
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2025

DIMS: CHANNEL-DEPENDENT AND
SEASONAL-TREND INDEPENDENT TRANSFORMER
USING MULTI-STAGE TRAINING FOR TIME SERIES
FORECASTING

Anonymous authors
Paper under double-blind review

ABSTRACT

Due to the limited size of real-world time series data, current Transformer-based
time series forecasting algorithms often struggle with overfitting. Common tech-
niques used to mitigate overfitting include channel-independence and seasonal-
trend decomposition. However, channel-independent inevitably results in the loss
of inter-channel dependencies, and existing seasonal-trend decomposition meth-
ods are insufficient in effectively mitigating overfitting. In this study, we propose
DIMS, a time series forecasting model that uses multi-stage training to capture
inter-channel dependencies while ensuring the independence of seasonal and trend
components. The computation of channel dependency is postponed to the later
stage, following the channel-independent training, while the seasonal and trend
components remain fully independent during the early training phases. This ap-
proach enables the model to effectively capture inter-channel dependencies while
minimizing overfitting. Experiments show that our model outperforms the state-
of-the-art Transformer-based models on several datasets.

1 INTRODUCTION

Time series forecasting is widely utilized across multiple domains such as transportation, energy,
meteorology, retail, and finance. With the rapid development of deep learning, numerous studies
have applied deep learning algorithms to multivariate time series forecasting. These studies have
leveraged CNNs, RNNs, and various ensemble algorithms, which have achieved excellent results in
computer vision and natural language processing (NLP) tasks, for time series forecasting and have
seen some success. The Transformer architecture has recently demonstrated outstanding perfor-
mance in fields such as computer vision and NLP, as seen in models like BERT (Vaswani (2017)),
GPT (Achiam et al. (2023)), ViT (Dosovitskiy (2020)), and Swin-Transformer (Liu et al. (2021)).
Consequently, many studies are now applying the Transformer architecture to time series forecasting
tasks, such as in FEDformer (Zhou et al. (2022)) and Autoformer (Wu et al. (2021)).

In contrast to areas such as computer vision and natural language processing, which benefit from am-
ple datasets, real-world time series forecasting frequently encounters limitations in data availability.
Acquiring real-world time series data is inherently time-intensive, often requiring substantial peri-
ods to gather sufficient observations. For example, if electricity consumption is recorded hourly, it
could take more than a year to compile 10,000 data points. This results in a significant temporal
cost for acquiring time series data, and over time, the distribution of the data may change, indicat-
ing that merely augmenting the dataset does not guarantee enhancements in predictive performance.
Due to these inherent characteristics of time series data, certain counterintuitive phenomena have
been observed in time series forecasting experiments. For instance, many well-designed time series
forecasting models based on Transformer architectures perform worse than simpler linear models
(Zeng et al. (2023)). This is not surprising, as Transformer models typically require large datasets
to achieve optimal performance, which real-world time series data often cannot provide, leading to
rapid overfitting in Transformer models. Encouragingly, PatchTST (Nie et al. (2022)) has achieved
superior results to linear models by using a unique patching method and a channel-independent
mechanism. The channel-independent mechanism ignores the relationships between channels (di-

1



054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2025

mensions) of the time series data, treating each channel as a homogeneous univariate time series.
This mitigates overfitting and improves prediction performance, further highlighting the importance
of mitigating overfitting to enhance the accuracy of time series forecasting.

As demonstrated by the “simple” models such as DLinear and PatchTST, which achieve excellent
performance, simpler methods and architectures often yield better results in time series forecasting
tasks. However, “simple is difficult”, as it remains a challenge to simultaneously leverage the power-
ful correlation-capturing capabilities of Transformers while avoiding the overfitting often induced by
time series data. In this study, we propose a channel-Dependent seasonal-trend-Independent model
using Multi-Stage training (DIMS) for time series forecasting. Our model harnesses the powerful
feature extraction capabilities of the Transformer architecture and accounts for the dependencies
between time series channels while avoiding premature overfitting.

In summary, our main contributions are as follows:

• We propose a season-trend independent pattern representation and training method that
maintains the independence of season and trend components for most of the training pro-
cess. This method prevents interference between the seasonal and trend components during
training, thereby alleviating overfitting.

• The dependencies between time series channels are incorporated into the forecasting
model. We propose a method that delays the computation of inter-channel dependencies,
integrating this calculation only after the model completes the channel-independent time
series dimension operations. This ensures that the capture of time series features is not
disturbed, ultimately allowing the integration of the inter-channel dependency module to
improve prediction performance rather than prematurely causing overfitting. For datasets
that do not meet the assumption of channel independence, we modify the positional encod-
ing of the time series to further enhance prediction performance.

• We conduct experiments on seven widely used public real-world datasets, and the results
show that our model outperforms state-of-the-art Transformer-based models.

2 RELATED WORK

PatchTST (Nie et al. (2022)) divides time series data into several patches and introduces mechanisms
such as channel independence and parameter sharing. Crossformer (Zhang & Yan (2023)) employs
a patch division method similar to PatchTST, while also introducing cross-channel attention. Its
proposed TSA model structure and attention routing algorithm between channels significantly re-
duce the computational cost of cross-channel attention, which is crucial for high-dimensional time
series data. iTransformer (Liu et al. (2023)) treats each channel of the time series as an individual
patch, using feedforward neural networks to extract temporal features and employing a Transformer
architecture to capture cross-channel dependencies. In experiments with shorter input sequences,
iTransformer demonstrated notable improvements.

It is worth noting that for time series forecasting, especially in long-term forecasting tasks, complex
models do not necessarily lead to better prediction accuracy. Models like DLinear, NLinear (Zeng
et al. (2023)), and RLinear (?) use simple linear layers to capture temporal features and adopt a
channel-independent mechanism, which entirely ignores inter-channel relationships. These simple
models can achieve prediction accuracy comparable to, or even better than, more complex models.

At the same time, some studies have focused on the differing nature of the seasonal and trend com-
ponents in time series data. Autoformer (Wu et al. (2021)) decomposes time series data layer by
layer through a moving average method to extract periodic components. In its encoder, it applies
self-correlation to the seasonal component while discarding the trend component, which is only
reintroduced during the final prediction phase in the decoder. FEDformer (Zhou et al. (2022)) also
separates the trend component from the time series data. Its key frequency domain enhancement
module only processes the seasonal component while ignoring the trend, adding the trend compo-
nent back only in the final prediction output. The seasonal and trend components can be viewed
as the high-frequency and low-frequency parts of a time series, respectively. Consequently, some
studies have further transformed time series data from the time domain to the frequency domain for
analysis. FiTs (Xu et al. (2023)) uses the Fast Fourier Transform (FFT) to convert sequences into the
frequency domain and applies a low-pass filter to extract the core features of the sequence. It then

2



108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2025

maps the frequency domain information through a linear network, achieving competitive predictive
performance using just 10k parameters. JTFT (Chen et al. (2024)) employs the Discrete Cosine
Transform (DCT) to extract frequency domain information and combines it with time-domain infor-
mation for forecasting.

3 METHOD

The problem can be modeled as follows: given an input sequence xL,C of data with dimension C
and length L, the prediction model generates the output yT,C , where T represents the length of the
prediction window. XH,C denotes the entire training dataset, with a time length of H and the same
dimension C.

Temporal

Module
(Channel-indep)

Channel

Module
(Channel-dep)

Temporal

Module
(Channel-indep)

Channel

Module
(Channel-dep)

Temporal

Module
(Channel-indep)

RevIN

+ 

Patching

Linear 

+ 

RevIN

Linear 

+ 

RevIN

Temporal

Module
(Channel-indep)

Channel

Module
(Channel-dep)

Temporal

Module
(Channel-indep)

Channel

Module
(Channel-dep)

Temporal

Module
(Channel-indep)

RevIN

+ 

Patching

Series

Decomp

Seasonal

Trend

Original series

Seasonal

Trend

Seasonal

Trend

Seasonal

Trend Prediction

Seasonal Stage 

Trend Stage 

Cross Stage Cross Stage 

Figure 1: The overall architecture of DIMS. The DIMS model is divided into a seasonal component
and a trend component, with each part containing three temporal modules and two channel modules.

3.1 SEASONAL AND TREND COMPONENTS

Existing methods for seasonal-trend decomposition typically input the separated seasonal and trend
components into two or more modules for synchronized training. While this approach alleviates
overfitting, it does not entirely prevent interference between the seasonal and trend components.
This is because when producing the final prediction, these methods often sum the predicted seasonal
and trend components, causing the gradient of the prediction error to propagate back to both the
seasonal and trend prediction modules simultaneously. Since the error reflects the overall time series
and does not distinguish between the seasonal and trend components, it interferes with their accurate
prediction, leading to faster overfitting.

To avoid the drawbacks of synchronously training the seasonal and trend components, we chose
to independently train the prediction models for the seasonal and trend components. As shown in
Figure 1, the entire training dataset X is first decomposed into a seasonal component XS and a trend
component XT . In the seasonal phase, the Transformer structure corresponding to the seasonal
component is trained on XS. Similarly, in the trend phase, the Transformer structure corresponding
to the trend component is trained on XT . After completing the training in both the seasonal and
trend phases, the two models are combined and jointly trained on the original dataset X .In the final
training stage, the data is first passed through a moving average module for seasonal and trend
decomposition. The decomposed data is then fed into the pre-trained seasonal and trend prediction
models, and the predictions from the two models are summed to obtain the final prediction result. It
is noted that while we emphasize Seasonal-Trend Independence during the early training phases, the
two components are not independent in the final training stage, which allows the model to capture
the interdependencies between the seasonal and trend components.

3



162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2025

3.2 CHANNEL INDEPENDENT OR DEPENDENT

To avoid overfitting, many recent studies have employed channel-independent methods for training
and forecasting multivariate time series. Although channel independence has brought significant
improvements, handling each dimension of multivariate time series independently while ignoring
cross-channel relationships can result in the loss of key information. This makes it unreasonable to
rely solely on channel independence for further improving prediction performance. However, intro-
ducing cross-channel relationships can indeed lead to overfitting more quickly. For instance, despite
Crossformer employing several innovative techniques, it still cannot entirely prevent overfitting, ul-
timately limiting its predictive performance. Nevertheless, Crossformer provides valuable insights
and offers an efficient way to establish cross-channel relationships.

We believe that Crossformer’s introduction of cross-channel relationships exacerbates overfitting for
two reasons. First, the failure to decompose the seasonal and trend components leads to overfitting,
as trend and seasonal components often exhibit different characteristics. Without decomposition,
the model struggles to distinguish between these features. In this case, introducing cross-channel
attention not only fails to improve prediction accuracy but may also exacerbate overfitting. Second,
introducing cross-channel relationships too early interferes with the model’s ability to learn temporal
features. The most critical characteristic of time series data is the temporal feature within each
dimension. Therefore, if cross-channel dependencies are introduced prematurely, it hampers the
model’s learning of temporal features, negatively impacting the final prediction performance.

To address the first issue, our proposed season-trend independence method effectively resolves the
overfitting caused by the lack of decomposition. To tackle the second issue, we delay the calcula-
tion of cross-channel dependencies until after the channel-independent computations are completed.
The model first performs channel-independent attention calculations, corresponding to the tempo-
ral module, focusing exclusively on capturing temporal features within the data. Once the training
phase of the channel-independent module is complete, the cross-channel attention module is added
to the model, creating a structure similar to a sandwich. A second round of training is then con-
ducted, referred to as the “Cross Stage”. This approach allows the model to capture inter-channel
dependencies while avoiding interference with the learning of temporal features.

Temporal

Channel

……

……

……

……

……

……

……

……

MSA

…
…

MSA

Add & Layer Norm

Feed Forward

Add & Layer Norm

MSA

MSA

…
…

Figure 2: The architecture of the temporal module. The left side shows a schematic diagram of the
computational logic applied to the data, while the right side illustrates the module structure.

Therefore, the training in the seasonal stage and trend stage can each be further divided into two
stages: the channel-independent ”temporal stage” and the channel-dependent ”cross stage”. The
primary operations of the model in the temporal stage involve the temporal module, as shown in
Figure2, where the core method is consistent with PatchTST. The input data xL,C is divided into
Xd

pC through the patching module, followed by multi-head self-attention (MSA) and layer normal-
ization. Edp denotes a set of learnable positional encodings,p is the number of patches, and d refers
to the embedding dimension of the patches.

Xd
pC = Patching(xL,C) + Edp

X ′d
pC = LayerNorm(Xd

pC + MSA(Xd
pC , X

d
pC , X

d
pC))

4



216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2025

X ′′d
pC = LayerNorm(X ′d

pC + MLP(X ′d
pC))

Temporal

Channel

……

……

……

……

……

……

……

……

Router MSA Router MSA Router MSA…… ……

Router MSA

Add & Layer Norm

Feed Forward

Add & Layer Norm

Figure 3: The architecture of the channel module. The left side presents a schematic diagram of the
computational logic applied to the data, while the right side illustrates the module structure.

In the cross stage, two cross-channel attention modules (channel modules) are added to the model,
while the temporal module and its parameters trained in the temporal stage are retained. The op-
erations of the channel module are shown in Figure2, with the main difference from the temporal
module being the replacement of MSA with router MSA. Router MSA is an algorithm proposed by
Crossformer that reduces the complexity of cross-channel attention calculations to linear. It uses a
set of learnable parameters rdz , where z is a predefined constant, as routers to first aggregate infor-
mation from all channels. Then, each channel computes attention with rdz .

R = MSA(rdz , X
d
pC , X

d
pC)

X ′d
pC = MSA(Xd

pC , R,R)

3.3 PARAMETER SHARING OR NOT SHARING

In studies like PatchTST, each dimension of the time series data shares the same model parameters,
which is reasonable for most datasets since the dimensions can be regarded as homogeneous. How-
ever, this assumption is not appropriate for the weather dataset, as the data includes different types
such as temperature and wind speed, which are not homogeneous. Therefore, in our model, we
modify the positional encoding for this dataset, replacing Edp with EC

dp, which means that different
channels have distinct positional encodings. This approach allows us to map different types of data
into the same vector space.

4 EXPERIMENT

4.1 DATA

We use seven widely used datasets: Weather, Traffic, Electricity, and ETT datasets (ETTh1, ETTh2,
ETTm1, ETTm2), to evaluate the performance of our model. For information on the datasets and
how to obtain them, please refer to Autoformer (Wu et al. (2021)).

4.2 EXPERIMENT SETTINGS

We selected several of the currently best-performing models as baselines, including TIME-LLM
(Jin et al. (2023)), PatchTST (Nie et al. (2022)), DLinear Zeng et al. (2023), FEDformer (Zhou
et al. (2022)), Autoformer (Wu et al. (2021)), Informer (Zhou et al. (2021)), and Pyraformer (?).
We followed the experimental setup used in PatchTST, maintaining the same proportions for the
training, validation, and test sets. We chose Mean Squared Error (MSE) as the loss function.

5



270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2025

Models DIMS TIME-LLM PatchTST DLinear FEDformer Autoformer Informer Pyraformer
Metric MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE

W
ea

th
er 96 0.144 0.196 0.147 0.201 0.149 0.198 0.176 0.237 0.238 0.314 0.249 0.329 0.354 0.405 0.896 0.556

192 0.185 0.236 0.189 0.234 0.194 0.241 0.220 0.282 0.275 0.329 0.325 0.370 0.419 0.434 0.622 0.624
336 0.241 0.281 0.262 0.279 0.245 0.282 0.265 0.319 0.339 0.377 0.351 0.391 0.583 0.543 0.739 0.753
720 0.306 0.327 0.304 0.316 0.314 0.334 0.323 0.362 0.389 0.409 0.415 0.426 0.916 0.705 1.004 0.934

Tr
af

fic
96 0.354 0.251 0.362 0.248 0.360 0.249 0.410 0.282 0.576 0.359 0.597 0.371 0.733 0.410 2.085 0.468
192 0.372 0.255 0.374 0.247 0.379 0.256 0.423 0.287 0.610 0.380 0.607 0.382 0.777 0.435 0.867 0.467
336 0.385 0.266 0.385 0.271 0.392 0.264 0.436 0.296 0.608 0.375 0.623 0.387 0.776 0.434 0.869 0.469
720 0.415 0.283 0.430 0.288 0.432 0.286 0.466 0.315 0.621 0.375 0.639 0.395 0.827 0.466 0.881 0.473

E
le

ct
ri

ci
ty 96 0.126 0.222 0.131 0.224 0.129 0.222 0.140 0.237 0.186 0.302 0.196 0.313 0.304 0.393 0.386 0.449

192 0.145 0.240 0.152 0.241 0.147 0.240 0.153 0.249 0.197 0.311 0.211 0.324 0.327 0.417 0.386 0.443
336 0.152 0.250 0.160 0.248 0.163 0.259 0.169 0.267 0.213 0.328 0.214 0.327 0.333 0.422 0.378 0.443
720 0.176 0.272 0.192 0.298 0.197 0.290 0.203 0.301 0.233 0.344 0.236 0.342 0.351 0.427 0.376 0.445

E
T

T
h1

96 0.351 0.390 0.362 0.392 0.370 0.400 0.375 0.399 0.376 0.415 0.435 0.446 0.941 0.769 0.664 0.612
192 0.390 0.414 0.398 0.418 0.413 0.429 0.405 0.416 0.423 0.446 0.456 0.457 1.007 0.786 0.790 0.681
336 0.398 0.419 0.430 0.427 0.422 0.440 0.439 0.443 0.444 0.462 0.486 0.487 1.038 0.784 0.891 0.738
720 0.448 0.451 0.442 0.457 0.447 0.468 0.472 0.490 0.469 0.492 0.515 0.517 1.144 0.857 0.963 0.782

E
T

T
h2

96 0.265 0.330 0.268 0.328 0.274 0.337 0.289 0.353 0.332 0.374 0.332 0.368 1.549 0.952 0.645 0.597
192 0.329 0.372 0.329 0.375 0.341 0.382 0.383 0.418 0.407 0.446 0.426 0.434 3.792 1.542 0.788 0.683
336 0.324 0.379 0.368 0.409 0.329 0.384 0.448 0.465 0.400 0.447 0.477 0.479 4.215 1.642 0.907 0.747
720 0.372 0.413 0.372 0.420 0.379 0.422 0.605 0.551 0.412 0.469 0.453 0.490 3.656 1.619 0.963 0.783

E
T

T
m

1 96 0.285 0.341 0.272 0.334 0.293 0.346 0.299 0.343 0.326 0.390 0.510 0.492 0.626 0.560 0.543 0.510
192 0.329 0.371 0.310 0.358 0.333 0.370 0.335 0.365 0.365 0.415 0.514 0.495 0.725 0.619 0.557 0.537
336 0.360 0.393 0.352 0.384 0.369 0.392 0.369 0.386 0.392 0.425 0.510 0.492 1.005 0.741 0.754 0.655
720 0.440 0.0.436 0.383 0.411 0.416 0.420 0.425 0.421 0.446 0.458 0.527 0.493 1.133 0.845 0.908 0.724

E
T

T
m

2 96 0.162 0.250 0.161 0.253 0.166 0.256 0.167 0.260 0.180 0.271 0.205 0.293 0.355 0.462 0.435 0.507
192 0.215 0.286 0.219 0.293 0.223 0.296 0.224 0.303 0.252 0.318 0.278 0.336 0.595 0.586 0.730 0.673
336 0.267 0.321 0.271 0.329 0.274 0.329 0.281 0.342 0.324 0.364 0.343 0.379 1.270 0.871 1.201 0.845
720 0.349 0.379 0.352 0.379 0.362 0.385 0.397 0.421 0.410 0.420 0.414 0.419 3.001 1.267 3.625 1.451

1st count 38 22 2 0 0 0 0 0

Table 1: Multivariate long-term forecasting main results with DIMS. The prediction lengths T ∈
{96, 192, 336, 720} . The best results are in bold.

For the ETT datasets, the model’s input length is 624. For the Traffic and Electricity datasets, the
input length is 524, and for the Weather dataset, the input length is 648. On all datasets, the model’s
prediction lengths are set to 96, 192, 336, and 720. The model uses Revin (Kim et al. (2021))
for normalization to mitigate distribution shifts. For the ETT datasets, the embedding dimension
of the seasonal component model is 32, with a hidden layer dimension of 64 for the feedforward
neural network. The embedding dimension for the trend component model is 4, with a hidden layer
dimension of 8. For the other datasets, the embedding dimension of the seasonal component model
is 128, with a hidden layer dimension of 256 for the feedforward neural network. The embedding
dimension for the trend component model is 32, with a hidden layer dimension of 64.

4.3 MAIN RESULTS

The experimental results across the seven datasets are shown in Table 1. From the results, it is evi-
dent that DIMS outperforms other transformer-based models, particularly demonstrating significant
improvements on the ETTh1 and Traffic datasets.DIMS achieved first place in 38 metrics, surpassing
the 22 metrics of the time-series large language model Time-LLM and the 2 metrics of the PatchTST
model.

4.4 ABLATION STUDY

We separately removed the seasonal-trend decomposition and channel dependency components to
observe the differences in model prediction performance, with the results shown in Table 2. These
results indicate that both the seasonal-trend decomposition and channel dependency components
positively impact model predictions.

Additionally, for the Weather dataset, we conducted ablation experiments regarding the positional
encoding embedding methods, with results shown in Table 3. The results demonstrate that non-
shared positional encodings perform better for the Weather dataset.

Regarding the timing of the inclusion of the channel module, we also performed ablation experi-
ments, and the results are presented in Table 4. The experimental data indicate that delaying the
addition of the channel module can lead to optimal prediction performance.

6



324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2025

Variants DIMS DIMS w/o Cross DIMS w/o Decomp.
Metric MSE MAE MSE MAE MSE MAE

E
T

T
h1

96 0.351 0.390 0.351 0.390 0.356 0.393
192 0.390 0.414 0.392 0.415 0.413 0.437
336 0.398 0.419 0.400 0.420 0.415 0.443
720 0.448 0.451 0.440 0.451 0.459 0.478

Tr
af

fic

96 0.354 0.251 0.358 0.244 0.351 0.243
192 0.372 0.255 0.373 0.255 0.374 0.252
336 0.385 0.266 0.390 0.264 0.390 0.261
720 0.415 0.283 0.423 0.283 0.430 0.285

E
le

ct
ri

ci
ty 96 0.126 0.222 0.129 0.223 0.129 0.226

192 0.145 0.240 0.148 0.241 0.144 0.237
336 0.152 0.250 0.161 0.257 0.161 0.256
720 0.176 0.272 0.204 0.300 0.196 0.289

1st count 17 5 6

Table 2: Ablation experiment results of the DIMS model. ”w/o Cross” indicates the removal of
the channel module, and ”w/o Decomp.” indicates the removal of the seasonal-trend decomposition.
The best results are in bold.

Variants DIMS DIMS w/o Cross DIMS w/o Decomp DIMS share pos.
Metric MSE MAE MSE MAE MSE MAE MSE MAE

W
ea

th
er 96 0.144 0.196 0.142 0.194 0.143 0.194 0.147 0.199

192 0.185 0.236 0.185 0.236 0.190 0.240 0.189 0.238
336 0.241 0.281 0.242 0.281 0.241 0.281 0.241 0.280
720 0.306 0.327 0.310 0.330 0.319 0.337 0.315 0.334

Table 3: Ablation experiment results of the DIMS model on the weather dataset. ”w/o Cross” indi-
cates the removal of the channel module, ”w/o Decomp.” indicates the removal of the seasonal-trend
decomposition, and ”share pos.” indicates the use of shared positional encoding across channels. The
best results are in bold.

Variants Delay Cross-Stage Sync. Cross-Stage w/o Cross-Stage
Metric MSE MSE MSE

Tr
af

fic

96 0.303 0.309 0.310
192 0.328 0.328 0.335
336 0.349 0.351 0.353
720 0.381 0.392 0.392

E
le

ct
ri

ci
ty 96 0.107 0.108 0.108

192 0.113 0.116 0.115
336 0.121 0.123 0.123
720 0.135 0.134 0.138

Table 4: Comparison experiment results of the timing for adding the channel module. ”Delay Cross-
Stage” indicates that the Cross-Stage is conducted later, ”Sync. Cross-Stage” indicates that the
Cross-Stage is synchronized with the channel-independent temporal stage, and ”w/o Cross-Stage”
indicates the removal of the channel module. The best results are in bold.

7



378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2025

5 CONCLUSION

In this study, we explored the key factors contributing to the overfitting of time series prediction
models and proposed two novel and straightforward improvements: seasonal-trend independence
and channel dependence. We conducted detailed experiments on the proposed methods, and the
results confirm that our approach surpasses the prediction performance of existing state-of-the-art
transformer-based models. We also performed multiple ablation experiments to validate the effec-
tiveness of each proposed method.

REFERENCES

Josh Achiam, Steven Adler, Sandhini Agarwal, Lama Ahmad, Ilge Akkaya, Florencia Leoni Ale-
man, Diogo Almeida, Janko Altenschmidt, Sam Altman, Shyamal Anadkat, et al. Gpt-4 technical
report. arXiv preprint arXiv:2303.08774, 2023.

Yushu Chen, Shengzhuo Liu, Jinzhe Yang, Hao Jing, Wenlai Zhao, and Guangwen Yang. A joint
time-frequency domain transformer for multivariate time series forecasting. Neural Networks,
176:106334, 2024.

Alexey Dosovitskiy. An image is worth 16x16 words: Transformers for image recognition at scale.
arXiv preprint arXiv:2010.11929, 2020.

Ming Jin, Shiyu Wang, Lintao Ma, Zhixuan Chu, James Y Zhang, Xiaoming Shi, Pin-Yu Chen, Yux-
uan Liang, Yuan-Fang Li, Shirui Pan, et al. Time-llm: Time series forecasting by reprogramming
large language models. arXiv preprint arXiv:2310.01728, 2023.

Taesung Kim, Jinhee Kim, Yunwon Tae, Cheonbok Park, Jang-Ho Choi, and Jaegul Choo. Re-
versible instance normalization for accurate time-series forecasting against distribution shift. In
International Conference on Learning Representations, 2021.

Yong Liu, Tengge Hu, Haoran Zhang, Haixu Wu, Shiyu Wang, Lintao Ma, and Mingsheng Long.
itransformer: Inverted transformers are effective for time series forecasting. arXiv preprint
arXiv:2310.06625, 2023.

Ze Liu, Yutong Lin, Yue Cao, Han Hu, Yixuan Wei, Zheng Zhang, Stephen Lin, and Baining Guo.
Swin transformer: Hierarchical vision transformer using shifted windows. In Proceedings of the
IEEE/CVF international conference on computer vision, pp. 10012–10022, 2021.

Yuqi Nie, Nam H Nguyen, Phanwadee Sinthong, and Jayant Kalagnanam. A time series is worth 64
words: Long-term forecasting with transformers. arXiv preprint arXiv:2211.14730, 2022.

A Vaswani. Attention is all you need. Advances in Neural Information Processing Systems, 2017.

Haixu Wu, Jiehui Xu, Jianmin Wang, and Mingsheng Long. Autoformer: Decomposition trans-
formers with auto-correlation for long-term series forecasting. Advances in neural information
processing systems, 34:22419–22430, 2021.

Zhijian Xu, Ailing Zeng, and Qiang Xu. Fits: Modeling time series with 10k parameters. arXiv
preprint arXiv:2307.03756, 2023.

Ailing Zeng, Muxi Chen, Lei Zhang, and Qiang Xu. Are transformers effective for time series
forecasting? In Proceedings of the AAAI conference on artificial intelligence, volume 37, pp.
11121–11128, 2023.

Yunhao Zhang and Junchi Yan. Crossformer: Transformer utilizing cross-dimension dependency
for multivariate time series forecasting. In The eleventh international conference on learning
representations, 2023.

Haoyi Zhou, Shanghang Zhang, Jieqi Peng, Shuai Zhang, Jianxin Li, Hui Xiong, and Wancai Zhang.
Informer: Beyond efficient transformer for long sequence time-series forecasting. In Proceedings
of the AAAI conference on artificial intelligence, volume 35, pp. 11106–11115, 2021.

Tian Zhou, Ziqing Ma, Qingsong Wen, Xue Wang, Liang Sun, and Rong Jin. Fedformer: Frequency
enhanced decomposed transformer for long-term series forecasting. In International conference
on machine learning, pp. 27268–27286. PMLR, 2022.

8


	Introduction
	Related Work
	Method
	Seasonal and Trend Components
	Channel Independent or Dependent
	Parameter Sharing or Not Sharing

	Experiment
	Data
	Experiment Settings
	Main Results
	Ablation Study

	Conclusion

