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ABSTRACT

Shape plays a fundamental role in biology. Throughout history, the constant ob-
servation and documentation of the shape of multiple organisms has been key to
further biological understanding of organism and tissue behavior, function, and
origins. To extract, compare, and analyze such data diversity we must wield a
quantifiable, robust, and concise method. We thus turn to Topological Data Anal-
ysis (TDA) and the Euler Characteristic Transform (ECT). As a study case, we
quantify the morphology of X-ray CT scans of barley spikes and seeds using both
traditional and topological shape descriptors based. We then successfully train a
support vector machine to distinguish and classify 28 different parental genotypes
of barley based solely on the 3D shape of their grains. We observe that combining
both traditional and topological descriptors produces considerably better classi-
fication results compared to the use of exclusively traditional descriptors. This
improvement suggests that TDA is thus a powerful complement to describe com-
prehensively a multitude of shape nuances which are otherwise not picked up by
traditional morphometrics methods.

1 INTRODUCTION

Shape is data and data is shape. Biologists are accustomed to thinking about how the shape of
biomolecules, cells, tissues, and organisms arise from the effects of genetics, development, and the
environment. Traditionally, biologists use morphometrics to compare and describe shapes. The
shape of leaves and fruits is quantified based on homologous landmarks—similar features due to
shared ancestry from a common ancestor—or harmonic series from a Fourier decomposition of their
closed contour. While these methods are useful for comparing many shapes in nature, they cannot
always be used: there may not be homologous points between samples or a harmonic decomposition
of a shape is not appropriate. Topological data analysis (TDA) offers a more comprehensive, ver-
satile way to quantify plant morphology. In particular, Euler characteristic curves (ECC) serve as a
succinct, computationally feasible topological signature that allows downstream statistical analyses
(Turner et al., 2014). For example, Li et al. (2018) computed a morphospace for all leaves and used
ECCs to predict plant family and location, to later determine the genetic basis of leaf shape in apple
(Migicovsky et al., 2018), tomato (Li et al., 2018), and cranberry (Diaz-Gárcia et al., 2018). ECCs
are sensitive enough to detect both complex and subtle effects of rootstock and climate on grapevine
leaf shape (Migicovsky et al., 2019), the shape of spikelets—arrangements of grass flowers—and
their hairiness (McAllister et al., 2019), and patterns of vegetation from satellite imagery (Mander et
al., 2017). Here, we show the use of the Euler characteristic to comprehensively describe the shape
of barley seeds as a proof of concept.

2 METHODS

Consider a cubical complex X of dimension d. For a fixed direction ν ∈ Sd−1, and a height value
h ∈ R, we define

X(ν)h = {∆ ∈ X : 〈x, ν〉 ≤ h for all x ∈ ∆},
to be the subcomplex containing all cubical cells below height h in the direction ν. The Euler char-
acteristic at height h is χ(X(ν)h), the alternating sum of counts of cells in the subcomplex X(ν)h.
The Euler Characteristic Curve (ECC) of direction ν is defined as {χ(X(ν)h)}h∈R, exemplified in
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Figure 1: Filtration of a barley seed along the z-axis with 32 thresholds and its corresponding Euler
Characteristic Curve.

Figure 1. The Euler Characteristic Transform (ECT) is defined as the collection of all ECCs cor-
responding to all possible directions. To be more precise, the ECT of complex X is defined as the
function

ECT (X) : Sd−1 → ZR

ν 7→ {χ(X(ν)h)}h∈R.

We are studying the morphology of barley seeds and barley spikes—the branching inflorescence.
We focus on a collection of 28 different parental barley genotypes from diverse regions across the
Eurasian continent. Using X-ray CT—computed tomography—scanning technology, we have cre-
ated voxel-based 3D reconstructions of over 875 spikes, from which we have isolated more than
3100 parental seeds. Since the seeds are oblong in shape, we aligned them according to their three
main principal components.

On one hand, we computed 11 traditional quantifiable shape descriptors for each seed, such as
length, height, width, volume, and surface area. On the other hand, we computed topological shape
descriptors using the ECT. For topological purposes, we treated each voxel-based image as a dual
cubical complex where each nonzero voxel is treated as a vertex (Wagner et al., 2012).

We favor the use of the ECT for two reasons. First, the ECT is computationally inexpensive, since
it is based on successive alternating sums of counts of cells. Following a strategy similar to the one
outlined by Richardson and Werman (2014), computing a single ECC is an O(N) operation with
respect to the number of voxels in the image. This inexpensiveness is especially relevant as we deal
with thousands of extremely high-resolution 3D images. Second, Turner et al. (2014) proved that
the ECT effectively summarizes all the morphological features of any 3D complex as it encodes
sufficient information to reconstruct the initial complex. Such results were later extended to the
n-dimensional case independently by Curry et al. (2018) and Ghrist et al. (2018). Later, Curry et al.
(2018) proved a finite bound on the number of necessary directions for general 3D shapes, although
the idea of efficiently reconstructing an arbitrary 3D object solely from its ECT remains elusive
(Betthauser, 2018; Fasy et al., 2019; Micka, 2020).

In our case, we used 158 different directions with 8 uniformly spaced thresholds. We emphasized
directions toward the seed’s cleft, which correspond to directions close to both north and south poles
as shown in Figure 2a. This yielded a 1264-dimensional vector for every seed. Due to statistical
problems associated with high dimensionality, we reduced all ECT vectors to just 12 dimensions
using a kernel principal component analysis (KPCA) with a Laplace kernel (Schölkopf et al., 1998).

We then sought to test the descriptiveness of both traditional and topological measures. To this
end, we trained three non-linear support vector machines (SVM) (Burges, 1998) to characterize
and predict the seeds from the 28 different parental genotypes based on three different collection
of descriptors: traditional, topological, and combining both traditional and topological descriptors.
In every case, the descriptors were centered and scaled to variance 1 prior to classification. Given
that SVM is a supervised learning method, we partitioned our data into training and testing sets. In
our case, we randomly sampled 80% of the seeds from every founder as our training data set. The
remaining 20% was used to test the accuracy of our prediction model. We repeated this SVM setup
100 times and considered the average accuracy and confusion matrices as final results. The 25th
and 75th quantiles of classification accuracy are reported in Table 1. Average accuracy values for all
barley varieties are shown in Figure 3.
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Table 1: SVM classification accuracy of barley seeds from 28 different founding lines after 100
randomized training and testing sets. The ECT was computed with 158 directions (as in Figure 2a)
and 8 thresholds.

Shape descriptors No. of descriptors Classification accuracy (Q25—Q75)

Traditional 11 54.7%—57.1%
Topological (ECT + KPCA) 12 53.9%—56.9%
Combined (Traditional + Topological) 23 70.0%—72.4%

Table 2: Quade post-hoc p-values (with Bonferroni correction) to determine if different descriptors
produce statistically different SVM results

Assuming t distribution Assuming normal distribution

Traditional Topological Traditonal Topological
Topological 8.6× 10−3 ∗ Topological 6.7× 10−5 ∗
Combined < 2× 10−16 < 2× 10−16 Combined < 2× 10−16 < 2× 10−16

13 Parallels, 12 Meridians, N&S Poles
158 directions

(a) Directions chosen to compute the
ECT
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(b) Overall SVM classification accuracy when using combined
shape descriptors. The topological descriptors were computed with
different threshold and direction parameters

Figure 2: We used 158 directions and 8 thresholds each to compute the ECTs. We chose this
parameters, as increasing either the number of directions or thresholds didn’t improve the SVM
classification results.

Carrying out a Friedman test (Friedman, 1937) to determine if there is a statistical difference between
the three SVM classifiers, we obtain a p-value less than 2 × 10−16, which suggests significant
difference. Since we are comparing only three classifiers, we can rely better on a Quade test (Quade,
1979) as suggested in Conover (1998). This produces a p-value smaller than 2× 10−16 as well. The
significance prompts a pairwise comparison test. The p-values are reported in Table 2. Recall
that the results presented on Tables 1 and 2 and Figure 3 are based on an ECT computed with
158 directions and 8 thresholds. We chose these parameters on the observation that increasing the
number of thresholds or directions did not improve overall classification results as shown in Figure
2b.

3 RESULTS AND CONCLUSIONS

The Euler characteristic is a simple yet powerful way to reveal features not readily visible to the
naked eye. The small p-values for the Quade test seem to confirm that the SVM classifier with com-
bined descriptors is statistically distinct from the classifiers relying exclusively in either traditional
or topological descriptors. These small p-values remained small as we evaluated other post-hoc
tests, such as Nemenyi and Conover with different p-value corrections. Nonetheless, we are aware
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Figure 3: Average classification accuracy for different barley genotypes when using combined shape
descriptors. The topological descriptors were computed with 158 directions and 8 thresholds each.

that a more careful statistical analysis is necessary, as the combined SVM is naturally dependent
with both traditionally and topologically based SVM.

Even though the use of exclusively traditional or topological descriptors produces the same overall
classification accuracy as seen in Table 1, observe that certain barley varieties are better distin-
guishable with the topological lens but not with traditional measures, and vice-versa. For instance,
Glabron and Algerian report considerably higher classification accuracies whenever using topolog-
ical information compared to using only traditional measures. Moreover, some lines such as Club
Mariout are better characterized using exclusively topological features, as combining traditional
measures just muddles classification results. On the other hand, our topological descriptors perform
poorly whenever we try to distinguish lines such as Palmella Blue and Hannchen, as these lines seem
better characterized by traditional measures. Finally, some lines like Wisconsin Winter reported
poor classification results whenever we limited ourselves to just topological or traditional measures;
however, our classification accuracy improved dramatically as we combined both descriptors.

Natural variation in barley, like all crops, encompasses differences in yield and adaptation to diverse
climates and terrains. Understanding how differences in morphology affect these traits is vital to
improve barley through breeding. TDA combined with X-ray CT scans offers a novel insight into
the plant form and its evolution. As a long term plan, we will compare the topological descriptors
to available genetic information of each barley sample. This analysis can further our understanding
of the relationship between phenotype and genotype.
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