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Abstract

Reinforcement learning (RL) theory has largely focused on proving minimax
sample complexity bounds. These require strategic exploration algorithms that use
relatively limited function classes for representing the policy or value function. Our
goal is to explain why deep RL algorithms often perform well in practice, despite
using random exploration and much more expressive function classes like neural
networks. Our work arrives at an explanation by showing that many stochastic
MDPs can be solved by performing only a few steps of value iteration on the
random policy’s Q function and then acting greedily. When this is true, we find that
it is possible to separate the exploration and learning components of RL, making it
much easier to analyze. We introduce a new RL algorithm, SQIRL, that iteratively
learns a near-optimal policy by exploring randomly to collect rollouts and then
performing a limited number of steps of fitted-Q iteration over those rollouts. We
find that any regression algorithm that satisfies basic in-distribution generalization
properties can be used in SQIRL to efficiently solve common MDPs. This can
explain why deep RL works with complex function approximators like neural
networks, since it is empirically established that neural networks generalize well in-
distribution. Furthermore, SQIRL explains why random exploration works well in
practice, since we show many environments can be solved by effectively estimating
the random policy’s Q-function and then applying zero or a few steps of value
iteration. We leverage SQIRL to derive instance-dependent sample complexity
bounds for RL that are exponential only in an “effective horizon” of lookahead—
which is typically much smaller than the full horizon—and on the complexity of
the class used for function approximation. Empirically, we also find that SQIRL
performance strongly correlates with PPO and DQN performance in a variety of
stochastic environments, supporting that our theoretical analysis is predictive of
practical performance.

1 Introduction

The theory of reinforcement learning (RL) does not quite predict the practical successes (and failures)
of deep RL. Specifically, there are two gaps between theory and practice. First, RL theoreticians
focus on strategic exploration, while most deep RL algorithms explore randomly. Explaining why
random exploration works in practice is difficult because theorists can show that randomly exploring
algorithms’ worst-case sample complexity is exponential in the horizon. Thus, most recent progress
in the theory of RL has focused on strategic exploration algorithms, which use upper confidence
bound (UCB) bonuses to effectively explore the state space of an environment. Second, RL theory
struggles to explain why deep RL can learn efficiently while using complex function approximators
like deep neural networks. This is because UCB-type algorithms only work in highly-structured
environments where they can use simpler function classes to represent value functions and policies.

Our goal is to bridge these two gaps: to explain why random exploration works despite being
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exponentially bad in the worst-case, and to understand why deep RL succeeds despite using deep
neural networks for function approximation. Some recent progress has been made on the former
problem by Laidlaw et al. [1], who analyze when random exploration will succeed in deterministic
environments. They demonstrate a surprising finding: in many deterministic environments, it is
optimal to act greedily according to the Q-function of the policy that takes actions uniformly at
random. This inspires their definition of a property of deterministic environments called the “effective
horizon,” which is roughly the number of lookahead steps a Monte Carlo planning algorithm needs
to solve the environment when relying on random rollouts to evaluate leaf nodes. They then show
that a randomly exploring RL algorithm called Greedy Over Random Policy (GORP) has sample
complexity exponential only in the effective horizon rather than the full horizon. They show the
effective horizon also predicts empirical deep RL performance.

In this work, we take inspiration from the effective horizon to analyze RL in stochastic environments
with function approximation. We introduce a new RL algorithm, SQIRL (shallow Q-iteration via
reinforcement learning), that generalizes GORP to stochastic environments. SQIRL iteratively learns
a policy by alternating between collecting data through purely random exploration and then training
function approximators on the collected data. The advantage of this algorithm is that it only relies on
access to a regression oracle that can generalize in-distribution from i.i.d. samples, which we know
works even with neural networks. Thus, unlike strategic exploration algorithms which work for only
limited function classes, SQIRL helps explain why RL can work with expressive function classes.
Furthermore, the SQIRL leverages the effective horizon property, helping to explain why RL works
in practice using random exploration.

Theoretically, we prove instance-dependent sample complexity bounds for SQIRL that depend on a
stochastic version of the effective horizon as well as properties of the regression oracle used. We show
that a wide variety of function approximators can be used within SQIRL. Furthermore, to strengthen
our claim that SQIRL can explain why deep RL succeeds while using random exploration and neural
networks, we compare its performance to the deep RL algorithms PPO [2] and DQN [3] in over 150
stochastic environments. We find that in environments where both PPO and DQN converge to an
optimal policy, SQIRL does as well 78% of the time; when both PPO and DQN fail, SQIRL never
succeeds. These empirical results and theoretical contributions show that the effective horizon and the
SQIRL algorithm can help explain when and why deep RL works even in stochastic environments.

2 Setup and Related Work

We consider the setting of an episodic Markov decision process (MDP) with finite horizon T . The
MDP comprises a horizon T ∈ N, states s ∈ S, actions a ∈ A, initial state distribution p1(s1),
transitions pt(st+1 | st, at), and reward Rt(st, at) for t ∈ [T ], where [n] denotes the set {1, . . . , n}.
Let J(π) = Es1∼p(s1)[V

π
1 (s1)] denote the expected return of a policy π. The objective of an RL

algorithm is to find an ϵ-optimal policy, i.e., one such that J(π) ≥ J∗ − ϵ where J∗ = maxπ∗ J(π∗).
We denote the sample complexity Nϵ,δ of an RL algorithm as the minimum number of timesteps of
interaction with the environment needed to find an ϵ-optimal policy with probability at least 1− δ.
See Appendix A for a full description of our setting and notation.

Related work Most prior work in RL theory has focused finding strategic exploration-based
RL algorithms which have minimax regret or sample complexity bounds [4, 5, 6, 7, 8, 9, 10, 11].
However, since the worst-case bounds for random exploration are exponential in the horizon [12, 6],
minimax analysis cannot explain why random exploration works well in practice. Furthermore, while
strategic exploration has been extended to broader and broader classes of function approximators
[13, 14, 15, 16], even the broadest of these cannot use complex function approximators like neural
networks. A much smaller set of work has analyzed random exploration [17, 18] and more general
function approximators [19] in RL. However, Laidlaw et al. [1] show that the sample complexity
bounds in these papers fail to explain empirical RL performance even in deterministic environments.

3 The Stochastic Effective Horizon and SQIRL

We now present our main theoretical findings extending the effective horizon property and GORP
algorithm to stochastic environments. The effective horizon was motivated in Laidlaw et al. [1] by a
surprising property that the authors show holds in many deterministic MDPs: acting greedily with
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respect to the Q-function of the random policy, i.e. πrand
t(a | s) = 1/A ∀s, a, t, gives an optimal

policy. They call a generalization of this property k-QVI-solvability. To define k-QVI-solvability, we
introduce some notation. One step of Q-value iteration transforms a Q-function Q to Q′ = QVI(Q),
where

Q′
t(st, at) = Rt(st, at) + Est+1

[maxa∈A Qt+1 (st+1, a)] .
We also denote by Π(Q) the set of policies which act greedily with respect to the Q-function Q; that
is,

Π(Q) =
{
π
∣∣∣ ∀s, t πt(s) ∈ argmaxa∈A Qt(s, a)

}
.

Furthermore, we define a sequence of Q-functions Q1, . . . , QT by letting Q1 = Qπrand
be the Q-

function of the random policy and Qi+1 = QVI(Qi).
Definition 3.1 (k-QVI-solvable). We say an MDP is k-QVI-solvable for some k ∈ [T ] if every policy
in Π(Qk) is optimal.

If acting greedily on the random policy’s Q-values is optimal, then an MDP is 1-QVI-solvable;
k-QVI-solvability extends this to cases where a few steps of value iteration must be applied before
acting greedily. We construct stochastic sticky-action versions of the 155 deterministic MDPs in
the BRIDGE dataset and show that most of them are k-QVI-solvable for small values of k; see
Appendix F.1 for details. This suggests that it may be possible to extend the effective horizon to
stochastic environments. However, Laidlaw et al. [1] show that k-QVI-solvability alone is not enough
to guarantee that random exploration can lead to efficient RL. They define the effective horizon by
combining k with a measure of how precisely Qk needs to be estimated to act optimally.
Definition 3.2 (k-gap). If an MDP is k-QVI-solvable, we define its k-gap as

∆k = inf(t,s)∈[T ]×S
(
maxa∗∈A Qk

t (s, a
∗)−maxa ̸∈argmaxa Qk

t (s,a)
Qk

t (s, a)
)
.

Intuitively, the smaller the k-gap, the more precisely an algorithm must estimate Qk in order to act
optimally in an MDP which is k-QVI-solvable. We can now define the stochastic effective horizon,
which we show is closely related to the effective horizon in deterministic environments:
Definition 3.3 (Stochastic effective horizon). Given k ∈ [T ], define H̄k = k + logA(1/∆

2
k) if an

MDP is k-QVI-solvable and H̄k = ∞ otherwise. The stochastic effective horizon is H̄ = mink H̄k.

Lemma 3.4. The deterministic effective horizon H is bounded for any k ∈ [T ] as
H ≤ mink

[
H̄k + logA O

(
log
(
TAk

))]
.

Furthermore, if an MDP is k-QVI-solvable, then with probability at least 1− δ, GORP will return an
optimal policy with sample complexity at most O(kT 2AH̄k log (TA/δ)).

We defer all proofs to Appendix D. Lemma 3.4 shows that our definition of the stochastic effective
horizon is closely related to the deterministic effective horizon definition.

SQIRL To show that the stochastic effective horizon can provide insight into when and why deep
RL succeeds, we introduce the shallow Q-iteration via reinforcement learning (SQIRL) algorithm,
show in in Algorithm 1. SQIRL iteratively builds a policy timestep-by-timestep. At the ith iteration,
it collects m episodes of data by following previously learned policies for timesteps t < i and then
acting randomly after. It then uses regression to estimate the random policy’s Q-function, followed by
k − 1 steps of fitted Q-iteration (FQI) [20]. We show in Appendix B that SQIRL is a generalization
of the GORP algorithm from Laidlaw et al. [1] to stochastic environments. Algorithm 1 depends on a
regression oracle REGRESS that can effectively perform regression of the random policy’s Q-function
and FQI. We give examples of regression oracles in Appendix C.

Sample complexity bounds Our main theoretical result shows that we can bound the sample
complexity of SQIRL based on the stochastic effective horizon and properties of the regression oracle:

Theorem 3.5 (Informal). Suppose REGRESS can estimate Q-functions via regression and fitted
Q-iteration from m samples, giving Q-functions which have population error which is O

(
D(δ) logm

m

)
with probability at least 1 − δ. Then if the MDP is k-QVI-solvable for some k ∈ [T ], there is a
univeral constant C such that SQIRL (Algorithm 1) will return an ϵ-optimal policy with probability at
least 1− δ if m ≥ C kTAkD(δ/kt)

∆2
kϵ

log kTAD(δ/kt)
∆kϵ

. Thus, the sample complexity of SQIRL is at most

N SQIRL
ϵ,δ ≤ Õ

(
1
ϵkT

3AH̄kD(δ/kt) logD(δ/kt)
)
. (1)
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Algorithm 1 The shallow Q-iteration via reinforcement learning (SQIRL) algorithm.
1: procedure SQIRL(k, m, REGRESS)
2: for i = 1, . . . , T do
3: Collect m episodes by following πt for t < i and πrand thereafter to obtain {(sjt , a

j
t , y

j
t )}mj=1.

4: Q̂1
i+k−1 ← REGRESS({(sji+k−1, a

j
i+k−1,

∑T
t=i+k−1 Rt(s

j
t , a

j
t))}mj=1).

5: for t = i+ k − 2, . . . , i do
6: Q̂i+k−t

t ← REGRESS({(sjt , a
j
t , Rt(s

j
t , a

j
t) + maxa∈A Q̂i+k−t−1

t+1 (sjt+1, a))}mj=1).
7: end for
8: Define πi by πi(s)← argmaxa Q̂

k
i (s, a).

9: end for
10: return π1, . . . , πT .
11: end procedure

Algorithm Envs. solved
PPO 102
DQN 77
SQIRL 68

Table 1: The number of sticky-
action BRIDGE environments (out
of 155) solved by three RL al-
gorithms. Our SQIRL algorithm
solves about 2/3 of the environ-
ments that PPO does and almost as
many as DQN.

Algorithms Sample complexity
comparison

Correl. Median ratio

SQIRL PPO 0.79 1.00
SQIRL DQN 0.63 0.55
PPO DQN 0.57 0.55

Table 2: A comparison of the empirical sample complexi-
ties of SQIRL, PPO, and DQN in the sticky-action BRIDGE
environments. SQIRL’s sample complexity has higher
Spearman correlation with PPO and DQN than they do
with each other. Furthermore, SQIRL tends to have similar
sample complexity to PPO and better sample complexity
than DQN.

See Appendix B for a formal version of Theorem 3.5 and further analysis. To understand the bound
on the sample complexity of SQIRL given in (2), first compare it to GORP’s sample complexity in
Lemma 3.4. Like GORP, SQIRL has sample complexity exponential in only the effective horizon.
As Appendix C shows, in many cases D(δ) ≍ d + log(1/δ), where d is the pseudo-dimension
of the hypothesis class used by the regression oracle. Then, the sample complexity of SQIRL is
Õ(kT 3AH̄kd/ϵ)—ignoring log factors, just a Td/ϵ factor more than the sample complexity of GORP.
The additional factor of d is necessary because SQIRL must learn a Q-function that generalizes over
many states, while GORP can estimate the Q-values at a single state in deterministic environments.
See Table 3 for a comparison of these sample complexity bounds to others in the literature.

4 Experiments

While our theoretical results strongly suggest that SQIRL and the stochastic effective horizon can
explain deep RL performance, we also want to validate these insights empirically. We compare the
sample complexity of PPO [2], DQN [3], and SQIRL in 155 stochastic sticky-action versions of
the BRIDGE environments from Laidlaw et al. [1] (see Appendix E for details). The results of our
experiments are shown in Tables 1 and 2 and Figure 3. As shown in Table 1, SQIRL solves about
two-thirds as many environments as PPO and nearly as many as DQN. This shows that SQIRL is
not simply a useful algorithm in theory—it can solve a wide variety of stochastic environments in
practice. It also suggests that the assumptions we introduce in Section 3 actually hold for RL in
realistic environments with neural network function approximation.

Furthermore, as shown in Table 1 and Figure 3, SQIRL’s sample complexity correlates better with
that of PPO and DQN than they correlate with each other (as measured by Spearman correlation).
We also report the median ratio of the sample complexities of each pair of algorithms to see if they
agree in absolute scale. We find that SQIRL tends to have similar sample complexity to PPO and
better sample complexity than DQN. The fact that there is a close match between the performance
of SQIRL and deep RL algorithms—when deep RL has low sample complexity, so does SQIRL,
and vice versa—suggests that our theoretical explanation for why SQIRL succeeds is also a good
explanation for why deep RL succeeds.
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Appendix

A Setting

Here, we expand on Section 2 to provide a full description of the MDP setting we consider.

As described in Section 2, we consider episodic MDPs that consist of a horizon T ∈ N, states s ∈ S ,
actions a ∈ A, initial state distribution p1(s1), transitions pt(st+1 | st, at), and reward Rt(st, at)
for t ∈ [T ]. We assume that A = |A| ≥ 2 is finite. While we do not explicitly consider discounted
MDPs, our analysis is easily extendable to incorporate a discount rate.

An RL agent interacts with the MDP for a number of episodes, starting from a state s1 ∼ p(s1).
At each step t ∈ [T ] of an episode, the agent observes the state st, picks an action at, receives
reward R(st, at), and transitions to the next state st+1 ∼ p(st+1 | st, at). A policy π is a set of
functions π1, . . . , πt : S → ∆(A), which defines for each state and timestep a distribution πt(a | s)
over actions. If a policy is deterministic at some state, then with slight abuse of notation we denote
a = πt(s) to be the action taken by πt in state s. We assume that the total reward

∑t
t=1 Rt(st, at)

is bounded almost surely in [0, 1]; any bounded reward function can be normalized to satisfy this
assumption.

Using a policy to select actions in an MDP induces a distribution over states and actions with
at ∼ πt(· | st). We use Pπ and Eπ to refer to the probability measure and expectation with respect
to this distribution for a particular policy π. We denote a policy’s Q-function Qπ

t : S ×A → R and
value function V π

t : S → R for each t ∈ [T ], defined as:

Qπ
t (s, a) = Eπ

[∑T
t′=t Rt′(st′ , at′) | st = s, at = a

]
V π
t (s) = Eπ

[∑T
t′=t Rt′(st′ , at′) | st = s

]
Let J(π) = Es1∼p(s1)[V

π
1 (s1)] denote the expected return of a policy π. The objective of an RL

algorithm is to find an ϵ-optimal policy, i.e., one such that J(π) ≥ J∗ − ϵ where J∗ = maxπ∗ J(π∗).
Suppose that after interacting with the environment for n timesteps (i.e., counting one episode as
T timesteps), an RL algorithm returns a policy πn. We define the (ϵ, δ) sample complexity Nϵ,δ of
an RL algorithm as the minimum number of timesteps needed to return an ϵ-optimal policy with
probability at least 1− δ, where the randomness is over the environment and the RL algorithm:

Nϵ,δ = min {n ∈ N | P (J(πn) ≥ J∗ − ϵ) ≥ 1− δ} .

B Full analysis of SQIRL

Algorithm 2 The greedy over random policy (GORP)
algorithm [1].
1: procedure GORP(k,m)
2: for i = 1, . . . , T do
3: for ai:i+k−1 ∈ Ak do
4: sample m episodes following π1, . . . , πi−1,

then actions ai:i+k−1, and finally πrand.
5: Q̂i(si, ai:i+k−1)←

1
m

∑m
j=1

∑T
t=i γ

t−iR(sjt , a
j
t).

6: end for
7: πi(si)← argmaxai∈A

maxai+1:i+k−1∈Ak−1 Q̂i(si, ai, ai+1:i+k−1).

8: end for
9: return π

10: end procedure

In this appendix, we thoroughly compare
GORP and SQIRL, showing how SQIRL
can be considered an extension of GORP to
stochastic environments (Figure 1). Then,
we present our full analysis of SQIRL’s
sample complexity.

Recall the two theory-practice divides we
aim to bridge: first, understanding why ran-
dom exploration works in practice despite
being exponentially inefficient in theory;
and second, explaining why using deep neu-
ral networks for function approximation is
feasible in practice despite having little the-
oretical justification. SQIRL is designed
to address both of these. It generalizes
the GORP algorithm to stochastic environ-
ments, giving sample complexity exponential only in the stochastic effective horizon H̄ rather than
the full horizon T . It also allows the use of a wide variety of function approximators that only need
to satisfy relatively mild conditions; these are satisfied by neural networks and many other function
classes.

GORP The GORP algorithm (Algorithm 2 and Figure 1a) is difficult to generalize to the stochastic
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s1

a1

s2

a1

s2

a2 a2 a2 a2

yi ←
∑T

t=2 Rt

Q̂2 ← AVG(yi)

V̂2 ← maxa Q̂2

Q̂1 ← R1 + V̂2

π1 ← argmaxa Q̂1

(a) The GORP algorithm.

s1 s1

a1 a1

s2 s2 s2

a2 a2 a2 a2

yi ←
∑T

t=2 Rt

Q̂2 ← REGRESS(yi)

V̂2 ← maxa Q̂2

Q̂1 ← REGRESS(R1 + V̂2)

π1 ← argmaxa Q̂1

(b) The SQIRL algorithm.

Figure 1: We introduce the shallow Q-iteration via reinforcement learning (SQIRL) algorithm, which
uses random exploration and function approximation to efficiently solve environments with a low
stochastic effective horizon. SQIRL is a generalization of the GORP algorithm [1] to stochastic
environments. In the figure, both algorithms are shown solving the first timestep of a 2-QVI-solvable
MDP. The GORP algorithm (left) uses random rollouts to estimate the random policy’s Q-values at
the leaf nodes of a “search tree” and then backs up these values to the root node. It is challenging
to generalize this algorithm to stochastic environments because both the initial state and transition
dynamics are random. This makes it impossible to perform the steps of GORP where it averages over
random rollouts and backs up values along deterministic transitions. SQIRL replaces these steps with
regression of the random policy’s Q-values at leaf nodes and fitted Q-iteration (FQI) for backing up
values, allowing it to efficiently learn in stochastic environments.

case because many of its components are specific to deterministic environments. In particlular, GORP
learns a sequence of actions that solve a deterministic MDP by simulating a Monte Carlo planning
algorithm. At each iteration, it collects m episodes for each k-long action sequence by playing the
previous learned actions, the k-long action sequence, and then sampling from the πrand. Then, it picks
the action sequence with the highest mean return and adds it to the sequence of learned actions.

At first, it seems very difficult to translate GORP to the stochastic setting. It learns an open-loop
sequence of actions, while stochastic environments can only be solved by a closed-loop policy. It
also relies on being able to repeatedly reach the same states to estimate their Q-values, which in a
stochastic MDP is often impossible due to randomness in the transitions.

Regressing the random policy’s Q-function To understand how we overcome these challenges,
start by considering the first iteration of GORP (i = 1) when k = 1. In this case, GORP simply
estimates the Q-function of the random policy (Q1 = Qπrand

) at the start state s1 for each action as an
empirical average over random rollouts. The difficulty in stochastic environments is that the start
state s1 is sampled from a distribution p(s1) instead of being fixed. How can we precisely estimate
Q1(s1, a) over a variety of states and actions when we may never sample the same start state twice?
Our key insight is to replace an average over random rollouts with regression of the Q-function from
samples of the form (s1, a1, y), where y =

∑T
t=1 Rt(st, at). Standard regression algorithms attempt

to estimate the conditional expectation E[y | s1, a1]. Since in this case E[y | s1, a1] = Q1
1(s1, a1),

if our regression algorithm works well then it should output Q̂1
1 ≈ Q1

1.

If we can precisely regress Q̂1
1 ≈ Q1

1, then for most states s1 we should have argmaxa Q̂
1
1(s1, a) ⊆

argmaxa Q
1
1(s1, a). This, combined with the MDP being 1-QVI-solvable, means that by setting

π1(s1) ∈ argmaxa Q̂
1
1(s1, a), i.e., by acting greedily according to Q̂1

1 for the first timestep, π1

should take optimal actions most of the time. Furthermore, if we fix π1 for the remainder of training,
then this means there is a fixed distribution over s2, meaning we can also regress Q̂1

2 ≈ Q1
2, and thus

learn π2; then we can repeat this process as in GORP to learn policies π3, . . . , πT for all timesteps.

Extending to k − 1 steps of Q iteration While this explains how to extend GORP to stochastic
environments when k = 1, what about when k > 1? In this case, GORP follows the first action of the
k-action sequence with the highest estimated return. However, in stochastic environments, it rarely
makes sense to consider a fixed k-action sequence, since generally after taking one action the agent
must base its next action the specific state it reached. Thus, again it is unclear how to extend this part
of GORP to the stochastic case. To overcome this challenge, we combine two insights. First, we can

9



reformulate picking the (first action of the) action sequence with the highest estimated return as a
series of Bellman backups, as shown in Figure 1a.

Approximating backups with fitted Q iteration Our second insight is that we can implement
these backups in stochastic environments via fitted-Q iteration [21], which estimates Qj

t by regressing
from samples of the form (st, at, y), where y = Rt(st, at) + maxat+1∈A Qj−1

t+1 (st+1, at+1). Thus,
we can implement the k − 1 backups of GORP by performing k − 1 steps of fitted-Q iteration. This
allows us to extend GORP to stochastic environments when k > 1. Putting together these insights
gives the shallow Q-iteration via reinforcement learning (SQIRL) algorithm, which is presented in
full as Algorithm 1.

Regression assumptions To implement the regression and FQI steps, SQIRL uses a regression
oracle REGRESS({(sj , aj , yj)mj=1}) which takes as input a dataset of tuples (sj , aj , yj) for j ∈ [m]
and outputs a function Q̂ : S × A → [0, 1] that aims to predict E[y | s, a]. In order to analyze the
sample complexity of SQIRL, we require the regression oracle to satisfy some basic properties, which
we formalize in the following assumption.
Assumption B.1 (Regression oracle conditions). Suppose the codomain of the regression oracle
REGRESS(·) is H. Define V = {V (s) = maxa∈A Q(s, a) | Q ∈ H} as the class of possible value
functions induced by outputs of REGRESS. We assume there are functions F : (0, 1] → (0,∞) and
G : [1,∞)× (0, 1] → (0,∞) such that the following conditions hold.

(Regression) Let Q = Q1
t for any t ∈ [T ]. Suppose a dataset {(s, a, y)}mj=1 is sampled i.i.d. from

a distribution D such that y ∈ [0, 1] almost surely and ED[y | s, a] = Q(s, a). Then with probability
greater than 1− δ over the sample,

ED
[
(Q̂(s, a)−Q(s, a))2

]
≤ O( logm

m F (δ)) where Q̂ = REGRESS
(
{(sj , aj , yj)}mj=1

)
.

(Fitted Q-iteration) Let Q = Qi
t for any t ∈ [T − 1] and i ∈ [k − 1]; define V (s) =

maxa∈A Qi−1
t+1(s, a). Suppose a dataset {(s, a, s′)}mj=1 is sampled i.i.d. from a distribution D

such that s′ ∼ pt(· | s, a). Then with probability greater than 1− δ over the sample, we have for all
V̂ ∈ V uniformly,

ED
[
(Q̂(s, a)−Q(s, a))2

]1/2 ≤ αED
[
(V̂ (s′)− V (s′))2

]1/2
+O

(√
logm
m G(α, δ)

)
where Q̂ = REGRESS({(sj , aj , Rt(s

j , aj) + V̂ ′(s′j))}mj=1).

While the conditions in Assumption B.1 may seem complex, they are relatively mild: we show in
Appendix C that they are satisfied by a broad class of regression oracles. The first condition simply
says that the regression oracle can take i.i.d. unbiased samples of the random policy’s Q-function and
accurately estimate it in-distribution. The error must decrease as Õ(F (δ)/m) as the sample size m
increases for some F (δ) which depends on the regression oracle. For instance, we will show that
least-squares regression over a hypothesis class of pseudo-dimension d dimensions satisfies the first
condition with F (δ) = Õ(d+ log(1/δ)).

The second condition is a bit more unusual. It controls how error propagates from an approximate
value function at timestep t+1 to a Q-function estimated via FQI from the value function at timestep
t. In particular, the assumption requires that the root mean square (RMS) error in the Q-function be
at most α times the RMS error in the value function, plus an additional term of Õ(

√
G(α, δ)/m)

where G(α, δ) can again depend on the regression oracle used. In linear MDPs, we can show that
this condition is also satisfied by linear regression with α = 1 and G(1, δ) = Õ(d+ log(1/δ)).

We now present a formalization of Theorem 3.5 (stated informally in Section 3):
Theorem B.2 (SQIRL sample complexity). Fix α ≥ 1, δ ∈ (0, 1], and ϵ ∈ (0, 1]. Suppose REGRESS

satisfies Assumption B.1 and let D = F ( δ
kT ) + G(α, δ

kT ). Then if the MDP is k-QVI-solvable
for some k ∈ [T ], there is a univeral constant C such that SQIRL (Algorithm 1) will return an
ϵ-optimal policy with probability at least 1− δ if m ≥ C kTα2(k−1)AkD

∆2
kϵ

log kTαAD
∆kϵ

. Thus, the sample
complexity of SQIRL is at most

N SQIRL
ϵ,δ ≤ Õ

(
kT 3α2(k−1)AH̄kD log(αD)/ϵ

)
. (2)

To understand the bound on the sample complexity of SQIRL given in (2), first compare it to GORP’s
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Setting Sample complexity bounds
Strategic exploration SQIRL

Tabular MDP Õ(T 5SA/ϵ2) Õ(kT 3SAH̄k+1/ϵ)

Linear MDP Õ(T 4d2/ϵ2) Õ(kT 3dAH̄k/ϵ)

Q-functions with finite pseudo-dimension — Õ(k5kT 3dAH̄k/ϵ)

Table 3: A comparison of our bounds for the sample complexity of SQIRL with bounds from the
literature on strategic exploration [5, 11, 13]. SQIRL can solve stochastic MDPs with a sample
complexity that is exponential only in the effective horizon H̄k. Also, since SQIRL only requires
a regression oracle that can estimate Q-functions, it can be used with a wide variety of function
classes, including any with finite pseudo-dimension. In contrast, it is difficult to extend the bounds
for strategic exploration to more general function classes.

sample complexity in Lemma 3.4. Like GORP, SQIRL has sample complexity exponential in only
the effective horizon. As we will see, in many cases we can set α = 1 and D ≍ d + log(kT/δ),
where d is the pseudo-dimension of the hypothesis class used by the regression oracle. Then, the
sample complexity of SQIRL is Õ(kT 3AH̄kd/ϵ)—ignoring log factors, just a Td/ϵ factor more than
the sample complexity of GORP. The additional factor of d is necessary because SQIRL must learn
a Q-function that generalizes over many states, while GORP can estimate the Q-values at a single
state in deterministic environments. The 1/ϵ dependence on the desired suboptimality is standard for
stochastic environments; for instance, see the strategic exploration bounds in Table 3.

Types of regression oracles In Appendix C, we show that a broad class of regression oracles
satisfy Assumption B.1. This gives sample complexity bounds shown in Table 3 for SQIRL in
tabular and linear MDPs, two settings which are well studied in the strategic exploration literature.
However, we find that SQIRL can also solve a much broader range of environments than strategic
exploration. For instance, if the regression oracle is implemented via least-squares optimization over
a hypothesis class with finite pseudo-dimension d, and that hypothesis class contains Q1, . . . , Qk,
then we obtain a Õ(k5kT 3dAH̄k/ϵ) bound on SQIRL’s sample complexity. In contrast, it has thus
far proven intractable to study strategic exploration algorithms in such general environments.

When considering our bounds on SQIRL, note that in realistic cases k is quite small. As shown in
Figure 2, many environments can be approximately solved with k = 1. We also run all experiments
in Section 4 with k ≤ 3. Thus, although SQIRL’s sample complexity is exponential in k, in practice
this is fine. Overall, our analysis of the SQIRL algorithm shows theoretically why RL can succeed in
complex environments while using random exploration and function approximation. We now turn to
validating our theoretical insights empirically.

C Least-squares regression oracles

In this appendix, we prove that many least-squares regression oracles satisfy Assumption
B.1 and thus can be used in SQIRL. These regression oracles minimize the empirical least-
squares loss on the training data over some hypothesis class H: REGRESS({(sj , aj , yj)}mj=1) =

argminQ∈H
1
m

∑m
j=1(Q(sj , aj)− yj)2. Proving that Assumption B.1 is satisfied for such an oracle

depends on some basic properties of H. First, we require that H is of bounded complexity, since
otherwise it is impossible to learn a Q-function that generalizes well. We formalize this by requiring
a simple bound on the covering number of H:

Definition C.1. Suppose H is a hypothesis class of functions Q : S × A → [0, 1]. We say H is a
VC-type hypothesis class if for any probability measure P over S ×A, the L2(P ) covering number
of H is bounded as N(H, L2(P ); ϵ) ≤

(
B
ϵ

)d
, where ∥Q−Q′∥2L2(P ) = EP [(Q(s, a)−Q′(s, a))

2
].

Many hypothesis classes are VC-type. For instance, if H has finite pseudo-dimension d, then it is
VC-type with d = d and B = O(1). If H is parameterized by θ in a bounded subset of Rd and
Qθ is Lipschitz in its parameters, then H is also VC-type with d = d and B = O(log(ρL)), where
∥θ∥2 ≤ ρ and L is the Lipschitz constant. See Appendix C.1 for more information.

Besides bounding the complexity of H, we also need it to be rich enough to fit the Q-functions in the
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MDP. We formalize this in the following two conditions.

Definition C.2. We say H is k-realizable if for all i ∈ [k] and t ∈ [T ], Qi
t ∈ H.

Definition C.3. We say H is closed under QVI if for any t ∈ {2, . . . , T}, Q̂t ∈ H implies that
QVI(Q̂t) ∈ H.

Assuming that H is k-realizable is very mild: we would expect that function approximation-based RL
would not work at all if the function approximators cannot fit Q-functions in the MDP. The second
assumption, that H is closed under QVI, is more restrictive. However, it turns out this is not necessary
for proving that Assumption B.1 is satisfied; if H is not closed under QVI, then it just results in
slightly worse sample complexity bounds.

Theorem C.4. Suppose H is k-realizable and of VC-type for constants B and d. Then least squares
regression over H satisfies Assumption B.1 with

F (δ) = O (d log(Bd) + log(1/δ))

G(α, δ) = O
(
(d log(ABd/(α− 2)) + log(1/δ)) /(α− 2)4

)
.

Furthermore, if H is also closed under QVI, then we can remove all (α− 2) factors in G.

Theorem C.4 allows us to immediately bound the sample complexity bounds of SQIRL in a number
of settings. For instance, consider a linear MDP with state-action features ϕ(s, a) ∈ Rd. We can
let H = {Q̂(s, a) = w⊤ϕ(s, a) | w⊤ϕ(s, a) ∈ [0, 1] ∀(s, a) ∈ S × A}. This hypothesis class is
realizable for any k, closed under QVI, and of VC-type, meaning SQIRL’s sample complexity is
at most Õ(kT 3dAH̄k/ϵ). Since tabular MDPs are a special case of linear MDPs with d = SA, this
gives bounds for the tabular case as well. Table 3 shows a comparison between these bounds and
previously known bounds for strategic exploration.

However, our analysis can also handle much more general cases than any strategic exploration bounds
in the literature. For instance, suppose H consists of neural networks with n parameters and ℓ layers,
and say that H is k-realizable, but not necessarily closed under QVI. Then H has pseudo-dimension of
d = O(nℓ log(n)) [22] and we can bound the sample complexity of SQIRL by Õ(k5kT 3nℓAH̄k/ϵ),
where we use α =

√
5.

C.1 VC-type hypothesis classes

We now describe two cases when hypothesis classes are of VC-type; thus, by Theorem C.4 these
hypothesis classes satisfy Assumption B.1 and can be used as part of SQIRL.

Example C.5. We say H has pseudo-dimension d if the collection of all subgraphs of the functions
in H forms a class of sets with VC dimension d. Then by Theorem 2.6.7 of van der Vaart and Wellner
[23], H is a VC-type class with

N(H, L2(P ); ϵ) ≤ Cd(16e)d
(
1

ϵ

)2(d−1)

= O

((
4e

ϵ

)2d
)
.

Example C.6. Suppose H is parameterized by θ ∈ Θ ⊆ Rd with ∥θ∥2 ≤ B ∀θ, and Qθ(s, a) is
Lipschitz in θ, i.e.,

|Qθ(s, a)−Qθ′(s, a)| ≤ L∥θ − θ′∥2 ∀θ, θ′ ∈ Θ.

By Corollary 4.2.13 of Vershynin [24], the ϵ-covering number of {θ ∈ Rd | ∥θ∥2 ≤ B} is bounded
as (1 + 2B/ϵ)d. Therefore, the ϵ-packing number of H is bounded as (1 + 4B/ϵ)d (Lemma 4.2.8
of Vershynin [24]); this in turn implies that the ϵ packing number of Θ is bounded identically, since
any ϵ-packing of Θ is also an ϵ-packing of H, which means that the ϵ-covering number of Θ is also
bounded as (1 + 4B/ϵ)d. If we take Nϵ/L to be an ϵ/L-covering of Θ, then for any Qθ, there must
be some θ′ ∈ Nϵ/L such that ∥θ − θ′∥2 ≤ ϵ/L, which implies for any probability measure P that

∥Qθ(s, a)−Qθ′(s, a)∥L2(P ) = EP

[
(Qθ(s, a)−Qθ′(s, a))

2
]1/2

≤ EP

[
L2∥θ − θ′∥22

]1/2
= L∥θ − θ′∥2 ≤ ϵ.

12



Thus {Qθ | θ ∈ Nϵ/L} is an ϵ-covering of H, which implies that the L2(P ) covering number of H is
bounded as

N(H, L2(P ); ϵ) ≤ N(Θ, L2(P ); ϵ/L) ≤ (1 + 4BL/ϵ)d = O

((
4BL

ϵ

)d
)
.

D Proofs

D.1 Proof of Lemma 3.4

Lemma 3.4. The deterministic effective horizon H is bounded for any k ∈ [T ] as
H ≤ mink

[
H̄k + logA O

(
log
(
TAk

))]
.

Furthermore, if an MDP is k-QVI-solvable, then with probability at least 1− δ, GORP will return an
optimal policy with sample complexity at most O(kT 2AH̄k log (TA/δ)).

Proof. The bound on H follows immediately from Theorem 5.4 of Laidlaw et al. [1] by noticing
that in our setting, the Q and value functions are always upper-bounded by 1. The bound the sample
complexity of GORP then follows from Lemma 5.3 of Laidlaw et al. [1]. ■

D.2 Proof of Theorem B.2

To prove our bounds on the sample complexity of SQIRL, we first introduce a series of auxiliary
lemmas.
Lemma D.1. Suppose that an MDP is k-QVI solvable and we iteratively find deterministic policies
π1, . . . , πT such that for each t, Pπ(πt(st) ̸∈ argmaxa Q

k
t (st, a)) ≤ ϵ/T , where states st are

sampled by following policies π1, . . . , πt−1 for timesteps 1 to t−1. Then π is ϵ-optimal in the overall
MDP, i.e.

J(π) ≥ max
π∗

J(π∗)− ϵ.

Proof. Let E denote the event that there is some t ∈ [T ] when at ̸∈ argmaxa Q
k
t (st, a). By a

union bound, we have Pπ(E) ≤ ϵ. Now, let π∗ be a policy in Π(Qk) that agrees with π at all
states and timesteps where πt(s) ∈ argmaxa Q

k
t (s, a). We can write Ẽ as the event that ∃t ∈ [T ],

π(st) ̸= π∗(st), which is equivalent to E under the distribution induced by π. We can now decompose
J(π) as

J(π) = Eπ

[
T∑

t=1

Rt(st, at)

]

≥ Eπ

[
T∑

t=1

Rt(st, at) | ¬E

]
Pπ(¬E)

= Eπ∗

[
T∑

t=1

Rt(st, at) | ¬Ẽ

]
Pπ(¬E)

= Eπ∗

[
T∑

t=1

Rt(st, at) | ¬Ẽ

]
Pπ(¬E) + Eπ∗

[
T∑

t=1

Rt(st, at) | Ẽ

]
(Pπ(E)− Pπ(E))

= Eπ∗

[
T∑

t=1

Rt(st, at)

]
− Eπ∗

[
T∑

t=1

Rt(st, at) | Ẽ

]
Pπ(E)

≥ J(π∗)− ϵ.
■

Lemma D.2. Let D be a distribution over states and actions such that PD(a | s) = 1/A for all
s ∈ S, a ∈ A. Then for any Q and Q̂ : S × A → [0, 1], defining V (s) = maxa∈A Q(s, a) and V̂
analogously, we have

ED

[(
V̂ (s)− V (s)

)2]
≤ AED

[(
Q̂(s, a)−Q(s, a)

)2]
.
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Proof. We have

ED

[(
V̂ (s)− V (s)

)2]
= ED

[(
max
a∈A

Q̂(s, a)−max
a∈A

Q(s, a)

)2
]

≤ ED

[
max
a∈A

(
Q̂(s, a)−Q(s, a)

)2]
≤ ED

[∑
a∈A

(
Q̂(s, a)−Q(s, a)

)2]

= AED

[
1

A

∑
a∈A

(
Q̂(s, a)−Q(s, a)

)2]

= AED

[(
Q̂(s, a)−Q(s, a)

)2]
,

where the final equality follows from the fact that PD(a | s) = 1/A. ■

Lemma D.3. Suppose the MDP is k-QVI solvable and let πi be the policy constructed by stochastic
GORP at timestep i. Then with probability at least 1− δ/T ,

Pπ

(
πi(s) /∈ argmax

a
Qk

i (s, a)
)
≤ O

(
α2k−2Ak

(
F ( δ

kT ) +G(α, δ
kT )
)
logm

m∆2
k

)
.

Proof. Let all expectations and probabilities E and P be with respect to the distribution of states and
actions induced by following π1, . . . , πi−1 for t < i and πrand thereafter. To simplify notation, we
write for any Qt, Q

′
t : S ×A → [0, 1] or Vt, V

′
t : S → [0, 1],

∥Qt −Q′
t∥

2
2 = E

[
(Qt(st, at)−Q′

t(st, at))
2
]

∥Vt − V ′
t ∥

2
2 = E

[
(Vt(st)− V ′

t (st))
2
]
.

Let V̂ i+k−t
t (s) = maxa∈A Q̂i+k−t

t (s, a) and V i+k−t
t (s) = maxa∈A Qi+k−t

t (s, a). Consider the
following three facts:

1. By Assumption B.1 part 1, with probability at least 1− δ/(kT ),∥∥∥Q̂1
i+k−1 −Q1

i+k−1

∥∥∥2
2
≤ C1

F ( δ
kT ) logm

m
.

2. By Lemma D.2, for all t ∈ {2, . . . , k},∥∥∥V̂ i+k−t
t − V i+k−t

t

∥∥∥2
2
≤ A

∥∥∥Q̂i+k−t
t −Qi+k−t

t

∥∥∥2
2
.

3. By Assumption B.1 part 2, for any t ∈ {1, . . . , k − 1}, with probability at least 1− δ/(kT )∥∥∥Q̂i+k−t
t −Qi+k−t

t

∥∥∥
2
≤ α

∥∥∥V̂ i+k−t−1
t+1 − V i+k−t−1

t+1

∥∥∥
2
+

√
C2

G(α, δ
kT ) logm

m
.

Note that it is key that this bound is uniform over all V̂ i+k−t−1
t+1 ∈ V , since V̂ i+k−t−1

t+1 is
estimated based on the same data used to regress Q̂i+k−t

t .

Via a union bound all of the above facts hold with probability at least 1 − δ/T . We will combine
them to recursively show for t ∈ {1, . . . , k},∥∥∥Q̂i+k−t

t −Qi+k−t
t

∥∥∥
2
≤
(
4(α

√
A)k−t − 3

)√D logm

m
where D = C1F ( δ

kT ) + C2G(α, δ
kT ).

(3)
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The base case t = k is true by fact 1. Now let t < k and assume the above holds for t+ 1. By facts 2
and 3, ∥∥∥Q̂i+k−t

t −Qi+k−t
t

∥∥∥
2
≤ α

∥∥∥V̂ i+k−t−1
t+1 − V i+k−t−1

t+1

∥∥∥
2
+

√
C2

G(α, δ
kT ) logm

m

≤ α
√
A
∥∥∥Q̂i+k−t−1

t+1 −Qi+k−t−1
t+1

∥∥∥
2
+

√
C2

G(α, δ
kT ) logm

m

≤ α
√
A
(
4(α

√
A)k−t−1 − 3

)√D logm

m
+

√
D logm

m

=
(
4(α

√
A)k−t − 3α

√
A+ 1

)√D logm

m

≤
(
4(α

√
A)k−t − 3

)√D logm

m
,

where the last inequality follows from A ≥ 2 and α ≥ 1. Thus, by setting t = i in (3), we see that
with probability at least 1− δ/T ,∥∥∥Q̂k

i −Qk
i

∥∥∥2
2
≤ O

(
α2k−2Ak−1

(
F ( δ

kT ) +G(α, δ
kT )
)
logm

m

)
(4)

Pπ(πi(si) /∈ argmax
a

Qk
i (si, a)

≤ Pπ

(
argmax

a
Q̂k

i (si, a) ̸⊆ argmax
a

Qk
i (si, a)

)
(i)
≤ Pπ

(
∃a ∈ A s.t.

∣∣∣Q̂k
i (si, a)−Qk

i (si, a)
∣∣∣ ≥ ∆k/2

)
≤
∑
a∈A

Pπ

(∣∣∣Q̂k
i (si, a)−Qk

i (si, a)
∣∣∣ ≥ ∆k/2

)
= A

(
1

A

∑
a∈A

Pπ

(∣∣∣Q̂k
i (si, a)−Qk

i (si, a)
∣∣∣ ≥ ∆k/2

))
= APπ

(∣∣∣Q̂k
i (si, ai)−Qk

i (si, ai)
∣∣∣ ≥ ∆k/2

)
(ii)
≤ A

(∆k/2)2
Eπ

[(
Q̂k

i (si, ai)−Qk
i (si, ai)

)2]
=

A

(∆k/2)2

∥∥∥Q̂k
i −Qk

i

∥∥∥2
2

= O

(
α2k−2Ak

(
F ( δ

kT ) +G(α, δ
kT )
)
logm

m∆2
k

)
.

Here, (i) follows from Definition 3.2 of the k-gap and (ii) follows from Markov’s inequality. ■

Theorem B.2 (SQIRL sample complexity). Fix α ≥ 1, δ ∈ (0, 1], and ϵ ∈ (0, 1]. Suppose REGRESS

satisfies Assumption B.1 and let D = F ( δ
kT ) + G(α, δ

kT ). Then if the MDP is k-QVI-solvable
for some k ∈ [T ], there is a univeral constant C such that SQIRL (Algorithm 1) will return an
ϵ-optimal policy with probability at least 1− δ if m ≥ C kTα2(k−1)AkD

∆2
kϵ

log kTαAD
∆kϵ

. Thus, the sample
complexity of SQIRL is at most

N SQIRL
ϵ,δ ≤ Õ

(
kT 3α2(k−1)AH̄kD log(αD)/ϵ

)
. (2)

Proof. Given the lower bound on m, we can bound

logm

m
= O

(
∆2

kϵ

Tα2k−2AkD

)
.
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Combining this with Lemma D.3, we see that with probability at least 1− δ, for all i ∈ [T ]

Pπ

(
πi(si) /∈ argmax

a
Qk

i (si, a)
)
≤ ϵ/T.

Thus, by Lemma D.1, π is ϵ-optimal in the overall MDP M. ■

D.3 Proof of Theorem C.4

Theorem C.4. Suppose H is k-realizable and of VC-type for constants B and d. Then least squares
regression over H satisfies Assumption B.1 with

F (δ) = O (d log(Bd) + log(1/δ))

G(α, δ) = O
(
(d log(ABd/(α− 2)) + log(1/δ)) /(α− 2)4

)
.

Furthermore, if H is also closed under QVI, then we can remove all (α− 2) factors in G.

Proof. Throughout the proof, we will use the notation that ∥Q−Q′∥22 = ED[(Q(s, a)−Q′(s, a))2]
and ∥V − V ′∥22 = ED[(V (s′)− V ′(s′))2].

First, we will prove the regression part of Assumption B.1. To do so, we use results on least-
squares regression from Koltchinskii [25]. Note that our definition of VC-type classes coincides with
condition (2.1) in Koltchinskii [25]. By combining Example 3 from Section 2.5 and Theorem 13 of
Koltchinskii [25], we have that for any Q̄(s, a) with E[y | s, a] = Q̄(s, a), and for any λ ∈ (0, 1],

P
(∥∥∥Q̂− Q̄

∥∥∥2
2
≤ (1 + λ) inf

Q̃∈H

∥∥∥Q̃− Q̄
∥∥∥2
2
+O

(
d

mλ2
log

(
Bdm

λ

)
+

u+ 1

λm

))
≤ log

(em
u

)
e−u.

where Q̂ = REGRESS({(sj , aj , yj)}mj=1). (5)

If we set

u = log

(
e+ logm

δ

)
≥ 1,

then the right-hand side of (5) is bounded as

log
(em

u

)
e−u ≤ log(em)e−u = log(em)

δ

e+ logm
< δ.

Thus, plugging this value of u into (5), we have that with probability at least 1− δ,∥∥∥Q̂− Q̄
∥∥∥2
2
≤ (1 + λ) inf

Q̃∈H

∥∥∥Q̃− Q̄
∥∥∥2
2
+O

(
d log

(
Bdm
λ

)
+ log m

δ

mλ2

)
. (6)

For the regression condition of Assumption B.1, we have Q̄ = Qk
t ∈ H. Thus, infQ̃∈H ∥Q̃−Q̄∥22 = 0,

and we can set λ = 1 in (6) to obtain∥∥∥Q̂−Qk
t

∥∥∥2
2
≤ O

(
d log(Bdm) + log m

δ

m

)
,

leading to the desired bound of

F (δ) = O

(
d log(Bd) + log

1

δ

)
.

To the fitted Q-iteration condition of Assumption B.1, we begin by defining a norm ρ on V ×H by

ρ
(
(V,Q), (V ′, Q′)

)
= max{∥V − V ′∥2, ∥Q−Q′∥2}.

Note that since we showed in Lemma D.2 that

ED

[
(V (s′)− V ′(s′))

2
]
≤ AED,a′∼Unif(A)

[
(Q(s′, a′)−Q′(s′, a′))

2
]

where V (s′) = max
a′∈A

Q(s′, a′), V ′(s′) = max
a′∈A

Q′(s′, a′),

this implies that any ϵ-cover of H is also an ϵ
√
A-cover of V with respect to L2(P ) for any distribution
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P over s′. Thus, by the definition of VC-type classes, we have

N(V, L2(D); ϵ) ≤

(
B
√
A

ϵ

)d

N(H, L2(D); ϵ) ≤
(
B

ϵ

)d

N(V ×H, ρ; ϵ) ≤

(
B
√
A

ϵ

)d(
B

ϵ

)d

≤

(
B
√
A

ϵ

)2d

.

Now define W ⊆ V ×H as

W =

{
(V̂ , Q̂) ∈ V ×H

∣∣∣∣ Q̂ = REGRESS

({
(sj , aj , Rt(s

j , aj) + V̂ (s′j))
}m

j=1

)}
.

By properties of packing and covering numbers, since any ϵ-packing of W is also an ϵ-packing of
V ×H, we have

N(W, ρ; ϵ) ≤ M(W, ρ; ϵ/2) ≤ M(V ×H, ρ; ϵ/2) ≤ N(V ×H, ρ; ϵ/2) ≤

(
2B

√
A

ϵ

)2d

.

Thus, let N1/
√
m be a 1/

√
m-covering of W with size at most (2B

√
Am)2d.

Fix any (V̂ , Q̂) ∈ N1/
√
m and define Q̄(s, a) = E[Rt(s, a) + V̂ (s′) | s, a]. Then by an identical

argument to (6), with probability at least 1− δ, for any λ ∈ (0, 1],∥∥∥Q̂− Q̄
∥∥∥2
2
≤ (1 + λ) inf

Q̃∈H

∥∥∥Q̃− Q̄
∥∥∥2
2
+O

(
d log

(
Bdm
λ

)
+ log m

δ

mλ2

)
.

We can extend this to a bound on all (V̂ , Q̂) ∈ N1/
√
m by dividing δ by |N1/

√
m| and applying a

union bound. Thus, with probability at least 1− δ, for all (V̂ , Q̂) ∈ N1/
√
m and any λ ∈ (0, 1],∥∥∥Q̂− Q̄

∥∥∥2
2
≤ (1 + λ) inf

Q̃∈H

∥∥∥Q̃− Q̄
∥∥∥2
2
+O

(
d log

(
Bdm
λ

)
+ d log(BAm) + log m

δ

mλ2

)

= (1 + λ) inf
Q̃∈H

∥∥∥Q̃− Q̄
∥∥∥2
2
+O

(
d log

(
BAdm

λ

)
+ log m

δ

mλ2

)
.

Finally, we extend this to a bound over all (V̂ , Q̂) ∈ W . For any (V̂ , Q̂) ∈ W , there must be some
(V̂ ′, Q̂′) ∈ N1/

√
m such that ρ((V̂ , Q̂), (V̂ ′, Q̂′)) ≤ 1/

√
m. Let Q̄′(s, a) = E[Rt(s, a) + V̂ ′(s′) |

s, a]. Then

∥Q̄− Q̄′∥22 = ED

[(
Q̄(s, a)− Q̄′(s, a)

)2]
= ED

[(
ED

[
V̂ (s′)− V̂ ′(s′)

])2]
≤ ED

[(
V̂ (s′)− V̂ ′(s′)

)2]
≤ 1

m
,

where the second-to-last inequality follows from Jensen’s inequality. Thus, by the triangle inequality,∥∥∥Q̂− Q̄
∥∥∥
2
≤
∥∥∥Q̂− Q̂′

∥∥∥
2
+
∥∥∥Q̂′ − Q̄′

∥∥∥
2
+
∥∥Q̄′ − Q̄

∥∥
2

≤
∥∥∥Q̂′ − Q̄′

∥∥∥
2
+

2√
m

≤
√
1 + λ inf

Q̃′∈H

∥∥∥Q̃′ − Q̄′
∥∥∥
2
+O

√d log
(
BAdm

λ

)
+ log m

δ

mλ2

 .

for all (V̂ , Q̂) ∈ W and any λ ∈ (0, 1] with probability at least 1− δ.
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We now consider the two possible conditions in the theorem. If H is both k-realizable and closed
under QVI, then this implies Q̄′ ∈ H for all (V̂ ′, Q̂′) ∈ N1/

√
m, meaning infQ̃′∈H ∥Q̃′ − Q̄′∥2 = 0.

Thus, we can set λ = 1 in the above bound to obtain∥∥∥Q̂−Q
∥∥∥
2
≤
∥∥Q̄−Q

∥∥
2
+
∥∥∥Q̂− Q̄

∥∥∥
2

≤
∥∥∥V̂ − V

∥∥∥
2
+O

√d log
(
BAdm

λ

)
+ log m

δ

mλ2

 ,

showing that the FQI condition of Assumption B.1 holds with

G(α, δ) = O
(
d log(BAd) + log(1/δ)

)
.

Otherwise, if H is only k-realizable, then this implies Q ∈ H. Thus,

inf
Q̃′∈H

∥∥∥Q̃′ − Q̄′
∥∥∥
2
≤
∥∥Q− Q̄′∥∥

2
≤
∥∥∥V − V̂

∥∥∥
2
+

1√
m
.

This implies that∥∥∥Q̂−Q
∥∥∥
2
≤
∥∥Q̄−Q

∥∥
2
+
∥∥∥Q̂− Q̄

∥∥∥
2

≤
∥∥∥V̂ − V

∥∥∥
2
+
√
1 + λ

∥∥∥V − V̂
∥∥∥
2
+

1√
m

+O

√d log
(
BAdm

λ

)
+ log m

δ

mλ2


≤ (2 +

√
λ)
∥∥∥V̂ − V

∥∥∥
2
+O

√d log
(
BAdm

λ

)
+ log m

δ

mλ2

 .

Setting α = 2 +
√
λ shows that the FQI condition of Assumption B.1 holds with

G(α, δ) = O

d log
(

BAd
α−2

)
+ log 1

δ

(α− 2)4

 .

■

E Experiment details

In this appendix, we describe details of the experiments from Section 4. We use the implementations
of PPO and DQN from Stable-Baselines3 [26], and in general use their hyperparameters which have
been optimized for Atari games. For network archictures, we use convolutional neural nets similar to
those used by Mnih et al. [3]. We use a discount rate of γ = 1 for the Atari and Procgen environments
in BRIDGE but γ = 0.99 for the MiniGrid environments, as otherwise we found that RL completely
failed.

In practice, we slightly modify Algorithm 1 in a few ways for use with deep neural networks.
Following standard practice in deep RL, we use a single neural network to regress the Q-function
across all timesteps, rather than using a separate Q-network for each timestep. However, we still
“freeze” the greedy policy at each iteration (line 8 in Algorithm 1) by storing a copy of the networks’
weights from iteration i and using it for acting on timestep t = i in future iterations. Second, we
stabilize training by using a replay buffer to store the data collected from the environment and then
sampling minibatches from it for training the Q-network. Note that neither of these changes the
core algorithm: our implementation is still entirely based around iteratively estimating Qk by using
regression and fitted-Q iteration.

In each environment, we run PPO, DQN, SQIRL, and GORP for 5 million timesteps. We use the
Stable-Baselines3 implementations of PPO and DQN [26]. During training, we evaluate the latest
policy every 10,000 training timesteps for 100 episodes. We also calculate the exact optimal return
using the tabular representations of the environments from the BRIDGE dataset; we modify the tabular
representations to add sticky actions and then run value iteration. If the mean evaluation return of the
algorithm reaches the optimal return, we consider the algorithm to have solved the environment. We
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say the empirical sample complexity of the algorithm in the environment is the number of timesteps
needed to reach that optimal return.

Since SQIRL takes parameters k and m, we need to tune these parameters for each environment. For
each k ∈ {1, 2, 3}, we perform a binary search over values of m to find the smallest value for which
SQIRL solves the environment. We also slightly tune the hyperparameters of PPO and DQN; see
Appendices E and F for all experiment details and results. We do not claim that SQIRL is as practical
as PPO or DQN, since it requires much more hyperparameter tuning; instead, we mainly see SQIRL
as a tool for understanding deep RL.

PPO We use the following hyperparameters for PPO:

Hyperparameter Value

Training timesteps 5,000,000
Rollout length {128, 1280}
SGD minibatch size 256
SGD epochs per iteration 4
Optimizer Adam
Learning rate 2.5× 10−4

GAE coefficient (λ) 0.95
Entropy coefficient 0.01
Clipping parameter 0.1
Value function coefficient 0.5

Table 4: Hyperparameters we use for PPO.

For each environment, we try rollout lengths of 128 and 1280 as we found this was the most important
parameter to tune.

DQN We use the following hyperparameters for DQN:

Hyperparameter Value

Training timesteps 5,000,000
Timesteps before learning starts 0
Replay buffer size 100,000
Target network update frequency 8,000
Final ϵ 0.01
SGD minibatch size 32
Env. steps per gradient step 4
Optimizer Adam
Learning rate 10−4

Table 5: Hyperparameters we use for DQN.

We try decaying the ϵ value for ϵ-greedy over the course of either 500 thousand or 5 million timesteps,
as we found this was the most sensitive hyperparameter to tune for DQN.

SQIRL We use the following hyperparameters for SQIRL:
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Hyperparameter Value

Training timesteps 5,000,000
Replay buffer size 1,000,000
k {1, 2, 3}
SGD minibatch size 128
SGD epochs per iteration 10
Optimizer Adam
Learning rate 10−4

Table 6: Hyperparameters we use for SQIRL.

As we describe in the main text, we run SQIRL with k ∈ {1, 2, 3} and tune m via binary search.

F Full results

In this appendix, we present our full experimental results.

F.1 k-QVI-solvability in stochastic environments

To see if stochastic environments are commonly k-QVI-solvable for small values of k, we constructed
sticky-action versions of the 155 deterministic MDPs in the BRIDGE dataset [1]. Sticky actions
are a common and effective method for turning deterministic MDPs into stochastic ones [27] by
introducing a 25% chance at each timestep of repeating the action from the previous timestep,
regardless of the new action taken. We analyzed the minimum values of k for which these MDPs
are approximately k-QVI-solvable, i.e., where one can achieve at least 95% of the optimal return
(measured from the minimum return) by acting greedily with respect to Qk. The results are shown
in Figure 2. Many environments are approximately k-QVI-solvable for very low values of k; more
than half are approximately 1-QVI-solvable. Furthermore, these are the environments where deep RL
algorithms like PPO are most likely to find an optimal policy, suggesting that k-QVI-solvability is
key to deep RL’s success in stochastic environments.

1 2 3 4 5 ≥6
Min. value of k s.t. acting greedily

on Qk achieves ≥95% optimal return

0

25

50

75

N
um

be
ro

fM
D

Ps

PPO fails
PPO succeeds

Figure 2: Among sticky-action versions of the MDPs in the BRIDGE dataset, more than half can be
approximately solved by acting greedily with respect to the random policy’s Q-function (k = 1);
many more can be by applying just a few steps of Q-value iteration before acting greedily (2 ≤ k ≤ 5).
When k is low, we observe that deep RL algorithms like PPO are much more likely to solve the
environment.
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F.2 Additional plots
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Figure 3: The empirical sample complexity of SQIRL correlates closely with that of PPO and DQN,
suggesting that our theoretical analysis of SQIRL is a powerful tool for understanding when and why
deep RL works in stochastic environments.

F.3 Table of empirical sample complexities

This table lists the empirical sample complexities of PPO, DQN, and SQIRL. For comparison, we
also report the sample complexity of GORP [1] in each environment. If the algorithm did not solve
the environment in 5 million timesteps, we write > 5× 106.

PPO DQN SQIRL GORP

ALIEN10 3.34× 106 4.82× 106 > 5× 106 > 5× 106

AMIDAR20 > 5× 106 > 5× 106 > 5× 106 > 5× 106

ASSAULT10 1.00× 104 2.80× 105 1.00× 104 2.93× 104

ASTERIX10 2.00× 105 2.10× 105 2.80× 105 > 5× 106

ASTEROIDS10 > 5× 106 > 5× 106 > 5× 106 > 5× 106

ATLANTIS10 6.00× 104 1.00× 105 1.00× 104 > 5× 106

ATLANTIS20 3.40× 105 > 5× 106 1.42× 106 > 5× 106

ATLANTIS30 > 5× 106 > 5× 106 > 5× 106 > 5× 106

ATLANTIS40 > 5× 106 > 5× 106 > 5× 106 > 5× 106

ATLANTIS50 > 5× 106 > 5× 106 > 5× 106 > 5× 106

ATLANTIS70 > 5× 106 > 5× 106 > 5× 106 > 5× 106

BANKHEIST10 8.60× 105 4.40× 106 2.54× 106 > 5× 106

BATTLEZONE10 1.30× 105 2.29× 106 1.61× 106 > 5× 106

BEAMRIDER20 > 5× 106 4.43× 106 > 5× 106 > 5× 106

BOWLING30 6.30× 105 > 5× 106 > 5× 106 > 5× 106

BREAKOUT10 8.00× 104 8.00× 104 4.00× 104 3.16× 104

BREAKOUT20 2.60× 105 1.01× 106 2.40× 105 > 5× 106

BREAKOUT30 2.46× 106 > 5× 106 4.10× 106 > 5× 106

BREAKOUT40 1.67× 106 > 5× 106 > 5× 106 > 5× 106

BREAKOUT50 1.22× 106 > 5× 106 > 5× 106 > 5× 106

BREAKOUT70 2.52× 106 > 5× 106 > 5× 106 > 5× 106

BREAKOUT100 2.77× 106 > 5× 106 > 5× 106 > 5× 106

BREAKOUT200 > 5× 106 > 5× 106 > 5× 106 > 5× 106

CENTIPEDE10 > 5× 106 > 5× 106 > 5× 106 > 5× 106

CHOPPERCOMMAND10 > 5× 106 3.36× 106 > 5× 106 > 5× 106

CRAZYCLIMBER20 4.00× 104 1.00× 104 4.00× 104 > 5× 106
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CRAZYCLIMBER30 4.20× 105 1.60× 105 1.20× 105 > 5× 106

DEMONATTACK10 2.21× 106 5.50× 105 > 5× 106 > 5× 106

ENDURO10 4.50× 105 5.30× 105 > 5× 106 > 5× 106

FISHINGDERBY10 2.10× 105 2.05× 106 > 5× 106 > 5× 106

FREEWAY10 1.00× 104 2.00× 104 1.00× 104 8.10× 103

FREEWAY20 1.00× 104 1.00× 104 1.00× 104 2.30× 106

FREEWAY30 2.30× 105 4.90× 105 1.90× 105 > 5× 106

FREEWAY40 2.80× 105 5.10× 105 > 5× 106 > 5× 106

FREEWAY50 4.70× 105 8.40× 105 1.78× 106 > 5× 106

FREEWAY70 2.01× 106 3.63× 106 > 5× 106 > 5× 106

FREEWAY100 > 5× 106 > 5× 106 > 5× 106 > 5× 106

FREEWAY200 > 5× 106 > 5× 106 > 5× 106 > 5× 106

FROSTBITE10 9.00× 104 5.50× 105 3.90× 105 > 5× 106

GOPHER30 1.40× 105 6.10× 105 6.00× 104 > 5× 106

GOPHER40 > 5× 106 > 5× 106 > 5× 106 > 5× 106

HERO10 3.00× 104 7.00× 104 2.00× 104 > 5× 106

ICEHOCKEY10 6.00× 104 1.65× 106 > 5× 106 > 5× 106

KANGAROO20 > 5× 106 > 5× 106 > 5× 106 > 5× 106

KANGAROO30 > 5× 106 > 5× 106 > 5× 106 > 5× 106

MONTEZUMAREVENGE15 > 5× 106 > 5× 106 > 5× 106 > 5× 106

MSPACMAN20 > 5× 106 > 5× 106 > 5× 106 > 5× 106

NAMETHISGAME20 1.50× 105 6.30× 105 9.50× 105 > 5× 106

PHOENIX10 8.20× 105 4.85× 106 > 5× 106 > 5× 106

PONG20 6.00× 105 1.10× 105 5.70× 105 > 5× 106

PONG30 4.70× 105 3.50× 105 > 5× 106 > 5× 106

PONG40 > 5× 106 > 5× 106 > 5× 106 > 5× 106

PONG50 > 5× 106 > 5× 106 > 5× 106 > 5× 106

PONG70 > 5× 106 > 5× 106 > 5× 106 > 5× 106

PONG100 > 5× 106 > 5× 106 > 5× 106 > 5× 106

PRIVATEEYE10 1.20× 105 1.90× 105 9.00× 104 > 5× 106

QBERT10 1.60× 105 3.73× 106 2.00× 104 > 5× 106

QBERT20 5.60× 105 > 5× 106 > 5× 106 > 5× 106

ROADRUNNER10 1.50× 105 1.97× 106 2.60× 105 > 5× 106

SEAQUEST10 2.00× 104 2.80× 105 1.00× 104 > 5× 106

SKIING10 > 5× 106 > 5× 106 > 5× 106 > 5× 106

SPACEINVADERS10 6.40× 105 2.40× 105 4.00× 104 > 5× 106

TENNIS10 > 5× 106 1.29× 106 > 5× 106 > 5× 106

TIMEPILOT10 1.00× 105 7.30× 105 6.50× 105 > 5× 106

TUTANKHAM10 7.70× 105 3.81× 106 2.97× 106 > 5× 106

VIDEOPINBALL10 > 5× 106 1.70× 106 1.05× 106 > 5× 106

WIZARDOFWOR20 > 5× 106 > 5× 106 > 5× 106 > 5× 106

BIGFISHE0
10 > 5× 106 4.60× 105 > 5× 106 > 5× 106

BIGFISHE1
10 3.20× 105 3.00× 105 1.60× 105 > 5× 106

BIGFISHE2
10 1.30× 106 5.70× 105 4.43× 106 > 5× 106

BIGFISHH0
10 > 5× 106 4.20× 105 1.48× 106 > 5× 106

CHASERE0
20 1.90× 105 > 5× 106 > 5× 106 > 5× 106

CHASERE1
20 > 5× 106 > 5× 106 > 5× 106 > 5× 106

CHASERE2
20 1.70× 105 > 5× 106 > 5× 106 > 5× 106

CHASERH0
20 > 5× 106 > 5× 106 > 5× 106 > 5× 106

CLIMBERE0
10 7.00× 104 4.70× 105 1.60× 105 > 5× 106

CLIMBERE1
10 8.00× 104 > 5× 106 9.00× 104 > 5× 106

CLIMBERE2
10 4.40× 105 > 5× 106 8.40× 105 4.28× 107

CLIMBERH0
10 > 5× 106 > 5× 106 > 5× 106 > 5× 106

COINRUNE0
10 > 5× 106 > 5× 106 > 5× 106 > 5× 106

COINRUNE1
10 1.18× 106 > 5× 106 9.60× 105 > 5× 106
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COINRUNE2
10 9.90× 105 > 5× 106 > 5× 106 > 5× 106

COINRUNH0
10 1.00× 104 2.00× 104 1.00× 104 > 5× 106

DODGEBALLE0
10 3.50× 105 1.90× 105 1.79× 106 > 5× 106

DODGEBALLE1
10 6.20× 105 1.00× 106 1.70× 106 > 5× 106

DODGEBALLE2
10 2.60× 105 1.54× 106 2.50× 105 > 5× 106

DODGEBALLH0
10 6.70× 105 2.59× 106 2.13× 106 > 5× 106

FRUITBOTE0
40 > 5× 106 4.80× 105 > 5× 106 > 5× 106

FRUITBOTE1
40 1.52× 106 3.77× 106 > 5× 106 > 5× 106

FRUITBOTE2
40 6.60× 105 4.00× 104 2.50× 105 > 5× 106

FRUITBOTH0
40 > 5× 106 > 5× 106 > 5× 106 > 5× 106

HEISTE1
10 5.70× 105 1.65× 106 > 5× 106 > 5× 106

JUMPERH0
10 > 5× 106 > 5× 106 > 5× 106 > 5× 106

JUMPERE0
20 1.00× 104 > 5× 106 1.00× 104 382

JUMPERE1
20 1.00× 104 > 5× 106 1.00× 104 > 5× 106

JUMPERE2
20 1.90× 105 > 5× 106 4.00× 104 > 5× 106

JUMPEREX
20 > 5× 106 > 5× 106 > 5× 106 > 5× 106

LEAPERE1
20 > 5× 106 > 5× 106 > 5× 106 > 5× 106

LEAPERE2
20 2.20× 106 > 5× 106 > 5× 106 > 5× 106

LEAPERH0
20 > 5× 106 > 5× 106 > 5× 106 > 5× 106

LEAPEREX
20 > 5× 106 > 5× 106 > 5× 106 > 5× 106

MAZEE0
30 1.00× 104 > 5× 106 1.00× 104 1.78× 103

MAZEE1
30 > 5× 106 > 5× 106 > 5× 106 > 5× 106

MAZEE2
30 2.00× 104 > 5× 106 1.00× 104 2.35× 104

MAZEH0
30 2.83× 106 > 5× 106 > 5× 106 > 5× 106

MAZEEX
100 > 5× 106 > 5× 106 > 5× 106 > 5× 106

MINERE0
10 2.90× 105 > 5× 106 1.10× 105 > 5× 106

MINERE1
10 1.30× 105 3.40× 105 2.90× 105 > 5× 106

MINERE2
10 4.00× 104 2.87× 106 1.00× 104 > 5× 106

MINERH0
10 4.00× 105 5.30× 105 2.10× 105 > 5× 106

NINJAE0
10 5.50× 105 3.24× 106 > 5× 106 > 5× 106

NINJAE1
10 2.09× 106 > 5× 106 > 5× 106 > 5× 106

NINJAE2
10 > 5× 106 > 5× 106 > 5× 106 > 5× 106

NINJAH0
10 > 5× 106 > 5× 106 > 5× 106 > 5× 106

PLUNDERE0
10 3.00× 104 3.00× 104 1.00× 104 > 5× 106

PLUNDERE1
10 1.00× 104 3.00× 104 1.00× 104 > 5× 106

PLUNDERE2
10 1.30× 105 3.70× 105 1.01× 106 > 5× 106

PLUNDERH0
10 1.00× 104 7.00× 104 1.00× 104 > 5× 106

STARPILOTE0
10 2.43× 106 6.70× 105 > 5× 106 > 5× 106

STARPILOTE1
10 4.30× 105 8.30× 105 1.92× 106 > 5× 106

STARPILOTE2
10 8.30× 105 1.66× 106 > 5× 106 > 5× 106

STARPILOTH0
10 > 5× 106 2.70× 106 > 5× 106 > 5× 106

EMPTY-5X5 1.40× 105 2.40× 105 3.30× 105 > 5× 106

EMPTY-6X6 1.70× 105 2.70× 105 6.00× 104 > 5× 106

EMPTY-8X8 2.50× 105 3.20× 105 3.00× 104 > 5× 106

EMPTY-16X16 8.90× 105 > 5× 106 > 5× 106 > 5× 106

DOORKEY-5X5 4.40× 105 5.20× 105 8.90× 105 > 5× 106

DOORKEY-6X6 1.60× 106 > 5× 106 > 5× 106 > 5× 106

DOORKEY-8X8 > 5× 106 > 5× 106 > 5× 106 > 5× 106

DOORKEY-16X16 > 5× 106 > 5× 106 > 5× 106 > 5× 106

MULTIROOM-N2-S4 3.50× 105 6.00× 105 2.90× 105 > 5× 106

MULTIROOM-N4-S5 > 5× 106 > 5× 106 > 5× 106 > 5× 106

MULTIROOM-N6 > 5× 106 > 5× 106 > 5× 106 > 5× 106

KEYCORRIDORS3R1 1.17× 106 > 5× 106 > 5× 106 > 5× 106
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KEYCORRIDORS3R2 > 5× 106 > 5× 106 > 5× 106 > 5× 106

KEYCORRIDORS3R3 3.38× 106 > 5× 106 > 5× 106 > 5× 106

KEYCORRIDORS4R3 > 5× 106 > 5× 106 > 5× 106 > 5× 106

UNLOCK 1.10× 106 > 5× 106 > 5× 106 > 5× 106

UNLOCKPICKUP > 5× 106 > 5× 106 > 5× 106 > 5× 106

BLOCKEDUNLOCKPICKUP > 5× 106 > 5× 106 > 5× 106 > 5× 106

OBSTRUCTEDMAZE-1DL 3.62× 106 > 5× 106 > 5× 106 > 5× 106

OBSTRUCTEDMAZE-1DLH 4.42× 106 > 5× 106 > 5× 106 > 5× 106

OBSTRUCTEDMAZE-1DLHB > 5× 106 > 5× 106 > 5× 106 > 5× 106

FOURROOMS 2.22× 106 > 5× 106 > 5× 106 > 5× 106

LAVACROSSINGS9N1 5.30× 105 4.70× 105 1.10× 105 > 5× 106

LAVACROSSINGS9N2 4.50× 105 5.60× 105 3.20× 105 > 5× 106

LAVACROSSINGS9N3 5.10× 105 7.90× 105 1.61× 106 > 5× 106

LAVACROSSINGS11N5 > 5× 106 > 5× 106 > 5× 106 > 5× 106

SIMPLECROSSINGS9N1 4.60× 105 7.50× 105 > 5× 106 > 5× 106

SIMPLECROSSINGS9N2 3.40× 105 > 5× 106 3.60× 106 > 5× 106

SIMPLECROSSINGS9N3 3.50× 105 3.80× 105 4.70× 105 > 5× 106

SIMPLECROSSINGS11N5 1.78× 106 > 5× 106 > 5× 106 > 5× 106

LAVAGAPS5 1.00× 105 2.20× 105 4.00× 104 > 5× 106

LAVAGAPS6 9.20× 105 1.48× 106 6.90× 105 > 5× 106

LAVAGAPS7 1.18× 106 1.41× 106 1.58× 106 > 5× 106

F.4 Table of returns

This table lists the optimal returns in each sticky-action MDP as well as the highest returns achieved
by PPO, DQN, and SQIRL.

Returns
MDP Optimal policy PPO DQN SQIRL

ALIEN10 158.13 158.5 158.5 153.2
AMIDAR20 76.49 64.76 75.29 63.36
ASSAULT10 105.0 105.0 105.0 105.0
ASTERIX10 327.53 336.5 343.5 340.5
ASTEROIDS10 170.81 133.3 127.3 126.9
ATLANTIS10 187.5 192.0 190.0 194.0
ATLANTIS20 740.91 754.0 723.0 749.0
ATLANTIS30 1, 829.52 1, 238.0 995.0 1, 124.0
ATLANTIS40 2, 620.35 1, 794.0 1, 186.0 1, 686.0
ATLANTIS50 4, 856.81 3, 683.0 1, 865.0 3, 339.0
ATLANTIS70 7, 932.88 6, 108.0 3, 347.0 5, 356.0
BANKHEIST10 26.15 26.3 27.1 26.2
BATTLEZONE10 1, 497.07 1, 620.0 1, 520.0 1, 500.0
BEAMRIDER20 129.23 126.72 129.8 122.32
BOWLING30 8.8 8.81 5.77 7.7
BREAKOUT10 1.17 1.41 1.21 1.21
BREAKOUT20 1.93 1.95 1.99 1.98
BREAKOUT30 2.5 2.59 2.27 2.57
BREAKOUT40 2.61 2.7 2.21 2.53
BREAKOUT50 2.69 2.69 2.12 2.58
BREAKOUT70 2.9 2.95 2.28 2.59
BREAKOUT100 3.08 3.12 1.9 2.6
BREAKOUT200 3.08 2.83 0.73 2.56
CENTIPEDE10 1, 321.17 900.0 1, 213.24 1, 244.89
CHOPPERCOMMAND10 553.42 469.0 560.0 516.0
CRAZYCLIMBER20 324.9 334.0 326.0 334.0
CRAZYCLIMBER30 698.07 701.0 705.0 709.0
DEMONATTACK10 37.07 37.1 38.3 34.6
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ENDURO10 4.27 4.3 4.37 3.95
FISHINGDERBY10 7.5 7.58 7.5 5.95
FREEWAY10 1.0 1.0 1.0 1.0
FREEWAY20 2.0 2.0 2.0 2.0
FREEWAY30 3.75 3.77 3.77 3.76
FREEWAY40 4.75 4.76 4.79 4.69
FREEWAY50 5.75 5.81 5.76 5.77
FREEWAY70 8.49 8.49 8.5 7.69
FREEWAY100 11.83 10.84 11.41 10.43
FREEWAY200 23.84 21.53 21.99 20.66
FROSTBITE10 66.72 67.9 67.5 68.0
GOPHER30 18.75 19.4 19.0 19.2
GOPHER40 112.93 83.8 72.0 73.2
HERO10 74.71 75.0 75.0 75.0
ICEHOCKEY10 1.0 1.0 1.0 0.86
KANGAROO20 186.32 172.0 182.0 164.0
KANGAROO30 444.7 200.0 370.0 211.0
MONTEZUMAREVENGE15 22.53 0.0 0.0 0.0
MSPACMAN20 460.6 282.9 454.0 408.1
NAMETHISGAME20 94.02 96.2 96.2 95.0
PHOENIX10 179.89 181.0 182.6 178.4
PONG20 −1.01 −1.0 −1.0 −1.0
PONG30 −1.61 −1.6 −1.53 −1.82
PONG40 −1.11 −1.19 −1.26 −2.09
PONG50 −1.36 −1.74 −1.53 −3.02
PONG70 −1.48 −3.17 −2.45 −5.34
PONG100 −1.41 −5.62 −3.53 −8.79
PRIVATEEYE10 98.44 99.0 100.0 100.0
QBERT10 350.0 356.25 352.25 354.5
QBERT20 579.71 587.0 555.5 541.25
ROADRUNNER10 474.71 520.0 494.0 489.0
SEAQUEST10 20.0 20.0 20.0 20.0
SKIING10 −8, 011.57 −9, 013.0 −8, 425.4 −8, 380.3
SPACEINVADERS10 33.91 34.0 35.2 34.9
TENNIS10 0.8 0.0 0.8 0.0
TIMEPILOT10 131.25 136.0 136.0 143.0
TUTANKHAM10 16.51 16.89 16.93 16.54
VIDEOPINBALL10 1, 744.95 1, 388.09 1, 816.01 1, 786.05
WIZARDOFWOR20 260.35 100.0 100.0 100.0

BIGFISHE0
10 3.53 2.27 3.65 2.09

BIGFISHE1
10 2.97 3.0 2.98 2.99

BIGFISHE2
10 6.86 6.87 6.93 6.89

BIGFISHH0
10 2.59 1.81 2.61 2.62

CHASERE0
20 0.88 0.88 0.4196 0.8108

CHASERE1
20 0.88 0.84 0.8 0.8696

CHASERE2
20 0.88 0.8744 0.5428 0.846

CHASERH0
20 0.88 0.84 0.838 0.84

CLIMBERE0
10 1.93 1.94 1.93 1.97

CLIMBERE1
10 1.75 1.84 1.58 1.79

CLIMBERE2
10 10.92 11.0 10.56 11.0

CLIMBERH0
10 1.22 1.0 1.0 1.0

COINRUNE0
10 8.82 8.8 5.4 7.9

COINRUNE1
10 8.36 8.4 8.0 8.6

COINRUNE2
10 6.94 7.1 5.7 4.6

COINRUNH0
10 10.0 10.0 10.0 10.0

DODGEBALLE0
10 7.81 8.06 8.72 7.98
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DODGEBALLE1
10 5.3 5.3 5.38 5.3

DODGEBALLE2
10 5.71 5.88 5.82 6.08

DODGEBALLH0
10 4.13 4.28 4.18 4.2

FRUITBOTE0
40 1.99 1.9 2.45 1.48

FRUITBOTE1
40 3.6 3.65 3.7 1.0

FRUITBOTE2
40 0.89 0.91 0.91 0.93

FRUITBOTH0
40 1.85 0.0 0.08 0.09

HEISTE1
10 9.38 9.5 9.7 0.7

JUMPERH0
10 1.33 0.0 0.0 0.0

JUMPERE0
20 10.0 10.0 8.5 10.0

JUMPERE1
20 10.0 10.0 5.2 10.0

JUMPERE2
20 10.0 10.0 8.0 10.0

JUMPEREX
20 2.77 0.0 0.0 0.0

LEAPERE1
20 4.92 0.0 0.0 0.0

LEAPERE2
20 9.92 10.0 9.9 8.5

LEAPERH0
20 6.42 0.0 0.2 0.0

LEAPEREX
20 5.7 0.0 0.0 0.0

MAZEE0
30 10.0 10.0 0.0 10.0

MAZEE1
30 7.42 0.0 0.0 0.0

MAZEE2
30 10.0 10.0 9.9 10.0

MAZEH0
30 9.99 10.0 7.8 0.0

MAZEEX
100 9.76 0.0 0.0 0.0

MINERE0
10 0.91 0.93 0.01 0.96

MINERE1
10 1.63 1.72 1.73 1.66

MINERE2
10 1.0 1.0 1.0 1.0

MINERH0
10 2.97 2.97 2.98 2.97

NINJAE0
10 6.53 6.8 7.0 5.7

NINJAE1
10 6.08 6.1 5.6 0.0

NINJAE2
10 2.0 0.0 0.0 0.0

NINJAH0
10 2.22 0.0 0.0 0.0

PLUNDERE0
10 1.0 1.0 1.0 1.0

PLUNDERE1
10 1.0 1.0 1.0 1.0

PLUNDERE2
10 0.56 0.62 0.59 0.6

PLUNDERH0
10 1.0 1.0 1.0 1.0

STARPILOTE0
10 7.02 7.07 7.16 6.46

STARPILOTE1
10 4.33 4.37 4.36 4.39

STARPILOTE2
10 3.58 3.62 3.66 3.52

STARPILOTH0
10 3.38 3.33 3.42 2.83

EMPTY-5X5 1.0 1.0 1.0 1.0
EMPTY-6X6 1.0 1.0 1.0 1.0
EMPTY-8X8 1.0 1.0 1.0 1.0
EMPTY-16X16 1.0 1.0 0.0 0.0
DOORKEY-5X5 1.0 1.0 1.0 1.0
DOORKEY-6X6 1.0 1.0 0.0 0.0
DOORKEY-8X8 1.0 0.0 0.0 0.0
DOORKEY-16X16 1.0 0.0 0.0 0.0
MULTIROOM-N2-S4 1.0 1.0 1.0 1.0
MULTIROOM-N4-S5 1.0 0.0 0.0 0.0
MULTIROOM-N6 1.0 0.0 0.0 0.0
KEYCORRIDORS3R1 1.0 1.0 0.0 0.0
KEYCORRIDORS3R2 1.0 0.0 0.0 0.0
KEYCORRIDORS3R3 1.0 1.0 0.0 0.0
KEYCORRIDORS4R3 1.0 0.0 0.0 0.0
UNLOCK 1.0 1.0 0.0 0.0
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UNLOCKPICKUP 1.0 0.0 0.0 0.0
BLOCKEDUNLOCKPICKUP 1.0 0.0 0.0 0.0
OBSTRUCTEDMAZE-1DL 1.0 1.0 0.0 0.0
OBSTRUCTEDMAZE-1DLH 1.0 1.0 0.0 0.0
OBSTRUCTEDMAZE-1DLHB 1.0 0.0 0.0 0.0
FOURROOMS 1.0 1.0 0.0 0.0
LAVACROSSINGS9N1 1.0 1.0 1.0 1.0
LAVACROSSINGS9N2 0.93 1.0 1.0 1.0
LAVACROSSINGS9N3 0.7 1.0 1.0 1.0
LAVACROSSINGS11N5 0.73 0.0 0.0 0.0
SIMPLECROSSINGS9N1 1.0 1.0 1.0 0.0
SIMPLECROSSINGS9N2 1.0 1.0 0.0 1.0
SIMPLECROSSINGS9N3 1.0 1.0 1.0 1.0
SIMPLECROSSINGS11N5 1.0 1.0 0.0 0.0
LAVAGAPS5 1.0 1.0 1.0 1.0
LAVAGAPS6 1.0 1.0 1.0 1.0
LAVAGAPS7 1.0 1.0 1.0 1.0
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