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Abstract001

Competition-level code generation tasks pose002
significant challenges for current state-of-the-003
art large language models (LLMs). For ex-004
ample, on the LiveCodeBench-Hard dataset,005
models such as O1-Mini and O1-Preview006
achieve pass@1 rates of only 0.366 and007
0.143, respectively. While tree search tech-008
niques have proven effective in domains009
like mathematics and general coding, their010
potential in competition-level code genera-011
tion remains under-explored. In this work,012
we propose a novel token-level tree search013
method specifically designed for code gen-014
eration. Leveraging Qwen2.5-Coder-32B-015
Instruct, our approach achieves a pass rate016
of 0.305 on LiveCodeBench-Hard, surpassing017
the pass@100 performance of GPT4o-0513018
(0.245). Furthermore, by integrating Chain-019
of-Thought (CoT) prompting, we improve our020
method’s performance to 0.351, approaching021
O1-Mini’s pass@1 rate. To ensure reproducibil-022
ity, we report the average number of genera-023
tions required per problem by our tree search024
method on the test set. Our findings underscore025
the potential of tree search to significantly en-026
hance performance on competition-level code027
generation tasks. This opens up new possibil-028
ities for large-scale synthesis of challenging029
code problems supervised fine-tuning (SFT)030
data, advancing competition-level code genera-031
tion tasks.032

1 Introduction033

Competition-level code generation tasks present a034

unique set of challenges for large language models035

(LLMs). These tasks require models to not only036

comprehend complex problem statements but also037

generate executable code that adheres to logical038

and syntactical constraints. While existing state-of-039

the-art LLMs have achieved remarkable success in040

general-purpose programming benchmarks, their041

performance on competitive programming datasets,042

such as LiveCodeBench-Hard (Naman Jain et al.,043

2024), remains far from satisfactory. For exam- 044

ple, recent models like O1-Mini and O1-Preview 045

exhibit pass@1 rates of only 0.366 and 0.143, re- 046

spectively. This performance gap highlights the 047

need for novel methodologies to enhance model 048

capabilities in solving these challenging tasks. 049

Recent research has demonstrated the potential 050

of tree search techniques in reasoning tasks like 051

mathematics and general programming. However, 052

their application to competition-level code genera- 053

tion remains under-explored. Existing approaches 054

primarily rely on large-scale proprietary LLMs 055

within tree search frameworks, overlooking the pos- 056

sibility that smaller, open-source models—when 057

paired with an effective search strategy—could 058

achieve superior results. Moreover, while data aug- 059

mentation through techniques such as distillation 060

from stronger LLMs has been widely used, gener- 061

ating solutions directly from the target model itself 062

offers the potential for higher-quality supervised 063

fine-tuning (SFT) data, as these solutions are di- 064

rectly generated by the target model, ensuring con- 065

sistency with its inherent capabilities and output 066

characteristics. 067

In this work, we propose a novel token-level 068

Monte Carlo Tree Search (MCTS) method tailored 069

specifically for competition-level code generation. 070

Leveraging the open-source Qwen2.5-Coder-32B- 071

Instruct model, as shown in Figure 1, our approach 072

achieves a pass rate of 0.305 on LiveCodeBench- 073

Hard, surpassing the pass@100 performance of 074

GPT4o-0513 (0.245). By incorporating Chain-of- 075

Thought (CoT) prompting, our method further im- 076

proves to 0.351, approaching O1-Mini’s pass@1 077

rate. These results demonstrate that our method 078

not only enhances the ability of models to solve 079

previously unsolvable problems but also provides 080

high-quality outputs that can be directly used to 081

synthesize new SFT data. Compared to distillation- 082

based approaches that rely on external models, our 083

framework allows for a more intrinsic and effec- 084
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Figure 1: Pass rates of MCTS with DeepSeekCoder-
6.7B-Instruct and Qwen2.5-32B-Instruct on
LiveCodeBench-Hard: each model surpasses it’s own
pass@100 rates at max_rollouts = 8. Notably, MCTS
with Qwen2.5-32B-Instruct and max_rollouts = 16
outperforms pass@100 of both Qwen2.5-72B-Instruct
and GPT4o-0513. In addition, when combined with
CoT prompting, MCTS with Qwen2.5-32B-Instruct
achieves a pass rate of 0.351 nearing O1-Mini’s pass@1
rate of 0.366.

tive alignment of the data with the target model’s085

capabilities.086

Experiment results revealed that when combined087

with MCTS search, CoT prompting significantly088

outperforms its non-CoT counterpart. In the MCTS089

framework, CoT prompting helps guide the search090

process by providing structured intermediate rea-091

soning, and this structured guidance, in turn, en-092

ables the model to find higher-quality solutions, as093

MCTS can evaluate multiple reasoning paths and094

select the most promising ones. This finding sug-095

gests that for CoT prompting to achieve optimal096

performance in competition-level code generation,097

it must be integrated with an effective search strat-098

egy, highlighting the need for a combination of099

reasoning and search approaches to fully leverage100

LLM’s potential.101

We summarize our contributions as follows:102

• A novel token-level MCTS framework with103

Cot Prompting: We propose a token-level104

tree search framework that combines MCTS105

with CoT prompting, enabling iterative refine-106

ment of both reasoning and code generation107

for competition-level tasks.108

• Enhancing open-source models for compet-109

itive programming tasks: We demonstrate110

that open-source models like Qwen2.5-Coder-111

32B-Instruct can achieve substantial perfor- 112

mance improvements on competitive program- 113

ming datasets when paired with our method. 114

This showcases the potential to elevate the ca- 115

pabilities of open-source models to rival or 116

surpass proprietary counterparts in challeng- 117

ing domains. 118

• Comprehensive experimental analysis: We 119

demonstrate the efficacy of the proposed 120

framework while reporting efficiency metrics 121

such as average generations per problem to 122

ensure reproducibility and fairness. 123

2 Related Work 124

2.1 LLMs for Code Generation 125

Large language models (LLMs), with their pow- 126

erful reasoning capabilities, have been widely 127

adopted in code-related research and applications. 128

The primary approach to building code LLMs in- 129

volves pre-training or fine-tuning them on large 130

code datasets, such as CodeX (Chen et al., 2021), 131

AlphaCode (Li et al., 2022), WizardCoder (Luo 132

et al., 2023), CodeGeeX (Zheng et al., 2023), Star- 133

coder (Li et al., 2023) and Code LLama (Roziere 134

et al., 2023). Foundation models, like GPT- 135

4 (Achiam et al., 2023) and Claude1, exhibit 136

remarkable code generation capabilities despite 137

lacking additional fine-tuning on code-specific 138

data. Additionally, building upon the robust plan- 139

ning capabilities (Yao et al., 2022) and reflection 140

mechanisms (Shinn et al., 2024) of LLMs, LLM- 141

powered autonomous agents have shown signifi- 142

cant potential in advancing automated code gen- 143

eration (Huang et al., 2023b; Hong et al., 2023; 144

Wang et al., 2024c; Zhang et al., 2024b). For ex- 145

ample, Agentcoder (Huang et al., 2023b) proposes 146

a multi-agent framework that includes program- 147

mer agents, test designer agents, and test execution 148

agents to collaboratively generate and test code, 149

MetaGPT (Hong et al., 2023) imitates the main 150

roles in software companies in the real world, using 151

different AI agents to play and ultimately produce 152

a project. 153

2.2 Prompt Engineering 154

Designing effective prompts to seamlessly com- 155

municate with LLMs to fully harness their full 156

potential can significantly improve LLMs perfor- 157

mance without additional training. Some represen- 158

tative technologies of prompt engineering include 159

1https://claude.ai/
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Chain-of-Thought (CoT) (Wei et al., 2022), Self-160

Consistency (Wang et al., 2022), Tree-of-Thought161

(ToT) (Yao et al., 2024), Reasoning via Planning162

(RAP) (Hao et al., 2023) and Self-Refine (Madaan163

et al., 2024). This technique can be directly applied164

in LLM for iterative and self improving (refining)165

code generation. For instance, CodeCoT (Huang166

et al., 2023a) integrates chain-of-thought reasoning167

with a self-examination process, iteratively refin-168

ing code based on execution feedback to ensure169

both logical correctness and syntactic validity. Self-170

planning (Jiang et al., 2024) enhances code genera-171

tion by using LLMs to first plan solution steps from172

intent and then generate code step-by-step. Self-173

debugging (Chen et al., 2023), an LLM is prompted174

to iteratively refine code predictions by utilizing175

feedback from explanations and execution results176

to identify and fix errors.177

2.3 Monte Carlo Tree Search (MCTS) for178

Reasoning179

Chen et al. (2021) showed that repeated sampling180

can produce correct code solutions, suggesting the181

answer lies within the LLMs’ output space with no-182

table probability, motivating the use of tree search183

for efficient exploration (Li et al., 2024; Qi et al.,184

2024; Wang et al., 2024a; Hui et al., 2024). PG-185

TD (Zhang et al., 2023) introduces a planning-186

guided Transformer decoding algorithm that uses187

MCTS and test-case evaluation to iteratively refine188

code generation, Zhang et al. (2024a) proposed189

ReST-MCTS*, a method that integrates process re-190

ward guidance with tree search to infer high-quality191

reasoning traces and per-step rewards, enabling192

more effective self-training of policy. Another com-193

mon method is LATS (Zhou et al., 2023), which194

leverages LLMs as agents, value functions, and op-195

timizers, incorporating MCTS to enhance decision-196

making through external feedback and experience.197

PlanSearch (Wang et al., 2024b) improves code198

generation by searching over diverse natural lan-199

guage plans instead of directly over code.200

3 Method201

3.1 Preliminary202

Neural code generation aims to automatically203

transform natural language descriptions into exe-204

cutable source code through large language models205

(LLMs). Here we provide a formal definition of206

the code generation task.207

Let D represent a natural language description208

of a programming task, which may include prob- 209

lem statements, requirements, and additional pro- 210

gramming context such as function signatures or 211

assertions. The code generation task can be formal- 212

ized as learning a model πθ parameterized by θ that 213

generates code solution C given description D: 214

C ∼ πθ(· |D). (1) 215

To evaluate the correctness of generated code, 216

we define a test suite T = {(xi, yi)}ni=1 where each 217

test case consists of an input xi and its expected 218

output yi. The test suite is typically divided into 219

two subsets 220

T = Tpub ∪ Tpriv, (2) 221

where Tpub represents public test cases visible dur- 222

ing development, and Tpriv represents private test 223

cases held out for evaluation. 224

Given a code solution C, we define an execution 225

function Exec(C, x) that returns the output of run- 226

ning C on input x. The correctness of C can then 227

be measured by comparing its outputs against the 228

expected outputs across all test cases: 229

Correct(C |D,T ) =
1

|T |
∑

(x,y)∈T

1(Exec(C, x) = y),

(3) 230

where 1(·) is the indicator function. 231

The objective of code generation is to find model 232

parameters θ∗ that maximize the expected correct- 233

ness across a distribution of programming tasks: 234

235

θ∗ = argmax
θ

ED,T [Correct(πθ(D))]. (4) 236

3.2 MCTS with CoT Prompting 237

The proposed method is motivated by the desire to 238

integrate Chain-of-Thought (CoT) reasoning with 239

Monte Carlo Tree Search (MCTS). Specifically, 240

the approach enables LLMs to first generate inter- 241

mediate reasoning steps, followed by code gener- 242

ation. Through iterative refinement and optimiza- 243

tion of both the reasoning and code components via 244

MCTS, the method aims to enhance the model’s 245

performance on challenging competition-level code 246

generation tasks. Next, we will provide a detailed 247

description of our methods in each key component 248

of MCTS. 249

CoT Prompting. To improve the performance 250

of LLMs on challenging competition-level code 251

generation tasks, we introduce a structured CoT 252
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prompting methodology, which guides the model253

through a two-step reasoning process planning and254

coding to ensure logical and syntactically correct255

outputs. MCTS iteratively refines and optimizes256

both the planning and coding stages, improving per-257

formance in complex code generation tasks. The258

prompt explicitly instructs the model to:259

• Solution Planning: Analyze the problem260

specification and create a detailed step-by-261

step plan. This step includes outlining the262

problem-solving logic, choosing appropriate263

data structures, and determining the functions264

required for implementation.265

• Code Generation: Based on the detailed plan,266

write Python code adhering to coding stan-267

dards and ensuring proper syntax.268

Here is an example in AppendixC.269

Selection. The selection phase in MCTS strives to270

balance exploration and exploitation by selecting271

actions that are most likely to yield beneficial re-272

sults. At the selection stage, the algorithm starts273

from the root node s0 and traverses the tree until it274

reaches a leaf node. Our method use a token-level275

MCTS so that each state s represents a candidate276

token. At each node s, the action a ∈ A(s), where277

A(s) denotes the set of available actions in state s278

taken by the LLM π, is chosen by maximizing the279

P-UCB score:280

P-UCB(s, a) = Q(s, a) + β(s) · p(a | s) ·
√

lnN(s)

1+N(s,a) ,

(5)

281

β(s) = log
(
N(s)+cbase+1

cbase

)
+ c. (6)282

Here:283

• Q(s, a) represents the average reward (de-284

fined in Simulation) of action a at state s.285

• N(s) is the total number of visits to state s.286

• N(s, a) is the number of times action a has287

been taken from state s.288

• p(a | s) is the prior probability of action a at289

s, proposed by the LLM π.290

• cbase and c are hyperparameters that balance291

exploration and exploitation.292

This formula combines three essential components:293

exploitation through Q(s, a), exploration driven294

by
√

lnN(s)/(1 +N(s, a)), and prior guidance 295

from P (s, a). The algorithm iteratively applies this 296

criterion until it encounters a leaf node sL, defined 297

as a state either not fully expanded or terminal. 298

Expansion. When the selection process reaches 299

a node s in the search tree, the expansion phase 300

creates new child nodes by considering potential 301

next tokens. Unlike standard MCTS which might 302

randomly sample actions, we leverage the LLM’s 303

predictions to guide expansion: 304

Given the current state s, we obtain the k most 305

probable next tokens using the TOP-K function: 306

Tk(s) = TOP_K(s, k), (7) 307

where k is a hyperparameter that limits the maxi- 308

mum number of children per node, and Tk(s) re- 309

turns the set of k most likely next tokens according 310

to the LLM’s probability distribution. 311

For the new child node s′, the visit count 312

N(s′, a′) and the average reward Q(s′, a′) for all 313

a′ ∈ A(s′) are initialized to zero: 314

N(s′, a′) = 0, Q(s′, a′) = 0, ∀a′ ∈ A(s′).
(8) 315

The use of priors p(s′ | a′) derived from the policy 316

π enables the tree to bias future expansions toward 317

promising regions of the search space. 318

Simulation. Once a new node s′ is added to the 319

tree, the algorithm estimates its value through a 320

simulation, also called a rollout. Starting from s′, 321

actions are sampled according to the policy π until 322

a terminal state sT is reached or a predefined depth 323

limit dmax is exceeded. In this paper, we use two 324

methods to estimate the quality for the state s′, we 325

call it as hard reward (HR) and partial reward (PR). 326

Normally, we use all public test cases to validate 327

the generated code. HR supposes that if everything 328

passes, the code is considered correct, and if there 329

exist errors, it is incorrect. Assume that T is the set 330

of all test cases, the HR can be formalized as: 331

RHR
s′ =

{
1, if 1(Exec(C, x) = y) = 1, ∀(x, y) ∈ T ;

0, otherwise.
(9) 332

However, when addressing challenging coding 333

problems, the distinction between partial success 334

and complete failure is critical. Accordingly, our 335

method leverages the pass rate on the test set as the 336

reward signal, denoted as PR: 337

RPR
s′ =

1

|T |
∑

(x,y)∈T

1(Exec(C, x) = y). (10) 338
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Backpropagation. The backpropagation stage up-339

dates the statistics of all nodes along the path from340

the newly expanded node s′ back to the root s0. For341

each node-action pair (s, a) on the path, the visit342

count N(s, a) and the average reward Q(s, a) are343

updated as follows:344

N(s, a)← N(s, a) + 1, (11)345

Q(s, a)← (N(s, a)− 1) ·Q(s, a) +R(s′)

N(s, a)
.

(12)

346

These updates propagate the simulation result R(s′)347

upward, refining the action-value estimates Q(s, a)348

and balancing the contributions of exploration and349

exploitation.350

4 Experiment351

We use LiveCodeBench (Naman Jain et al., 2024)352

as the test dataset, which comprises 659 problems353

collected between May 1, 2023, and September 1,354

2024. The dataset categorizes problems into three355

difficulty levels: easy, medium, and hard, with 245356

medium-level problems and 151 hard-level prob-357

lems. We expand 5 child nodes in the expansion358

phase. In the simulation phase, we set the tem-359

perature = 0.7, top_p = 0.8 and repetition_penalty360

= 1.05 to balance randomness, diversity, and co-361

herence. Given that state-of-the-art models, such362

as Claude-3.5-Sonnet-20240620, have achieved a363

pass@1 rate of 0.869 on the easy subset, evaluat-364

ing the impact of alternative inference techniques365

on these problems would likely be uninformative.366

Therefore, our study focuses on the medium and367

hard subsets, where there is greater scope for im-368

provement and more meaningful differences in in-369

ference performance.370

To validate the model-agnostic nature of the pro-371

posed MCTS approach, we employ four generative372

models, DeepSeekCoder-6.7B-Instruct, Qwen2.5-373

7B-Instruct, Qwen2.5-14B-Instruct, and Qwen2.5-374

32B-Instruct, in our experiment.375

4.1 MCTS on LiveCodeBench376

In this section, we evaluate the performance of377

MCTS across several different generating models378

on LiveCodeBench-Medium and LiveCodeBench-379

Hard. For better readability, we present plots in380

what follows and defer detailed tables to Appendix381

A.382

Medium Level. We begin by comparing the perfor-383

mance of MCTS against the pass@k rates for the384

same generating models. Figure 2(a) illustrates the 385

performance of MCTS with DeepSeekCoder-6.7B- 386

Instruct and Qwen2.5-32B-Instruct as generating 387

models, compared against their pass@k rates on 388

LiveCodeBench-Medium. In addition, Figure 2(b) 389

illustrates the performance variation of MCTS and 390

Best-of-N (or pass@k) as the number of number 391

of generations increases. Across all tested con- 392

figurations, MCTS consistently outperforms the 393

Best-of-N baselines, which demonstrates its effec- 394

tiveness in leveraging the same underlying model 395

to achieve superior results. 396

In the second part of our analysis, Fig- 397

ure 2(c) compares the performance of MCTS with 398

smaller models (DeepSeekCoder-6.7B-Instruct and 399

Qwen2.5-32B-Instruct) against the pass@100 rates 400

of much larger and more capable models. Key 401

results include: when max_rollouts = 32, the 402

pass@100 rate of MCTS with DeepSeekCoder- 403

6.7B-Instruct reaches 0.488, comparable to the 404

pass@100 rate of Gemini-1.5-pro at 0.502. With 405

max_rollouts = 64, MCTS with Qwen2.5-32B- 406

Instruct achieves a pass rate of 0.770, surpassing 407

the pass@100 rates of much larger models such as 408

Qwen2.5-72B-Instruct-api and GPT4o-0513. Fur- 409

ther insights are provided in Figure 2(d), where 410

the x-axis represents the mean number of genera- 411

tions. The results demonstrate that the proposed 412

MCTS approach achieves higher pass rates with 413

fewer sampling attempts, emphasizing its efficiency 414

and effectiveness. 415

Hard Level. The LiveCodeBench-Hard subset 416

poses significantly greater challenges compared 417

to LiveCodeBench-Medium. Notably, Qwen2.5- 418

72B-Instruct-api achieves the highest pass@1 rate 419

of only 0.087, with a pass@100 rate of 0.285. 420

Both DeepSeekCoder-6.7B-Instruct and Qwen2.5- 421

7B-Instruct exhibit pass@100 rates below 10, un- 422

derscoring the difficulty of this subset. For de- 423

tailed pass@k rates of state-of-the-art models on 424

LiveCodeBench-Hard, we refer readers to Table 3 425

in Appendix A. 426

Figure 6(a) illustrates the pass@100 rates of 427

various models on LiveCodeBench-Hard, along 428

with the performance variation of MCTS us- 429

ing DeepSeekCoder-6.7B-Instruct and Qwen2.5- 430

32B-Instruct as generating models as the num- 431

ber of max_rollouts increases. Notably, as shown 432

in Figure 6(b), MCTS with DeepSeekCoder- 433

6.7B-Instruct begins to surpass the Best-of- 434

N performance of Qwen2.5-32B-Instruct when 435

max_rollouts ≥ 16. These advantages of MCTS 436
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(a) (b) (c) (d)

Figure 2: Results on LiveCodeBench-Medium: (a) Comparison of the pass rates of MCTS with different
max_rollouts against the pass@1, pass@10, and pass@100 rates of Qwen2.5-72B-Instruct-api. (b) Compari-
son of pass rates of MCTS against pass@k with k selected as the mean number of generations in the corresponding
MCTS run. (c)-(d) Comparison of the pass rates of MCTS under different max_rollouts against the pass@100 rates
of sota models.

become even more compelling as the difficulty of437

the test dataset increases.438

Furthermore, Figure 6(c) presents a compari-439

son of MCTS with smaller models against the440

pass@100 rates of state-of-the-art models. Key441

findings include:442

• When max_rollouts = 32, MCTS with443

DeepSeekCoder-6.7B-Instruct achieves a pass444

rate of 0.205, which is close to Qwen2.5-72B-445

Instruct-api’s pass rate of 0.212, representing446

a significant relative improvement of 156.25%447

compared to the standalone pass@100 rate of448

DeepSeekCoder-6.7B-Instruct at 0.080.449

• Similarly, when max_rollouts = 32, MCTS450

with Qwen2.5-32B-Instruct achieves a pass451

rate of 0.278, approaching the performance of452

Qwen2.5-72B-Instruct-api at 0.285.453

For a comparison under the same number of454

generations, Figure 6(d) provides insights into the455

efficiency of MCTS, with the x-axis represent-456

ing the mean number of generations. These re-457

sults highlight that even on this challenging sub-458

set, MCTS achieves significantly improved pass459

rates with fewer sampling attempts. In summary,460

MCTS demonstrates robust performance on the461

LiveCodeBench-Hard subset, achieving competi-462

tive results against larger models and maintaining463

efficiency despite the increased difficulty.464

The observed improvement of MCTS on465

LiveCodeBench-Hard is notably greater than466

that on LiveCodeBench-Medium, indicating that467

MCTS retains its effectiveness even under in-468

creased task difficulty without experiencing per-469

formance degradation.470

Model-Agnostic. To evaluate the model-agnostic 471

nature of the MCTS method, we compare its per- 472

formance on LiveCodeBench-Hard subset using 473

four different generating models: DeepSeekCoder- 474

6.7B-Instruct, Qwen2.5-7B-Instruct, Qwen2.5- 475

14B-Instruct, and Qwen2.5-32B-Instruct. For ex- 476

perimental efficiency, we fix max_rollouts = 16. 477

Figure 3: When different models are used as the gen-
erating model for MCTS, the pass rates of MCTS
tend to increase correspondingly with the enhance-
ment of model capabilities. The pass@100 rates of
DeepSeekCoder-6.7B-Instruct, Qwen2.5-7B-Instruct,
Qwen2.5-14B-Instruct, and Qwen2.5-32B-Instruct are
0.080, 0.099, 0.189, and 0.197, respectively. It can
be observed that after employing MCTS, even with
max_rollouts set to only 16, the performance of each
model on LiveCodeBench-Hard significantly exceeds
its own pass@100 rate.

Figure 3 illustrates that the performance of 478

MCTS improves consistently with the capabili- 479

ties of the generating models. Notably, when 480

using Qwen2.5-14B-Instruct, MCTS achieves a 481

pass@100 rate of 0.219, surpassing the pass rate of 482

the larger Qwen2.5-72B-api at 0.212. 483

Additionally, as shown in Figure 4, the average 484

number of generations for MCTS remains below 81 485

across all generating models when max_rollouts = 486

16. These results indicate that the MCTS method is 487
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Figure 4: To ensure fairness in comparison with the
pass@100 rates, we also recorded the average number
of generations produced by MCTS when max_rollouts
is set to 16 across different models. It can be observed
that for DeepSeekCoder-6.7B-Instruct, Qwen2.5-7B-
Instruct, and Qwen2.5-14B-Instruct, the average num-
ber of generations is approximately 80, which is signifi-
cantly lower than 100. For Qwen2.5-32B-Instruct, the
average number of generations is even lower.

both model-agnostic and efficient, achieving com-488

petitive performance across a variety of generating489

models while maintaining low sampling overhead.490

It is also important to note that we plan to opti-491

mize pruning techniques for MCTS in the future,492

which may further reduce the average number of493

generations.494

4.2 Direct Prompting vs CoT Prompting495

Chain-of-Thought (CoT) prompting has proven to496

be an effective technique for enhancing model per-497

formance in reasoning tasks. Throughout our exper-498

iments, we also explore whether integrating CoT499

prompting with MCTS can further improve overall500

performance.501

On LiveCodeBench-Medium, Figure 2 demon-502

strates that MCTS with CoT prompting consis-503

tently outperforms the baseline. For example,504

with max_rollouts = 64 and Qwen2.5-Coder-32B-505

Instruct, MCTS with CoT prompting achieves a506

pass rate of 0.810, compared to 0.770 with di-507

rect prompting. A similar trend is observed on508

LiveCodeBench-Hard, as shown in Figure 6: with509

max_rollouts = 64 and Qwen2.5-32B-Instruct,510

MCTS with CoT prompting achieves a pass rate of511

0.351, outperforming the pass rate of 0.305 from512

direct prompting.513

Figure 4 further highlights the efficiency of CoT514

prompting, requiring fewer generations on both515

datasets when combined with MCTS. Addition-516

ally, Figure 3 demonstrates consistent performance517

improvements across different models when CoT518

prompting is applied. As model capabilities in-519

crease, the combined approach of MCTS with CoT520

prompting becomes even more effective. To sum521

up, CoT prompting outperforms pure MCTS across522

all four tested models, which highlights its robust- 523

ness and versatility. 524

4.3 Deep Insight into MCTS’s Selection Phase 525

In the context of MCTS, the final generated re- 526

sponse can be decomposed into three key compo- 527

nents: (1) the path identified during the selection 528

phase via P-UCB search, (2) the actions sampled 529

by the model during the expansion phase, and (3) 530

the content generated through autoregressive de- 531

coding in the simulation phase. Since the sampling 532

methods used in the simulation phase are indistin- 533

guishable from techniques like Best-of-N, we are 534

particularly interested in the specific effects of the 535

paths identified during the selection and expansion 536

phases. To explore this, we present an interpretive 537

experiment in the sequel. 538

Using the LiveCodeBench-Hard dataset with 539

Qwen2.5-14B-Instruct, we fix max_rollouts = 16 540

and record the best paths discovered by MCTS. 541

We the modify the prompt for each problem to 542

include the format prompt + best path and em- 543

ploy standard autoregressive decoding methods to 544

sample and compute pass@k rates. Figure 5 com- 545

pares the pass@k rates of Qwen2.5-14B-Instruct 546

on LiveCodeBench-Hard when using the original 547

prompt versus the modified prompt. 548

Figure 5: A comparison between the original prompts
from LiveCodeBench-Hard and the modified prompts
using the optimal paths identified through MCTS. The
results show substantial contribution of the paths iden-
tified during the selection and expansion phases to the
overall performance of MCTS.

The results demonstrate significant improve- 549

ments with the modified prompt across all evalu- 550

ated k-values (K = 1, 5, 10, 50, and 100). For in- 551

stance, at K = 1, the pass rate increases by 25.5% 552

compared to the baseline, while at K=100, the rela- 553

tive improvement is 19%. These findings highlight 554

the substantial contribution of the paths identified 555

during the selection and expansion phases to the 556

overall performance of MCTS. 557
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(a) (b) (c) (d)

Figure 6: Results on LiveCodeBench-Hard: (a) Comparison of the pass rates of MCTS with different max_rollouts
against the pass@1, pass@10, and pass@100 rates of Qwen2.5-72B-Instruct-api. (b) Comparison of pass rates of
MCTS against pass@k with k selected as the mean number of generations in the corresponding MCTS run. (c)-(d)
Comparison of the pass rates of MCTS under different max_rollouts against the pass@100 rates of sota models.

4.4 CodeContest-Test558

CodeContest-Test is a widely used benchmark set559

for code competition tasks, complementing Live-560

CodeBench. To evaluate the generalizability and561

effectiveness of the methods proposed in this pa-562

per across multiple code competition benchmark563

sets, we also compare our methods against several564

baseline models on CodeContest-Test.565

To control experimental costs, we utilize the566

Qwen2.5-Coder-32B-Instruct model and fix the567

MCTS max_rollouts at 32. As shown in Figure 7,568

when using direct prompting, MCTS achieves a569

pass rate of 0.582, surpassing the performance570

of Claude-3.5-Sonnet. Notably, the average num-571

ber of generations for MCTS in this setup is only572

79.055.573

Figure 7: Evaluation results on CodeContest_Test.
MCTS with max_rollouts = 16 and Qwen2.5B-Coder-
32B-Instruct, which involves less than 80 number of gen-
erations, outperforms pass@100 of Claude-3.5-Sonnet.

When employing Chain-of-Thought (CoT)574

prompting, the performance of MCTS improves575

further, achieving a pass@100 rate of 0.618, while576

reducing the average number of generations to577

75.962. These results demonstrate the effective-578

ness of combining MCTS with CoT prompting,579

achieving better performance with fewer sampling580

attempts.581

5 Conclusions 582

In this paper, we proposed a novel token-level 583

Monte Carlo Tree Search (MCTS) framework 584

combined with Chain-of-Thought (CoT) prompt- 585

ing, tailored for competition-level code generation 586

tasks. Using the open-source Qwen2.5-Coder-32B- 587

Instruct model, our approach demonstrates its ef- 588

fectiveness by achieving a pass rate of 0.351 on 589

LiveCodeBench-Hard, nearing the pass@1 per- 590

formance of O1-Mini. The results highlight the 591

capability of our framework to significantly im- 592

prove the problem-solving efficiency and accuracy 593

of open-source models, thereby reducing the re- 594

liance on large-scale proprietary black-box LLMs. 595

Moreover, our method’s ability to generate con- 596

sistent and high-quality solutions making it pos- 597

sible to synthesize supervised fine-tuning (SFT) 598

data for large-scale competition level code prob- 599

lems from open-source LLMs. By synthesizing 600

robust datasets directly from the target model, our 601

approach paves the way for more effective and in- 602

trinsically aligned post-training strategies. 603

In the future, our framework can be further en- 604

hanced by integrating with techniques like rejection 605

sampling and self-consistent reasoning. These tech- 606

niques could complement our MCTS framework, 607

further enhancing the LLMs’ reasoning capabilities 608

and improving their performance on competition- 609

level code generation tasks. By enabling more 610

robust and diverse exploration of potential solu- 611

tions, and minimizing the generation of incorrect 612

or incomplete code, these enhancements have the 613

potential to advance the state of the art in solving 614

complex coding problems. 615
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6 limitation616

While the proposed token-level Monte Carlo Tree617

Search (MCTS) framework combined with Chain-618

of-Thought (CoT) prompting demonstrates signifi-619

cant improvements in competition-level code gener-620

ation tasks, several limitations should be acknowl-621

edged. First, the method’s computational overhead622

is non-trivial, as MCTS requires multiple rollouts623

and simulations to explore the search space effec-624

tively. This can lead to increased inference time and625

resource consumption, particularly when applied to626

larger models or more complex problems. Second,627

the framework’s performance is highly dependent628

on the quality of the underlying generative model.629

Although the method enhances the capabilities of630

open-source models, it may still fall short when631

compared to state-of-the-art proprietary models in632

terms of absolute performance. Third, the current633

implementation of MCTS does not incorporate ad-634

vanced pruning techniques, which could further635

optimize the search process and reduce the average636

number of generations required. Additionally, our637

method requires a sandbox environment to execute638

the currently generated code for validation, which639

may limit its applicability in real-world scenarios640

where such execution environments are not readily641

available or where security concerns restrict the642

execution of untrusted code.643
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A Extra Tables of MCTS and Pass@k on LiveCodeBench 787

A.1 LiveCodeBench-Medium 788

Table 1: Evaluation results on LiveCodeBench-Medium: pass@k

Model pass@1 pass@5 pass@10 pass@50 pass@100
Qwen2.5-72B-Instruct-api 0.477 0.611 0.646 0.716 0.743
Qwen2.5-Coder-32B-Instruct 0.300 0.511 0.575 0.657 0.683
GPT4o-0513 0.387 0.528 0.567 0.638 0.665
Qwen2-72B-api 0.214 0.394 0.461 0.589 0.637
Qwen2.5-Coder-7B-Instruct 0.275 0.444 0.506 0.602 0.625
DeepSeek-V2-api 0.432 0.521 0.550 0.592 0.604
GLM-4-0520 0.190 0.336 0.398 0.510 0.551
GPT4o-mini-0718 0.292 0.427 0.468 0.524 0.543
Gemini-1.5-pro 0.210 0.314 0.359 0.462 0.502
DeepSeekCoder-6.7B-Instruct 0.088 0.194 0.240 0.319 0.355

Table 2: Evaluation results on LiveCodeBench-Medium: MCTS Results

Metric \Rollouts 4 8 16 32 64
DeepSeekCoder-6.7B-Instruct

pass rate w/direct prompting 0.270 0.325 0.392 0.488 0.502
pass rate w/CoT prompting 0.306 0.347 0.433 0.502 0.531
mean generations w/direct prompting 15.990 29.547 54.824 93.024 182.572
mean generations w/CoT prompting 14.384 27.871 51.063 92.519 176.505

Qwen2.5-Coder-32B-Instruct
pass rate w/direct prompting 0.648 0.676 0.720 0.743 0.770
pass rate w/CoT prompting 0.686 0.729 0.755 0.770 0.810
mean generations w/direct prompting 9.871 15.943 24.053 47.089 79.751
mean generations w/CoT prompting 8.455 14.360 22.579 45.163 70.767

A.2 LiveCodeBench-Hard 789

Table 3: Evaluation results on LiveCodeBench-Hard: pass@k Results

Model pass@1 pass@5 pass@10 pass@50 pass@100
Qwen2.5-72B-Instruct-api 0.087 0.150 0.182 0.256 0.285
GPT4o-0513 0.068 0.133 0.161 0.223 0.245
Qwen2-72B-api 0.025 0.070 0.094 0.168 0.212
Qwen2.5-Coder-32B-Instruct 0.054 0.102 0.123 0.174 0.197
DeepSeek-V2-api 0.090 0.138 0.156 0.187 0.192
Gemini-1.5-pro 0.035 0.068 0.088 0.136 0.159
GLM-4-0520 0.013 0.035 0.053 0.105 0.133
GPT4o-mini-0718 0.043 0.068 0.078 0.107 0.119
Qwen2.5-Coder-7B-Instruct 0.025 0.050 0.061 0.083 0.099
DeepSeekCoder-6.7B-Instruct 0.004 0.016 0.025 0.062 0.080
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Table 4: Evaluation results on LiveCodeBench-Hard: MCTS Results

Model \Metric 4 8 16 32 64
DeepSeekCoder-6.7B-Instruct

pass rate w/direct prompting 0.040 0.086 0.146 0.205 0.212
pass rate w/CoT prompting 0.083 0.102 0.166 0.217 0.232
mean generations w/direct prompting 17.721 37.513 77.932 133.946 289.51
mean generations w/CoT prompting 17.635 36.933 77.297 133.471 285.396

Qwen2.5-Coder-32B-Instruct
pass rate w/direct prompting 0.145 0.179 0.212 0.278 0.305
pass rate w/CoT prompting 0.193 0.257 0.278 0.311 0.351
mean generations w/direct prompting 18.359 28.519 68.159 121.616 241.927
mean generations w/CoT prompting 17.303 32.912 66.394 115.072 228.696

B Case Comparison on Best-of-100 and our method790

Here is an example where our method passes all the test cases, but the Best-of-100 method does not:791

Problem Description of Leetcode/2839792

You are given two 0-indexed integer arrays nums1 and nums2, each of length n, and a 1-indexed 2D array793

queries where queries[i] = [x_i, y_i]. For the ith query, find the maximum value of nums1[j] +794

nums2[j] among all indices j (0 ≤ j < n), where nums1[j] >= x_i and nums2[j] >= y_i, or −1 if795

there is no j satisfying the constraints.796

Return an array answer where answer[i] is the answer to the ith query.797

Constraints798

• nums1.length == nums2.length799

• 1 <= n <= 105800

• 1 <= nums1[i], nums2[i] <= 109801

• 1 <= queries.length <= 105802

• 1 <= x_i, y_i <= 109803

Examples804

• Example 1:805

Input: nums1 = [4,3,1,2], nums2 = [2,4,9,5], queries = [[4,1],[1,3],[2,5]]806

Output: [6,10,7]807

• Example 2:808

Input: nums1 = [3,2,5], nums2 = [2,3,4], queries = [[4,4],[3,2],[1,1]]809

Output: [9,9,9]810

• Example 3:811

Input: nums1 = [2,1], nums2 = [2,3], queries = [[3,3]]812

Output: [-1]813
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Best-of-100 on Leetcode/2839 814

815
1 class Solution: 816
2 def maximumSumQueries(self , nums1: List[int], nums2: List[int], queries: List[ 817

List[int]]) -> List[int]: 818
3 from sortedcontainers import SortedList 819
4 820
5 # Combine nums1 and nums2 into pairs and sort them by nums1 in descending 821

order 822
6 combined = sorted(zip(nums1 , nums2), reverse=True) 823
7 query_with_index = [(x, y, i) for i, (x, y) in enumerate(queries)] 824
8 query_with_index.sort(reverse=True) 825
9 826

10 # Initialize a sorted list to keep track of the maximum sums 827
11 max_sums = SortedList () 828
12 result = [-1] * len(queries) 829
13 j = 0 830
14 831
15 for x, y, i in query_with_index: 832
16 # Add valid pairs to max_sums 833
17 while j < len(combined) and combined[j][0] >= x: 834
18 num1 , num2 = combined[j] 835
19 # Maintain the sorted list with only the maximum sums for each 836

unique num2 837
20 if not max_sums or max_sums [ -1][1] < num1 + num2: 838
21 max_sums.add((num2 , num1 + num2)) 839
22 j += 1 840
23 841
24 # Find the maximum sum for the current query 842
25 idx = max_sums.bisect_left ((y, float(’inf’))) 843
26 if idx > 0: 844
27 result[i] = max_sums[idx -1][1] 845
28 846
29 return result 847848

Our method on Leetcode/2839 849

850
1 from typing import List 851
2 852
3 class Solution: 853
4 def maximumSumQueries(self , nums1: List[int], nums2: List[int], queries: List[ 854

List[int]]) -> List[int]: 855
5 combined = sorted(zip(nums1 , nums2), reverse=True) 856
6 queries = sorted ([(x, y, i) for i, (x, y) in enumerate(queries)], reverse= 857

True) 858
7 result = [-1] * len(queries) 859
8 stack = [] 860
9 861

10 for x, y, i in queries: 862
11 while combined and combined [0][0] >= x: 863
12 a, b = combined.pop(0) 864
13 while stack and stack [ -1][0] <= a + b: 865
14 stack.pop() 866
15 stack.append ((a + b, b)) 867
16 for val , min_b in stack: 868
17 if min_b >= y: 869
18 result[i] = val 870
19 break 871
20 872
21 return result 873874

Problem Description of atcoder/abc322_e 875

AtCoder Inc. is planning to develop a product. The product has K parameters, whose values are currently 876

all zero. The company aims to raise all parameter values to at least P . 877

There are N development plans. Executing the ith development plan (1 ≤ i ≤ N) increases the value 878

of the jth parameter by Ai,j for every integer j such that 1 ≤ j ≤ K, at the cost of Ci. A development 879
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plan cannot be executed more than once.880

Determine whether the company can achieve its goal, and if it can, find the minimum total cost required881

to achieve the goal.882

Constraints883

• 1 ≤ N ≤ 100884

• 1 ≤ K,P ≤ 5885

• 0 ≤ Ai,j ≤ P (1 ≤ i ≤ N, 1 ≤ j ≤ K)886

• 1 ≤ Ci ≤ 109 (1 ≤ i ≤ N)887

• All input values are integers.888

Examples889

• Example 1:890

Input:891

4 3 5892

5 3 0 2893

3 1 2 3894

3 2 4 0895

1 0 1 4896

Output:897

9898

Explanation: If you execute the first, third, and fourth development plans, each parameter will be899

3+ 2+ 0 = 5, 0+ 4+ 1 = 5, 2+ 0+ 4 = 6, all of which are at least 5, so the goal is achieved. The900

total cost in this case is 5 + 3 + 1 = 9. It is impossible to achieve the goal at a total cost of 8 or less.901

Thus, the answer is 9.902

• Example 2:903

Input:904

7 3 5905

85 1 0 1906

37 1 1 0907

38 2 0 0908

45 0 2 2909

67 1 1 0910

12 2 2 0911

94 2 2 1912

Output:913

-1914

Explanation: You cannot achieve the goal no matter what you do. Thus, print −1.915
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Best-of-100 on Atcoder/abc322_e 916

917
1 import sys 918
2 import itertools 919
3 920
4 def main(): 921
5 import sys 922
6 import itertools 923
7 924
8 def readints (): 925
9 return list(map(int , sys.stdin.readline ().split())) 926

10 927
11 N, K, P = readints () 928
12 plans = [readints () for _ in range(N)] 929
13 930
14 # Generate all possible combinations of plans 931
15 min_cost = float(’inf’) 932
16 for r in range(1, N + 1): 933
17 for combination in itertools.combinations(range(N), r): 934
18 total_cost = sum(plans[i][0] for i in combination) 935
19 total_increase = [sum(plans[i][j + 1] for i in combination) for j in 936

range(K)] 937
20 if all(increase >= P for increase in total_increase): 938
21 min_cost = min(min_cost , total_cost) 939
22 940
23 if min_cost == float(’inf’): 941
24 print(-1) 942
25 else: 943
26 print(min_cost) 944
27 945
28 if __name__ == "__main__": 946
29 main() 947948

Our method on Atcoder/abc322_e 949

950
1 # YOUR CODE HERE 951
2 import sys 952
3 input = sys.stdin.read 953
4 data = input().split() 954
5 955
6 N = int(data [0]) 956
7 K = int(data [1]) 957
8 P = int(data [2]) 958
9 959

10 plans = [] 960
11 index = 3 961
12 for _ in range(N): 962
13 C = int(data[index]) 963
14 A = list(map(int , data[index + 1:index + 1 + K])) 964
15 plans.append ((C, A)) 965
16 index += 1 + K 966
17 967
18 min_cost = float(’inf’) 968
19 969
20 def dfs(current_params , current_cost , plan_index): 970
21 global min_cost 971
22 if current_cost >= min_cost: 972
23 return 973
24 if all(param >= P for param in current_params): 974
25 min_cost = current_cost 975
26 return 976
27 if plan_index == N: 977
28 return 978
29 # Include the current plan 979
30 new_params = [a + b for a, b in zip(current_params , plans[plan_index ][1])] 980
31 dfs(new_params , current_cost + plans[plan_index ][0], plan_index + 1) 981
32 # Exclude the current plan 982
33 dfs(current_params , current_cost , plan_index + 1) 983
34 984
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35 dfs ([0] * K, 0, 0)985
36986
37 if min_cost == float(’inf’):987
38 print(-1)988
39 else:989
40 print(min_cost)990991

C Example of Cot prompting992

Cot Prompting Example

Instruction: As an AI language model, you are tasked with generating Python code based on
given problem specifications. To accomplish this, you need to follow a two-step process:
1. **Planning**: Analyze the problem and create a detailed plan that outlines the steps needed to
solve the problem. This plan should include the logic, data structures, and Python functions you’ll
use.
2. **Coding**: Based on the plan, write the Python code that solves the problem. Make sure your
code adheres to the Python coding standards and uses the correct syntax.
Problem: You are given a 0-indexed integer array nums. The teacher wants to form a group
of students with maximal strength. The strength of a group is defined as the product of all the
elements in the group. Return the maximum strength of a group the teacher can create.
Plan:
<startofplan>
Step 1: Import the combinations function from itertools module.
Step 2: Define a class Solution with a method maxStrength that takes a list of integers as input.
......
Step 8: After all combinations are processed, return max_strength.
<endofplan>
Python Code:

1 from itertools import combinations
2

3 class Solution:
4 def maxStrength(self , nums: List[int]) -> int:
5 if len(nums) == 1:
6 return nums [0]
7 max_strength = float(’-inf’)
8 for i in range(1, len(nums)+1):
9 for comb in combinations(nums , i):

10 strength = 1
11 for num in comb:
12 strength *= num
13 max_strength = max(max_strength , strength)
14 return max_strength

993
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