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Abstract

Modern LLMs are increasingly deep, and depth correlates with performance, albeit
with diminishing returns. However, do these models use their depth efficiently? Do
they compose more features to create higher-order computations that are impossible
in shallow models, or do they merely spread the same kinds of computation out
over more layers? To address these questions, we analyze the residual stream of
the Llama 3.1, Qwen 3, and OLMo 2 family of models. We find: First, comparing
the output of the sublayers to the residual stream reveals that layers in the second
half contribute much less than those in the first half, with a clear phase transition
between the two halves. Second, skipping layers in the second half has a much
smaller effect on future computations and output predictions. Third, for multihop
tasks, we are unable to find evidence that models are using increased depth to
compose subresults in examples involving many hops. Fourth, we seek to directly
address whether deeper models are using their additional layers to perform new
kinds of computation. To do this, we train linear maps from the residual stream
of a shallow model to a deeper one. We find that layers with the same relative
depth map best to each other, suggesting that the larger model simply spreads the
same computations out over its many layers. All this evidence suggests that deeper
models are not using their depth to learn new kinds of computation, but only using
the greater depth to perform more fine-grained adjustments to the residual. This
may help explain why increasing scale leads to diminishing returns for stacked
Transformer architectures.

1 Introduction

Large Language Models (LLMs [1, 2, 3, 4, 5]) have improved rapidly in recent years, and one
significant correlate of these improvements is their increasing depth as measured by number of
Transformer layers (Fig. 1). This scaling relationship would seem to follow from the structure of
these LLMs: they predominantly use a stacked Transformer structure [6], which lacks recurrence
across layers, and thus the number of computation steps they can perform is constrained by their depth.
In theory, greater depth should enable them to perform more complex computations by building on
top of the representations computed in previous layers. Deeper models should have the capacity to be
more compositional, leading to better reasoning, math capabilities, and generalization.

However, it is unclear whether these models are using their depth efficiently. On the one hand, Petty
et al. [7] find that increasing depth does not help with compositional generalization, Lad et al. [8]
show that, apart from the first and last layers, models are robust to layer skipping and swapping
neighboring layers (see also Sun et al. [9]), and Gromov et al. [10] were able to remove half of the
layers from the network without significantly affecting performance on MMLU (but not for math).
On the other hand, interpretability research often finds evidence for complex mechanisms spanning
multiple layers [11, 12], suggesting that models can represent more complex operations as their
depth increases. This paper is an exploration of this tension. Our primary question: do deeper LLMs
use their depth to compose more features to create higher-order computations that are impossible
in shallow models, or do they merely spread the same kinds of computation out over more layers?
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We focus on the Llama 3 series of models and supplement , 401
these findings with secondary analyses of the Qwen 3 se-
ries. Following the findings of previous work, we mostly
focus on the math domain, which shows the greatest sensi-
tivity to perturbations. Our analysis consists of five parts:
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computing reusable sub-results. We verify this using models generally perform better.
Logitlens [14], which shows a drop in KL-divergence
and a sharp increase in the top prediction overlap with the final layer, starting around the same
layer as the importance for future predictions decreases.

3. We analyze multihop questions and difficult math questions, and look for evidence of deeper
computations for more complex examples. However, our analysis shows the contrary: the
layer’s sensitivity to previous layers seems to be independent of example complexity. Analyzing
individual examples with both causal interventions and integrated gradients [15] shows that the
input tokens remain important until the middle of the network, and later tokens in the multi-step
computation are not delayed to later layers, suggesting that no composition is happening.

4. We train linear maps from each layer of a shallower model to each layer of an independently
trained deeper one, sharing the same vocabulary. By measuring the prediction error of the linear
maps, we can measure the correspondence of the layers of the two models. This shows a diagonal
pattern, indicating that the deeper model merely spreads out the computation through more layers
instead of doing more computation in the later layers.

Open LLM Leaderboard Score

Overall, these findings suggest that current LLMs underutilize the second half of their layers. Rather
than using their depth to learn more complex computations, they instead simply spread out the same
kind of computation through an increasing number of layers, taking smaller computation steps and
devoting the second half of the network to iteratively refining the probability distribution of the
current token. We conclude with an exploration suggesting that MoEUT [16] might use its layers
more efficiently.

2 Background

All the models we analyze are pre-layernorm Transformers [0, 17]. A Transformer layer [ is
constructed as follows:

a; = SelfAttention;(Norm(h;)) (D
hy = h +a )
m,; = MLP,;(Norm(h;)) 3)
higy = by +my “)

Here, h; € RT¥dmoa ig the residual stream and a;, m; € R7 > are the outputs of the SelfAtten-
tion and MLP layers, respectively, where 7' is the length of the current input sequence and dioqe 1S the
width of the residual stream. Norm(-) is some token-wise normalization, traditionally layer normaliza-
tion [ 18], but usually replaced with RMSNorm [19]. We call SelfAttention;(-) and MLP; (-) sublayers.

The residual stream is initialized with hy = Embedding(z), where € N7 is the sequence of input
token indices. The output probability distribution, or prediction, is y = softmax(g), where y =
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Figure 2: Influence of layers and sublayers on the residual stream for Llama 3.1 70B. (a) Norm of
contributions relative to the residual stream. A sharp drop is visible near the middle; later layers
change the residual much less, with the exception of the last few layers. (b) Cosine similarity between
the contributions and the corresponding residual shows a phase change at the middle of the network.

Norm(hz, )W are the output logits, L is the number of layers in the network, W € Rdmoa <V’
are the weights of the output classifier, and V is the size of the vocabulary.

Note that in pre-layernorm Transformers, the interaction of each sublayer with the residual is additive,
as shown in Eq. 2 and 4. Thus, we can quantify the contribution of layer [ to the residual stream as
a; +m; = h;y; — h;. The contribution of the sublayers is a; for the attention, and m; for the MLP.

3 Experiments

Most of the experiments presented in the main paper are performed with Llama 3.1 70B [20], using
NDIF and NNsight [21]. Unless noted otherwise, the results are computed on 10 random examples
from GSMS8K [22]. In bar plots, each bar starts from 0 (no stacking). The main results are also
shown in the appendix on different models, including Llama, Qwen [23], and OLMo 2 [24]. In
Sec. 3.1, we measure how the layers and sublayers contribute to the residual stream. In Sec. 3.2,
we use causal interventions to measure the effect of layers on downstream computations. In Sec. 3.3
we show that deeper or otherwise more complex computations do not influence the number of layers
that have a causal effect on the prediction model. In Sec. 3.4 we train linear projections to find the
correspondence between the layers of an independently trained shallow and deep Qwen model. Our
exploration in Sec. 3.5 suggests that MoEUT [16] might use its layers more efficiently, especially
when not modeling the question. !

3.1 How do the Layers Interact With the Residual Stream?

Since all interaction with the residual stream in pre-layernorm Transformers is additive, it is expected
that the norm of the residual, ||h;||2, will grow in later layers. At initialization, the norm of the output
of each sublayer (||a;||2 and ||m;||2) is identical in expectation due to the normalization layer at
their input. Thus, later layers contribute less than the earlier ones: it is harder for them to change
the direction of the residual. During training, the model can learn to compensate for this growth by
increasing the norm of the weights in later layers. However, most models are trained with weight
decay, which explicitly discourages such growth. Residual growth was previously observed in the
context of outlier features [25] and Universal Transformers [16]. Here, we seek to use this technique
to gain an initial high-level understanding of how much each layer contributes.

The relative contribution of sublayers. We measure the L? norm of the residual ||h;||2 and attention
and MLP contributions (||a;||2 and ||m;||2) in all layers of Llama 3.1 70B [20]. We observe the
expected rapid growth of the residual (Fig. 15, in Appendix). However, the growth of the sublayer
outputs seems to be slower. To zoom in on this, in Fig. 2a, we measure the mean relative contribution

lai+mullz  |ladl2 ke 1P ; ; hution |
of each (sub)layer ( Thills > Talls and T +ale)' This shows a consistent contribution in the first

half of the network, with a significant drop around the middle. The drop is especially pronounced in the
attention layers. The only exception is the last few layers, where the contributions seem to grow again.

'Our code is public: https://github. com/robertcsordas/11m_effective_depth
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Figure 3: The maximum relative change in the layer’s contribution when a previous layer is skipped,
Llama 3.1 70B on GSMS8K [22]. (a) Shows the maximum effect on the future computations for all
tokens in the sequence, including the current token, while (b) isolates the effect only for the maximum
of the future tokens. The range is limited between 0 and 1. (a) The second half of the layers has a
weaker effect on future computations compared to the first. Because of the low influence on future
layers in (a), but high importance for prediction (Fig. 17a in the Appendix), the second half of the lay-
ers seems to perform mostly independent, but important, computations to refine the current predicted
probability distribution. This is supported by the findings of Fig. 4. (b), which shows that the second
half has little effect on the future tokens, indicating that they are not computing reusable subresults.

Measuring the cosine similarity between the residual and sublayer contributions. To dig deeper
into each layer’s contribution to the overall computation, we measure the average cosine similarity
between the output of different layers and sublayers and the residual. This is defined by cossim(m; +
ay, h;) for the layer, and cossim(a;, h;) and cossim(m;, h; + a;) for the SelfAttention and MLP
components, respectively, where cossim(x, y) = m Where features are orthogonal to each

other, zero cosine similarity corresponds to writing a new feature to the residual, negative values
correspond to erasing features, and positive values mean strengthening an existing feature.”

We show the results in Fig. 2b. The first layer has near-zero cosine similarity, suggesting that these
layers are primarily integrating context from neighboring tokens. This is followed by a mostly positive
phase where features are being refined. The rest of the first half of the layers largely tends to erase
the residual. Around the middle of the network, a sharp phase transition is visible: the model starts
strengthening existing features instead of erasing information. Interestingly, this position corresponds
to the drop in the layer’s contributions observed in Fig. 2a.

The changes in the relative contributions and the cosine similarities are high-level indicators of a
possible phase change. In the following, we investigate this more closely.

3.2 How do the Layers Influence Downstream Computations?

Causal intervention for measuring the layers’ importance for the downstream computation.
In Section 3.1, we analyzed the general characteristics of the residual stream. Here, we turn to
pairwise interactions between layers using interventions. Which layer’s computation is influenced by
a previous layer? In order to address this question, we use the following procedure. First, we run a
prompt through the model and log the residual h;. Second, we run the same prompt again, but this
time we skip layer s, by setting hs41 := hg, and we log the residual of the intervened model h;.

Third, we measure the relative change in the contribution of layer [ > s: |I(h’+1ﬁ,’;i:£’;;m1;h’)"2 .

We take the maximum of this metric over the sequence and multiple prompts. We choose maximum
because some of the later layers might only be used rarely, when a deep computation requires it. We

>Two limitations of this method: (1) Transformers are hypothesized to make heavy use of features in
superposition [26, 27, 28, 29], so this intuition might not fully transfer to practice; (2) if the model combines
erasing/strengthening and writing new features, the new features will not show up in the cosine similarity metric.
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Figure 4: Comparing Logitlens on different layers to the final prediction. (a) KL-divergence. (b)
Overlap in the top-5 predicted tokens. Both show that later layers are devoted primarily to refining
the output probability distributions, rather than to performing new kind of computation.

also compare the model output probabilities: ||y — ¢||2. We chose this non-standard metric because
it provides clearer visualizations compared to KL divergence.

We show the results in Fig. 3a. We can see that, unlike the early layers, the layers in the second half of
the model have a low influence on the computations performed in the later layers. However, Appendix
Fig. 17a shows that these late layers are equally important for the output predictions, indicating that
they perform important, but independent, computations.

In summary, these layer skipping experiments indicate that the layers in the first half of the network
are integrating information and potentially building on each other’s output, while the second half
refines the output probability distribution based on the information already present in the residual.

Measuring layer importance for future predictions. To investigate this effect more deeply, we
perform a variant of the previous experiment to measure the effect on the future tokens when skipping
layers for earlier tokens. We do this by sampling a position 1 < ¢, < T — 1, skipping the layer only
for token positions ¢ < ¢4, and measuring the effect only on positions ¢ > ¢,. The results are dramatic:
as Fig. 3b shows, the second half of the network barely has any effect on future computations, except
for some special layers at the very top of the network. Furthermore, their effect on future predictions
is also significantly less than for the layers in the first half of the network (Appendix Fig. 17b).

What happens in the second half of the network? To validate our hypothesis that the second half
of the layers refines the probability distribution of the current prediction, we apply Logitlens [14] to
the residual and measure the KL divergence between its prediction and the final prediction of the
model. The results are shown in Fig. 4a. Furthermore, we measure the overlap between the set of
top-5 predictions from Logitlens and the final distribution in Fig. 4b. Both show the same picture: the
prediction refinement seems to start at the same position at the same phase transition as when the
layers do not influence the future predictions anymore, where the cosine similarities change sign, and
the layer’s importance decreases. All of these observations support our hypothesis: the second half of
the network is merely doing incremental updates to the residual to refine the predicted distribution.

Localizing Circuits. A similar method can also be used to discover layers that build on the contri-
butions of previous layers directly. In order to do so, we can measure the change in future layers’
contributions when removing the target layer’s contribution from their input. In contrast to the
previous experiments, we do not propagate this change to later layers. Specifically, to measure the

effect of layer s, we set h; := h; — hg for all | > s, and measure the relative change in the layer’s
contribution: H(G’T@l);(rzlmzn’)”? . Fig 5 shows the results. Bright spots indicate layers that build
on each other’s features. When isolating the effect on future tokens only, it is possible to localize

multi-layer, multi-token mechanisms similar to induction heads (Fig. 5b).

3.3 Do Deeper Problems Use Deeper Computation?

If a network is doing compositional computation, it has to break the problem down into sub-problems,
solve the sub-problems, and combine their solutions. Because of the lack of recurrence, Transformers
only see the results of computations in successive layers. We would therefore expect to see that
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Figure 5: Analyzing the direct local effects between pairs of layers of Llama 3.1 70B on GSM8k
[22]. The heatmaps highlight layer pairs with direct effects on each other. Unlike Fig. 3, the effects
are not propagated to future layers. For each layer s, the plot shows future layers that build on the
representation computed by s. (a) Effects on all tokens, highlighting all possible circuits. (b) Effect
on future tokens. The sparse, bright spots indicate multi-layer, multi-token mechanisms, such as
induction heads. Note that interacting layers are not necessarily spatially close to each other.
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Figure 6: The effect of individual computation steps on Llama 3.1 8B. (a,b) Basic math question. (c,d)
Two-hop reasoning. Note that the answer is 4 tokens long in this case, providing a stronger gradient
signal. (a,c) Integrated gradients. (b,d) The probability distribution change (||y — ©||2) when erasing
the residual of a given token in a given layer. This shows until when the information of a token is
used. In both cases, the second half of the model shows minimal effect. Moreover, in arithmetic, later
hops of computation do not use more depth, indicating that no composition is happening.

problems with deeper computation graphs use more layers in the Transformer. Additionally, later
steps of a composite computation should be executed in later layers, so that they can receive the
results of earlier subproblems as inputs. Are models in fact organizing their computations this way?

Residual erasure interventions. We check if the models are using more depth for later computation
based on individual prompts. We compute two metrics: one is Integrated Gradients [15], where we
compute the gradient on all answer tokens, but not on the prompt. The second metric is the maximum
prediction norm change (||y — y||2) among the answer tokens when the residual is changed to be
uninformative. We call this intervention “residual erasure”. It shows until which layer the information
from a given token is used. This erasure intervention is done for each possible position ¢ and layer [,
by setting h;1[t] := h; while keeping the rest of the tokens unchanged (h;1[t'] ;= h;41[t] for all
t' # t), and the visualizing the effect. The uninformative residual, hy, is the average of the residual
in a given layer, computed on multiple examples (in our case on GSM8K) over batch and time. h;
is the residual from the original, non-intervened model on the same prompt, and [-] is the indexing
operation for accessing a single element of a vector or matrix.
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measured based on the effect on later layer contributions on future predictions (see Fig. 3b for more
details). (a) MATH dataset [30]. The x-axis is the difficulty level defined by the dataset. (b) MQuAKE
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Figure 8: Linear map accuracies predicting
Qwen 2.5 14B activations from Qwen 2.5 1.5B.
A clear diagonal trend is visible: layers with
the same relative position map to each other the
best, indicating that deeper models “spread out”
the same kind of computation, computing the
prediction in smaller steps.

Figure 9: Comparing the residual erasure in
Transformers (top) and MoEUT (bottom) on
an example from DeepMind Math [32], when
trained without modeling the question. MoEUT
uses more of its depth, and its depth seems to be
more input-dependent. See Fig 42 and Fig 43 in
the Appendix for more, zoomed-in examples.

Fig. 6 summarizes our results. For arithmetic, in both metrics, we see that all tokens are equally
important until the middle of the model. For two-hop reasoning, the picture is somewhat less clear,
but the second half of the model still shows no sign of computation that is useful for the predictions.

The Depth Score. In order to more systematically verify if the models are using deeper computations
of later operations, we measure the max influence of layers on later layers and the output on future
positions, similarly to Fig. 3b and 17b. For each layer, we take the mean effect on all future layers in
future tokens, thus reducing the maximum effect matrix to a vector with a dimension equal to the
number of layers. For the separation point between the past and future tokens, we sample multiple
positions from the answer. Additionally, we further reduce these “effect size” vectors by computing
d= Zle ZZ_,?Z‘ Here, e; is the importance of layer I computed by any of our previously defined

metrics. We call d the “depth score”. This score increases if the model uses the later layers more.

We analyze two datasets: MQuAKE [31], which consists of multi-hop questions with a known
number of hops, and the MATH dataset [30], which consists of complex math problems with different
difficulty levels. We consider these difficulty levels as a proxy for the required computation depth.
We measure the above metrics on 20 different random examples for each expected depth. If more
hops or more complex questions use more depth, we expect to see that the contribution of the later
layers increases with complexity, and that should be reflected in our metrics. Fig. 7 summarizes these
analyses. We see no evidence of deeper computations with increased difficulty. (More detailed plots
can be found in Fig. 38 in the Appendix.)

3.4 Do Deeper Models Do Novel Computation?

Are deeper models performing computation that is not present in the shallower ones because of a lack
of layers, or is it “stretching out” the same kind of computation over more layers, performing smaller



steps at a time? The first kind of effect would be preferable, because the deeper model is capable
of combining more features and composing more subresults in theory. If such novel computation
is present, it should be hard to predict from the activations of the shallow model, and the number
of predictable layers should be close to the number of layers in the shallow model. In order to verify
this, we take two pretrained models with different layer counts (L1 and Lo, with L; < L), and train
L, L, different linear probes to map every point in the residual of the shallower model k] to each
representation in the deeper model h2,. This requires that the two models use the same tokenizer, and,
for reliable results, they should be trained independently, instead of being distilled from each other.
Because of GPU memory limitations, we decided to use the Qwen 2.5 [33] series of models because
of their more modest size compared to the Llama models. Concretely, we train a linear map for each

IS

where fi,,,(+) is the linear map from layer m of the small model to [ of the big model. We do this
for each m, [ layer pair and plot it in Fig. 8. Although some ranges of layers seem to be easier to
predict than others, a clear diagonal pattern is visible. This shows that the big model is more likely
a “stretched out” version of the shallow model, rather than one that does entirely new computations.

pair of layers of Qwen 2.5 1.5B and 14B. We measure the relative prediction error

3.5 Is the Pretraining Objective or the Model Responsible for using Fixed Depth?

To explore what causes the models to use fixed depth for each computation step regardless of the
problem, we trained standard Transformers and MoEUT [16] on the DeepMind Math dataset [32].
We test MOEUT because Universal Transformers [34] enable easy “transfer” of knowledge from early
layers to later ones, thanks to parameter sharing. Additionally, LLMs are trained on free-form text and
should model everything regardless of whether they are a “question” (unpredictable) or an “answer”
(often predictable given the correct circuits). We also wanted to test whether modeling this uncertainty
plays an important role, so we trained both models with and without learning to predict the question.

We use the 244M parameter baseline and MoEUT models from the paper [16], without modifications.
We perform the residual erasure intervention on four examples (see Appendix Sec. D.5), and display
the most important results in Fig. 9 (with details in Figs. 42 and 43 in the Appendix). We can clearly
see that the models that were trained to not model the uncertain question use more of their layers in
processing the answer, probably because they do not have to spend their capacity on modeling the high-
entropy probability distribution of the unpredictable questions. Surprisingly, MoEUT successfully
achieves this even when learning to model the question, although the effect is more pronounced
without it. This confirms the advantage of the shared-layer models. Interestingly, while all models
have good interpolation performance, their extrapolation capability differs drastically. For example,
MOoEUT on the “Mul/Div Multiple Longer” split has an accuracy of 36% if modeling the question is
enabled, and 63% if it is not. The difference for standard Transformers is less dramatic (41 vs. 48%).

Interestingly, all models trained from scratch show increased depth with deeper computation steps.
The effect is more pronounced with the MoEUT models, especially if the question is not learned. This
is in contrast to what we found for most examples when fine-tuning a Llama model (App. D.5), con-
firming that fine-tuning might not be enough to change the pretrained model’s behavior fundamentally.

4 Related Work

Lad et al. [8] discuss the four stages of inference: detokenization, feature engineering, prediction
ensembling, and residual sharpening. The authors show that, in early and late layers, the model is
sensitive to layer skipping, but not in the middle. In one of their main claims, the authors show that
throughout the layers, the attention to the previous five tokens gradually decreases. However, this
might mean that the attention integrates further away context, or might attend to a broader set of
tokens. The authors also show a slightly reduced contribution of attention compared to the MLP in
later layers, but the reduction is gradual and not dramatic. In contrast, we use interventions to directly
show that later layers have minimal effect on future predictions. The authors also do not study the
effects of input complexity on processing depth, nor the effect of increased model depth. Skean et al.
[35] discover an information bottleneck in the middle of autoregressive Transformers, and show that
the intermediate representations often outperform the final ones for downstream tasks.

Multiple prior works have examined the effect of layer interventions, such as skipping, swapping, or
parallelization [9, 10, 8]. In general, they find that models are remarkably robust to such interventions



on most of the tasks. The notable exception found by all papers are math-related tasks, such as
GSMSK. This corresponds to the intuitive expectation that math should require composing subresults.
This requires a large number of layers in Transformers, proportional to the depth of the computation
graph. This is the reason why we decided to focus on math-related tasks, but we found no evidence
for such deeper compositions.

For additional related work, please refer to Appendix F.

5 Discussion

Is the second half of the layers wasteful? Our experiments show that a significant proportion
of layers are not used to construct higher-level features for downstream computations, but only
refine the final probability distribution. Although matching the real probability distribution very
closely might be useful for language modeling, for solving downstream tasks, and also in practical
models after instruction tuning, only the top few token probabilities are important. It is therefore
surprising, and seems wasteful, that models spend half of their capacity distribution-matching instead
of further integrating information and doing more composition. The independence of operations
performed by later layers also implies that all the information should already be present in the residual
simultaneously. Thus, the residual width (dqe1) might be an important bottleneck.

The consequence of fixed depth computations. Using causal interventions, we show that more
complex problems do not cause the computation to shift to deeper layers. Although LLMs lack
explicit adaptive computation time mechanisms [36, 37], they can, in theory, learn to control the
amount of computation implicitly. The complete lack of any evidence for dynamic computation is
surprising. This means that the models do not break down the problem into subproblems, solve them,
and recompose them to solve the full problem, but instead process everything with a fixed circuit
on a fixed computation budget. It is unclear how such fixed-depth solutions can generalize to the vast
compositional structure of the world, without learning different circuits for each situation. The long-
tailed distribution of such mechanisms might help explain the diminishing returns of increased scaling.

The connection to Chain of Thought. Chain of Thought [38] avoids the lack of compositional
processing in the rich representations of the residual stream by outsourcing it to the input/output space.
At inference time, this results in full recurrence with discretization between steps. Other advantages of
this approach include supervision on the internal steps (either from pretaining or during fine-tuning),
and the discretization denoising intermediate computation steps. On the down side, the model cannot
learn to adaptively think more whenever it is needed but not reflected in the training data (e.g.,
arithmetic operations are rarely written out in papers). The state is also limited to discrete symbols.

Consequences for Latent Thinking approaches. Recently, a method for “thinking” in the latent
space [39] was proposed, relying on recurrent processing in the residual stream to avoid some of the
limitations of Chain of Thought. If the insensitivity of computation depth to input complexity is the
consequence of the pretaining objective, such methods are fundamentally flawed. On the other hand,
if the reason is the architecture, these approaches might provide the solution. Thus, determining the
reason and finding a possible solution to this problem is an important research direction.

6 Conclusion

In this paper, we quantify the amount of processing done by each layer and the interaction between
layers in pretrained language models. Using causal interventions, we found that in the second half of
their layers, these models do not build further on intermediate representations computed in earlier
layers. This casts doubts on the efficiency of the mechanisms learned by these models, raising
concerns about the importance of later layers. We also found that the depth of processing does not
change as a function of input complexity. This indicates that the models do not dynamically build
on the output of previous computations to perform more complex ones. This casts doubts on recent
approaches that aim to get models to “think” in their latent space. We also show that, when learning a
linear map between two models with different layer counts, the layers at the same relative positions
correspond to each other the most, indicating that the deeper model merely spreads out the same type
of computation that the shallower one uses. Our exploratory look at the recently proposed MoEUT
model indicates that it might use its layers more efficiently than Transformers. Our findings call



for research on better architectures and training objectives that can leverage the deep layers more
efficiently.
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to faithfully reproduce the main experimental results, as described in supplemental material?

Answer: [Yes]
Justification: We submitted the code.
Guidelines:
* The answer NA means that paper does not include experiments requiring code.
* Please see the NeurIPS code and data submission guidelines (https://nips.cc/public/
guides/CodeSubmissionPolicy) for more details.
* While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not including
code, unless this is central to the contribution (e.g., for a new open-source benchmark).
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* The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

* The authors should provide instructions on data access and preparation, including how to
access the raw data, preprocessed data, intermediate data, and generated data, etc.

* The authors should provide scripts to reproduce all experimental results for the new proposed
method and baselines. If only a subset of experiments are reproducible, they should state
which ones are omitted from the script and why.

» At submission time, to preserve anonymity, the authors should release anonymized versions
(if applicable).

* Providing as much information as possible in supplemental material (appended to the paper)
is recommended, but including URLSs to data and code is permitted.

6. Experimental setting/details
Question: Does the paper specify all the training and test details (e.g., data splits, hyperparameters,
how they were chosen, type of optimizer, etc.) necessary to understand the results?
Answer: [Yes]
Justification: The paper mainly relies on pretrained models. For the ones that we trained, we
provide enough details to roughly match our training setup, and we also provide the code.
Guidelines:

* The answer NA means that the paper does not include experiments.

* The experimental setting should be presented in the core of the paper to a level of detail that
is necessary to appreciate the results and make sense of them.

* The full details can be provided either with the code, in appendix, or as supplemental
material.

7. Experiment statistical significance
Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?
Answer:
Justification: We report significance on the linear fit of the performance vs. no. of layers. Most
of the experiments are done on individual LLMs. Other times, we plot heatmaps where it is hard
to put error bars. We have done it whenever we could, given computational constraints.
Guidelines:

» The answer NA means that the paper does not include experiments.

* The authors should answer "Yes" if the results are accompanied by error bars, confidence
intervals, or statistical significance tests, at least for the experiments that support the main
claims of the paper.

* The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall run
with given experimental conditions).

* The method for calculating the error bars should be explained (closed form formula, call to
a library function, bootstrap, etc.)

* The assumptions made should be given (e.g., Normally distributed errors).

* It should be clear whether the error bar is the standard deviation or the standard error of the
mean.

* Itis OK to report 1-sigma error bars, but one should state it. The authors should preferably
report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis of Normality
of errors is not verified.

 For asymmetric distributions, the authors should be careful not to show in tables or figures
symmetric error bars that would yield results that are out of range (e.g. negative error rates).

e If error bars are reported in tables or plots, The authors should explain in the text how they
were calculated and reference the corresponding figures or tables in the text.

8. Experiments compute resources
Question: For each experiment, does the paper provide sufficient information on the computer
resources (type of compute workers, memory, time of execution) needed to reproduce the
experiments?
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Answer: [Yes]
Justification: Sec. G.
Guidelines:

* The answer NA means that the paper does not include experiments.

* The paper should indicate the type of compute workers CPU or GPU, internal cluster, or
cloud provider, including relevant memory and storage.

* The paper should provide the amount of compute required for each of the individual
experimental runs as well as estimate the total compute.

* The paper should disclose whether the full research project required more compute than the
experiments reported in the paper (e.g., preliminary or failed experiments that didn’t make it
into the paper).

9. Code of ethics
Question: Does the research conducted in the paper conform, in every respect, with the NeurIPS
Code of Ethics https://neurips.cc/public/EthicsGuidelines?
Answer: [Yes]
Justification: We are merely analyzing the inner workings of existing public models and conduct-
ing controlled synthetic experiments.
Guidelines:

* The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.

* If the authors answer No, they should explain the special circumstances that require a
deviation from the Code of Ethics.

* The authors should make sure to preserve anonymity (e.g., if there is a special consideration
due to laws or regulations in their jurisdiction).

10. Broader impacts
Question: Does the paper discuss both potential positive societal impacts and negative societal
impacts of the work performed?
Answer: [NA]

Justification: We are merely analyzing the inner workings of existing public models and conduct-
ing controlled synthetic experiments.
Guidelines:

* The answer NA means that there is no societal impact of the work performed.

* If the authors answer NA or No, they should explain why their work has no societal impact
or why the paper does not address societal impact.

» Examples of negative societal impacts include potential malicious or unintended uses
(e.g., disinformation, generating fake profiles, surveillance), fairness considerations (e.g.,
deployment of technologies that could make decisions that unfairly impact specific groups),
privacy considerations, and security considerations.

» The conference expects that many papers will be foundational research and not tied to
particular applications, let alone deployments. However, if there is a direct path to any
negative applications, the authors should point it out. For example, it is legitimate to point
out that an improvement in the quality of generative models could be used to generate
deepfakes for disinformation. On the other hand, it is not needed to point out that a generic
algorithm for optimizing neural networks could enable people to train models that generate
Deepfakes faster.

* The authors should consider possible harms that could arise when the technology is being
used as intended and functioning correctly, harms that could arise when the technology is
being used as intended but gives incorrect results, and harms following from (intentional or
unintentional) misuse of the technology.

* If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks, mecha-
nisms for monitoring misuse, mechanisms to monitor how a system learns from feedback
over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible release
of data or models that have a high risk for misuse (e.g., pretrained language models, image
generators, or scraped datasets)?

18


https://neurips.cc/public/EthicsGuidelines

12.

13.

14.

Answer: [NA]

Justification: We are merely analyzing the inner workings of existing public models and conduct-
ing controlled synthetic experiments.

Guidelines:

» The answer NA means that the paper poses no such risks.

* Released models that have a high risk for misuse or dual-use should be released with
necessary safeguards to allow for controlled use of the model, for example by requiring that
users adhere to usage guidelines or restrictions to access the model or implementing safety
filters.

* Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

* We recognize that providing effective safeguards is challenging, and many papers do not
require this, but we encourage authors to take this into account and make a best faith effort.

Licenses for existing assets

Question: Are the creators or original owners of assets (e.g., code, data, models), used in the
paper, properly credited and are the license and terms of use explicitly mentioned and properly
respected?

Answer: [Yes]

Justification: The paper is CC-BY 4.0, the code is MIT.

Guidelines:

» The answer NA means that the paper does not use existing assets.

* The authors should cite the original paper that produced the code package or dataset.

* The authors should state which version of the asset is used and, if possible, include a URL.

* The name of the license (e.g., CC-BY 4.0) should be included for each asset.

* For scraped data from a particular source (e.g., website), the copyright and terms of service
of that source should be provided.

* If assets are released, the license, copyright information, and terms of use in the package
should be provided. For popular datasets, paperswithcode.com/datasets has curated
licenses for some datasets. Their licensing guide can help determine the license of a dataset.

* For existing datasets that are re-packaged, both the original license and the license of the
derived asset (if it has changed) should be provided.

* If this information is not available online, the authors are encouraged to reach out to the
asset’s creators.

New assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?
Answer:
Justification: The code contains comments on unclear parts, but follows no templates.
Guidelines:

* The answer NA means that the paper does not release new assets.

» Researchers should communicate the details of the dataset/code/model as part of their sub-

missions via structured templates. This includes details about training, license, limitations,
etc.

 The paper should discuss whether and how consent was obtained from people whose asset
is used.

* At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

Crowdsourcing and research with human subjects

Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as well as
details about compensation (if any)?

Answer: [NA]
Justification: We do not crowdsource, and our experiments do not involve humans.
Guidelines:
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15.

16.

* The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

* Including this information in the supplemental material is fine, but if the main contribution
of the paper involves human subjects, then as much detail as possible should be included in
the main paper.

* According to the NeurIPS Code of Ethics, workers involved in data collection, curation, or
other labor should be paid at least the minimum wage in the country of the data collector.

Institutional review board (IRB) approvals or equivalent for research with human subjects
Question: Does the paper describe potential risks incurred by study participants, whether such
risks were disclosed to the subjects, and whether Institutional Review Board (IRB) approvals (or
an equivalent approval/review based on the requirements of your country or institution) were
obtained?

Answer: [NA|

Justification: We do not have human subjects.

Guidelines:

* The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

* Depending on the country in which research is conducted, IRB approval (or equivalent) may
be required for any human subjects research. If you obtained IRB approval, you should
clearly state this in the paper.

* We recognize that the procedures for this may vary significantly between institutions and
locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the guidelines
for their institution.

* For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

Declaration of LLM usage

Question: Does the paper describe the usage of LLMs if it is an important, original, or non-
standard component of the core methods in this research? Note that if the LLM is used only for
writing, editing, or formatting purposes and does not impact the core methodology, scientific
rigorousness, or originality of the research, declaration is not required.

Answer:

Justification: We use it for matplotlib plots and for faster writing well-defined functions, but not
for the actual research part.

Guidelines:

* The answer NA means that the core method development in this research does not involve
LLMs as any important, original, or non-standard components.

* Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM) for
what should or should not be described.
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Appendix
A Limitations

The paper is a case study on multiple Llama and Qwen models. Although the findings seem to be
robust for these models, they might not hold for other model types.

Although the paper shows that models do not do computation that depends on the complexity of the
problem, it does not answer the question of how models solves the problems without such dependence.
This is an important direction for future work.

Sec. 3.4 relies on a single model pair, because of the expense of training L Lo big linear classifiers
while also keeping the models running. The findings should be verified with more resources on
different and deeper models.

Sec. 3.5 relies on manual study of individual trained models. An automatic metric that measures
the correspondence of the computation to the parse tree should be developed. However, this is a
nontrivial task that we leave for future work.

Nevertheless, we believe that our paper provides novel evidence for the high level inner workings of
LLMs. We hope that this inspires a future direction of research on how to improve them.

B Model Depth as a Factor Shaping Performance

Fig. 1 briefly analyzes the role of model depth in shaping model performance, using a dataset of 132
base models on the Open LLM Leaderboard [13]. To more deeply explore this relationship, we fit a
linear regression predicting performance using scale-relevant factors of these models: depth, model
dimensionality, and feed-forward dimensionality. (Total parameters is also a potential predictor, but it
is highly correlated with these other variables.) Depth is a highly significant variable in this model
(p < 0.0001). This result is highly robust to rescaling of the independent variables and including
model family as a hierarchical grouping factor. Thus, it seems clear that making models deeper does
make them better, even though the models themselves do not seem to use their depth efficiently.

C Robustness Analysis

To justify our choice of a relatively low number of samples (10-20, depending on the experiment)
and a single dataset (GSMS8k), we present results for more samples and for a different dataset (Math).
We show the influence of layers and sublayers on the residual stream, equivalent to Fig. 2, in Fig. 10.
Furthermore, we show the layer skipping effects, equivalent to Fig. 3, in Fig. 11, and the Logitlens-
based output similarity, corresponding to Fig. 4, in Fig. 12. These analyses show that our conclusions
are robust both with respect to the dataset choice and the number of examples.

To show the variability between individual examples, we show 4 examples contributing to Fig. 3b in
Fig. 13. Their variability justifies our choice to take the maximum over them to quantify the overall
importance of the layers.

D Results on Other Models

The performance on the HELM Lite benchmark of a few important models is shown in Fig 14.
Performance improves with the number of layers, similar to the Open LLM leaderboard (Fig. 1).

D.1 How do the Layers Interact With the Residual Stream?

We show the absolute and relative contributions of the sublayers to the residual stream for Llama 3.1
8b in Fig. 18, for the Qwen 3 series of models in Fig 19 and for OLMo 2 models in Fig 20. We show
cosine similarities of the sublayer’s contributions and the residual stream for all Llama and Qwen
models that we tested in Fig. 21 and for the OLMo models in Fig. 22. The results are similar to our
findings in Sec. 3.1.

We show the cosine similarity of the neighboring layers (cossim(h;, h;1)) in Fig. 16. All neighbor-
ing layers have very high cosine similarity, often close to 1, which is a consequence of the known
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Figure 10: Robustness analysis: influence of layers and sublayers on the residual stream for Llama
3.1 70B. (a,c) Norm of contributions relative to the residual stream. (b,d) Cosine similarity between
the contributions. Math dataset (a,b) and 50 examples on GSMS8K (c,d) are shown. The findings are
consistent with Fig 2.

anisotropy of Transformers [40]. However, as Fig. 2b and Fig. 21 show, comparing the cosine
similarity of the residual stream and the contributions of the layers and sublayers reveals a rich
structure.

D.2 How do the Layers Influence Downstream Computations?

Here, we show the effect of individual layers on later layers in future timesteps and on future token
outputs for multiple models. Fig 23 shows the effect on Llama 3.1 8B and 70B, while Fig. 24 shows
the Qwen 3 series of models, Fig. 25 shows the instruction-tuned Llama 3.1 70B, and Fig. 26 shows
the OLMo 2 models. It can be seen that instruction tuning has no influence on the model’s behavior.
In the Qwen 3 series of models, the effect seems to be less pronounced, but still present. OLMo 2
behaves very similarly to Qwen 3. The findings agree with our discussion in Sec. 3.2.

We show the local layer interactions for other Llama models in Fig. 27, for the Qwen 3 models in
Fig. 28 and for OLMo 2 in Fig. 29.

Additional Logitlens results are shown for the other models in Fig. 30 and Fig.31.

Qwen 3 32B (Fig. 24e) seems to display an additional interesting effect: early layers seem to
work independently, not building on each other’s representation from the previous timesteps. The
integration across time seems to start at around layer 40. Interestingly, once this point in the network
is reached, all previous computations seem to be important. Fig 28f shows the existence of a single
layer that integrates most of the information from the past. This layer composes features of many
previous layers.

‘We show the cosine similarities between the contributions and the residual for all tested models in
Fig. 21.
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Figure 11: Robustness analysis: effects of layer skipping on all tokens (a,c) and future tokens (b,d),
on the Math Dataset (a,b) and with 50 examples on GSMS8K (c,d). All variants agree with our findings
in Fig. 3.

D.3 Do Deeper Problems Use Deeper Computation?

Additional residual erasure experiments are shown for Llama 3.1 70B in Fig. 32, for the Qwen 3
series of models in Fig. 33 and for OLMo 2 in Fig. 34. Findings for the 70B Llama models are
identical to those discussed in Sec. 3.3. Qwen models use more layers, but they also seem to use a
fixed number of layers independently of the computation depth, indicating that they are not building
on subresults from previous computation steps. OLMo seems to have weaker depth dependence than
the other models. All findings are consistent with Sec 3.3.

We show the depth score on MATH and MQuUAKE datasets for Llama 3.1 8B in Fig. 35 and for the
Qwen 3 series of models in Fig. 33. The findings are identical to what we discussed in Sec. 3.3.

D.4 Do Deeper Models Do Novel Computation?

In Sec. 3.4 we used Qwen 2.5 1.5B and 14B models instead of the newer Qwen 3 series. The reason
for this is twofold: first, given that we had to train L; L different linear maps of substantial size, we
chose small models to be able to fit both models simultaneously on a single A6000 GPU. Second,
given this size limitation, the difference in the layer count of the Qwen 2.5 is higher than the viable
options from the Qwen 3 series.

D.5 Does Finetuning Cause the Model to Use Deeper Computations?
We finetune all parameters of Llama 3.2 3B on the arithmetic splits of the DeepMind Math dataset
[32], with batch size 64, for 10k steps, with a warmup of 100 steps followed by a constant learning

rate of 2 * 1075, At the end of the training, we perform integrated gradients and residual erasure
experiments on both the base model, which was the starting point of the finetuning process, and the
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Figure 12: Robustness analysis: comparing Logitlens on different layers to the final prediction. (a,c)
KL-divergence. (b,d) Overlap in the top-5 predicted tokens. Math dataset (a,b) and 50 examples on
GSMB&k (c,d) are shown. The findings are consistent with Fig. 4

final model. We also include the instruction-tuned version of the model as a control. We measure the
maximum effect on later layers and predictions of future tokens and find that fine-tuning seemingly
helps to increase the computation depth significantly (Fig. 39). However, by looking deeper at
individual instances, we reveal that the effect is mostly marginal: only the last 1-2 tokens are affected
before the prediction, and the residual erasure experiment shows no significant difference in the point
when they become unimportant, indicating that they are used in parallel (Fig. 40). We also tried
applying the loss only to the answers, but in contrast to pretraining (Sect. 3.5), it seems to have no
effect (Fig. 41).

E Details on the DeepMind Math Training

We fine-tune/pretrain our models on the arithmetic subset of the DeepMind Math dataset. These are
all the files in the train set that begin with the string “arithmetic_". To feed an example to the network,
use the template “Q: question A: answer”. To fill the context window of the model, we concatenate
multiple such examples with a whitespace between. We never break examples if they do not fully fit
the context window; the end of the window is padded as needed.

F Extended Related Work

Previous studies on the residual stream suggested that ResNets behave like an ensemble of shallow
networks [41]. Gurnee and Tegmark [42] showed that in Transformer language models, linear probe
accuracy increases rapidly in the first half of the model, and the improvements become marginal in
the second half. A phase transition was also previously observed around half of the model, where the
activations transition from sparse activations to dense [43, 44]. Logitlens [14] was also observed to
provide meaningful predictions from around the middle of the network. The growth of the residual
stream was previously observed in the context of outlier features [25], where they were hypothesized
to be one of the causes of the outlier features, and for large-scale Universal Transformers [16], where
they present an obstacle to mechanism reuse.
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Figure 13: Individual examples for effects of skipping a layer on later layers’ contribution in future
timesteps (4 individual elements contributing to Fig. 3b). The variability of the importance of
individual layers motivates our approach of taking the maximum over them to quantify their overall
importance.
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for Llama 3.1 70B. Norm for each layer.

Prior work also studies the mechanisms that are used to perform certain operations in Transformers.
Perhaps the most well-known are the induction heads [11]. In follow-up work, successor heads [45]
and copy suppression [46] were discovered. Recently Lindsey et al. [12] described a large variety
of circuits performing various functions in the network, including the mechanisms responsible for
addition. Although these mechanisms necessarily span multiple layers, a common pattern is that
they compose low-level sub-operations into a high-level operation. To the best of our knowledge,
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Figure 17: Analyzing the importance of layers on output predictions Llama 3.1 70B on GSM8K. The
figure shows the maximum change of the output probabilities. (a) shows all tokens in the sequence
when skipping a layer, including the current predictions, while (b) isolates the effect just for the
maximum of the future tokens. (a) shows that despite the low effects of the layers on consecutive
computations in the second half of the network (Fig. 3), the layers play an important role in the
predictions. However, as (b) shows, their importance is minimal for future predictions. The second
half of the layers seems to perform mostly independent, but important, computations to refine the
current predicted probability distribution. This is further support for the findings of Fig. 4 in the main
text.

there is no evidence of higher-level conditional composition, where a mechanism is sometimes used
to directly produce the output, while other times it is used in composition with another high-level
mechanism to compute a more complex function.

Previously, some methods were proposed that might help increase the effectiveness of the feature
building in deeper layers. For example, Kim et al. [47] show that their method increases the angular
distance between the representations of different layers, indicating that it might use deeper layers
more efficiently. Li et al. [48] mix post-layernorms in early layers and pre-layernorms in later layers to
improve gradient propagation. However, we are not aware of freely available popular large language
models using these configurations in order to verify their effectiveness. However, we tested the
OLMo 2 series of models with a different layernorm structure, resulting in similar conclusions as the
standard pre-layernorm models.

The collapse of importance of attention in the later layers could be related to massive activations [49]
that have been shown to collapse the attention to a few discrete tokens, potentially reducing their
effectiveness. It might also partially explain the success of selective attenetion pruning [50].

More broadly, causal intervention methods gained popularity in recent years [51, 52, 53, 54, 55].
These methods are capable of providing deep insights on how neural networks operate. By direct
interventions on the hypothesized mechanisms, they provide strong evidence and avoid accidental
reliance on surface correlations.
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Figure 18: L2 norm of layer inputs and the sublayer contributions before summing into the residual
for Llama 3.1 8B and 405B on GSMS8K. (a,c) shows the norm for each layer/sublayer, while (b,d)
compares the norm of the sublayer outputs to their input, quantifying the relative change induced by
the sublayer (limited to max 1.5 for better visibility). A sharp drop is visible near the middle of the
network. The second half of the layers changes the residual significantly less than the first half, with
the exception of the last few layers. The findings are similar to what we have demonstrated in Fig. 15
and 2a.

G Hardware Resources

Most of our experiments were done using NNSIGHT and NDIF [21], not requiring local hardware.
The experiments on the Qwen models and the Llama 3.1 70B Instruct models, which are not available
on NDIF, are done on 4 Nvidia A6000 48Gb GPUs, with a rough duration of a day for the 70B
experiment, and another day for all the Qwen experiments.

For Sec. 3.5, we trained each model on 2 Nvidia A100 80Gb GPUs for 2 days.

Full-finetuning Llama 3.1 3B on the DeepMind Math Dataset (Sec. D.5) was done on 4 Nvidia H200
GPUs for 10 hours.

Training the linear maps between the pair of layers of the Qwen models (Sec. 3.4) was done on
A6000 GPUs, taking 80 GPU-days in total.
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Figure 19: L2 norm of layer inputs and the sublayer outputs before summing into the residual for the
Qwen 3 series of models on GSMS8K. (a,c) shows the norm for each layer, while (b,d) compares the
norm of the sublayer outputs to their input, quantifying the relative change induced by the sublayer.
Relative contributions clipped to 1.5 maximum. The contribution of later layers remains more stable
than the Llama models (Fig. 15 and 2a), especially for the 14B model. (e,f) Findings for Qwen
32B. This model seems to differ from all the others examined: it uses all its layers. However, the
importance of the early layers is lower than the late ones.
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Figure 20: L2 norm of layer inputs and the sublayer outputs before summing into the residual for the
OLMo 2 series of models on GSMS8K. (a,c) shows the norm for each layer, while (b,d) compares the
norm of the sublayer outputs to their input, quantifying the relative change induced by the sublayer.
The relative cointribution of inidividual layers is significantly lower than the Llama (Fig. 15, 2a) and
Qwen (Fig. 19) models.
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Figure 21: Cosine similarity between the sublayers’ contributions and the residual for the LLama 3.1
and Qwen 3. They all show a consistent picture with Fig. 2b.
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Figure 22: Cosine similarity between the sublayers’ contributions and the residual for OLMo 2. They
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Figure 23: Analyzing the importance of layers on computations in later layers and output predictions
for Llama 3.1 8B and 405B on GSMS8K, focusing on the effect on future tokens. (a,c) The maximum
relative change in the layer’s output when a previous layer is skipped. The second half of the layers
has a weaker effect on future computations compared to the first. The range is limited between 0
and 1. (b,d) The maximum change in the output probabilities. The findings are identical to the ones
discussed in Fig. 3.
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Figure 24: Analyzing the importance of layers on computations in later layers and output predictions
on Qwen 3 series of models on GSM8K, focusing on the effect on future tokens. (a,c,e) The maximum
relative change in the layer’s output when a previous layer is skipped. The second half of the layers
has a weaker effect on future computations compared to the first. The range is limited between O
and 1. (b,d,f) The maximum change in the output probabilities. The findings for the 8 and 14B
models are identical to the ones discussed in Fig. 3. However, the 32B model behaves differently: it
also displays the reduced effects on future predictions in the late layers, but more interestingly, the
lower layers seem not to build on each other’s computation, but just accumulate information in the
residual, which will be used in late layers.
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Figure 25: Analyzing layer importance for future predictions in Llama 3.1 70B Instruct. (a) The
maximum relative change in the layer’s output when a previous layer is skipped. It can be seen
that layers in the second half of the model have minimal effect on the future computations. (b) The
maximum relative change in the output probabilities. Instruction tuning seems to somewhat increase
all layers’ significance to the future predictions. However, the stark difference between the first and
second halves of the model is still present. Compare to Fig. 3b and 17b.
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Figure 26: Analyzing the importance of layers on computations in later layers and output predictions
on OLMo 2 series of models on GSMS8K, focusing on the effect on future tokens. (a,c,e) The
maximum relative change in the layer’s output when a previous layer is skipped. (a,c) The second
half of the layers has a weaker effect on future computations compared to the first. The range is
limited between 0 and 1. (b,d,f) The maximum change in the output probabilities. The findings for
the 8 and 13B models are identical to the ones discussed in Fig. 3. However, the 32B model behaves
similarly to Qwen 3 32B (Fig. 24e): it also displays the reduced effects on future predictions in the
late layers, but more interestingly, the lower layers seem not to build on each other’s computation,
but just accumulate information in the residual, which will be used in late layers.
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Figure 27: Analyzing the direct local effects between pairs of layers of Llama 3.1 models. It highlights
layer pairs with a direct effect on each other. The effects are not propagated to future layers. For each
layer s, the plot shows future layers that build on the representation computed by s. (a,c) Effects on
all tokens, highlighting all possible circuits. (b,d) Effect on future tokens. The sparse, bright spots

indicate multi-layer, multi-token mechanisms, such as induction heads. Note that interacting layers
are not necessarily spatially close to each other.
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Figure 28: Analyzing the direct local effects between pairs of layers of Qwen models. It highlights
layer pairs with a direct effect on each other. The effects are not propagated to future layers. For each
layer s, the plot shows future layers that build on the representation computed by s. (a,c,e) Effects on
all tokens, highlighting all possible circuits. (b,d,f) Effect on future tokens. The sparse, bright spots
indicate multi-layer, multi-token mechanisms, such as induction heads. Note that interacting layers
are not necessarily spatially close to each other. Interestingly, Qwen 3 32b shows a single layer that
moves most of the features at once from previous layers to future tokens.
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Figure 29: Analyzing the direct local effects between pairs of layers of OLMo 2 models. It highlights
layer pairs with a direct effect on each other. The effects are not propagated to future layers. For each
layer s, the plot shows future layers that build on the representation computed by s. (a,c,e) Effects on
all tokens, highlighting all possible circuits. (b,d,f) Effect on future tokens. The OLMo models seem
to have significantly stronger contributions to both the same token (a,c,e) and the future tokens (b,d,f),
compared to the LLama (Fig. 5, 27) and Qwen (Fig. 28) models. This can be probably attributed to
their reordered norm, where the normalization is applied after the layers, before merging back to the
residual.

38



KL Divergence

15 20 25 30
Layer

0 5 10

(a) Llama 3.1 8B: KL divergence between Log-
itlens and final prediction

10

KL Divergence

0
0 10 20 30 40 50 60 70 80

Layer

(c) Llama 3.1 70B Instruct: KL divergence between
Logitlens and final prediction

N
o

KL Divergence
=
o

0 5 10 15 20 25 30 35
Layer

(e) Qwen 3 8B: KL divergence between Logitlens
and final prediction

N
o

KL Divergence
=
o

0
0 5 10 15 20 25 30 35 40

Layer

(g) Qwen 3 14B: KL divergence between Logitlens
and final prediction

KL Divergence

10 20 30 40 50 60
Layer

(1) Qwen 3 32B: KL divergence between Logitlens
and final prediction

o 0.4
o
=
[
>
© 0.2

0.0 T T T L

0 5 10 15 20 25 30
Layer

(b) Llama 3.1 8B: Overlap in top-5 predicted tokens

0 10 20 30 40 50 60 70 80
Layer

(d) Llama 3.1 70B Instruct: Overlap in top-5 pre-
dicted tokens

0 5 10 15 20 25 30 35
Layer

(f) Qwen 3 8B: Overlap in top-5 predicted tokens

Overlap
o o o o
o N S o

0 5 10 15 20 25 30 35 40
Layer

(h) Qwen 3 14B: Overlap in top-5 predicted tokens

an
0 10 20 30 40 50
Layer

Overlap
o o o o
o N S o
: %
o

(j) Qwen 3 32B: Overlap in top-5 predicted tokens

Figure 30: Comparing Logitlens probes from different layers to the final prediction for different
models. Left: KL divergence between the output of the Logitlens and the final prediction. Right:
Overlap between the top-5 tokens predicted by Logitlens and the final model prediction.
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Figure 32: Analyzing the effect of individual computation steps on Llama 3.1 70B. (a,b) Basic math
question. (c,d) Two-hop reasoning. Note that the answer is 4 tokens long in this case, providing
a stronger gradient signal. (a,c) Integrated gradients. (b,d) The probability distribution change
(|ly — 9l|2) when erasing the residual of a given token in a given layer. This score shows until when
the information from a column is used. In both cases, the second half of the model shows minimal
effect. Moreover, in arithmetic, later hops of computation do not use more depth, indicating that no
composition is happening.
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Figure 33: Analyzing the effect of individual computation steps on the Qwen 3 series of models.
(a,b,e.f,i,j) Basic math question. (c,d,g,h,k,1) Two-hop reasoning. Note that the answer is 4 tokens
long in this case, providing a stronger gradient signal. (a,c.e,g,i,k) Integrated gradients. (b,d,f,h,j,1)
The probability distribution change (||y — g||2) when erasing the residual of a given token in a given
layer. This score shows until when the information from a column is used. The models use more
layers compared to the Llama series (Fig. 6), but still show no increased depth for later computations.
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Figure 34: Analyzing the effect of individual computation steps on the OLMo 2 series of models.
(a,b,e.f,i,j) Basic math question. (c,d,g,h,k,1) Two-hop reasoning. Note that the answer is 4 tokens
long in this case, providing a stronger gradient signal. (a,c.e,g,i,k) Integrated gradients. (b,d,f,h,j,1)
The probability distribution change (||y — g||2) when erasing the residual of a given token in a given
layer. This score shows until when the information from a column is used. Up to 13B, the models
seems to do shallower processing than both the Llama series (Fig. 6) and Qwen 3 (Fig. 33).
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Figure 35: Depth score for Llama 8B: the weighted average of layer index with its importance, as
a function of a given difficulty metric. Importance is measured based on both the effect on future
internal computations and on the effect on future predictions. (a) MATH dataset. The x-axis is the
difficulty level defined by the dataset. (b) MQuAKE. The x-axis is the number of hops in the question.
The findings are similar to Llama 8B (Fig. 7).
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Figure 36: Depth score for the Qwen 3 series of models: the weighted average of layer index with
its importance, as a function of a given difficulty metric. Importance is measured based on both the
effect on future internal computations and on the effect on future predictions. (a,c,e) MATH dataset.
The x-axis is the difficulty level defined by the dataset. (b,d,f) MQuUAKE. The x-axis is the number of
hops in the question. The findings are identical to the Llama models. See Fig. 7.
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Figure 37: Depth score for the OLMo 2 series of models: the weighted average of layer index with
its importance, as a function of a given difficulty metric. Importance is measured based on both the
effect on future internal computations and on the effect on future predictions. (a,c,e) MATH dataset.
The x-axis is the difficulty level defined by the dataset. (b,d,f) MQUAKE. The x-axis is the number of
hops in the question.. The findings are very similar to the Llama and Qwen models. See Figs. 7, 36.
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Figure 38: Layerwise effect of different complexity computations. (a,b) Questions with a different
number of hops from the MQuAKE dataset. (c,d) Problems with different difficulty levels from the
MATH dataset. (a,c) The max relative change in the future layer’s contribution to the answer when a
given layer is skipped. Mean over all future layers. (b,d) Maximum L2 norm of the change in the
output probability distribution (||y — g||2). If more complex computations use more layers, we would
expect that the importance of deeper layers increases with complexity. However, we see no evidence
of such a pattern.
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Figure 39: The effect of fine-tuning on the max future effects of Llama 3.2 3B on the DeepMind Math
dataset’s arithmetic splits. (a,b,c) Effect of skipping a layer on the later layers of future tokens. (d,e,f)
Effect on future predictions. Max over 20 random examples from the validation set. The fine-tuning
seems to increase the importance of the later layers at first glance. However, looking at individual
examples reveals that the effect is only marginal, affecting the last 1-2 tokens before the prediction
(Fig. 40).
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Figure 40: Analyzing residual erasure and integrated gradients on Llama 3.2 3B fine-tuned on the
DeepMind Math dataset. Even though Fig. 39 indicates deeper computations compared to the base
model, looking at individual examples reveals that the effect concentrates only on the last 1-2 tokens
before the answer, indicating that the effect is superficial.
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Figure 41: Analyzing residual erasure and integrated gradients on Llama 3.2 3B fine-tuned on the
DeepMind Math dataset, when trained without modeling the question. Not modeling the uncertainty
in the question seems not to make any difference for fine-tuning. Compare to Fig. 40.
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(a) Ex. 1: Transformer: Q+A (b) Ex. 1: Transformer: A only

(c) Ex. 1: MOEUT: Q+A (d) Ex. 1: MoEUT: A only
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Figure 42: Training Transformer and MoEUT models from scratch on DeepMind Math dataset
arithmetic subset, with and without applying loss to the question part of the input. We show the
residual erasure experiments here, with identical examples to Fig. 40. (a,e) We can see that if
the model is trained with the question modeling enabled, it does not use its 2nd half of the layers,
similarly to the LLMs. (b,f) If modeling the question only, the model uses significantly more layers.
(c,d,g,h) MoEUT successfully uses more layers even when modeling the question, although modeling
the answer only seem to help further (f). All models failed to answer Example 2 correctly (e,f,g,h).
Fig. 43.
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(a) Ex. 3: Transformer: Q+A (b) Ex. 3: Transformer: A only

(c) Ex. 3: MoEUT: Q+A

(e) Ex. 4: Transformer: Q+A (f) Ex. 4: Transformer: A only

(g) Ex. 4: MoEUT: Q+A (h) Ex. 4: MoEUT: A only

Figure 43: Training Transformer and MoEUT models from scratch on DeepMind Math dataset
arithmetic subset, with and without applying loss to the question part of the input. We show the
residual erasure experiments here, with identical examples to Fig. 40. (a,e) We can see that if
the model is trained with the question modeling enabled, it does not use its 2nd half of the layers,
similarly to the LLMs. (b,f) If modeling the question only, the model uses significantly more layers.
(c,d,g,h) MoEUT successfully uses more layers even when modeling the question, although modeling
the answer only seem to help further (f). For more examples, please refer to Fig. 42.
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