCTS across several different generating models
on LiveCodeBench-Medium and LiveCodeBench-
Hard. For better readability, we present plots in
what follows and defer detailed tables to Appendix
A.

Medium Level. We begin by comparing the perfor-
mance of MCTS against the pass @k rates for the

same generating models. Figure 2(a) illustrates the
performance of MCTS with DeepSeekCoder-6.7B-
Instruct and Qwen2.5-32B-Instruct as generating
models, compared against their pass@k rates on
LiveCodeBench-Medium. In addition, Figure 2(b)
illustrates the performance variation of MCTS and
Best-of-N (or pass@k) as the number of number
of generations increases. Across all tested con-
figurations, MCTS consistently outperforms the
Best-of-N baselines, which demonstrates its effec-
tiveness in leveraging the same underlying model
to achieve superior results.

In the second part of our analysis, Fig-

ure 2(c) compares the performance of MCTS with
smaller models (DeepSeekCoder-6.7B-Instruct and
Qwen2.5-32B-Instruct) against the pass@ 100 rates
of much larger and more capable models. Key
results include: when max_rollouts = 32, the
pass@100 rate of MCTS with DeepSeekCoder-
6.7B-Instruct reaches 0.488, comparable to the
pass @100 rate of Gemini-1.5-pro at 0.502. With
max_rollouts = 64, MCTS with Qwen2.5-32B-
Instruct achieves a pass rate of 0.770, surpassing
the pass @100 rates of much larger models such as
Qwen2.5-72B-Instruct-api and GPT40-0513. Fur-
ther insights are provided in Figure 2(d), where
the x-axis represents the mean number of genera-
tions. The results demonstrate that the proposed
MCTS approach achieves higher pass rates with
fewer sampling attempts, emphasizing its efficiency
and effectiveness.
Hard Level. The LiveCodeBench-Hard subset
poses significantly greater challenges compared
to LiveCodeBench-Medium. Notably, Qwen2.5-
72B-Instruct-api achieves the highest pass@1 rate
of only 0.087, with a pass@100 rate of 0.285.
Both DeepSeekCoder-6.7B-Instruct and Qwen2.5-
7B-Instruct exhibit pass@ 100 rates below 10, un-
derscoring the difficulty of this subset. For de-
tailed pass@k rates of state-of-the-art models on
LiveCodeBench-Hard, we refer readers to Table 3
in Appendix A.

Figure 6(a) illustrates the pass@100 rates of
various models on LiveCodeBench-Hard, along
with the performance variation of MCTS us-
ing DeepSeekCoder-6.7B-Instruct and Qwen?2.5-
32B-Instruct as generating models as the num-
ber of max_rollouts increases. Notably, as shown
in Figure 6(b), MCTS with DeepSeekCoder-
6.7B-Instruct begins to surpass the Best-of-
N performance of Qwen2.5-32B-Instruct when
max_rollouts > 16. These advantages of MCTS
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Figure 2: Results on LiveCodeBench-Medium: (a) Comparison of the pass rates of MCTS with different
max_rollouts against the pass@1, pass@10, and pass@100 rates of Qwen2.5-72B-Instruct-api. (b) Compari-
son of pass rates of MCTS against pass@k with k selected as the mean number of generations in the corresponding
MCTS run. (c)-(d) Comparison of the pass rates of MCTS under different max_rollouts against the pass @ 100 rates

of sota models.

become even more compelling as the difficulty of
the test dataset increases.

Furthermore, Figure 6(c) presents a compari-
son of MCTS with smaller models against the
pass@100 rates of state-of-the-art models. Key
findings include:

* When max_rollouts = 32, MCTS with
DeepSeekCoder-6.7B-Instruct achieves a pass
rate of 0.205, which is close to Qwen2.5-72B-
Instruct-api’s pass rate of 0.212, representing
a significant relative improvement of 156.25%
compared to the standalone pass@ 100 rate of
DeepSeekCoder-6.7B-Instruct at 0.080.

 Similarly, when max_rollouts = 32, MCTS
with Qwen2.5-32B-Instruct achieves a pass
rate of 0.278, approaching the performance of
Qwen?2.5-72B-Instruct-api at 0.285.

For a comparison under the same number of
generations, Figure 6(d) provides insights into the
efficiency of MCTS, with the x-axis represent-
ing the mean number of generations. These re-
sults highlight that even on this challenging sub-
set, MCTS achieves significantly improved pass
rates with fewer sampling attempts. In summary,
MCTS demonstrates robust performance on the
LiveCodeBench-Hard subset, achieving competi-
tive results against larger models and maintaining
efficiency despite the increased difficulty.

The observed improvement of MCTS on
LiveCodeBench-Hard is notably greater than
that on LiveCodeBench-Medium, indicating that
MCTS retains its effectiveness even under in-
creased task difficulty without experiencing per-
formance degradation.

Model-Agnostic. To evaluate the model-agnostic
nature of the MCTS method, we compare its per-
formance on LiveCodeBench-Hard subset using
four different generating models: DeepSeekCoder-
6.7B-Instruct, Qwen2.5-7B-Instruct, Qwen2.5-
14B-Instruct, and Qwen?2.5-32B-Instruct. For ex-
perimental efficiency, we fix max_rollouts = 16.
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Figure 3: When different models are used as the gen-
erating model for MCTS, the pass rates of MCTS
tend to increase correspondingly with the enhance-
ment of model capabilities. The pass@100 rates of
DeepSeekCoder-6.7B-Instruct, Qwen2.5-7B-Instruct,
Qwen2.5-14B-Instruct, and Qwen2.5-32B-Instruct are
0.080, 0.099, 0.189, and 0.197, respectively. It can
be observed that after employing MCTS, even with
max_rollouts set to only 16, the performance of each
model on LiveCodeBench-Hard significantly exceeds
its own pass@ 100 rate.

Figure 3 illustrates that the performance of
MCTS improves consistently with the capabili-
ties of the generating models. Notably, when
using Qwen?2.5-14B-Instruct, MCTS achieves a
pass@100 rate of 0.219, surpassing the pass rate of
the larger Qwen2.5-72B-api at 0.212.

Additionally, as shown in Figure 4, the average
number of generations for MCTS remains below 81
across all generating models when max_rollouts =
16. These results indicate that the MCTS method is
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Figure 4: To ensure fairness in comparison with the
pass@ 100 rates, we also recorded the average number
of generations produced by MCTS when max_rollouts
is set to 16 across different models. It can be observed
that for DeepSeekCoder-6.7B-Instruct, Qwen2.5-7B-
Instruct, and Qwen?2.5-14B-Instruct, the average num-
ber of generations is approximately 80, which is signifi-
cantly lower than 100. For Qwen2.5-32B-Instruct, the
average number of generations is even lower.

both model-agnostic and efficient, achieving com-
petitive performance across a variety of generating
models while maintaining low sampling overhead.
It is also important to note that we plan to opti-
mize pruning techniques for MCTS in the future,
which may further reduce the average number of
generations.

4.2 Direct Prompting vs CoT Prompting

Chain-of-Thought (CoT) prompting has proven to
be an effective technique for enhancing model per-
formance in reasoning tasks. Throughout our exper-
iments, we also explore whether integrating CoT
prompting with MCTS can further improve overall
performance.

On LiveCodeBench-Medium, Figure 2 demon-
strates that MCTS with CoT prompting consis-
tently outperforms the baseline. For example,
with max_rollouts = 64 and Qwen2.5-Coder-32B-
Instruct, MCTS with CoT prompting achieves a
pass rate of 0.810, compared to 0.770 with di-
rect prompting. A similar trend is observed on
LiveCodeBench-Hard, as shown in Figure 6: with
max_rollouts = 64 and Qwen2.5-32B-Instruct,
MCTS with CoT prompting achieves a pass rate of
0.351, outperforming the pass rate of 0.305 from
direct prompting.

Figure 4 further highlights the efficiency of CoT
prompting, requiring fewer generations on both
datasets when combined with MCTS. Addition-
ally, Figure 3 demonstrates consistent performance
improvements across different models when CoT
prompting is applied. As model capabilities in-
crease, the combined approach of MCTS with CoT
prompting becomes even more effective. To sum
up, CoT prompting outperforms pure MCTS across

all four tested models, which highlights its robust-
ness and versatility.

4.3 Deep Insight into MCTS’s Selection Phase

In the context of MCTS, the final generated re-
sponse can be decomposed into three key compo-
nents: (1) the path identified during the selection
phase via P-UCB search, (2) the actions sampled
by the model during the expansion phase, and (3)
the content generated through autoregressive de-
coding in the simulation phase. Since the sampling
methods used in the simulation phase are indistin-
guishable from techniques like Best-of-N, we are
particularly interested in the specific effects of the
paths identified during the selection and expansion
phases. To explore this, we present an interpretive
experiment in the sequel.

Using the LiveCodeBench-Hard dataset with
Qwen2.5-14B-Instruct, we fix max_rollouts = 16
and record the best paths discovered by MCTS.
We the modify the prompt for each problem to
include the format prompt + best path and em-
ploy standard autoregressive decoding methods to
sample and compute pass @k rates. Figure 5 com-
pares the pass@k rates of Qwen2.5-14B-Instruct
on LiveCodeBench-Hard when using the original
prompt versus the modified prompt.

Figure 5: A comparison between the original prompts
from LiveCodeBench-Hard and the modified prompts
using the optimal paths identified through MCTS. The
results show substantial contribution of the paths iden-
tified during the selection and expansion phases to the
overall performance of MCTS.

The results demonstrate significant improve-
ments with the modified prompt across all evalu-
ated k-values (K =1, 5,10, 50, and 100). For in-
stance, at ' = 1, the pass rate increases by 25.5%
compared to the baseline, while at K=100, the rela-
tive improvement is 19%. These findings highlight
the substantial contribution of the paths identified
during the selection and expansion phases to the
overall performance of MCTS.
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Figure 6: Results on LiveCodeBench-Hard: (a) Comparison of the pass rates of MCTS with different max_rollouts
against the pass@1, pass@10, and pass@ 100 rates of Qwen2.5-72B-Instruct-api. (b) Comparison of pass rates of
MCTS against pass@k with k selected as the mean number of generations in the corresponding MCTS run. (c)-(d)
Comparison of the pass rates of MCTS under different max_rollouts against the pass@ 100 rates of sota models.

4.4 CodeContest-Test

CodeContest-Test is a widely used benchmark set
for code competition tasks, complementing Live-
CodeBench. To evaluate the generalizability and
effectiveness of the methods proposed in this pa-
per across multiple code competition benchmark
sets, we also compare our methods against several
baseline models on CodeContest-Test.

To control experimental costs, we utilize the
Qwen2.5-Coder-32B-Instruct model and fix the
MCTS max_rollouts at 32. As shown in Figure 7,
when using direct prompting, MCTS achieves a
pass rate of 0.582, surpassing the performance
of Claude-3.5-Sonnet. Notably, the average num-
ber of generations for MCTS in this setup is only
79.055.

CodeContest_Test: MCTS with Qwen2.5-Coder-32B-Ins

‘o.em

‘0532

‘o 576

Qwen2.5-Coder-32B-Instruct: pass@100 ‘u 536

DeepSeek-V2-api: pass@100 0455
Qwen2.5-72B-Instruct-api: pass@100 0.406

0.30 0.35 0.40 0.45 0.50 0.55 0.60 0.65 0.70
pass_rate

Figure 7: Evaluation results on CodeContest_Test.
MCTS with max_rollouts = 16 and Qwen2.5B-Coder-
32B-Instruct, which involves less than 80 number of gen-
erations, outperforms pass @ 100 of Claude-3.5-Sonnet.

When employing Chain-of-Thought (CoT)
prompting, the performance of MCTS improves
further, achieving a pass@100 rate of 0.618, while
reducing the average number of generations to
75.962. These results demonstrate the effective-
ness of combining MCTS with CoT prompting,
achieving better performance with fewer sampling
attempts.

5 Conclusions

In this paper, we proposed a novel token-level
Monte Carlo Tree Search (MCTS) framework
combined with Chain-of-Thought (CoT) prompt-
ing, tailored for competition-level code generation
tasks. Using the open-source Qwen2.5-Coder-32B-
Instruct model, our approach demonstrates its ef-
fectiveness by achieving a pass rate of 0.351 on
LiveCodeBench-Hard, nearing the pass@1 per-
formance of O1-Mini. The results highlight the
capability of our framework to significantly im-
prove the problem-solving efficiency and accuracy
of open-source models, thereby reducing the re-
liance on large-scale proprietary black-box LLMs.
Moreover, our method’s ability to generate con-
sistent and high-quality solutions making it pos-
sible to synthesize supervised fine-tuning (SFT)
data for large-scale competition level code prob-
lems from open-source LLMs. By synthesizing
robust datasets directly from the target model, our
approach paves the way for more effective and in-
trinsically aligned post-training strategies.

In the future, our framework can be further en-
hanced by integrating with techniques like rejection
sampling and self-consistent reasoning. These tech-
niques could complement our MCTS framework,
further enhancing the LLMs’ reasoning capabilities
and improving their performance on competition-
level code generation tasks. By enabling more
robust and diverse exploration of potential solu-
tions, and minimizing the generation of incorrect
or incomplete code, these enhancements have the
potential to advance the state of the art in solving
complex coding problems.



6 limitation

While the proposed token-level Monte Carlo Tree
Search (MCTYS) framework combined with Chain-
of-Thought (CoT) prompting demonstrates signifi-
cant improvements in competition-level code gener-
ation tasks, several limitations should be acknowl-
edged. First, the method’s computational overhead
is non-trivial, as MCTS requires multiple rollouts
and simulations to explore the search space effec-
tively. This can lead to increased inference time and
resource consumption, particularly when applied to
larger models or more complex problems. Second,
the framework’s performance is highly dependent
on the quality of the underlying generative model.
Although the method enhances the capabilities of
open-source models, it may still fall short when
compared to state-of-the-art proprietary models in
terms of absolute performance. Third, the current
implementation of MCTS does not incorporate ad-
vanced pruning techniques, which could further
optimize the search process and reduce the average
number of generations required. Additionally, our
method requires a sandbox environment to execute
the currently generated code for validation, which
may limit its applicability in real-world scenarios
where such execution environments are not readily
available or where security concerns restrict the
execution of untrusted code.
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A Extra Tables of MCTS and Pass@k on LiveCodeBench

A.1 LiveCodeBench-Medium

Table 1: Evaluation results on LiveCodeBench-Medium: pass @k

Model

pass@1 pass@5 pass@10 pass@50 pass@100

Qwen2.5-72B-Instruct-api
Qwen2.5-Coder-32B-Instruct
GPT40-0513

Qwen2-72B-api
Qwen2.5-Coder-7B-Instruct
DeepSeek-V2-api
GLM-4-0520
GPT40-mini-0718
Gemini-1.5-pro
DeepSeekCoder-6.7B-Instruct

0.477 0.611 0.646 0.716 0.743
0.300 0.511 0.575 0.657 0.683
0.387 0.528 0.567 0.638 0.665
0.214 0.394 0.461 0.589 0.637
0.275 0.444 0.506 0.602 0.625
0.432 0.521 0.550 0.592 0.604
0.190 0.336 0.398 0.510 0.551
0.292 0.427 0.468 0.524 0.543
0.210 0.314 0.359 0.462 0.502
0.088 0.194 0.240 0.319 0.355

Table 2: Evaluation results on LiveCodeBench-Medium: MCTS Results

Metric \Rollouts

4 8 16 32 64

DeepSeekCoder-6.7B-Instruct

pass rate w/direct prompting
pass rate w/CoT prompting

mean generations w/direct prompting | 15.990 29.547 54.824 93.024 182.572
mean generations w/CoT prompting | 14.384 27.871 51.063 92.519 176.505

0270  0.325 0392 0488 0.502
0.306 0.347 0433 0.502 0.531

Qwen2.5-Coder-32B-Instruct

pass rate w/direct prompting
pass rate w/CoT prompting

mean generations w/direct prompting | 9.871 15943 24.053 47.089 79.751
mean generations w/CoT prompting 8.455 14360 22579 45.163 70.767

0.648 0.676  0.720 0.743 0.770
0.686 0.729 0.755 0.770 0.810

A.2 LiveCodeBench-Hard

Table 3: Evaluation results on LiveCodeBench-Hard: pass @k Results

Model

pass@1 pass@5 pass@10 pass@50 pass@100

Qwen2.5-72B-Instruct-api
GPT40-0513

Qwen2-72B-api
Qwen2.5-Coder-32B-Instruct
DeepSeek-V2-api
Gemini-1.5-pro

GLM-4-0520
GPT40-mini-0718
Qwen2.5-Coder-7B-Instruct
DeepSeekCoder-6.7B-Instruct

0.087 0.150 0.182 0.256 0.285
0.068 0.133 0.161 0.223 0.245
0.025 0.070 0.094 0.168 0.212
0.054 0.102 0.123 0.174 0.197
0.090 0.138 0.156 0.187 0.192
0.035 0.068 0.088 0.136 0.159
0.013 0.035 0.053 0.105 0.133
0.043 0.068 0.078 0.107 0.119
0.025 0.050 0.061 0.083 0.099
0.004 0.016 0.025 0.062 0.080
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Table 4: Evaluation results on LiveCodeBench-Hard: MCTS Results

Model \Metric \ 4 8 16 32 64
DeepSeekCoder-6.7B-Instruct

pass rate w/direct prompting 0.040 0.086 0.146 0.205 0.212

pass rate w/CoT prompting 0.083  0.102  0.166 0.217 0.232

mean generations w/direct prompting | 17.721 37.513 77.932 133.946 289.51
mean generations w/CoT prompting | 17.635 36.933 77.297 133.471 285.396
Qwen2.5-Coder-32B-Instruct

pass rate w/direct prompting 0.145 0.179  0.212 0.278 0.305
pass rate w/CoT prompting 0.193  0.257 0.278 0.311 0.351
mean generations w/direct prompting | 18.359 28.519 68.159 121.616 241.927
mean generations w/CoT prompting | 17.303 32912 66.394 115.072 228.696

B Case Comparison on Best-of-100 and our method

Here is an example where our method passes all the test cases, but the Best-of-100 method does not:

Problem Description of Leetcode/2839

You are given two 0-indexed integer arrays nums1 and nums2, each of length n, and a 1-indexed 2D array
queries where queries[i] = [x_i, y_il. For the it query, find the maximum value of nums1[j] +
nums2[j] among all indices j (0 < j < n), where nums1[j] >= x_i and nums2[j] >= y_i, or —1if
there is no j satisfying the constraints.

Return an array answer where answer[i] is the answer to the i*" query.
Constraints

* nums1.length == nums2.length

¢ 1 <=n<=10°

e 1 <= nums1[i], nums2[i] <= 107
e 1 <= queries.length <= 10°

o1 <= x_i, y_i <= 10°

Examples

* Example 1:
Input: nums1 = [4,3,1,2], nums2 = [2,4,9,5], queries = [[4,1],[1,3],[2,5]]
Output: [6,10,7]

* Example 2:
Input: nums1 = [3,2,5], nums2 = [2,3,4], queries = [[4,4],[3,2],[1,1]]
Output: [9,9,9]

* Example 3:
Input: nums1 = [2,1], nums2 = [2,3], queries = [[3,3]]
Output: [-1]
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Best-0f-100 on Leetcode/2839

class Solution:
def maximumSumQueries(self, nums1l: List[int], nums2: List[int], queries: List[
List[int]]) -> List[int]:
from sortedcontainers import SortedList

# Combine nums1 and nums2 into pairs and sort them by numsl in descending

order
combined = sorted(zip(numsl, nums2), reverse=True)
query_with_index = [(x, y, i) for i, (x, y) in enumerate(queries)]

query_with_index.sort(reverse=True)

# Initialize a sorted list to keep track of the maximum sums

max_sums = SortedList ()
result = [-1] * len(queries)
j=0

for x, y, i in query_with_index:
# Add valid pairs to max_sums
while j < len(combined) and combined[jJ[0] >= x:
numl, num2 = combined[j]
# Maintain the sorted list with only the maximum sums for each
unique num?2
if not max_sums or max_sums[-1][1] < numl + num2:
max_sums.add((num2, numl + num2))
j =1

# Find the maximum sum for the current query
idx = max_sums.bisect_left((y, float(’inf’)))
if idx > 0:

result[i] = max_sums[idx-1]1[1]

return result

Our method on Leetcode/2839

from typing import List

class Solution:
def maximumSumQueries(self, numsl: List[int], nums2: List[int], queries: List[
List[int]]) -> List[int]:

combined = sorted(zip(nums1l, nums2), reverse=True)

queries = sorted([(x, y, i) for i, (x, y) in enumerate(queries)], reverse=
True)

result = [-1] * len(queries)

stack = []

for x, y, i in queries:
while combined and combined[Q][0Q] >= x:
a, b = combined.pop(0)
while stack and stack[-1]J[0] <= a + b:
stack.pop ()
stack.append((a + b, b))
for val, min_b in stack:
if min_b >= y:
result[i] = val
break

return result

Problem Description of atcoder/abc322_e

AtCoder Inc. is planning to develop a product. The product has K parameters, whose values are currently
all zero. The company aims to raise all parameter values to at least P.

There are N development plans. Executing the i** development plan (1 < i < N) increases the value
of the j** parameter by A; ; for every integer j such that 1 < j < K, at the cost of C;. A development
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plan cannot be executed more than once.
Determine whether the company can achieve its goal, and if it can, find the minimum total cost required
to achieve the goal.

Constraints
e 1 <N <100

c1<K,P<5

0<4,;<P (1<i<N,1<j<K)

1<C; <10 (1<i<N)
* All input values are integers.

Examples

* Example 1:
Input:

- w w o s
S N — W w
- AN O Ol
A SOS W N

Output:
9

Explanation: If you execute the first, third, and fourth development plans, each parameter will be
3+24+0=5,04+4+1=05,24+0+4 = 6, all of which are at least 5, so the goal is achieved. The
total cost in this case is 5 + 3 + 1 = 9. It is impossible to achieve the goal at a total cost of 8 or less.
Thus, the answer is 9.

* Example 2:
Input:
735
85 1 0 1
37171 @
38 2 0 0
45 @ 2 2
67 1 1 0
12 2 2 0
94 2 2 1
Output:

-1

Explanation: You cannot achieve the goal no matter what you do. Thus, print —1.
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Best-0f-100 on Atcoder/abc322_e

import sys
import itertools

def main():
import sys
import itertools

def readints():
return list(map(int, sys.stdin.readline().split()))

readints ()

N, K, P =
= [readints() for _ in range(N)]

plans

# Generate all possible combinations of plans
min_cost = float(’inf’)
for r in range(1, N + 1):
for combination in itertools.combinations(range(N), r):

total_cost = sum(plans[iJ[@] for i in combination)
total_increase = [sum(plans[i]l[j + 1] for i in combination) for j in
range (K)]
if all(increase >= P for increase in total_increase):
min_cost = min(min_cost, total_cost)
if min_cost == float(’inf’):
print(-1)
else:
print(min_cost)
if __name__ == "__main__":
main ()
Our method on Atcoder/abc322_e
# YOUR CODE HERE
import sys
input = sys.stdin.read
data = input().split()
N = int(datal@])
K = int(datal1])
P = int(datal2])
plans = []
index = 3
for _ in range(N):
C = int(datalindex])
A = list(map(int, datalindex + 1:index + 1 + KIJ))
plans.append((C, A))
index += 1 + K
min_cost = float(’inf’)
def dfs(current_params, current_cost, plan_index):
global min_cost
if current_cost >= min_cost:
return
if all(param >= P for param in current_params):
min_cost = current_cost
return
if plan_index == N:
return
# Include the current plan
new_params = [a + b for a, b in zip(current_params, plans[plan_index][11)]

dfs(new_params, current_cost + plans[plan_index][@], plan_index + 1)
# Exclude the current plan
dfs(current_params, current_cost, plan_index + 1)
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s |dfs(rel * K, o, @)

36

37 |if min_cost == float(’inf’):
38 print(-1)

9 |else:

40 print(min_cost)

C Example of Cot prompting

Cot Prompting Example

Instruction: As an Al language model, you are tasked with generating Python code based on
given problem specifications. To accomplish this, you need to follow a two-step process:

1. **Planning**: Analyze the problem and create a detailed plan that outlines the steps needed to
solve the problem. This plan should include the logic, data structures, and Python functions you’ll
use.

2. ¥**Coding**: Based on the plan, write the Python code that solves the problem. Make sure your
code adheres to the Python coding standards and uses the correct syntax.

Problem: You are given a 0-indexed integer array nums. The teacher wants to form a group
of students with maximal strength. The strength of a group is defined as the product of all the
elements in the group. Return the maximum strength of a group the teacher can create.

Plan:

<startofplan>

Step 1: Import the combinations function from itertools module.

Step 2: Define a class Solution with a method maxStrength that takes a list of integers as input.
Step 8: After all combinations are processed, return max_strength.

<endofplan>

Python Code:

from itertools import combinations

1

3l class Solution:
4 def maxStrength(self, nums: List[int]) -> int:
5 if len(nums) ==

6 return nums[0]

7 max_strength = float(’-inf’)

8 for i in range(1, len(nums)+1):

9 for comb in combinations(nums, 1i):

10 strength = 1

11 for num in comb:

12 strength *= num

13 max_strength = max(max_strength, strength)

14 return max_strength

o y
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