
The Local Inconsistency Resolution Algorithm

Oliver Richardson 1

Abstract
We present a generic algorithm for learning and
approximate inference across a broad class of sta-
tistical models, that unifies many approaches in
the literature. Our algorithm, called local inconsis-
tency resolution (LIR), has an intuitive epistemic
interpretation. It is based on the theory of proba-
bilistic dependency graphs (PDGs), an expressive
class of graphical models rooted in information
theory, which can capture inconsistent beliefs.

1. Introduction
What causes a person to change their mind? According
to some, it is a response to internal conflict: the result of
discovering new information that contradicts our beliefs,
or becoming aware of discrepancies between beleifs we
already hold (?). Inconsistencies can be difficult to detect,
however (?), and indeed can only be resolved once we are
aware of them. Some things are also beyond our control; for
example, we might recieve conflicting information from two
trusted sources and be unable to resolve their disagreement.
So in practice, we resolve inconsistencies locally—little by
little, and looking at only a small part of the picture at a
time.

This can have externalities; fixing one inconsistency can
easily create others out of view. Furthermore, some incon-
sistencies are not local in nature, and can only be seen when
considering many components at once. Yet despite its im-
perfections, this process of locally resolving inconsistency
can be quite useful. As we shall soon see, it is a powerful
recipe for learning and approximate inference. We formal-
ize the process in the language of probability and convex
optimization, and show how that many popular techniques
in the literature arise naturally as instances of it.

Our approach leans heavily on the theory of Probabilistic
Dependency Graphs (PDGs), which are very flexible graph-
ical models that allow for arbitrary—even inconsistent—

*Equal contribution 1Department of Computer Science, Cornell
University, Ithaca NY, USA. Correspondence to: Oliver Richard-
son <oli@cs.cornell.edu>.

In ICML Workshop on Localized Learning (LLW), Honolulu,
Hawaii, USA. 2023. Copyright 2023 by the author(s).

probabilistic information, weighted by confidence (Richard-
son & Halpern, 2021). There is a natural way to measure
how inconsistent a PDG is, and many standard loss func-
tions can be viewed as measuring the inconsistency of a
PDG that describes the appropriate situation (Richardson,
2022). We introduce an algorithm to operationalize the pro-
cess of adjusting parameters to resolve this inconsistency.

In general, even just calculating a PDG’s degree of inconsis-
tency is intractable. Much of variational inference can be
understood as adopting extra beliefs to minimize an over-
approximation of it that is easier to calculate (Richardson,
2022). Our approach can capture this, but also enables the
opposite: focusing on small parts of the graph at a time to
address tractable underapproximations of the global incon-
sistency. This makes it more suitable for distributed settings,
and more amenable to parallelization. The algorithm, which
we call local inconsistency resolution (LIR), is quite ex-
pressive, and naturally reduces to a wide variety of learning
and inference algorithms in the literature. This observation
suggests a generic approach to learning and inference in
models with arbitrary structure.

2. Mathematical Preliminaries
We write VX for the set of values that a varible X can
take on, and ∆VX for the set of distributions over VX . A
conditional probability distribution (cpd) is a map p(Y |X) :
VX → ∆VY . A directed hypergraph (N,A) is a set of
nodes N and a set of arcs A, each a ∈ A of which is
associated with a set Sa ⊆ N of source nodes, and Ta ⊆ N
target nodes. We also write S a→T ∈ A to specify an arc a
together with its sources S = Sa and targets T = Ta.

Geometry. We will need various parameter spaces Θ. To
simplify the presentation, assume that each Θ is a convex
subset of Rn (not necessarily of the same dimension). A
vector field over Θ is a differentiable map X assigning to
each θ ∈ Θ a vector Xθ ∈ Rn. The gradient of a twice
differentiable map f : Θ → R, which we write ∇Θf(Θ),
is a vector field. Given a vector field X and an initial point
θ0 ∈ Θ, there is a unique trajectory y(t) that solves the ODE
{ d

dty(t) = Xy(t), y(0) = θ0}, and we adopt the notation
expθ0(X) := y(1) for a compact description of it. At first
glance, exp only gives us access to y(1), but it is easily
verified that expθ0(tX) = y(t). So altogether, the map

1

The Local Inconsistency Resolution Algorithm

t 7→ expθ(t∇Θf(Θ)) is the smooth path beginning at θ that
follows the gradient of f . It is known as gradient flow.

Probabilistic Dependency Graphs. A PDG is a directed
graph whose arcs carry probabilistic and causal information,
weighted by confidence (Richardson & Halpern, 2021). We
now introduce an equally expressive variant, whose explicit
parametric nature will prove useful for our purposes.

Definition 2.1. A Parametric Probabilistic Dependency
Graph (PPDG) M(Θ) = (X,A,Θ,P,α,β) is a directed
hypergraph (X,A) whose nodes correspond to variables,
each arc a ∈ A of which is associated with:

• a parameter space Θa ⊆ Rn, with a default value θinit
a .

• a map Pa : Θa×VSa → ∆VTa that gives a cpd P θa (Ta|Sa)
over a’s targets given its sources, for every θ ∈ Θa,

• confidences αa ∈ R in the functional dependence of Ta
on Sa expressed by a, and βa ∈ [0,∞] in the cpd Pa .

A PDG is the object obtained by fixing the parameters; thus,
a choice of θ ∈ Θ :=

∏
a∈AΘa yields a PDG M = M(θ).

Clearly, a PDG is the special case of a PPDG in which
every Θa = {θinit

a } is a singleton. Conversely, a PPDG may
be viewed as a PDG by adding each Θa as a variable, as
illustrated in Figure 1. We often identify the label a with the
cpd Pa, and specify (P)PDGs in graphical notation, drawing

a cpd p(Y |X,Z) as Y
X

Z p
and q(A,B) as

A

B

q
.

Unless otherwise specified, take β, α=1 by default. We
write M1 + M2 for the PDG that has the arcs of both M1

and M2, and represents their combined information.

PDG Semantics and Inconsistency. The power of PDGs
comes from their semantics, which sew their (possibly in-
consistent) cpds and confidences together into joint prob-
abilistic information. A PDG contains two kinds of infor-
mation: structural information about causal mechanisms,
(the graph A and weights α), and observational data (the
cpds P and confidences β). With respect to a PDG M, the
observational incompatibility of a joint probability measure
µ ∈ ∆VX is given by a weighted sum of relative entropies

OIncM(µ) :=
∑
S a→T ∈A

βa ID
(
µ(T, S)

∥∥∥ Pa(T |S)µ(S)
)
, (1)

and can be thought of as the excess cost of using codes
optimized for each cpd, weighted by the confidence we have
in them, if X ∼ µ. If M’s observational confidences are
positive (β > 0), then OIncM(µ) = 0 if and only if µ has
every conditional marginal described by P.

We can also score µ by its incompatibility with the structural

information (A,α). This structural deficiency is given by:1

SDefM(µ) := E
µ

[
log

µ(X)

λ(X)

∏
S a→T

(
λ(T |S)

µ(T |S)

)αa
]
, (2)

and, roughly, measures µ’s failure to arise as a result of inde-
pendent causal mechanisms along each edge. If A is a qual-
itative Bayesian Network, for instance, then SDefA(µ) ≥ 0
with equality iff µ has the independencies of A. We encour-
age the reader to consult previous work for further details.

With confidence γ ≥ 0 in the structural information overall,
the γ-inconsistency of M is the smallest possible overall
incompatibility of any distribution with M, and denoted

〈〈M〉〉γ := inf
µ

(
OIncM(µ) + γSDefM(µ)

)
. (3)

Richardson (2022) argues that this inconsistency measure
(3) is a “universal” loss function, largely showing how it
specializes to standard loss functions in a wide variety of
situations. It follows that, at an abstract level, much of
machine learning can be viewed as inconsistency resolution.
We take this idea a few steps further, by operationalizing the
resolution process, and allowing it to be done locally.

3. Local Inconsistency Resolution (LIR)
Attention and Control. There are two distinct senses in
which inconsistency resolution can be local: we can restrict
what we can see, or what we can do about it. Correspond-
ingly, there are two “focus” knobs for our algorithm: one
that restricts our attention to the inconsistency of a subset
of arcs A ⊆ A, and another that restricts our control to
(only) the parameters of arcs C ⊆ A as we resolve that
inconsistency. The former makes for an underestimate of
the inconsistency that is easier to calculate, while the latter
makes for an easier optimization problem. These restrictions
are not just cheap approximations, though: they are also
appropriate modeling assumptions for actors that cannot see
and control everything at once.

Attention and control need not be black or white. A more
general approach is to choose an attention mask ϕ ∈ RA and
a control mask χ ∈ [0,∞]A. Large ϕ(a) makes a salient,
while ϕ(a) = 0 keeps it out of the picture. Similarly, large
χ(a) gives significant freedom to change a’s parameters,
small χ(a) affords only minor adjustments, and χ(a) = 0
prevents change altogether. Either mask can then be applied
to a tensor that has an axis corresponding toA, via pointwise
multiplication (�).

The Algorithm. LIR modifies the parameters θ of a PPDG
M(Θ) so as to make it more consistent with its context.

1In (2), λ is base measure, a property of X . The precise choice
is not important, but think: uniform or an appropriate analogue.

2

The Local Inconsistency Resolution Algorithm

It proceeds as follows. First, recieve context in the form
of a PDG Ctx, and initialize mutable memory M(Θ). In
each iteration, choose γ (which can be viewed as attention to
structure), an attention mask ϕ over the arcs of M(Θ)+Ctx,
and a control mask χ over the arcs of M(Θ). Calculate
〈〈ϕ� (M(θ) + Ctx)〉〉γ , the inconsistency of the combined
context and memory, weighted by attention. (For discrete
PDGs, this can be done with the methods of Richardson et al.
(2023).) Then mitigate this local inconsistency by updating
mutable memory θ via (an approximation to) gradient flow,
changing a’s parameters in proporition to control χ(a). The
procedure is fully formalized in Algorithm 1.

Algorithm 1 Local Inconsistency Resolution (LIR)
Input: context Ctx, mutable memory M(Θ).
Initialze θ(0) ← θinit;
for t = 0, 1, 2, . . . do

Ctx ← REFRESH(Ctx); //optional

ϕ, χ, γ ← REFOCUS();
θ(t+1)← expθ(t)

{
−χ�∇Θ

〈〈
ϕ�

(
Ctx + M(Θ)

)〉〉
γ

}
;

In order to execute this procedure, we must say something
about how the choice of (ϕ, χ, γ) is made. Thus, we must
supply an additional procedure REFOCUS to select attention
and control masks. We focus mostly on the case where
γ is fixed, and REFOCUS chooses non-deterministically
from a fixed set of attention/control mask pairs (ϕ, χ) ∈ F,
which we call foci. Algorithm 1 also allows us to a select
a second procedure, REFRESH, which makes it easier to
model recieving new information in online settings.

The ODE on the last line of Algorithm 1, which is an in-
stance of gradient flow, may be approximated with an inner
loop running an iterative gradient-based optimization algo-
rithm. Alternatively, if REFOCUS produces small χ, then
it is well-approximated by a single gradient descent step
of size χ. At the other extreme: if χ is infinite in every
component, then, so long as the parameterizations P are
log-concave, the final line reduces to

θ(t+1) ← arg min
θ

〈〈
ϕ� (Ctx + M(θ))

〉〉
γ
, because of

Theorem 3.1. If P is log-concave, then for small enough
γ, the map θ 7→ 〈〈ϕ� (Ctx + M(θ))〉〉γ is convex.2

In the remaining sections, we give a sample of some histori-
cally important algorithms that are instances of LIR.

4. LIR in the Classification Setting
Consider a parametric classifier pθ(Y |X), perhaps arising
from a neural network whose final layer is a softmax. Sup-

2All proofs can be found in the appendix.

X Y
p

x

x′

y

y′

X

Y

Θp
p

θ

N (0, 1)

N (x, 1)

x′

y

y′

Figure 1. Two illustrations of adversarial training. Left: the PPDG
obtained by including a perturbed input x′ and target y′ to the
classification setting. Right: the PDG obtained by making the
parameters for p explicit, together with a Gaussian prior Θp ∼
N (0, 1) over them. Both are colored with two foci: the blue focus
trains the network, and the green one creates adversarial examples.
Dashes indicate control.

pose VY is a finite set of classes. If VX is itself a mani-
fold (such as the space of images), we can regard a value
x ∈ VX as parameterizing a deterministic cpd, written

Xx . Together with a labeled sample (x, y), we get a

PPDG M(θ) := X Y
x ypθ whose observational

inconsistency is 〈〈M〉〉0 = − log pθ(y|x), the standard train-
ing objective for such a classifier (Richardson, 2022). Each
cpd plays major role in this inconsistency.

What happens when we resolve this inconsistency by modi-
fying the parameters associated to different arcs?

• Adjusting θ amounts to training the network in the stan-
dard way. In this case, the value χ of the control mask
corresponds roughly to the product of the learning rate
and the number of optimization iterations.

• Adjusting y is like a forward pass, in that it adjusts y to
match distribution pθ(Y |x).

• Adjusting x creates an adversarial example. That is, it
makes incremental changes to the input x until the (fixed)
network assigns it label y.

Stochastic Gradient Descent (SGD). Take the mutable
state to be the classifier p as before. Define REFRESH so
that it draws a batch of samples {(xi, yi)}mi=1, and returns a
PDG with a single arc describing their emperical distribution
d(X,Y); let REFOCUS be such that ϕ(d) =∞ (reflecting
high confidence in the data). If η := χ(p)ϕ(p) is small,
then LIR is SGD with batch size m and learning rate η.

Adversarial training. Suppose we want to slightly alter x
to obtain x′ that is classified as y′ instead of y. By adding
arcs corresponding to x′ and y′ to M, and relaxing the cpd
Px associated with x to be a Gaussian centered x rather
than a point mass, we get the PPDG on the left of Figure 1.
An iteration of LIR whose focus is the edges marked in
green (with control over the dashed green edge) is then
an adversarial attack with Euclidean distance (Biggio et al.,
2013). The blue focus, by contrast, “patches” the adversarial
example by adjusting the model parameters to again classify
it correctly. Thus, LIR that alternates between the two foci,

3

The Local Inconsistency Resolution Algorithm

in which REFRESH selects a fresh (x, y, x′ = x) from the
dataset and target label y′, is adversarial training, a standard
defense to adversarial attacks (Goodfellow et al., 2014).

The ML community’s focus on adversarial examples may
appear to be a cultural phenomenon, but mathematically,
it is no accident. At this level of abstraction, there is no
difference between model parameters and inputs. Indeed,
if we make the parameterization of p explicit and add L2
regularization (i.e., a Gaussian prior over Θp), the symmetry
becomes striking (Figure 1, right). This may help explain
why, even outside of adversarial contexts, it can be just as
sensible to train an input, as a model (Kishore et al., 2021).

5. The EM Algorithm as LIR
Suppose we have a generative model p(Z,X|Θ) describing
the probability over an observable variable X and a latent
one Z. Given an observation X=x, the standard approach
for trying to learn the parameters despite the missing data is
called the EM algorithm. It iteratively computes

θ
(t+1)
EM = arg max

θ
E
z∼p(Z|x,θ(t)EM)

[log p(x, z|θ)].

Proposition 5.1. LIR

(
X

x ,
ZX

p
q

(∞)

)
in

which REFOCUS fixes ϕ = 1 and alternates between full
control of p and q implements EM, in that θ(t)

EM = θ
(2t)
LIR .

This result is closely related to one due to Neal & Hinton
(1998), who view it as an intuitive explanation of why the
EM algorithm works. Indeed, it is obvious in this form that
every adjustement reduces the overall inconsistency. The
result can also be readily adapted to an entire dataset by
replacing x with a high confidence emperical distribution,
or batched with the same technique in Section 4. It also
captures fractional EM when χ <∞.

This form of the EM algorithm is closely related to vari-
ational inference. Indeed, analogous choices applied to
the analysis of Richardson (2022) yields the usual training
algorithm for variational autoencoders (VAEs).

6. Generative Adversarial Training as LIR
LIR also subsumes more complex training procedures such
as the one used to train GANs (Goodfellow et al., 2020).
The goal is to train a network G to generate images that
cannot be distinguished from real ones. More precisely,
define X to be either an image Xfake ∼ G or from a dataset
Xreal ∼ pdata, based on a fair coin C. A discriminator D
then predicts C from X . The generator also has a belief
that, even given X , the coin is equally likely heads as tails
(call this e). This state of affairs is summarized below.

M(Θ) :=
Xfake

Xreal X

C
G

pdata! De

50/50!

The GAN objective is typically written as a 2-player mini-
max game: minG minD LGAN(G,D), where

LGAN(G,D) = E
x∼pdata

[logD(x)] + E
x′∼G

[log(1−D(x′))].

The Discriminator’s Focus. The discriminator has full
control over D, and attends to everything but e. That incon-
sistency of this PDG is what might be called the discrimina-
tor’s objective: the expected KL divergence from D to the
optimal discriminator. If D also disbelieves that any image
is equally likely to be fake as real (by chosing ϕ(e) = −1),
then the inconsistency becomes −LGAN.

The Generator’s Focus. The generator has control over
G. If it ignores D attends only to e, the inconsistency is
the Jenson-Shanon Divergence between G and pdata. If the
generator also disbelieves the discriminatorD (i.e., ϕ(D) =
−1), then the inconsistency becomes +LGAN.

Standard practice is to use small χ(G) and large χ(D), so
that the discriminator is well-adapted to the generator.

7. Message Passing Algorithms as LIR
Nearly every standard graphical model can be viewed as
a factor graph, and correspondlingly admits an (approxi-
mate) inference procedure known variously as (loopy) be-
lief propogation (Koller & Friedman, 2009), the generalized
distributive law (?), and the sum-product algorithm (Kschis-
chang et al., 2001). It also turns out to be the special case of
LIR specialized to factor graphs.

A factor graph over a set of variables X is a set of factors
Φ = {φa : Xa → R≥0}a∈A, where each Xa ⊆ X is called
the scope of a. Conversely, for X ∈ X , let ∂X be the
set of factors with X in scope. Φ specifies a distribution
PrΦ(X) ∝

∏
a φa(Xa), and corresponds to a PDG

MΦ =
{

Xa
∝ φa

(α, β=1)

}
a∈A

that specifies the same joint distirbution PrΦ, when obser-
vation and structure are weighted equally (i.e., γ = 1).

Sum-product belief propogation (Kschischang et al., 2001)
aims to approximate marginals of PrΘ with only local com-
putations: messages sent between factors and the variables
they have in scope. Its state consists of pairs of “messages”
{mX a,ma X}, both (unnormalized) distributions over X ,
for each pair (a,X) with a ∈ ∂X , which together form a
PDG Msg in the same way as the original factor graph. Af-

4

The Local Inconsistency Resolution Algorithm

ter initialization, belief propogation repeatedly recomputes:

mX a(x) :∝
∏

b∈∂X\a

mb X(x) (4)

ma X(x) :∝
∑

y∈V(Xa\X)

φa(x,y)
∏

Y ∈Xa\X

mY a(Y (y)), (5)

where Y (y) is the value of Y in the joint setting y. Finally,
variable marginals {bX}X∈X , which we regard as another
PDG, B, are computed from the messages according to
bX(x) ∝

∏
a∈∂X ma X(x). Observe that every calculation

is a (marginal of) a product of factors, and thus amounts
to inference in some “local” factor graph. The traditional
depiction of messages moving between variables and factors
(see Appendix A) is not so different from the PDG

Xa X

Xb1

Xbm

Y1

Yn

Y a
1

Y a
n

mb1 X

mbm X

mX a

mY1 a

mYn a
ma Xφa

⊆ Msg

+MΦ.

Indeed, it can be shown that (4,5) minimize inconsistency of
the dotted components in their appropriate contexts (shown
in green and blue above, and formalized in Appendix A).

Proposition 7.1. If REFOCUS selects a focus non-
deterministically from {a X,X a,X}X∈X ,a∈∂X (details
in Appendix A), then the possible runs of LIR(MΦ,Msg +
B) are precisely those of BP for different message schedules.

There are many established variants of this algorithm.
Some of them are generated different by clustering fac-
tors together—in the language of Koller & Friedman (2009),
that is to say choosing something other than the Bethe clus-
ter graph as the basis for message passing. Our analysis
immediately applies to these other cluster graphs.

Minka (2005) offers a different perspective, in which a
broader class of message passing algorithms can be viewed
as iteratively adjusting some local context to minimize an
α-divergence. We suspect that LIR generalizes thses proce-
dure as well—not only because it is similar in spirit, but also
because because these divergences can be viewed as the de-
gree of inconsistency of a PDG containing two distributions
(Richardson, 2022).

8. Discussion and Future Work
These examples are only the beginning. Our initial investi-
gations suggest that opinion dynamics models, the training
process for diffusion models, and much more, are all natu-
rally captured by LIR. The surprising generality of LIR begs
some theoretical questions. What assumptions are needed
to prove that it reduces overall inconsistency, as is often the
case? What are the simplest choices we could make to pro-

duce an efficient non-standard algorithm? How expressive
is this mode of computation?

It also suggests a novel approach to structured generative
modeling: haphazardly assemble a PDG with many vari-
ables, existing models, priors, constraints, and data of all
shapes and sizes. Then, train new models to predict vari-
ables from one another, using LIR (with random refocusing,
say). Is this effective? We are excited to find out!

References
Biggio, B., Corona, I., Maiorca, D., Nelson, B., Š rndić,

N., Laskov, P., Giacinto, G., and Roli, F. Evasion
attacks against machine learning at test time. In
Advanced Information Systems Engineering, pp. 387–
402. Springer Berlin Heidelberg, 2013. doi: 10.1007/
978-3-642-40994-3 25. URL https://doi.org/
10.1007%2F978-3-642-40994-3_25.

Goodfellow, I., Pouget-Abadie, J., Mirza, M., Xu, B.,
Warde-Farley, D., Ozair, S., Courville, A., and Bengio, Y.
Generative adversarial networks. Communications of the
ACM, 63(11):139–144, 2020.

Goodfellow, I. J., Shlens, J., and Szegedy, C. Explaining
and harnessing adversarial examples, 2014.

Kishore, V., Chen, X., Wang, Y., Li, B., and Weinberger,
K. Q. Fixed neural network steganography: Train the
images, not the network. In International Conference on
Learning Representations, 2021.

Koller, D. and Friedman, N. Probabilistic Graphical Mod-
els: Principles and Techniques. MIT press, 2009.

Kschischang, F. R., Frey, B. J., and Loeliger, H.-A. Factor
graphs and the sum-product algorithm. IEEE Transac-
tions on information theory, 47(2):498–519, 2001.

Minka, T. Divergence measures and message passing. Tech-
nical Report MSR-TR-2005–173, Microsoft Research,
Cambridge, U.K., 2005.

Neal, R. M. and Hinton, G. E. A view of the em algorithm
that justifies incremental, sparse, and other variants. In
Learning in Graphical Models, pp. 355–368. Springer,
1998.

Richardson, O. E. Loss as the inconsistency of a probabilis-
tic dependency graph: Choose your model, not your loss
function. AISTATS ’22, 151, 2022.

Richardson, O. E. and Halpern, J. Y. Probabilistic depen-
dency graphs. AAAI ’21, 2021.

Richardson, O. E., Halpern, J. Y., and Sa, C. D. Inference
in probabilistic dependency graphs. UAI ’23, 2023.

5

https://doi.org/10.1007%2F978-3-642-40994-3_25
https://doi.org/10.1007%2F978-3-642-40994-3_25

The Local Inconsistency Resolution Algorithm

A. Details on Belief Propogation
The usual schematic illustration of belief propogation
(Kschischang et al., 2001) looks something like:

a X

b1

bm

Y1

Yn

mb1 X

mbm X

mX a
mY1 a

mYn a
ma X

.

This is only a schematic, but the PDG Msg can be made to
look similar to it. Adding a variableXa for every pair (X, a)
with X ∈ Xa along with edges asserting that Xa = X , we
obtain the equivalent PDG in the main body of the paper:

Xa X

Xb1

Xbm

Y1

Yn

Y a
1

Y a
n

mb1 X

mbm X

mX a

mY1 a

mYn a
ma Xφa

.

We now define the views. Modulo a small subtlety, the
following is essentially true: Equation (4) adjusts the
parameters of CX a := {mX a} so as to minimize 1-
inconsistency in context AX a := {mb X}b∈∂X\a ∪
{mX a}, while (5) adjusts Ca X := {ma X} so as
to minimize the 1-inconsistency in context Aa X :=
{φa,ma X} ∪ {mY a}Y ∈Xa\X .

The only wrinkle is that we do not want to attend to the
structural aspect of a message e that we are updating—that
is, we must select ϕ so as to ignore its causal weight αe.
Intuitively: when we are updating some message e, we are
interested in summarizing information in the other messages
(both observational and causal information), purely with an
observation.

More precisely, the foci

F :=

{
(ϕj , χj) : j ∈

⋃
a∈A
X∈Xa

{
a X, X a, X

}
,

}

are indexed by messages and variables, and defined as fol-
lows. The attention mask ϕj is given by:

ϕj(a) :=


(

1
1

)
if a ∈ Aj \ Cj(

1
0

)
if a ∈ Cj(

0
0

)
otherwise

,

where
(
φ1

φ2

)
scales βa by φ1 and αa by φ2. Finally, full

control over Cj means defining

χj(a) :=

{
∞ if a ∈ Cj
0 otherwise.

With these definitions, Proposition 7.1 follows easily.

(Continue to Appendix B for proofs!)

6

The Local Inconsistency Resolution Algorithm

B. Proofs
First, some extra details for Theorem 3.1. By parameteriations P log-concave, we mean that, for every a ∈ A, and
(s, t) ∈ V(Sa, Ta), the function

θ 7→ − logP θa (Ta = t | Sa = a) : Θa → [0,∞]

is convex. This is true for many families of distributions of interest. For example, if Sa, Ta is discrete, and the cpd is
parameterized by stochastic matrices P = [ps,t] ∈ [0, 1]V(Sa,Ta), then

− logPP
a (Ta = t|Sa = s) = − log(ps,t)

which is clearly convex in P.

To take another example: if Pa is linear Gaussian, i.e., Pa(T |S) = N (T |As+ b, σ2), parameterized by (A, b, 1/σ2), then

− logP(A,b,σ2)
a (t|s) = −1

2
log

2π

σ2
+

1

2

(
t−As+ b

σ

)2

which is convex in (A, b, 1
σ2). Now, for the proof.

Theorem 3.1. If P is log-concave, then the map θ 7→ 〈〈ϕ� (Ctx + M(θ))〉〉γ is convex.

Proof. By definition,

〈〈ϕ� (Ctx + M(θ))〉〉γ = inf
µ
{OIncCtx(µ) + OIncM(θ) + SDefM(θ)(µ) + OIncM(θ)(µ)}.

Only the final term actually depends on θ, though. Let F (µ) capture the first three terms. For all of our examples, and
indeed, if γ is chosen small enough, it will be convex in µ (Richardson & Halpern, 2021). Then we have

〈〈ϕ� (Ctx + M(θ))〉〉γ = inf
µ

(
F (µ) + E

µ

[∑
S a→T

βa log
µ(T |S)

Pa(T |S)

])

= inf
µ

(
F (µ) + E

µ

[∑
S a→T

βa log
µ(T |S)

λ(T |S)

]
+ E

µ

[∑
S a→T

βa log
λ(T |S)

Pa(T |S)

])

The second term is then entropy (relative to the base distribution), which is convex in µ. The first term, F (µ), is convex in µ
as well, and neither depend on θ. The final term is linear in µ. Since P is log-convex in θ, the log λ(t|s)

Pa(t|s) convex in θ, and so
that third term is a conic combination of expectations that are all convex, and hence itself convex in θ. Thus, the sum of all
three terms in the infemum is jointly convex in θ and in µ. Taking an infemum over µ pointwise, the result is still convex in
θ.

Proposition 7.1. If REFOCUS selects a view non-deterministically from {a X,X a,X}X∈X ,a∈∂X with ϕ, χ as above, and
γ = 1, then the possible runs of LIR(MΦ,Msg + B) are precisely those of BP for different message schedules.

Proof. When γ = 1, and α, β = 1 for all of the input factors, then the optimal distribution µ∗ that realizes the infemum
is just the product of factors. It follows that any distribution that has those marginals will minimize the observational
inconsistency.

The different orders that the (4), and (5) can be ordered for different adjacent pairs (a,X) correspond to both the message
passing schedules, and to the possible view selections of LIR.

7

