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Abstract

We present a novel method for generating 3D garment de-
formations from underlying body poses, which is key to a
wide range of applications, including virtual try-on and
extended reality. To simplify the cloth dynamics, exist-
ing methods mostly rely on linear blend skinning to obtain
low-frequency posed garment shape and only regress high-
frequency wrinkles. However, due to the lack of explicit
skinning supervision, such skinning-based approach often
produces misaligned shapes when posing the garment, con-
sequently corrupts the high-frequency signals and fails to
recover high-fidelity wrinkles. To tackle this issue, we pro-
pose a skinning-free approach by independently estimat-
ing posed (i) vertex position for low-frequency posed gar-
ment shape, and (ii) vertex normal for high-frequency local
wrinkle details. In this way, each frequency modality can
be effectively decoupled and directly supervised by the ge-
ometry of the deformed garment. To further improve the
visual quality of deformation, we propose to encode both
vertex attributes as rendered texture images, so that 3D
garment deformation can be equivalently achieved via 2D
image transfer. This enables us to leverage powerful pre-
trained image models to recover fine-grained visual details
in wrinkles, while maintaining superior scalability for gar-
ments of diverse topologies without relying on manual UV
partition. Finally, we propose a multimodal fusion to incor-
porate constraints from both frequency modalities and ro-
bustly recover deformed 3D garments from transferred im-
ages. Extensive experiments show that our method signifi-
cantly improves animation quality on various garment types
and recovers finer wrinkles than state-of-the-art methods.

1. Introduction
Generating high-quality 3D garment deformation given
posed human bodies facilitates a wide range of applications,
such as digital humans, virtual try-on, and extended reality.
Traditional works [3, 33] mostly rely on simulation to gen-
erate plausible results. However, such physics-based meth-
ods are time-consuming and require manual fine-tuning
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Figure 1. Illustration of our method. Given input garment and
body meshes (a), previous work [31] relies on LBS to generate
low-frequency (LF) posed garment shape. However, inaccurate
skinning in LBS can produce artifacts and misaligned garment po-
sition (b), which corrupts high-frequency (HF) signals and hinders
the wrinkle regression (c). In contrast, we decompose frequency
modalities using two geometric attributes: vertex positions and
normals, which are rendered as 2D texture images (d) and then
transferred on pixel intensities (e) to represent garment deforma-
tion. After fusing from both modalities, we generate deformed
garment with more accurate wrinkles (f).

simulator settings for each garment, which is laborious and
does not scale to diverse garment types [25, 46].

Recently, learning-based methods [26, 30, 31, 35, 37,
48, 50] have received increasing attention thanks to the effi-
ciency and scalability of deep networks. As garment defor-
mation consists of both high-frequency wrinkles and low-
frequency posed garment shape, it is challenging for neu-
ral networks to directly regress a single deformation field
due to its spectral bias [34, 49]. To this end, previous
works mostly adopt a simplified two-stage decomposition
by firstly regressing wrinkles relative to the un-posed gar-
ment template, then using linear blend skinning (LBS) to
obtain the low-frequency posed garment shape. However,
due to the lack of explicit supervision on garment skin-
ning, they either assume tight garments and directly skin
from the closest body vertex [31, 35–37], or skin loose gar-
ments with virtual joints [30, 50]. Such unsupervised skin-
ning can produce misaligned garment positions and unde-
sired artifacts, which corrupts high-frequency signals. Con-



sequently, these skinning-based methods can fail to recover
high-fidelity wrinkles details, as illustrated in Figure 1.

To tackle this issue, we present a novel skinning-free
method that decomposes high-low frequency modalities in-
stead with two geometric attributes. Specifically, we pro-
pose to directly estimate posed garment vertex positions
instead of relying on garment skinning. As networks tend to
prioritize learning low-frequency signals [34], we observe
the model learns well with the overall posed shape but can
generate over-smoothed garment geometry. To recover fine-
grained wrinkles, we further estimate vertex normals that
better capture local surface bending arising in wrinkles. In
contrast to skinning-based methods, our method effectively
decouples frequency components and enables explicit su-
pervision for both modalities, which avoids noisy skinning
and produces high-quality wrinkles.

Motivated by the capability of visual perception in large
vision models [7, 10, 29], we propose to project 3D gar-
ments onto 2D image space aiming at improving percep-
tual quality of deformation results. Specifically, unlike pre-
vious works that mostly rely on manual UV partition for
semantically-meaningful image representation [16, 47], we
instead render both vertex attributes as multi-view texture
images encoded in the garment canonical shape, which ef-
ficiently scales to large collection of garments with diverse
topologies and minimizes garment-body occlusion during
deformation. In this way, we effectively model 3D garment
deformation as a 2D image transfer task, as illustrated in
Figure 1. Finally, we fuse priors from transferred images
of both frequency modalities to recover deformed 3D gar-
ments, which robustly generates plausible deformation for
invisible areas introduced by rendering projection.

Our contributions can be summarized as follows. (i)
We propose a novel skinning-free pipeline for garment de-
formation with effective high-low frequency modalities de-
composition, which avoids noisy garment skinning and fa-
cilitates fine-grained wrinkle regression. (ii) We model
3D garment deformation via 2D image transfer, leverag-
ing powerful vision models and scalable image represen-
tation to recover high-fidelity visual details for wrinkles.
Extensive experiments show that our method noticeably im-
proves deformation and perceptual quality over state-of-the-
art learning-based methods.

2. Related Works
Physics-based Methods. To generate physically plausi-
ble garment animation, physics-based methods either rely
on time-consuming simulators [6, 20, 33, 45], or optimize
through physics-inspired losses [5, 11, 37]. To ensure re-
alism and accuracy, simulator parameters need to be fine-
tuned for each garment instance, which can be laborious.
Several works propose to estimate these parameters through
differentiable simulation [18, 21] or neural networks [9, 44],

however, the estimation needs to be performed in a con-
trolled setting with known external factors, which limits
their applications. The challenge in data preprocessing thus
restricts such method from scaling to diverse garment types.

Learning-based Methods. In contrast, learning-based
methods [8, 26, 30, 31, 35, 41, 48, 50] have been devel-
oped to achieve superior efficiency and scalability. Pio-
neered by [19], most works follow to estimate pose space
deformation (PSD), namely they adopt LBS to obtain low-
frequency posed garment shape, while predicting high-
frequency wrinkles in the canonical garment space. Specif-
ically, [35] directly regresses local vertex displacements us-
ing recurrent neural networks. [31] proposes to first use
mixture models to construct bases of high-frequency defor-
mations, then combine them with narrowed bandwidth ker-
nels. [48] leverages generative models to encode the fea-
sible high-frequency latent space. Similar to our approach,
[16, 47] uses normal maps to model fine wrinkles. How-
ever, they require manually built UV maps and rely on LBS
to generate initial normals, which we show in the ablation
study that are sub-optimal. While the above works tackle
tight garments and directly access body skinning weights,
[30, 50] further extend to loose garments by predicting vir-
tual garment joints to which garments are skinned. How-
ever, the prediction of virtual joints can not be explicitly su-
pervised, which can lead to incorrect joint transformations.
In summary, existing learning-based methods mostly suf-
fer from noisy skinning that can not be directly supervised.
Consequently, the skinning artifacts need to be jointly re-
fined during wrinkle regression, which prevents them from
estimating accurate wrinkles. In contrast, we present a
skinning-free approach, which effectively avoids noisy skin-
ning and facilitates to generate more accurate wrinkles.

Image-based 3D Representation. In view of large-scale
image datasets and effective pretrained image models, re-
cent works propose to represent 3D geometry in the im-
age space. Most existing works leverage UV mapping as
the image representation, which have been widely applied
in human pose estimation [12], avatar generation [22, 27],
and scan registration [13]. However, they mostly rely on
manual UV unwrapping to produce semantically meaning-
ful islands, which requires expert knowledge and is labo-
rious, thus does not scale to large-scale collections. Al-
ternatively, [22, 23, 42, 43] propose to render multi-view
images to automatically establish vertex-to-pixel correspon-
dence. Specifically, [42, 43] learn to generate 3D clothed
humans by integrating from estimated normal images. [23]
encodes 3D character animation via ultra dense pose im-
ages. [22] designs Gaussian maps rendered from template
human meshes to encode parameters for Gaussian splat-
ting. Unlike all above works that consider only a single
image source, we observe that accurate garment deforma-
tion requires effectively fusing multiple image domains with
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Figure 2. Overview of our method. Given the input garment template M̄g and posed body mesh Mb, we first render position and normal
images for the garment {P̄s

g , N̄ s
g } and body {Ps

b , N s
b } from each view s, aiming to project the 3D garment onto the image space. Next,

we transfer position images in fp(·) and normal images in fn(·), where the two networks have the same architecture as shown in the top
row (taking front normal images as an example). Finally, we initialize the posed garment mesh from transferred position images P̂s

g and
recover missing wrinkle details by fusing from normal images N̂ s

g to obtain the deformed garment M̂g . ”⊕” denotes residual connection.

mixed frequency modalities, which is achieved via a novel
pipeline as will be introduced below.

3. Method
To avoid skinning artifacts and produce more accurate wrin-
kles, we present a novel skinning-free pipeline, as shown in
Figure 2. Given a garment template mesh M̄g = {V̄g, Fg}
where V̄g ∈ RN×3 denotes vertex positions and Fg ∈
ZF×3
+ denotes triangle faces, we aim to estimate its de-

formed mesh M̂g = {V̂g, Fg} conditioned on the posed
body mesh Mb = {Vb, Fb}. Instead of directly regressing
3D vertex displacements, we propose to model garment de-
formation in 2D image space. Specifically, we first render
RGB images P̄s

g and N̄ s
g ∈ RH×W×3 that respectively en-

code vertex positions and normals of the garment template
from each view s ∈ {front, back}. Similarly for the posed
body mesh we render corresponding images {Ps

b ,N s
b }. We

then develop an image transfer network to generate trans-
ferred images P̂s

g and N̂ s
g , which describe posed garment

shape and wrinkles respectively (Section 3.2). Finally, we
propose a multimodal fusion process to leverage priors of
both modalities and optimize 3D deformed garment mesh
from transferred images (Section 3.3).

3.1. Image Rendering
We represent 3D garment and body meshes as 2D images
rendered from multiple views, where the intensities of pix-
els encode the garment geometry, e.g. positions or normals

of vertices. Specifically, to generate such an image for a
deformed mesh, we use its vertex positions and normals to
color the corresponding vertices on the template mesh, then
render the results from both front and back views. In this
way, for different deformations of the same mesh, the ren-
dered pixel values will be different while the image silhou-
ette remains the same, as we always project the template
mesh onto the image space. Taking the garment as an ex-
ample, given vertex positions Vg for a deformed mesh, we
compute the corresponding vertex normals Ng ∈ RN×3 and
linearly rescale their values to fit RGB colors, i.e. within the
range [0, 1]. We then render the images from each view with
a perspective camera of known transformation matrix as:

Ps
g = fs

r (RGB(Vg); M̄g) (1)

N s
g = fs

r (RGB(Ng); M̄g) , (2)

where RGB(·) represents the linear rescaling function that
maps positions or normals to RGB values, and fs

r (·; M̄g)
represents the renderer function from view s with the con-
stant template M̄g . Similarly, we can obtain images for the
posed body as Ps

b and N s
b , where we use the same cameras

as for the garment to capture only relevant body areas.
Discussion. Our rendering configuration has two advan-
tages compared to alternatives: 1) We can automatically es-
tablish vertex-to-pixel correspondence through perspective
projection, thus do not require manually built UV parame-
terization [16] or sew patterns [21, 32]. The rendered im-
ages also retain the canonical garment shape, which facili-



tates the image feature extraction; 2) Instead of directly pro-
jecting the deformed mesh, we project the template mesh
throughout rendering, which will not be influenced by self-
occlusions during garment deformation. Moreover, we use
front and back views to efficiently capture most visible gar-
ment vertices, which also provide sufficient constraints to
infer non-visible vertices at side views. After rendering all
images, we can estimate 3D garment deformation via 2D
image transfer as illustrated next section.

3.2. 2D Image Transfer
As the garment geometry can be fully represented by the
position and normal images, we formulate 3D garment de-
formation as an image transfer task, i.e. we aim to trans-
fer from the initial images {P̄s

g , N̄ s
g } representing the gar-

ment template to the target images {Ps
g ,N s

g } representing
the deformed garment, conditioned on the posed body im-
ages {Ps

b ,N s
b } as:

P̂s
g = fp(P̄s

g ,Ps
b ), N̂ s

g = fn(N̄ s
g ,N s

b ) , (3)

where P̂s
g and N̂ s

g are the estimated posed position and nor-
mal images, respectively. The position transfer network
fp(·) and normal transfer network fn(·) have the same ar-
chitecture (as in Figure 2). Each network contains three
consecutive modules: (i) an image feature encoder that ex-
tracts visual features of garment and body geometry, (ii)
a pose-conditioned feature refinement module that injects
pose condition and models fine-grained body-garment in-
teraction, and (iii) an image decoder that decodes the trans-
ferred images. We will introduce each module in below.
Image Feature Encoder. We forward each image input to
a pre-trained vision transformer DINO [7] to encode patch-
wise tokens of image features F̄s

g,Fs
b ∈ RM×D for gar-

ment and body respectively, where M represents the num-
ber of tokens and D represents the feature dimension. Com-
pared with other encoders like ImageNet-pretrained ResNet
[14], DINO can effectively encode detailed structural and
visual information through attention on salient image con-
tents, which is beneficial for generating fine wrinkles. We
further show its efficacy in Section 4.3.
Pose-Conditioned Feature Refinement. We refine image
features to introduce pose priors in K transformer blocks.
In each block, motivated by [40], we model body-garment
interaction by first computing the multi-head cross-attention
[39] between the garment feature F̄s

g and the body fea-
ture Fs

b to generate the pose-conditioned garment feature.
In contrast to the traditional skinning process that com-
putes the skinning weights with respect to sparse joints, we
learn to model the dense correlation between image patches,
which can capture fine-grained body-garment interaction.
Furthermore, we follow the vanilla transformer structure
[39] and continue to forward the feature into a self-attention

layer followed by a multi-layer perceptron (MLP) to gener-
ate the refined garment feature F̂

s

g .

Image Decoder. Finally, F̂
s

g is rearranged spatially to form
a 3D tensor corresponding to the 2D image feature map and
forwarded to an image decoder to generate transferred im-
ages. The image decoder consists of residual blocks of 2D
convolution layers, followed by transposed convolution lay-
ers to upsample the spatial resolution.
Training Objectives. We train each network using the
masked L1 loss as:

Lp =
∑

s||S̄s
g ⊙ P̂s

g − S̄s
g ⊙ Ps

g ||1 (4)

Ln =
∑

s||S̄s
g ⊙ N̂ s

g − S̄s
g ⊙N s

g ||1 , (5)

where Ps
g and N s

g represent ground truth position and nor-
mal images, S̄s

g represents the silhouette of the garment
template to mask for valid pixels, and ⊙ represents pixel-
wise multiplication. Note that we independently model
each modality regardless of their consistency constraints,
as we observe that mixing frequency components during
image transfer leads to inferior accuracy (as compared in
Section 4.3). Alternatively, we opt to fuse position-normal
correlation via explicitly optimization.

3.3. 3D Multimodal Fusion
While we can obtain vertex positions of the deformed gar-
ment solely from the position images P̂s

g of both views, we
observe two major issues of such an approach: (i) since the
high frequency wrinkle details are often reflected by rel-
atively small position changes, it is hard for the position
transfer network fp(·) to capture such subtleties, thus lead-
ing to an over-smoothed mesh, (ii) although images from
front and back views cover most of the garment, the posi-
tions of non-visible vertices at side views can not be directly
obtained from these images. In this section, we propose
a multimodal fusion process to address both issues. The
key idea is to incorporate high-frequency wrinkle details
recorded by the normal images to refine the over-smoothed
mesh initialized from the position images, while using the
edge and surface priors to constrain the non-visible vertices.
Specifically, we aim to optimize the deformed vertex posi-
tions V⋆

g that aligns with both image observations as:

V⋆
g=argmin

V̂g

∑
s(||fs

r (V̂g)−P̂s
g ||+||fs

r (N̂g)−N̂ s
g ||) , (6)

where fs
r (·) is the renderer function in Eq.(2) that omits

constants and N̂g are vertex normals computed from vertex
positions V̂g . The optimization includes two stages where
garment mesh is firstly initialized from position images and
then refined with normal images to recover fine wrinkles.
Vertex Position Initialization. We initialize vertex posi-
tions from position images based on their visibility under



the perspective projection. For visible vertices, we sim-
ply interpolate their corresponding pixel values in the trans-
ferred position images to initalize their positions. For non-
visible vertices especially at side views, we initialize them
by linearly interpolating from the closest front and back vis-
ible vertex pairs. To correct the linear interpolation and en-
sure a smooth boundary between two types of vertices, we
smooth the results by minimizing the edge length loss Le

as:

Le=
1

|E|
∑

{i,j}∈E(∥V̂g[i]−V̂g[j]∥−∥V̄g[i]−V̄g[j]∥)2 , (7)

where E represents the index set of all edges defined by the
garment faces Fg , V̂g and V̄g represent estimated and tem-
plate mesh vertices, respectively. Moreover, we impose a
regularization loss Lrv to penalize the L2 distance on dis-
placements of visible vertices, in order to align with the po-
sition images. The overall loss for this stage can be summa-
rized as Le + λrvLrv, with loss weight λrv.
Vertex Normal Fusion. To amend high-frequency wrinkle
details on the position-initialized vertices, we fuse normal
predictions onto them by minimizing the normal render-
ing loss Lr defined as the second term in Eq.(6), and then
smooth the results using a normal consistency loss Lrn as:

Lrn =
1

|E|
∑

{i,j}∈E(1− N̂g[i]
T N̂g[j]) . (8)

Similar to the initialization stage, we impose the edge length
loss Le to penalize irregular rim contours and include the
vertex displacement regularization Lrv on all vertices. Fi-
nally, to penalize garment-body collision, we impose a col-
lision loss by penalize the penetration distance as:

Lc =
1

N

∑
i max(0,−SDF(V̂g[i],Mb)) , (9)

where SDF(·) represents the vertex-to-mesh signed dis-
tance. The overall optimization objectives for normal fusion
can be summarized as:

L = Lr + λrnLrn + λeLe + λrvLrv + λcLc , (10)

where λrn, λe, λrv, λc balance the weights of losses.

4. Experiments
4.1. Experiment Setup
Datasets: We evaluate our method and baselines on three
benchmarks: 1) VTO dataset [35]containing two types of
garments ”t-shirt” and ”dress” Each garment is draped onto
an SMPL [24] human body using ground truth deforma-
tions simulated in the ARCSim [28] simulator. We follow
[30] to use 4 clips (01 01, 111 02, 55 27 and 91 36)
of medium body shape (β = 0) and unseen poses for test-
ing and the remaining 49 clips for training. 2) TailorNet

dataset [31]. Since VTO only contains upper garments, we
further adopt TailorNet to test on lower garments ”pants”
and ”skirt”. We follow [30] to use the medium body shape
and garment style (β = 0, γ = 0) split, and adopt 2 clips
(005, 010) of unseen poses for testing and the remaining
16 clips for training. 3) CLOTH3D dataset [4]. For the first
two datasets, we test on a single body and garment shape
only to ensure a fair comparison with the commonly used
evaluation standard in [30, 50]. However, our method is
not limited to this set up. To verify this, we further demon-
strates results on unseen dress garments from CLOTH3D
for generalization evaluation (Section 4.4).
Metrics. Following [30, 50], we evaluate all methods on
three metrics: Root Mean Squared Error (RMSE), Haus-
dorff distance [2], and spatio-temporal edge difference
(STED) [38] between predicted and ground truth meshes.
Specifically, RMSE and Hausdorff distance assess the pre-
diction accuracy in, while STED evaluates the perceptual
quality of deformation by measuring relative edge differ-
ences in each test clip.
Implementation Details. We render all images at 256×256
pixels using differentiable renderer from Nvdiffrast [17] and
normalize deformed garment and posed body vertices with
the global rotation and translation from the human pose. For
the image transfer network, we fine-tune the last two layers
of the DINO encoder, along with K = 4 transformer blocks
for the feature refinement module. We train the model using
the Adam [15] optimizer for 100K iterations, and set the
learning rate to 1 × 10−4. For multimodal fusion, we use
the same optimizer with a learning rate of 1 × 10−3 and
optimize for 100 steps in both the initialization and normal
fusion stages. For the loss weights, we set λrv = 0.02,
λe = λc = 100, and λrn = 0.001 on t-shirt and 0.01
on other garments based on their scales. We include the
detailed model architecture and inference time comparison
in supplement materials.

4.2. Results on Garment Deformation

Following [30, 50], we report all metrics by training and
testing on each garment instance to ensure a fair compari-
son. In Table 1, we present the results on the VTO dataset,
where metrics for baselines [30, 31, 35, 50] are borrowed
from [30, 50] where we followed the same test configu-
ration. For [36], we use its official weights and evaluate
the results on our test split. We observe that our method
achieves the best accuracy against all skinning-based meth-
ods [30, 31, 35, 50] thanks to the proposed skinning-free
pipeline that avoids artifacts of noisy garment skinning. In
particular, we outperform [30, 50] on loose garments, with-
out the need to estimate additional virtual joints or anchors
to facilitate garment skinning. Moreover, thanks to the ca-
pability of perceptual learning in image models [1], our
method achieves improved perceptual quality (lower STED



Table 1. Quantitative comparison on the VTO Dataset. Best
results are highlighted in bold. Our method achieves superior de-
formation accuracy and perceptual quality compared to state-of-
the-art skinning based methods [30, 31, 35, 36, 50] on both tight
and loose garments.

Methods
Dress T-shirt

RMSE ↓ Hausdorff ↓ STED ↓ RMSE ↓ Hausdorff ↓ STED ↓

TailorNet [31] 22.95 76.80 0.0757 9.90 27.02 0.0418
Santesteban [35] 20.96 87.01 0.0745 10.25 29.56 0.0449
Santesteban [36] 21.07 87.98 0.0620 9.97 25.64 0.0335
VirtualBones [30] 19.91 83.39 0.0722 10.52 31.51 0.0452
AnchorDEF [50] 16.05 74.20 0.0493 6.25 26.31 0.0262
Ours 13.40 61.73 0.0407 4.66 20.89 0.0205

Table 2. Quantitative comparison on the TailorNet Dataset.
Best results are highlighted in bold and and inapplicable results
are marked with ”-”. Our method consistently generates more ac-
curate results than baseline methods on lower garments.

Methods
Pants Skirt

RMSE ↓ Hausdorff ↓ STED ↓ RMSE ↓ Hausdorff ↓ STED ↓

TailorNet [31] 4.84 14.46 0.0127 7.76 16.28 0.0162
Santesteban [35] 4.91 14.87 0.0129 - - -
VirtualBones [30] 4.76 18.75 0.0166 - - -
Ours 4.03 13.55 0.0114 5.38 14.06 0.0150

values) on deformed garments.
We further report quantitative comparison results in Ta-

ble 2. For pants, we borrow the metrics results reported by
[30] which has the same set-up with us. Since [30, 35] do
not release the training code or pretrained weights for the
skirt split, we are unable to evaluate their results and thus
only compare with [31] and retrain with their official code
on the single garment set-up. We observe that our method
consistently outperforms the skinning-based method [31]
when applied to lower garments.
Qualitative results. As shown in in Figures 3 and 4,
our method can generate 3D deformed garments with finer
wrinkle details and more accurate fold patterns. In compar-
ison, the skinning-based baselines [31, 36] can not recover
accurate wrinkles in challenging cases due to the corrupted
high-frequency signals, thus generating over-smoothed ge-
ometries. For completeness, we further include a compari-
son with physics-based methods [11], which requires fine-
tuning physical parameters for each garment to ensure accu-
rate deformation. However, the fine-tuning process is non-
trivial with only inputs of garment geometry, thus are not
directly comparable to our method. We show that directly
using their default physical parameters can lead to unreal-
istic behaviors, e.g. over-stretched skirts, as these physical
parameters often have a global effect on the overall defor-
mation. In contrast, learning-based methods like us ensures
a more robust results by only estimating local vertex dis-
placements. Moreover, we show in Figure 5 that accurate
estimation produces results with reduced penetration, which
align well with the underlying body motions. Finally, we
show in the supplementary video that accurate results also

Table 3. Effects of the skin-free approach. We show that mix-
ing linear blend skinning with image transfer (IT) leads to inferior
performance than our full skinning-free approach.

Methods
Dress T-shirt

RMSE ↓ Hausdorff ↓ STED ↓ RMSE ↓ Hausdorff ↓ STED ↓

IT + LBS 18.50 78.25 0.0625 6.85 25.30 0.0295
LBS + IT 15.75 68.40 0.0493 6.01 24.15 0.0242
Ours (Skin-free) 13.40 61.73 0.0407 4.66 20.89 0.0205

lead to temporal consistency, although we use only a single
pose as condition. We attribute this to the continuous nature
of the neural networks on continuous inputs, which is simi-
larly observed in previous works [31] with the same setup.

4.3. Ablation Study
Skinning-free Approach. To show the efficacy of the
skinning-free approach, we compare in Table 3 with two
LBS-based variants (both using skinning weights from
nearest body vertices) equipped with our image transfer
modules: (i) we supervise with GT transferred images in
the canonical space, which are generated via inverse LBS
(IT + LBS), and (ii) we refine from input images of LBS
re-posed garments (LBS + IT), analog to [16, 47]. We
observe that both variants produce inferior results, as in-
accurate skinning can produce noisy artifacts, which cor-
rupt high-frequency signals in either GT or input images
and thus hindering learning correct wrinkle patterns.
Study on Image Transfer (IT). To verify the effects of key
modules in the image transfer network, we compare sev-
eral alternatives to the current designs: (i) replacing body-
garment cross-attention with simply adding the body and
garment features (w/o Body Attn.) (ii) replacing the DINO
encoder with ResNet-50 (ResNet Encoder), and (iii) adding
cross-attention between two modalities (w/ Corss Modal),
as illustrated in Figure 6. We find both (i) and (ii) lead
to smoothed garment geometry, showing the efficacy of
the body-garment cross-attention for modeling fine-grained
body-garment interaction, as well as the DINO encoder for
extracting detailed garment structural information. More-
over, we empirically observe that mixing frequency signals
like (iii) results in inferior accuracy, thus we choose to sep-
arately tackle each modality.

In addition, we compare with the image representation of
automatically generated UV maps via xatlas in Figure 6 and
Table 4. Since such images contain a large number of is-
lands and therefore destroys garment shape priors, which is
not conducive to the pretrained encoders and thus does not
benefit wrinkle estimation. While manual UV can poten-
tially solve this issue, it does not scales to a large collection
of garments. Finally, we quantitatively compare in Table
4 with two more variants, which uses 3D MLP and graph
convolution network (GCN) to directly regress 3D vertex
positions and normals. Due to limited capacity of simple



TailorNet Santesteban et al. Ours GT TailorNet Ours GTSantesteban et al.

Figure 3. Results on VTO dataset. We produce more accurate wrinkles and folds than skinning-based methods [31, 36].

TailorNet HOOD Ours GT TailorNet HOOD Ours GT

Figure 4. Results on TailorNet dataset. Our method consistently produces more accurate deformations on lower garments than [11, 31].

Figure 5. Qualitative results with human motions. Our method generates accurate and plausible garment deformations for a sequence of
unseen human poses. Moreover, the deformed garments are temporally consistent. We show more results in the supplementary video.

3D networks, it produces inferior results than the proposed
image transfer module.

Fusion Losses. In Table 5 and Figure 7, we show the effect
of each loss during fusion optimization. The initial mesh
(a) interpolated from the position images does not contain
enough high-frequency wrinkle details, and non-visible ver-
tices at side views can not be constrained, which leads to
large RMSE error. By enforcing edge length consistency,

we repair non-visible vertices as in (b). Jointly with (a) and
(b), we obtain a reasonably good initialization that allows
normal fusion to be feasibly achieved with few optimiza-
tion steps. Moreover, we recover more accurate wrinkles
after fusing from normal images (c). However, with only
the normal loss, we observe artifacts at mesh rims due to
under-constrained objectives. We thus further refine the re-
sults by penalizing irregular boundary edges and abrupt nor-



(a) w/o Body Attn. (b) w/ Cross Modal (c) Full Model

(d) GT (e) w/ UV Map (f) UV GT

Figure 6. Comparison of design variants for image transfer
modules. We show that design variants in the network architecture
(a) and (b) produce smoother results, while the full model (c) can
generate fine wrinkles that are closer to the GT (d). In addition,
we show that using automatically generated UV maps (e) results
in complex islands that are not beneficial for wrinkle estimation.

(a) Position Init. (b) w/ Edge Length (c) w/ Normal 

(d) w/ Smooth      ,     (e) GT 

Le Lr

LrnLe Lc(f) w/o (g) w/ Lc

Figure 7. Illustration of intermediate fusion results. We show
optimization results after adding corresponding losses. By fus-
ing both modalities, we produce more accurate deformation with
higher perceptual quality. Moreover, the edge length and normal
consistency help to constrain non-visible vertices and resolve arti-
facts at mesh rims.

mal changes, which generate smoothed results as in (d). Fi-
nally, we show that the collision loss Lc effectively reduces
body-garment collision as shown in (g).

Table 4. Variants with IT.

Methods RMSE↓ Hausdorff↓ STED ↓

3D MLP 8.39 24.77 0.0310
3D GCN 7.95 24.25 0.0337
Auto-UV 6.43 23.38 0.0277

Full Model 4.66 20.89 0.0205

Table 5. Study on fusion losses.

Methods RMSE↓ Hausdorff↓ STED ↓

Init. (no normal) 9.98 30.04 0.0771
Init. + Le 5.52 23.45 0.0525
Init. + Le + Lr 4.96 22.23 0.0238

Full Model 4.66 20.89 0.0205

4.4. Generalization Analysis
While baseline methods [30, 35, 36, 50] are often evalu-
ated for single garment set-up, our method is not limited
to this configuration and in fact is well-suited for training
across multiple garments thanks to several designs: (i) the
use of pretrained DINO encoder that is capable of extract-
ing detailed semantic features for various garments, (ii) the
image transfer approach that is agnostic to garment topolo-
gies, and (iii) the use of front and back view projections
to establish image representations for garments, which will
not be scalable for manual UV parameterization on a large
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Figure 8. Generalization results on unseen body shapes and
garment types. We show our method can be jointly trained on
multiple body shapes and garment types to achieve effective gen-
eralization, demonstrating the scalability of the approach.

collection of garments. To verify the generalizability of
our method, we further jointly train on 50 dress garments
on the CLOTH3D [4] dataset, and show the results in Fig-
ure 8. By training across multiple garments, our method
can effectively generalize to unseen garment shapes, with
the skinning-free method particularly beneficial for tackling
loose garments. Furthermore, we show that our method can
be extended to jointly train on multiple body shapes, which
enables generalization to unseen body shapes and produc-
ing different plausible deformations.

5. Discussion

Limitation. Although our method succeeds in generating
fine-grained garment wrinkles, the geometric fidelity of the
deformation are still bounded by the resolution of the ren-
dered images, thus may lead to missing details such as de-
formation for tiny garment pieces and small wrinkles. In
addition, we only consider pose-dependent deformations,
while omitting complex dynamics such as interactions be-
tween multiple layered garments.
Conclusion. In this paper, we propose a novel skinning-free
pipeline to generate high-fidelity 3D garment deformation
via image transfer. We decompose garment deformation
into decoupled frequency modalities represented by vertex
positions and normals, and further project both modalities
into the image space, which allows us to leverage powerful
vision models to produce wrinkles of superior scalability
and perceptual quality. Thanks to these designs, our method
effectively produces finer wrinkle details over previously
dominant skinning-based baselines.
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