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ABSTRACT

Meta-learning has made rapid progress in past years, with recent extensions
made to avoid catastrophic forgetting in the learning process, namely contin-
ual meta learning. It is desirable to generalize the meta learner’s ability to
continuously learn in sequential domains, which is largely unexplored to-date.
We found through extensive empirical verification that significant improvement
is needed for current continual learning techniques to be applied in the se-
quential domain meta learning setting. To tackle the problem, we adapt ex-
isting dynamic learning rate adaptation techniques to meta learn both model
parameters and learning rates. Adaptation on parameters ensures good gen-
eralization performance, while adaptation on learning rates is made to avoid
catastrophic forgetting of past domains. Extensive experiments on a sequence
of commonly used real-domain data demonstrate the effectiveness of our pro-
posed method, outperforming current strong baselines in continual learning. Our
code is made publicly available online (anonymous) https://github.com/
ICLR20210927/Sequential-domain-meta-learning.git.

1 INTRODUCTION

Humans have the ability to quickly learn new skills from a few examples, without erasing old skills.
It is desirable for machine-learning models to adopt this capability when learning under changing
contexts/domains, which are common scenarios for real-world problems. These tasks are easy for
humans, yet pose challenges for current deep-learning models mainly due to the following two rea-
sons: 1) Catastrophic forgetting is a well-known problem for neural networks, which are prone to
drastically losing knowledge on old tasks when a domain is shifted (McCloskey & Cohen, 1989);
2) It has been a long-standing challenge to make neural networks generalize quickly from a lim-
ited amount of training data (Wang et al., 2020a). For example, the dialogue system can be trained
on a sequence of domains, (hotel booking, insurance, restaurant, car services, etc) due to the se-
quential availability of dataset (Mi et al., 2020). For each domain, each task is defined as learning
one customer-specific model (Lin et al., 2019). After finishing meta training, the model could be
deployed to the previously trained domains, as the new (unseen) customers from previous domains
may arrive later, they have their own (small) training data (support set) used for adapting the sequen-
tially meta-learned models. After adaptation, the newly adapted model for the new customers can
be deployed to make responses to the customers.

We formulate the above problem as sequential domain few-shot learning, where a model is required
to make proper decisions based on only a few training examples while undergoing constantly chang-
ing contexts/domains. It is expected that adjustments to a new context/domain should not erase
knowledge already learned from old ones. The problem consists of two key components that have
been considered separately in previous research: the ability to learn from a limited amount of data,
referred to as few-shot learning; and the ability to learn new tasks without forgetting old knowledge,
known as continual learning. The two aspects have been proved to be particularly challenging for
deep learning models, explored independently by extensive previous work (Finn et al., 2017; Snell
et al., 2017; Kirkpatrick et al., 2017; Lopez-Paz & Ranzato, 2017). However, a more challenging
yet useful perspective to jointly integrate the two aspects remains less explored.

Generally speaking, meta-learning targets learning from a large number of similar tasks with a lim-
ited number of training examples per class. Most existing works focus on developing the general-
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Figure 1: Meta-learning over sequential domains. Data in each domain arrive sequentially. Our
model consists of a domain-shared part and a domain-specific part, all consist of a few convolutional
layers (and possibly fully connected layers). The domain-shared part is shared by all domains, and
each domain only owns one sub-network in the domain-specific part. Parameters (e.g., convolutional
filters) in each domain-shared convolutional layer i (blue) are divided into n blocks, denoted as
Bi0, Bi1, · · · , Bin. Each block is associated with one learnable learning rate when meta training
each domain on the network. The learning rates are updated by a loss defined on the memory tasks
to enforce the memorization of previous domains.

ization ability under a single context/domain (Santoro et al., 2016; Finn et al., 2017; 2018; Snell
et al., 2017; Ravi & Beatson, 2019). Recently, it has been shown that catastrophic forgetting often
occurs when transferring a meta-learning model to a new context (Ren et al., 2019; Yoon et al.,
2020). Continual learning aims to mitigate negative backward transfer effects on learned tasks when
input distribution shift occurs during sequential context changes. Related techniques of which are
currently applied mostly on standard classification problems (Serrà et al., 2018; Ebrahimi et al.,
2020b). In this paper, we generalize it to the sequential domain meta-learning setting, which seeks
good generalization on unseen tasks from all domains with only limited training resources from
previous domains. We term the problem sequential domain meta learning. Note this setting is
different from continual few-shot learning that focuses on remembering previously learned low-
resource tasks in a single domain. Our setting does not aim to remember on a specific task, but
rather to maintain good generalization to a large amount of unseen few-shot tasks from previous do-
mains without catastrophic forgetting. This setting is common and fits well in dynamic real-world
scenarios such as recommendation system and dialogue training system.

The domain shift arised from this setting during meta learning poses new challenges to existing
continual-learning techniques. This is mainly due to the high variability underlying a large number
of dynamically formed few-shot tasks, making it infeasible for a model to explicitly remember each
task. In our setting, a model is expected to remember patterns generic to a domain, while neglecting
noise and variance of a specific few-shot task. This ability, termed as remember to generalize, allows
a model to capture general patterns of a domain that repeatedly occur in batches of tasks while avoid
being too sensitive to a specific few-shot task.

In this paper, we propose to address the aforementioned challenges by designing a dynamic learning-
rate adaptation scheme for learning to remember previous domains. These techniques could jointly
consider gradients from multiple few-shot tasks to filter out task variance and only remember pat-
terns that are generic in each domain. Our main idea is to meta learn both the model parameters and
learning rates by backpropagating both a domain loss and a memory loss to adaptively update model
parameters and the learning rates, respectively. Specifically, our mechanism keeps a small memory
of tasks from previous domains, which are then used to guide the dynamic and adaptive learning
behaviors on different portions of the network parameters. The proposed mechanism is versatile and
applicable to both the metric-based prototypical network (Snell et al., 2017) and the gradient-based
ANIL (Raghu et al., 2020) meta-learning model.

Our contributions are summarized as follows:
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• We propose a challenging benchmark that requires a meta learning model to sequentially
learn on a sequence of domains enduring domain shift without much forgetting on previous
domains.

• We extend meta learning models with existing dynamic learning rate modeling techniques.
This can mitigate catastrophic forgetting through meta learning both model parameters and
learning rates to dynamically control the network update process. This can be seamlessly
integrated into both metric-based and gradient-based meta learning approaches.

• We conduct extensive experiments on multiple public datasets under different sequen-
tial domain few-shot learning scenarios. We further test functionality of the dynamic
learning-rate update mechanism for both metric-based and gradient-based meta-learning
approaches. Comparisons are made towards a wide range of representative continual-
learning techniques and models. Results demonstrate that our method outperforms strong
baselines by a large margin.

2 RELATED WORKS

2.1 META LEARNING

Meta learning (Schmidhuber, 1993), aka, learning to learn, aims to rapidly adapt to a new task
by reusing previous experience through training on a large number of tasks. Meta learning can
be roughly classified into the following categories: 1) Metric/Embedding-based approaches such
as (Vinyals et al., 2016; Snell et al., 2017; Edwards & Storkey, 2017), which map input data into
embedding (feature) spaces with decisions made based on some distance metric in the feature space;
2) Black-box learning methods such as (Andrychowicz et al., 2016; Graves et al., 2014; Mishra et al.,
2018); 3) Optimization-based methods such as (Finn et al., 2017; Ravi & Larochelle, 2017; Li et al.,
2017; Antoniou & Storkey, 2019), which improve gradient-based optimization algorithms or learn
to initialize network parameters; and 4) Bayesian meta-learning methods such as (Ravi & Beatson,
2019; Finn et al., 2018; Yoon et al., 2018b; Grant et al., 2018; Wang et al., 2020b). These methods
are used to either interprete and understand MAML (Grant et al., 2018), or to model uncertainty
of meta learning models (Yoon et al., 2018b; Finn et al., 2018; Wang et al., 2020b). 5) Memory-
based meta learning (Santoro et al., 2016; Munkhdalai & Yu, 2017; Mikulik et al., 2020), which
apply additional memory component for meta learning. Online meta learning (Finn et al., 2019)
is also related to us. They focus on forward transfer, i.e., achieving better performance on future
task and use all the data from previous tasks to do meta learning, while our setting is significantly
different from theirs as we focus on mitigating catastrophic forgetting with only very limited access
to previous domains.

Dynamically updating the learning rates for networks is not new and has been explored in several
contexts. Meta-SGD (Li et al., 2017) learns the per parameter learning rates for meta learning to
improve flexibility and performance. (Gupta et al., 2020) use dynamic learning rates to mitigate
forgetting in online continual learning. T-net (Lee & Choi, 2018) learns a metric in activation space,
which informs the update direction and step size for task-specific learning. Flennerhag et al. (2020)
proposes e warped gradient descent to meta-learns an efficiently parameterised preconditioning ma-
trix to dynamically update the network. Our work extends dynamic learning rate techniques to
sequential domain meta learning setting to mitigate catastrophic forgetting.

2.2 CONTINUAL LEARNING

Continual learning tackles the problem of maintaining knowledge when input distribution shift hap-
pens in sequentially arriving tasks. There are different methods to address this problem, including
1) retaining memory for future replay (Lopez-Paz & Ranzato, 2017; Chaudhry et al., 2019a; Riemer
et al., 2019; Chaudhry et al., 2019b); 2) designing tailored network architectures (Rusu et al., 2016;
Fernando et al., 2017; Yoon et al., 2018a); 3) performing proper regularization during parameter
updates (Kirkpatrick et al., 2017; Zenke et al., 2017; von Oswald et al., 2019); and 4) introduc-
ing Bayesian methods for model parameter inference (Nguyen et al., 2018; Ebrahimi et al., 2020a).
Specifically, methods based on memory replay store representative samples from old tasks and re-
hearsal is performed during training (Lopez-Paz & Ranzato, 2017; Chaudhry et al., 2019a; Riemer
et al., 2019). Recent research also utilizes generative models to memorize previously seen data
(Lesort et al., 2019). Representatives of architecture-based methods include Progressive Neural
Networks (Rusu et al., 2016), PathNet (Fernando et al., 2017), Dynamically Expandable Networks
(Yoon et al., 2018a), Hard Attention Mask (HAT) (Serrà et al., 2018) and PackNet (Mallya & Lazeb-
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nik, 2017), etc. These models explicitly modify network topology to preserve previous knowledge.
The classic architecture-based approaches proposed in (Serrà et al., 2018) and (Mallya & Lazebnik,
2017) do not fit into this setting, as they attempt to fully remember each historic task. Progressive
Neural Networks (Rusu et al., 2016) guarantee zero forgetting but at the cost of growing network
architectures and increasing parameters rapidly, which is unaffordable in memory-constraint cases.
Regularization-based methods constrain the updated parameters to avoid drastic changes to previ-
ously learned tasks (Kirkpatrick et al., 2017; Zenke et al., 2017; von Oswald et al., 2019; Ebrahimi
et al., 2020c). They can restrict the capacity to meta-learning of new domains, thus it could hurt the
performance on a new domain. Bayesian-based methods model parameters in a probabilistic way,
and then parameters are updated either based on their posterior distributions (Nguyen et al., 2018)
or on their uncertainty (Ebrahimi et al., 2020a). However, in the context of meta-learning, the uncer-
tainty or posterior estimation could be highly inaccurate due to the small-data setting in each task,
thus hindering the performance. Recently, there are works using meta learning to improve continual
learning. For example, (Javed & White, 2019) proposes to learn versatile representations by explicit
training towards minimizing forgetting.

2.3 MULTI-DOMAIN META LEARNING

As a new research direction, multi-domain meta learning aims to achieve good generalization across
multiple domains. (Triantafillou et al., 2020) releases a dataset containing few-shot tasks from mul-
tiple domains. (Tseng et al., 2020) proposes to use transformation layers to associate feature distri-
butions across different domains. (Vuorio et al., 2019) proposes a tailored initialization process of
model parameters based on task embedding to enable proper functionality in multiple domains. It is
worth noting that the aforementioned multi-domain few-shot learning methods assume data from all
domains are jointly available during training. We consider a more challenging setting where domain
shift comes sequentially, thus a model needs to remember knowledge from previous domains.

2.4 INCREMENTAL FEW-SHOT LEARNING

Incremental few-shot learning (Gidaris & Komodakis, 2018; Ren et al., 2019; Yoon et al., 2020)
aims to handle new categories with limited resources while preserving knowledge on old categories.
The task requires building a generalized model while preventing catastrophic forgetting, with an
implicit assumption of unlimited access to the base categories. This paper, by contrast, focuses
on the case where only very limited access to previous domain is available, and generalization to
unseen categories in previous domains is required. (Gidaris & Komodakis, 2018) introduces a novel
cosine similarity function to relate incremental classes with base classes. (Ren et al., 2019) proposes
attention attractor network to regularize the learning of new categories. (Yoon et al., 2020) proposes
to integrate two sets of features with one from a pretrained base module and the other from a meta-
trained module for a smooth adaptation on novel categories. For incremental few-shot learning, the
increasing new classes are assumed to be in the same domain as the base classes, which is different
from the changing domains in our setting.

2.5 CONTINUAL FEW-SHOT LEARNING

Continual few-shot learning is a relatively new research topic. (Antoniou et al., 2020) proposes a
general framework for various continual few-shot learning settings, and proposes benchmarks for
proper performance evaluation. (Caccia et al., 2020) introduces Continual-MAML for online fast
adaptation to new tasks while accumulating knowledge on old tasks and conducted experiments
on three domains, our setting is different from theirs because they assume previous tasks can be
revisited, we assume only very limited access to previous domains. (Jerfel et al., 2019) considers
task distribution shift within a single domain and proposes Dirichlet process mixture of hierarchical
Bayesian models (DPM) to tackle the problem. Their ideas are interesting, but they assume different
set of parameters for each cluster, which is not efficient in memory-limited setting.

3 THE PROPOSED METHOD

Problem setup Our goal is to perform meta learning on a sequence of N domains, denoted as
D1,D2, . . . ,DN . Each domain Di consists of data divided into meta-training, meta-validation and
meta-testing sets, denoted as {Dtri ,Dvali ,Dtesti }. Only Dtri is used for training a meta-learning
model; Dvali is used for validation; and Dtesti is used for meta testing. Each task T ∈ Di consists of
K data examples, {(xk,yk)}Kk=1. A task is divided into T tr and T test. Our goal is to sequentially
meta-learn a model fθ that maps inputs x to y for each arriving domain while not forgetting too
much of all previous domains. To this end, our framework consists of a very limited memory of
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Md, which is used to store a small number of training tasks from each previous domain Dd. In
domain Dq , the parameters are adopted from that of the last domain, θq−1. Data available for
training are thus Dq

⋃
(
⋃q−1
d=1Md). Our goal is to update the parameter to θq such that it achieves

good performance on a domainDq by transferring useful knowledge from previous domains without
degrading performance on these domains. The final performance is evaluated on the meta-test sets
of current and all previous domains.

Basic idea and model architecture For effective learning without catastrophic forgetting of pre-
vious domains, our basic ideas include 1) minimizing a loss on the current domain to achieve fast
adaptation and good generalization; 2) adjusting the adaptation via optimizing the learning rates to
force the model to remember previous domains. In our implementation, we consider a convolutional
neural network (CNN) based classifier, which is supposed to evolve over sequences of domains via
meta-learning adaptation. We assume all domains share the same CNN-based structure for feature
extraction, while the model should also have the flexibility to define domain-specific components.
As a result, we divide the CNN classifier into two parts, corresponding to bottom convolutional lay-
ers for feature extraction and top convolutional layers for classification. The bottom layers of the
CNN are defined as domain-shared layers to serve as a common feature extractor for all domains.
In addition, the top layers of the CNN are defined as domain-specific layers, which are defined as N
parallel sub-CNNs with each accessible by only one domain. The network structure is illustrated in
Figure 1. For more flexible adaptation, we group the parameters (the convolutional filters) in each
domain-shared layer into several blocks and associate each block with one learning rate. In other
words, different filters will be updated with different learning rates, which are also adaptively opti-
mized to enforce the memorization of previous domains (specified in the following sections). The
CNN structure is also reflected in Figure 1. Note the learning rate in each of the domain-specific
layers is not optimized as the layers in different domains are independent with each other, making
the adaptive learning-rate scheme used in the domain-shared part inapplicable.

Problem formulation Similar to (Javed & White, 2019), we treat the domain-shared and domain-
specific parameters separately. The meta parameters θS (parameters of bottom convolutional layers)
and its corresponding network block learning rates λS are shared across all the domains. We use
θD1:T to denote the domain-specific parameters and λD1:T denote the domain-specific learning rates
from domain 1 · · ·T , where each element θDq and λDq represent domain Dq specific parameters
and its corresponding learning rates. All the learnable parameters for domain Dq are defined as
θq = {θS ,θDq } and learning rates as λq = {λS ,λDq }. λS are dynamically updated and λD1:T are
fixed during the meta-training process. During meta testing, λS and λD1:T are not used and updated.
We use θq,j to denote all the learnable parameters at jth iteration and λSq,j to denote all learnable
learning rates at the jth iteration when meta training in domain Dq . Each element of λSq,j is the
learning rate for parameters inside one block, each of which consists of several filters. Note that λS
and λSq,j are the same set of learning rates, the difference is that the latter one denotes the specific
learning rates at one iteration. M =

⋃q−1
d=1Md denotes all the memory tasks in all the domains

before domain Dq .
L(T ,θ(λ)) is the task-specific loss function with model parameters θ that depends on learning rates
λ and data from task T . JDtr

q
(θq,j+k(λSq,j)) (Equation 5) represents the expected loss function

with respect to training task distributions in domain Dq and is used for updating model parame-
ters. JM(θq,j+K(λSq,j)) (Equation 2) is the expected loss function with respect to memory task
distributions and is used for adjusting learning rates. Detailed definitions are as following.

min
λS

q,j

JM(θq,j+K(λSq,j)) (1)

JM(θq,j+K(λSq,j)) = E
Ti∈M

L(Ti,θq,j+K(λSq,j)) (2)

θq,j+k+1(λSq,j) = φφφ(θq,j+k,λq,j ;Dtrq ), for k = 0, 1, 2, . . . ,K − 1, (3)

φφφ(θq,j+k,λq,j ;Dtrq ) = θq,j+k − λq,j∇θqJDtr
q

(θq,j+k(λq,j)) (4)

JDtr
q

(θq,j+k(λSq,j)) = E
Ti∈Dtr

q

L(Ti,θq,j+k(λSq,j)) (5)
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θq,j+k+1(λSq,j) is the function of λSq,j instead of λq,j since λDq is fixed during training Dq for the
reasons stated above. Where K is the number of iterations in domain Dq after current iteration, we
use K = 1 for simplicity. φφφ(·, ·) denotes a gradient adaptation function. Similarly, for the learning
rate adaptation at domain Dq , based on the objective equation 2, an adaptation process is defined as:

λSq,j+1 = λSq,j − η∇λSJM(θq,j+K(λSq,j)) , (6)

where η is the hyper learning rate of the learning-rate update rule.

To sum up, our method is a bi-level adaptation process. The lower level optimizes on the current
domain, while the upper level optimizes on previous domains for updating the block-wise learning
rates. Detailed algorithms describing the meta-training and testing phases are given in Algorithm 1
and 2 (Appendix A), respectively.

Algorithm 1 Meta training.
Require: A sequence of training domain data
D1,D2, . . . ,DN ; Initial learning rates λS and
λD1:T to λ0 and model parameters θS = θ0; λD1:T
is fixed during the training process.

Require: Maximum number of iterations M for each
domain.

1: M = {}
2: for q = 1 to N do
3: Randomly initialize θDq
4: for j = 1 to M do
5: Sample batch of tasks T from

P (Dq), distribution over tasks in domainDq

6: Evaluate JDtr
q
(θq,j+1(λ

S
q,j)) =

E
T ∈Dtr

q

L(T ,θq,j+1(λ
S
q,j))

7: Perform adaptation: θq,j+1 = θq,j −
λq,j∇θqJDtr

q
(θq,j ,λq,j)

8: if q = 1 then
9: λS

q,j = λ0

10: else
11: λS

q,j+1 = λS
q,j − η∇λSJM(θq,j ,λ

S
q,j)

12: end if
13: end for
14: Mq = {a small batch of sampled tasks fromDq}

15: M =M∪Mq

16: end for

Domain-level meta loss computation Our
model contains a component to train on previ-
ous tasks stored in the memory to optimize the
learning rates. In practice, only a minibatch of
data is used at each iteration. Note each task is
in the format of training-validation pairs from
one domain. If one simply uses one task from
one domain at each iteration, the model could
overfit to this domain and may not generalize
well to other domains. To alleviate this issue,
we propose to compute the meta loss at two
different levels, called intra-domain and inter-
domain meta losses. The intra-domain meta
loss is defined with tasks in the same domain
to ensure good generalization in one domain.
The inter-domain meta loss, by contrast, is de-
fined with tasks sampled across all available do-
mains in the memory to encourage model adap-
tation across different domains. When calculat-
ing the inter-domain loss with one task from the
memory, at each iteration, we augment the data
with those from tasks of other domains. In this
way, the model can be trained to better gener-
alize to other domains. Figure 2 illustrates our
proposed method. More details can be found in
Appendix A.

4 EXPERIMENT

We compare our method against several related
strong baselines on a sequence of five domain
datasets, which exhibit large domain shift, thus
posing new challenges for existing methods. We evaluate the effectivenss of our method on both
gradient-based and metric-based meta-learning frameworks. We also conduct ablation studies to
verify the effectiveness of each component of our model. Our implementation is based on Torch-
meta (Deleu et al., 2019). Results are reported in terms of mean and standard deviation over three
independent runs.

Implementation details For prototypical-network-based (Protonet) (Snell et al., 2017) baselines,
we use a four-layer CNN with 64 filters of kernel size being 3 as shared domain feature extractor
for all the domains. The last layer is defined as domain specific with 64 filters. No fully connected
layers are used following existing works. For gradient-based meta-learning algorithms (Raghu et al.,
2020), following (Antoniou et al., 2019), we use a three-layer CNN with 48 filters of kernel size
being 3 as shared domain feature extractor, and one convolutional layer with 48 filters and one
fully-connected layer for domain-specific learning. Such architectures for Prototypical network and
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ANIL are widely adopted in existing works on continual learning to mitigate catastrophic forgetting
(Serrà et al., 2018; Ebrahimi et al., 2020b). 750 evaluation tasks from each domain are used for meta
testing. The hyper learning rate η is set to 1e-4 for Protonet and 5e-5 for ANIL. The gradients with
respect to all the learnable learning rates are clipped to [-10, 10] for both Protonet and ANIL. Unless
otherwise specified, the number of learning blocks for each CNN layer is 4, the number of memory
tasks for each previous domain is 6 and the arriving order of the domain sequence is MiniImagenet,
CIFARFS, Omniglot, Aircraft and CUB. More implementation details are given in Appendix A.

Datasets The five datasets include Miniimagenet (Vinyals et al., 2016), CIFARFS (Bertinetto
et al., 2019), Omniglot (Lake et al., 2011), CUB (Welinder et al., 2010), AIRCRAFT (Maji et al.,
2013). All images are resized into 84×84. We follow the splits in torchmeta∗ for the Miniimagenet,
CIFARFS, Omniglot and CUB datasets. For AIRCRAFT, we follow the split in (Vuorio et al., 2019).
We compare all the baselines on 5-way-1-shot and 5-way-5-shot learning settings.

Evaluation metrics We adapt existing work on continual learning to use the evaluation metrics of
ACC and BWT (Ebrahimi et al., 2020b). ACC is defined as the average meta testing classification
accuracy across all domains (the higher the better), and BWT measures the average forgetting on all
the previous domains evaluated at the end of the sequential meta learning task (the lower the better).
Formaly, the ACC and BWT are defined as: ACC = 1

N

∑N
j=1 aN,j and BWT = 1

N−1
∑N−1
i=1 aN,i−

ai,i, where an,i is the meta testing accuracy on domain i after meta training on domain n, aN,i−ai,i
measures the forgetting score on domain i after meta training on domain N .

Baselines For meta-learning methods, we compare our method with ANIL (Raghu et al., 2020)
and Prototypical Network (Snell et al., 2017). The former is a simplified version of MAML (Finn
et al., 2017) with inner loop only conducted on the final layer. For continual learning methods, we
compare our method with related strong baselines, which are regularization based method such as the
Elastic Weight Consolidation (Kirkpatrick et al., 2017), architecture-based methods (Hard Attention
Mask (HAT) (Serrà et al., 2018) with publicly available code from the authors), Bayesian methods
(Ebrahimi et al., 2020b) (with the authors’ implementation), Memory-based (including A-GEM
(Chaudhry et al., 2019a), ER-Ringbuffer (Chaudhry et al., 2019b) and Meta Experience Replay
(MER) (Riemer et al., 2019)). We also learn all the domains jointly in a multi-domain meta-learning
setting, whose performance can be considered as the upper bound for our sequential learning setting.
We also provide a simple baseline, which trains sequentially without using any external memory.
We denote this method as “Sequential”, whose performance can be considered as reference for the
catastrophic forgetting of our setting. It is worth noting that the above baselines have only been
used for traditional continual learning. We adapt these methods to our setting to demonstrate the
ineffectiveness of these existing techniques when generalizing them to a meta-learning setting.

Comparisons to baselines Table 1 show the comparisons to the baselines we constructed for this
problem setting in terms of 5-way 5-shot accuracy. Results of 5-way 1-shot classification is given
in Appendix A. In the table, ’N/A’ means the BWT is not available since the method does not learn
sequentially. Our method significantly outperforms baselines. Especially, in the Protonet-based
model, the performance of our model almost matches that of the joint-training model, indicating
excellent memorization of past domains. From the results of “Sequential” baseline, we see that
there is a significant performance drop if no external mechanism is introduced to prevent forgetting.
Among the baselines, ER-Ringbuffer seems to perform worse overall. We believe this is because of
the repeatedly-trained memory, which leads to overfiting, making recovery of previous knowledge
difficult. Memory data in our method are not directly fit into network but are only used for guiding
the training of network on current domain data, thus avoiding overfitting. The inferior performance
of UCB might be because the uncertainty estimation with limited data is inaccurate in the meta-
learning setting. HAT is also worse because it simply remembers history tasks but not domain
general information. Furthermore, A-GEM restricts gradient updates on new examples in the same
direction as the gradient direction in memory tasks, potentially leading to wrong update directions.
In MER, the fast weight for each task in memory across different domains could vary significantly,
making updates by Reptile oscillate and unstable, and thus hindering its performance.

Sensitivity to domain ordering We study the sensitivity of all methods on the order of domain
arrivals. We use a different domain-sequence order as: CIFARFS, MiniImagenet, Aircraft, CUB
and Omniglot. Results of 5-way-5-shot learning are summarized in Table 2. Appendix A details the

∗https://github.com/tristandeleu/pytorch-meta
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Table 1: Compare to Baselines
5 Way 5 Shots

Algorithm ACC BWT

Protonet-Sequential 54.74± 0.11 −24.68± 0.15
Protonet-EWC 59.38± 0.42 −11.15± 0.51
Protonet-HAT 62.58± 0.24 −8.96± 0.30
Protonet-UCB 57.82± 0.05 −13.81± 0.09

Protonet-A-GEM 57.38± 0.32 −22.09± 0.26
Protonet-ER-Ringbuffer 58.25± 0.31 −19.06± 0.36
Protonet-MER 60.79± 0.16 −11.96± 0.15
Protonet-Ours 68.72± 0.22 −3.22± 0.17

Joint-training 71.81± 0.29 N/A

5 Way 5 Shots
Algorithm ACC BWT

ANIL-Sequential 50.68± 0.25 −27.54± 0.34
ANIL-EWC 48.18± 0.24 −30.24± 0.26
ANIL-HAT 47.02± 0.26 −30.73± 0.32
ANIL-UCB 51.58± 0.17 −25.96± 0.23

ANIL-A-GEM 51.56± 0.38 −26.45± 0.40
ANIL-ER-Ringbuffer 45.14± 0.25 −35.29± 0.28
ANIL-MER 51.50± 0.23 −25.67± 0.26
ANIL-Ours 56.62± 0.32 −15.28± 0.40

Joint-training 73.52± 0.20 N/A

results of 5-way-1-shot setting. It can be seen that although there are some performance differences
compared to those of the previous order, our method still outperforms the baselines.

Table 2: Compare to Baselines with different domain ordering
5 Way 5 Shots

Algorithm ACC BWT

Protonet-Sequential 51.28± 0.31 −28.79± 0.39
Protonet-EWC 59.12± 0.35 −14.87± 0.27
Protonet-HAT 60.61± 0.28 −10.89± 0.15
Protonet-UCB 50.36± 0.18 −20.85± 0.23

Protonet-A-GEM 59.75± 0.28 −17.85± 0.35
Protonet-ER-Ringbuffer 61.52± 0.30 −14.21± 0.40
Protonet-MER 62.71± 0.18 −11.23± 0.10
Protonet-Ours 67.29± 0.32 −4.12± 0.30

Joint-training 71.81± 0.29 N/A

5 Way 5 Shots
Algorithm ACC BWT

ANIL-Sequential 44.18± 0.39 −33.79± 0.35
ANIL-EWC 46.27± 0.37 −32.24± 0.40
ANIL-HAT 42.52± 0.15 −34.79± 0.31
ANIL-UCB 45.32± 0.25 −31.28± 0.36

ANIL-A-GEM 45.87± 0.32 −32.01± 0.41
ANIL-ER-Ringbuffer 41.35± 0.30 −37.82± 0.37
ANIL-MER 47.19± 0.23 −28.45± 0.29
ANIL-Our 55.89± 0.22 −12.36± 0.31

Joint-training 73.52± 0.20 N/A

We use another different domain-sequence order as: Omniglot, Aircraft, CUB, CIFARFS and Mini-
Imagenet. Since Omniglot is used as first domain, the model cannot learn good representations for
the following domains, thus poses more challenges than the other two domain sequences. Table 3
shows the results, where the baseline Protonet-fixfirst is the method that freeze the model parameters
after finishing training on the first domain. For this baseline, there is small BWT, this is because
of random testing task variance at different time. In this case, all the baselines and our methods
performance drop significantly compared to the sequence with CIFARFS or Miniimagenet as first
domain. It indicates that this domain sequence is significantly more challenging than the other two
domain sequences.

Effect of domain-level meta loss This sets of experiments verify the effectiveness of our proposed
domain-level meta loss in Section 3. We compare the domain-level meta loss with the standard intra-
domain meta loss, which only considers task data in one domain. The results are shown in Table 4.
It is clear that our proposed domain-level meta loss consistently outperforms the intra-domain meta
loss by obtaining better accuracy.

Table 3: Compare to Baselines with Omniglot as first training domain
5 Way 1 Shot 5 Way 5 Shots

Algorithm ACC BWT ACC BWT

Protonet-Sequential 42.69± 0.26 −22.18± 0.32 57.92± 0.21 −18.32± 0.19
Protonet-EWC 37.98± 0.19 −19.43± 0.22 54.02± 0.18 −13.24± 0.23
Protonet-HAT 41.02± 0.12 −18.55± 0.17 58.35± 0.21 −16.14± 0.15
Protonet-UCB 41.32± 0.20 −18.01± 0.32 58.73± 0.28 −17.28± 0.21

Protonet-A-GEM 43.18± 0.27 −21.10± 0.21 59.96± 0.16 −14.86± 0.18
Protonet-ER-Ringbuffer 41.92± 0.28 −22.54± 0.29 59.35± 0.23 −16.96± 0.20
Protonet-MER 39.60± 0.28 −24.21± 0.31 58.10± 0.22 −16.26± 0.17
Protonet-fixfirst 44.29± 0.19 −0.16± 0.14 56.29± 0.29 −0.22± 0.12
Protonet-Ours 46.56± 0.18 −14.34± 0.25 62.68± 0.15 −11.12± 0.25

Joint-training 53.92± 0.36 N/A 71.81± 0.29 N/A
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Table 4: Effect of domain-level meta loss
5 Way 1 Shot 5 Way 5 Shots

Algorithm ACC BWT ACC BWT

Protonet-intra and inter meta loss 53.36± 0.27 −3.39± 0.15 68.72± 0.22 −3.22± 0.17
Protonet-intra loss 52.29± 0.31 −4.02± 0.18 67.69± 0.21 −3.97± 0.23
ANIL-intra and inter meta loss 45.85± 0.22 −10.19± 0.27 56.62± 0.32 −15.28± 0.40
ANIL-intra loss 44.16± 0.30 −11.38± 0.20 55.10± 0.19 −16.97± 0.33

Table 5: Compare to our method with different number of learning blocks
5 Way 1 Shot 5 Way 5 Shots

Algorithm ACC BWT ACC BWT

Protonet-Ours-2block 50.12± 0.19 −7.15± 0.12 65.25± 0.23 −6.64± 0.29
Protonet-Ours-4block 53.36± 0.27 −3.39± 0.15 68.72± 0.22 −3.22± 0.17
Protonet-Ours-8block 53.51± 0.33 −3.21± 0.55 68.82± 0.33 −3.01± 0.21

Table 6: Effect of number of memory tasks. Top, memory with one task for each domain; Bottom,
memory with six tasks for each domain

5 Way 1 Shot 5 Way 5 Shots
Algorithm ACC BWT ACC BWT

Protonet-A-GEM 38.50± 0.09 −29.37± 0.17 55.22± 0.11 −24.01± 0.12
Protonet-ER-Ringbuffer 39.41± 0.16 −27.41± 0.26 56.17± 0.28 −23.46± 0.25
Protonet-MER 39.04± 0.19 −25.73± 0.25 58.37± 0.24 −17.52± 0.31
Protonet-Ours 50.73± 0.17 −5.56± 0.32 66.92± 0.29 −4.96± 0.30

Protonet-A-GEM 40.07± 0.40 −26.47± 0.46 57.38± 0.32 −22.09± 0.26
Protonet-ER-Ringbuffer 44.12± 0.19 −21.83± 0.17 58.25± 0.31 −19.06± 0.36
Protonet-MER 46.72± 0.25 −14.82± 0.11 60.79± 0.16 −11.96± 0.15
Protonet-Ours 53.36± 0.27 −3.39± 0.15 68.72± 0.22 −3.22± 0.17

Effect of number of learning block Our method assigns a different learning rate for each block of
the network parameters. A finer grained division of learning blocks allows more flexible control, but
leads to higher computation cost. In this experiment, we investigate the impact of blocks numbers
to model performance. Specifically, we implement each layer with 2, 4 and 8 blocks. Results are
shown in Table 5. It can be seen that when the block number is relatively large (4 in our case), the
accuracies are relatively stable. Thus we can simply set the block number to 4 in practice.

Effect of a small memory size We compare performance differences when the number of tasks
stored in the memory for each domain is small. Table 6 shows the results of 1 and 6 tasks from each
domain. It is interesting to see that with a small memory to store only one task from each domain,
performances of all the memory-based baselines drop significantly, while our method maintains
relatively stable performance. This might be due to the fact that with a smaller memory size, all
memory-based baselines either overfit to the small memory or are impacted by unstable gradient
direction updates, which would not happen in our method.

5 CONCLUSION

In this paper, we propose a challenging Benchmark that requires a meta learning model to sequen-
tially meta learn on a sequence of domains with domain shift but without much forgetting on previ-
ous domains. Then, we extend existing dynamic learning rate techniques to existing meta learning
model to meta learn the learning rates on meta parameters blocks, which can be seamlessly inte-
grated into both metric-based and gradient-based meta learning approaches to mitigate catastrophic
forgetting. The adaptation on parameters maintains generalization performance on current domain,
while adaptation on learning rates is made remember knowledge of past domains. Our proposed
method significantly outperforms existing continual-learning techniques adapted to our problem,
achieving significantly better performance than strong baselines. There are several possible future
directions to be pursued for future work, such as the cases of imbalanced classes in each task, scaling
to longer domain sequences, and fewer training tasks in each arrival domain.
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A APPENDIX

Joint-training details We describe details of ANIL and Prototypical Network, the two base mod-
els tested in our framework.

For ANIL: The meta batch size for each domain is set to 3. For 1-shot and 5-shot learning, the
number of training data for each task are set to 1 and 5, and the number of query data is 15 for
both cases. The number of inner loop update steps is 5 with a learning rate of 1e-2. The outer-loop
learning rate is 1e-3, and the number of meta training iterations is 20000 with the Adam optimizer
(Kingma & Ba, 2014).

For Prototypical Network: The meta batch size for each domain is 3, and the number of meta training
iterations is 40000. For 1 shot learning, the number of support data for each task is 1, the number of
query data for each task is 10. For 5 shot learning, the number of support data for each task is 5, the
number of query data for each task is 10. The meta training loss is optimized by Adam (Kingma &
Ba, 2014), and the learning rate is 1e-3.

Sequential domain training details

For ANIL and Prototypical Network, we adopt the following hyperparameter.

• ANIL (Raghu et al., 2020)
The meta batch size for each domain is 3. The total number of meta training iterations is
40000. The number of meta training iterations for each domain is 8000. For 1-shot and
5-shot learning, the number of training data for each task are set to 1 and 5, and the number
of query data is 15 for both cases. The number of inner loop update steps is 5, the inner
loop learning rate is 1e-2, the outer loop learning rate is 1e-3, the outer loop meta training
loss is optimized by Adam (Kingma & Ba, 2014).

• Prototypical Network (Snell et al., 2017)
the meta batch size for each domain is 3, and the number of meta training iterations is
40000. The number of meta training iterations for each domain is 8000. For 1-shot and
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5-shot learning, the number of training data for each task are set to 1 and 5, and the number
of query data is 10 for both cases. The meta training loss is optimized by Adam (Kingma
& Ba, 2014), and the learning rate is 1e-3.

For continual learning method, we adopt the following hyperparameter

• HAT details (Serrà et al., 2018)
This baseline is adapted from authors implementation †. The output hl of the units in layer
l is element-wise multiplied by the following: h′l = atl � hl, where atl is the annealed
version of the single layer gated domain embedding etl , defined as

atl = σ(setl) (7)

Other hyperparameter are following (Serrà et al., 2018), the stability parameter or scaling
parameter s is annealed according to

s =
1

smax
+ (smax −

1

smax
)
b− 1

B − 1
, (8)

where smax = 400, b is 1, · · · , B is batch index and B is the total number of batches.

• EWC details (Kirkpatrick et al., 2017)
We vary the weight penalty λ for avoiding drastic change in parameters with λ = 5, 1 ×
101, 5× 101, 1× 102, 5× 102, 1× 103, 5× 103 and select the best as our baseline.

• A-GEM details (Chaudhry et al., 2019a)
The implementation is based on‡.

• MER details (Riemer et al., 2019)
The implementation is based on§. The within batch meta-learning rate β is set to 0.03,
across batch meta-learning rate γ to 1.0, and batches per example to 5.

• UCB details (Ebrahimi et al., 2020a)
Following (Ebrahimi et al., 2020a), we scale the learning rate of µ and ρ for each parameter
proportional to its importance Ω, which is measured by its variance, to reduce changes in
important parameters and adapt authors implementation¶. We use 10 Monte Carlo samples
at each iteration as in (Ebrahimi et al., 2020a).

• ER-Ringbuffer details (Chaudhry et al., 2019b)
We use a fixed amount of memory of each previous domain to jointly train with current
domain.

Other meta learning related settings are the same as those in sequential domain meta training as
described above.

Domain-level meta loss In this part, we will elaborate on the computation of proposed domain-
level meta loss. To alleviate the overfitting issue of a specific domain during the learning process, we
propose to compute the meta loss at two different separated levels, intra-domain and inter-domain
meta losses. The intra-domain meta loss is defined with tasks in the same domain to ensure good
generalization in one domain. The inter-domain meta loss, by contrast, is defined with tasks sampled
across all available domains in the memory to encourage model adaptation across different domains.
When calculating the inter-domain loss with one task from the memory, at each iteration, we aug-
ment the data with those from tasks of other domains. In this way, the model can be trained to better
generalize to other domains.

†https://github.com/joansj/hat
‡https://github.com/GMvandeVen/continual-learning
§https://github.com/mattriemer/MER
¶https://github.com/SaynaEbrahimi/UCB
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Figure 2: The meta memory loss
mechanism. For one task in do-
main q from the memory pool ,
we randomly sample the data from
some tasks of other domains and
combine them with their own data
to calculate the task-specific loss.

We use Sup to denote the examples labeled with u for domain
p, and Svq to denote the examples labeled with class v for
domain q. Suppose P -way K-shot learning is performed in
both domain p and domain q. At each iteration, the two tasks
from both domains are combined together, and the problem be-
comes 2P -way K-shot learning. That is, the network is used
for 2P class classification problem for images in both domain
p and domain q

Define the prototype for class u in a domain as

cu =
1

|Su|
∑

(xp,yp)∈Su

fθ(xp), u ∈ {0, 1, · · · , 2P − 1} . (9)

This will encourage the network to differentiate the image
classes across two different domains and help the network gen-
eralize across different domains.

For a given query data x, the goal is to model

pθ(y = u|x) =
exp(−d(fθ(x), cu))

2P−1∑
u′=0

exp(−d(fθ(x), cu′))

(10)

The memory loss is defined as minimizing the log probability J (θ) = − log pθ(y = u|x), where d
is distance function.

For MAML (ANIL), let Dvalq

⋃
Dvalp denote the validation data from both domain q and p. The loss

is defined as

arg min
θ

Lmeta(θ,φφφ∗(θ),Dvalq

⋃
Dvalp ) (11)

φφφ∗(θ) = arg min
φφφ

Ltask(θ,φφφ,Dtrq ) (12)

Both mechanisms for the prototypical network and MAML (ANIL) can avoid overfitting and gener-
alize across different domains.

On learning-rate optimization Learning rate is one of the most important and effective hyper-
parameter in standard neural-network optimization (Baydin et al., 2018; Franceschi et al., 2017;
Donini et al., 2020) and continual learning (Ebrahimi et al., 2020b). Different from standard su-
pervised learning whose goal is to minimize the generalization error, continual learning aims to
avoid catastrophic forgetting while maintaining good performance on current domain. Inspired
by standard gradient-based hyperparameter optimization algorithms such as (Baydin et al., 2018;
Franceschi et al., 2017; Donini et al., 2020), we develop a novel automatic and adaptive learning-
rate update scheme for newly arrival domains. Our goal is achieved by updating the learning rate
for each parameter block, which is designed to adaptively update parts of the network to fit future
domains while remembering previous domains.

More Results

Compare to Baselines

5-way 1-shot learning Table 7 show the comparisons to the baselines we constructed for this
problem setting in terms of 5-way 1-shot accuracy. In the table, ’N/A’ means the BWT is not avail-
able since the method does not learn sequentially. Our method significantly outperform baselines.
Especially, similar to the performance in 5-way 5-shot learning in Table 1, in the Protonet-based
model, the performance of our model almost matches that of the joint-training model, indicating
excellent memorization of past domains.

Compare to Baselines with different domain ordering
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Table 7: Compare to Baselines (5-way 1-shot)
5 Way 1 Shot

Algorithm ACC BWT

Protonet-Sequential 36.31± 0.18 −30.97± 0.12
Protonet-EWC 42.21± 0.21 −19.06± 0.36
Protonet-HAT 49.98± 0.19 −6.67± 0.24
Protonet-UCB 41.26± 0.17 −9.46± 0.07

Protonet-A-GEM 40.07± 0.40 −26.47± 0.46
Protonet-ER-Ringbuffer 44.12± 0.19 −21.83± 0.17
Protonet-MER 46.72± 0.25 −14.82± 0.11
Protonet-Ours 53.36± 0.27 −3.39± 0.15

Joint-training 53.92± 0.36 N/A

5 Way 1 Shot
Algorithm ACC BWT

ANIL-Sequential 37.55± 0.21 −25.12± 0.26
ANIL-EWC 38.86± 0.22 −24.15± 0.31
ANIL-HAT 39.90± 0.11 −20.02± 0.15
ANIL-UCB 38.86± 0.23 −21.35± 0.29

ANIL-A-GEM 34.62± 0.36 −29.04± 0.42
ANIL-ER-Ringbuffer 31.49± 0.47 −32.45± 0.56
ANIL-MER 41.40± 0.19 −19.24± 0.21
ANIL-Ours 45.85± 0.22 −10.19± 0.27

Joint-training 57.18± 0.38 N/A

5-way 1-shot learning We study the sensitivity of all methods on the order of domain arrivals
in the setting of 5-way 1-shot learning. We use a different domain-sequence order as: CIFARFS,
MiniImagenet, Aircraft, CUB and Omniglot. Results are summarized in Table 8. Similar to the
results in Table 2 , it can be seen that although there are some performance differences compared to
those of the previous order, our method consistently outperforms the baselines.

Table 8: Compare to Baselines with different domain ordering (5-way 1-shot)
5 Way 1 Shot

Algorithm ACC BWT

Protonet-Sequential 42.66± 0.14 −23.04± 0.12
Protonet-EWC 43.97± 0.20 −17.36± 0.33
Protonet-HAT 48.92± 0.41 −9.18± 0.26
Protonet-UCB 39.64± 0.14 −10.83± 0.09

Protonet-A-GEM 46.81± 0.23 −18.78± 0.35
Protonet-ER-Ringbuffer 48.60± 0.35 −14.85± 0.18
Protonet-MER 49.92± 0.33 −9.06± 0.32
Protonet-Ours 52.17± 0.12 −0.74± 0.19

Joint-training 53.92± 0.36 N/A

5 Way 1 Shot
Algorithm ACC BWT

ANIL-Sequential 39.61± 0.20 −20.95± 0.22
ANIL-EWC 39.18± 0.29 −22.12± 0.35
ANIL-HAT 39.02± 0.12 −22.62± 0.10
ANIL-UCB 39.97± 0.37 −19.28± 0.41

ANIL-A-GEM 37.76± 0.35 −24.91± 0.27
ANIL-ER-Ringbuffer 35.42± 0.31 −26.03± 0.37
ANIL-MER 40.86± 0.37 −18.34± 0.31
ANIL-Ours 45.25± 0.20 −6.02± 0.28

Joint-training 57.18± 0.38 N/A

Meta testing of current and all previous domains Algorithm 2 shows the algorithm of meta
testing the model on current and all the previous domains.

Algorithm 2 Meta testing.
Require: A sequence of training domain data D1,D2, . . . ,DN ;
Require: Learned meta parameter θ of the models after meta training on domain N .
1: for q = 1 to N do
2: Sample T meta-testing tasks T test

q from P (Dq), the distribution over tasks in domain Dq

3: Evaluate the meta testing accuracy and measurements of forgetting for domainDq using the meta learned
model f(T ,θM

N ), T ∈ T test
q

4: end for
5: Evaluate the average meta testing accuracy on all learned domains and measurements of forgetting over all

previous domains
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