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ABSTRACT

Mixture of Experts (MoE) models have emerged as the de-facto architecture for
scaling up language models without significantly increasing the computational
cost. Existing MoE methods optimize system efficiency or model architecture
independently. We show that as MoE models get more granular and sparser, they
become more memory-bound, and jointly optimizing the algorithms and the kernel
design leads to a major improvement in MoE training throughput. We first propose
a memory-efficient algorithm to compute the forward and backward of MoE with
minimal activation saved. We then design GPU kernels that overlap memory IO
latency with compute, benefiting all MoE architectures. Finally, we propose a
novel “token rounding” method that minimizes the wasted compute brought by
tile quantization. As a result, our method SNaX reduces 45 % activation memory
and has 1.87x compute throughput improvement on Hopper GPUs compared to
state-of-the-art BF16 MoE kernel for a fine-grained 7B MoE. Concretely, SNaX on
64 H100s achieves almost the same total throughput as ScatterMoE on 96 H100s for
a 7B MoE model training with token-choice rounding while training with FSDP-2.
Under high MoE sparsity settings, our tile-aware token rounding algorithm yields
an additional 1.18x speedup on kernel execution time compared to vanilla top- K
routing while maintaining similar downstream performance.

1 INTRODUCTION

Mixture of Experts (MoE) (Shazeer et al.,[2017) models have emerged as a key technique for scaling
up transformers (Vaswani et al.,|2017) without increasing the computational requirements for training.
Recent models have reached over hundreds of billions of parameters (DeepSeek-Al et al.,2024) or
even trillions of parameters (Kimi et al.| 2025)). Modern transformers often have layers comprised
of a sequence mixer block (e.g., Multi-Head Attention (Vaswani et al.,|2017)) followed by a channel
mixer block, where MoEs are excellent substitutes for dense MLPs for FLOPs efficiency. MoE layers
exploit sparse computation thus reducing FLOPs for the same number of parameters. However,
reducing FLOPs does not directly translate to better hardware utilization since hardware-friendly
sparse computation is not an easy task and MoEs often have more 10 access than dense models.

Scaling law studies on MoEs|Clark et al.| (2022); Krajewski et al.[(2024)); Tian et al.[(2025)) predict
better model quality per FLOPS as one increase expert granularity (ratio between the model embedding
dimension and each expert’s intermediate size) and sparsity. Recent MoE models like DeepSeek V3
(DeepSeek-Al et al.| 2024), QWen3 MoE (QwenLLM, [2025) and GPT-OSS-120B (OpenAlL2025), have
demonstrated superior performance of “fine-grained” MoEs over “coarse-grained” MoE at scale. These
findings have been adopted with recent model architectures such as PEER (Hel[2024)), Memory layers
(Berges et al.,|2024), and UltraMem (Huang et al., 2025bja)). Besides granularity, the pursuit of MoEs
with better model quality while keeping computational requirements constant have also led to modern
MOoEs become extremely sparse. For example, Kimi K2 (Kimi et al.,2025)) has the same amount of
activated parameters as DeepSeek V3 (DeepSeek-Al et al., [2024) but much larger total parameters.
Overall, granularity and sparsity for MoEs have only increased over time as shown in Table[5]

However, granular and sparse MoEs, optimizing mainly for model quality per FLOPS, suffers from
hardware inefficiency due to: (1) larger activation memory footprint for granular MoE models
as activation size typically scales linearly with number of activated experts, (2) worse hardware
utilization due to the lower arithmetic intensity and increased IO costs by granular experts and
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Figure 1: SNaX’s per-layer activation memory footprint (left) stays constant even as expert granularity increases,
and is 1.5-4x more memory-efficient than baselines. SNaX’s forward pass throughput (right) (router gemm + top-k
+ softmax + grouped gemm + activation + grouped gemm + aggregation) reaches 93%-+ the speed of the upper
bound of BMM + activation + BMM + aggregation.

(3) wasted computations due to tile quantization effects of grouped GEMM for highly sparse
MoEs. Fundamentally, the high granularity and sparsity both push the MoE training towards the
memory-bound regime where MoE kernels should take care of the increased 10 costs. Existing
state-of-the-art MoE kernels such as ScatterMoE (Tan et al.}[2024)) and MoMoE (Costin et al.,|[2025]) are
not designed to handle these high IO costs case where they suffer significant throughput degradation.

We propose to co-design MoE architecture with a hardware-aware GPU kernel and a novel routing
method. (1) We first derive an algorithm to compute the MoE backward pass in a different order than
the standard, leading to much smaller activation size that does not increase as experts get more granular.
(2) We then carefully design MoE GPU kernels to overlap memory IO with computation, benefiting
all MoEs but most importantly fine-grained MoEs. (3) We propose a hardware-aware token rounding
routing method where the routed number of tokens to an expert are always a multiple of the GEMM
tile size. We show through extensive experiments that this proposed routing strategy could be 18%
faster than token-choice routing with the same downstream language modeling performance. With
(1) and (2), we can increase the end-to-end training throughput of 7B MoE model by 50% (with no
architecture change from typical top-K token choice routing), and our new token rounding routing
further improve another 10-20% TFLOPs under high MoE sparsity setting without accuracy loss.

Summary of contributions. Our work proposes a co-design solution SNaX on addressing the training
efficiency problems, making the following contributions:

* Memory Efficient MoE forward and backward: We analyze the impact of MoE granularity
to the MoE layer’s forward and backward pass and identify that increasing MoE granularity with
constant FLOPs leads to a linear increase in activation memory required for backward computation.
We propose to carefully change the computation graph to avoid caching the activations needed for
router gradient computation while being mathematically equivalent to the normal MoE. As a result,
for a finegrained 7B MoE, SNaX reduces activation memory usage by 45% per layer.

* Efficient MoE Kkernel with overlapped 10 and compute: We also demonstrate that increasing both
granularity and sparsity leads to MoEs becoming increasingly memory bandwidth bound. We exploit
the asynchrony of GEMM and IO and carefully reduce the IO latency and accesses to maximize the
compute throughput for finegrained MoE. For the same finegrained 7B MoE, SNaX’s MoE kernel
reduces improves the kernel TFLOPs by 87% compared to state-of-the-art BF16 MoE kernel.

* Token rounding routing: We introduce a drop-in routing algorithm that rounds the per-expert
token count to the tile size (e.g., 128) multiples used by grouped GEMM in MoE kernel to reduce
wasted compute by padding while prioritizing the original token-choice expert selection. This
routing algorithm favors token choice result such that for each expert, the maximum deviation
from token choice top-K result is at most 1 tile. This routing method eliminates padding waste in
grouped GEMM while maintaining the same total tokens in expectation, and has robust token-choice
inference quality even under sparse MoE training regime. We validate the performance of this token
rounding strategy in a highly sparse training setting at 1.4B parameter scale. We also show that
token rounding’s compute throughput over vanilla token-choice top- K is consistently larger once we
enter highly sparse MoE training regime and can make 18% TFLOPs difference on kernel runtime.

Our implementation of SNaX, written in CuTe-DSL (Nvidia, [2025) with a PyTorch interface, will
be released with a permissive license to benefit researchers and practitioners.
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2 BACKGROUND

We first provide an overview of the MoE architecture and a standard MoE kernel employing grouped
GEMM in Section[2.2] Based on such formulation, we examine existing MoE implementations. We
then discuss key factors that influence MoE’s training efficiency in Section[2.3|and illustrate why prior
kernel design fails to resolve the new efficiency challenges with finegrained and sparse MoEg'| We
also examine the influence of routing on MoE’s training efficiency in Section[2.4]

2.1 GEMM AND GROUPED GEMM

A GEMM (general matrix multiply) kernel on GPUs is often structured into the prologue, mainloop
and epilogue. The kernel first applies tiling (dividing large matrices into smaller blocks), and optionally
pads dimensions so computation align with hardware-friendly tile sizes. The mainloop loads data
from High Bandwidth Memory (HBM) to on-chip SRAM and performs the tiled matrix multiply and
accumulates over the K dimension. The epilogue applies post-processing on the GEMM results such
as activation functions and writes results back to HBM. Grouped GEMM, commonly used in MoE,
is a variant of GEMM that runs a list of GEMMs with different {IM;,N;, K } ;|-

Algorithm 1 MoE forward with
Grouped GEMM

Inmput : X € Wa =
{Wl,e}eE[E] c RdXZ'n’ Wy =
{W2,e}ecir) € R™*?_ routing
scores SERTXE 7 {0,1}TxF
as a binary valued matrix where
T¢,e represents if token ¢ is routed
to expert e.

Output :output activation O €

Parallel for e € [E] do

Xe < Gather(X,m. )
Ze(*XeWI,e Grouped GE
Y1,e + SwiGLU(Ze)
Y27e<—Y17eW2’e Groupec

2.2 MOE ARCHITECTURE AND EXISTING KERNEL DESIGN

Txd
A MOoE block typically has a token router and multiple smaller B
(often equally-sized) subnetworks, called “experts”. The router
is responsible for dispatching tokens to the experts which are
subsequently used by the specific expert for computation. The
outputs from all experts in the layer are then aggregated and
passed onto the next layer. Algorithm|[I|formulates such compu-
tation with grouped GEMM, which can leverage high throughput
Tensor Cores on modern GPUs (NVIDIA| 2022).

For MoE training, MegaBlocks (Gale et al.,[2023) proposed to
gather and pad the tokens and then apply block-sparse matrix
multiplication to compute the expert output. ScatterMoE (Tan

RT xd

et al.,2024) fuses the gather with Grouped GEMM, and scatters
each expert result after the down projection. DeepGEMM (Zhao
et al.,|2025bja)) has also emerged as a performant kernel for FP§-
MOoE training, however DeepGEMM doesn’t do epilogue fusion

GEMM
Parallel for ¢t € [T'] do
L Or= Zee[E]ﬂ't,eSt,eYZe,t

return O

and gather fusion with the grouped GEMM. MoMoE (Costin et al., 2025)) does epilogue fusion and
gives more control over how much activations to save during training.

Existing implementations like MoMOoE, ScatterMoE, and MegaBlocks are already implemented in
low-level GPU programming languages (Triton (Tillet et al.,2019) and CUDA), but they have yet to
take full advantage of the asynchronous nature of modern accelerators to overlap compute and memory
10. Modern NVIDIA GPUs like H100s feature advanced features like asynchronous Tensor Cores,
TMA (Tensor Memory Accelerator) for data movement etc. (NVIDIAL2022; NVIDIA). For instance,
on H100s it is possible to asynchronously fetch a tile of data while the Tensor Cores are still running
the GEMM for the previous tile. It is important to use such asynchrony on modern GPUs to achieve
close to peak compute throughput as demonstrated by FlashAttention-3 (Shah et al.| [2024)).

2.3 MOE’S TRAINING EFFICIENCY

Arithmetic intensity is defined as the ratio of FLOPs over the number of transferred bytes. It quan-
titatively categorizes whether a kernel is memory-bound or compute-bound. If we denote T, as the
number of routed tokens received for expert e, the up-projection of expert e uses 27 - 2n-d FLOPs
with 2T, d+2-2n-d+ 2T.n HBM memory transfer bytes, and similarly, the down Erojection uses

2T.nd FLOPs with 2T, n+2nd+ 2T, d HBM memory transfer bytes. Assuming p= 7 as the inverse

of sparsity, G= % as the granularity and uniform routing i.e 7, =T'p, the arithmetic intensity (ignoring

"Here we refer “finegrained MoE” as MoE with small granularity i.e. n is smaller than d. We assume the
setting of both iso-FLOPs and iso-params.
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the writes for Z.) for the forward pass of an expert is

2T, -2n-d+2T.nd 3 3 |

ont+nd+ATd 212+7 ZE0; 3 W
For a specific model size (constant d), it can be seen that increasing granularity (increasing G) or
increasing sparsity (decreasing p) leads to a decreasing arithmetic intensity. Our speed benchmarks in
Figure[2]suggest that when n < 256, we enter the memory-bound regime where the observed TFLOPs
decrease nearly linearly with n even under the most ideal case (cuBLAS dense BMM) due to the linear
scaling between IO costs and granularity (G = %) This suggests the importance of hiding 10 latency
with compute for low expert intermediate size (n). This is achieved using a series of asynchronous
load/stores overlapped with compute described in Sectionf4]

Arithmetic Intensity of Forward Pass 10 Costs of Forward Pass
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Figure 2: Arithmetic intensity and the corresponding IO costs of MoE’s forward pass w.r.t. expert
granularity across MoE configurations from 1.4B to 120B.

2.4 MOE ROUTING METHODS

MoE models rely on conditional computation to reduce the model FLOPs requirement. For conditional
computation, a routing subnetwork routes tokens to a subset of experts. The most widely used routing
method is token choice routing (Shazeer et al.|2017). In token-choice routing, the tokens pick which
experts to use for their computation, i.e the routing decision is TopK ¢ (g (S5.,¢, &) where TopK is
the top-K function and S, . is the expert score for each token. Expert choice routing has also been
proposed to avoid load imbalance during training (Zhou et al.,2022)). In expert choice routing, the
experts are instead responsible for choosing the tokens. However, expert choice routing is not easily
usable for auto-regressive inference since it creates a mismatch between training and inference and
breaks causality. Other works such as|Zeng et al.|(2024) propose AdaMoE which dynamically adjusts
the number of activated experts by adding null experts. In this paper, we focus on token-choice routing
for experimentation since its the most widely used method for training large MoE models.

3 MEMORY-EFFICIENT MOE ALGORITHM

We explain the activation memory bottleneck in existing MoE methods, and show how to reduce activa-
tion size by performing the backward pass in a different order (with the same gradients mathematically).

The FLOPs of MoE forward & backward pass is (64 12)T'n K d and if we fix microbatch size (keep
T constant) and keep FLOPs constanﬂ nK should be a constant. Therefore, increasing granularity
means scale down n and proportionally scale up K and E. In this case, any variables that has size
O(T K d) should not be cached otherwise we would observe a linear dependency of activation memory
w.r.t. granularity, as the case for community MoE kernels such as ScatterMoE.

During the forward and backward pass, Ys (fwd down-proj results), X, (fwd up-proj gathered activation)
and dO, (bwd down-proj gathered activation) all require 27" K d bytes. Existing MoE methods such as
ScatterMoE need to store Y5 in the forward to compute the gradient w.r.t. the router scores s, as one can
see from the forward pass in Algorithm(T}

To minimize activation memory, we need to avoid avoid caching Y2,X.,dO. in the forward (and ideally
do not incur extra matmul FLOPS in the backward pass). We propose to:

* fuse grouping operation into the prologue and do not materialize X, and dO. in global memory

* identify a computation path that circumvents the need of Y5 without incurring any additional FLOPs,
by reordering the summation order in the backward pass, as derived in App.[H

>We always assume embedding dimension d is constant.
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Algorithm 2 SNaX’s MoE kernel forward pass
with SwiGLU architecture. Variables stored in Algorithm 3 SNaX’s MoE kernel backward pass of

HBM are colored blue. down projection with SwiGLU architecture.
Input :X, S, 7, Wi, Wy same as Algorithm Input :S, 7, Wa,dO.
Output :Output activation O Output :dZ, dWs, dS.
Up-proj Y1 kernel (X,W1,m) = (Z,Y1): Down-proj act dZ kernel (dO,Wa,S,7) = (dZ.,dS,Y4):
// Gather + Grouped GEMM + SwiGLU // Gather + Grouped GEMM + dSwiGLU + d.S + Yy for dWs
Parallel for e € [E] do Parallel for e € [E] do
X€7W1,€77r2,€ <~ load(Xe,Wl,eyﬂ':,e) doe,ﬂ';’e <~ load(dOe,Wg,e,S,m,e)
Xe < Gather(X, ) dO. + Gather(dO,; )
Ze <_XEW1,€ Y3’6<—dOeW2Te Y3, €R Texn
Y1,e < SwiGLU(Z,) dY17e<—Broad’cast(se)Y3’e
L Ze,Y1 e <—store(Ze,Y1,e) Y1,e,dZe < dSwiGLU(dY1, e, Ze)
Down-proj Y> kernel (Y1,Ws) — Ya: dSe,t <+ (Y3,e,t,Y1,e,t)
/ Grouped GEMM se < Gather(S,m.,¢)
Parallel for ¢ € [E] do Y4,e < Broadcast(se)Y1,e Yy eRTex™
Y1,e,Wa,e < load(Y1,e,Wa,e) L dZ,dS,Yy, e < store(dZ.,dS,Ys )
Y20 Y1, Wae Down-proj weight dWs kernel (dO,Y4,7) — dWa:
L Y2 e < store(Y2,e) 7/ Gather + Grouped GEMM
Expert aggregation O Kernel (Y2,S,7) — O: Parallel for ¢ € [E] do
// reduce over each expert results dOe7Y4,e,7T:,e (*load(doeyyél,eﬂr:,e)
Parallel for t € [T] do dOe < Gather(dO, . ¢);
Y2,e,t7st,e,7rt,e Fload(YQ,e,t,St)g,Trt,g) dW2,e < Y4Ted0;r
L Otezee[E]ﬂ't,eSt,eYZe,t L dWQ’E%Store(dWQ@)
Oy +—store(Oy)

As aresult, we only cache X and Z and small routing metadata with total size 2T'd+4T Kn+O(TFE)
bytes per layer similar as the usage for a dense model with activated number of parameters

We present the SNaX algorithm in Algorithm ﬂ SNaX achieves effectively the minimum
activation memory without GEMM recomputation. In Figure[d we profile SNaX’s activation
memory in a 7B MoE configuration and also demonstrate that the activation memory of SNaX is
independent of expert granularity. More results from 1.4B to 120B are included in Figure[d]

4 TO-AWARE KERNEL DESIGN

The expressivity of fine-grained MoE comes from the diversity of every token’s expert selection, which
in turns leads to linearly-scaled IO costs w.r.t. expert granularity as shown in Figure[2] For memory
bound GEMM kernels, we want to maximally overlap the 1O latency with compute. Here we describe
an [O-aware optimization that minimizes the induced IO latency across multiple kernels.

IO access reduction: We perform most computations on-chip to fully exploit registers and shared
memory, thereby reducing costly IO access. To further minimize 10, we reformulate the computation
of dZ (see Appendix[F), and fuse the calculations of dZ, dS, and Y} into a single kernel, resulting in a
heavy epilogue that can be further overlapped with MMA using Ping-Pong.

Ping-Pong scheduling: On NVIDIA Hopper GPUs, GEMM is usually performed asynchronously
with a producer-consumer paradigm (Shah et al.,[2024) where producer warpgroups are dedicated to
handling IO while consumer warpgroups are responsible for GEMM computation.Suppose we have
2 consumer warpgroups, we can either let them cooperatively issue the Hopper GEMM instruction
(WGMMA) with a large tile size, or overlap the IO of 1 warpgroup with GEMM of another warpgroup
with a smaller tile size. Once this is finished, we switch the roles of the warpgroups (effectively
interleaving IO and GEMM). This is often referred to as “Ping-Pong” scheduling (Wright & Hoquel

3 Although we still materialize a Y> variable, we can recycle Y5 after each layer. As long as the number of MoE
layers (typically 32+ for 7B+ MoE) is larger than K, the transient memory usage of Y2 will be overshadowed. We
note that removing such materialization requires an atomic add which creates new issue with determinism (He &
Machines,[2025)) and numerical accuracy (for BF16 atomic add).

*Our only recomputation is Y7 from Z, and this is cheap during epilogue of dZ as shown in Algorithm
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2024) in Figure|8] Pingpong schedulingﬂ is particularly useful to maintain high Tensor Core (TC)
utilization in GEMM kernels with long epilogues (compared to the mainloop). For example, the Y5
kernel’s epilogue has heavy HBM store IO (1.21 GB per layer for a 7B model) and in the dZ kernel’s
epilogue, we need to asynchronously load Z and execute multiple math and reduction operations.

Asynchronous epilogue load for dZ computation: Inthe dZ kernel’s epilogue, we need to load Z
to compute dZ from dY7. We create a dedicated pipeline with asynchronous TMA (NVIDIA,2022)
load for Z to overlap it with other epilogue operations across epilogue stages.

5 TOKEN ROUNDING FOR SPARSE MoE Algorithm 4 Token rounding routing

Input : X € RT*?; number of experts E and expected

. . : activated number of experts K per token; tile size
In this section, we analyze the hardware efficiency Q: router scores S € RT*E and 0 < S, ; < 1.

under sparse MOE training regime and ldentlfy that round_.and_sparsify that determines rounding up or

as MoEs become sparser, the wasted compute on down.

padded GEMM tiles accumulate to a nontrivial Output : tile-rounded router scores [ ST,

amount, known as “tile quantization” effects. In (1) Top-K token choice sorting

response, we propose a novel routing method “to-  (Swpk;iopk) 4= TopK (S, K)

ken rOunding” to eliminate tile quantization effects. (2) Calculate each expert’s received token frequencies and its
tile-rounded multiples

| feeztl{eeltopl(,l}
5. TRAINING EFFICIENCY OF SPARSE MOE f‘eA —[fe/Q1-Q; fev —fe/Q]-Q

. . . .. . (3) Build Top- K -preferred S’ for expert-wise rankin;
Besides granularity, the arithmetic intensity of MoE S’ 5. 7l1) P P &

ensure non-top-K entries are

also depends on the inverse of sparsity p as shown — cra1icr than top K
in Equation[I] When we scale down p, the expected for t € [T] & ke [K | in parallel do
number of received tokens per expert Eoc g7, = L St Lopic (t.5) 4= Stopk. .1
Tp Wlll alS(.) hnearly decrease and the GEMM com- (4) Token rounding per expert for e € [E] in parallel do
putation shifts towards memory-bound regime. Te,Se = sort(S") token ordering and
rted scores

’ ’ s 3 N r V.
Tile quantization effect: Moreover, GEMM on Terfe m“"?d and.sparsify(re, se, fe, fo', fe')
modern GPUs are often computed in tiles (NVIDIA] [STe Gather( Sre )'

2022) and we always need to pad to the next tile-
sized multiples if any dimensions of M,N,K are not fully divisible by tile sizes. Once the size of input
(e.g. token dimension per expert) is small, the wasted TFLOPs by padding be nontrivial (Fig.[3).

)]
|

For the case of MoE with token-choice routing, we often have variable Wasted FLOPs (%)
number of tokens per expert and during the forward and activation 90
gradient backward, we waste = —— Tol:ﬂ r(}mfl.ding /
|— -| ‘*v 154 Token choice top-K
stileps — T &
e E-(6dn) @ 2
T, -

FLOPs per forward pass by padding. As such, we propose to use token
rounding to avoid launching such extra tiles leading to more efficient

training. Wse also s'how that our token rqundlng me.thod does not affect S P
model quality while achieving much higher training throughput. Number of experts

o
!

5.2 TOKEN ROUNDING: LEVERAGE THE WASTED COMPUTE Figure 3: Wasted FLOPs by
padding during forward & back-
As such, we propose to use token rounding method as a 2-step sorting ~ ward by MoE model with 7' = 32k,
algorithm as shown in Algorithm[d} The token rounding algorithm @ =4k, K =4, which is the same
will first gather the vanilla token-choice (TC) routing results and apply s the bottom right row of Figuref/}
an expert-choice (EC) sorting step to choose to either discard some
TC tokens or pad some additional EC tokens. Between these 2 steps, we process the routing weight
matrix such that the TC tokens are always preferred before EC tokens so the discarding TC tokens or
padding new EC tokens only affect the last tile.

>The selection between cooperative and pingpong is largely determined by the selection of a larger tile size
or more epilogue overlap. Fine-grained MoE needs both: the dW, dW5 kernels often have long mainloop and
cooperative nearly always win, while Y2, dZ kernels have heavy epilogue and Ping-Pong is usually favorable.
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Figure 4: Peak activation memory usage () per layer across different model scales (1.4B—120B). Our method
consistently reduces memory consumption compared to ScatterMoE, MegaBlocks, and MoMoE. MegaBlocks
does not support small n.
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Figure 5: Forward & backward TFLOPs (TFLOP/second 1) for different MoE kernels. H100’s theoretical limit is
989 TFLOPS of BF16 GEMM (NVIDIA][2022). Same MoE config as in Figure[d}

This simple algorithm guarantees that for each expert, the maximum deviation from token-choice
routing is at most 1 tile. We find that this property has a surprisingly robust performance even under
sparse MoE training regime and can serve as an in-place substitute for token-choice under sparse MoE
training settings. We validate the performance of this token rounding strategy in a highly sparse training
setting at 1.4B parameter scale. We also show that token rounding’s compute throughput over vanilla
token-choice top-K is consistently larger once we enter highly sparse MoE training regime and can
make 18% TFLOPs difference on kernel runtime.

Note that token rounding algorithm needs to take a round_and_sparsify subroutine to do discard or
pad decision. We choose the simplest as round to nearest on token count (as “nearest rounding”). We
further conduct an ablation in Table[7)and find that our token rounding algorithm is quite robust w.r.t.
the underlying round subroutine call.

6 EXPERIMENTS

We evaluate SNaX’s speed and activation memory requirements compared to other baseline MoE
implementations. We also demonstrate the efficacy of token rounding routing strategy and show that its
possible to use token choice as a drop-in replacement after training with token rounding routing.

6.1 SNAX’S ACTIVATION MEMORY

We demonstrate that the peak activation memory for SNaX has the lowest activation memory footprint
for a single MoE layer as in Figure[dacross all scales. For the 7B model with n= 256, our approach
reduces memory usage by 45% compared to ScatterMoE, and more significantly compared to MoMoE.
For 30B and 120B models, the gap becomes even wider: for example, at 120B scale, our method saves
more than 5GB memory per layer compared to MoMoE. We also investigate the effect of expert
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granularity on activation memory in Figure[T|and we find that SNaX’s activation memory, as expected,
stays constant with independent of expert granularity.

6.2 SNAX’S TRAINING THROUGHPUT

Figure 3 reports the compute throughput of forward and backward pass. Across all model scales,
our method consistently achieves the highest TFLOPs. In small-scale settings (1.4B and 7B), our
approach already shows a clear advantage, improving TFLOPs by 40% compared to ScatterMoE and
MoMoE, while also outperforming MegaBlocks. The advantage becomes more pronounced in larger
models: for 30B and 120B MoE, SNaX sustains above 500 TFLOPs in forward and backward passes,
whereas other baselines either fail to support certain n sizes (MegaBlocks) or suffer from significant
performance degradation (MoMoE). We measure the training throughput of a 7B MoE model:
SNaX on 64 H100s gets roughly the same total throughput as ScatterMoE on 96 H100s.

Forward Pass Breakdown Backward Pass Breakdown
= 3.968 ms
- oj (Y1) oj (d2) o

| —-— LU 2.982 ms n proj (dWz) -
3 mm h proj (Ya)
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Figure 6: Profile breakdown of forward & backward pass of different MoE kernels
6.3 TOKEN ROUNDING’S TASK EVALUATION WITH SPARSE MOE

We also want to assess the quality of trained model by our token rounding (“TR”) algorithm. This
naturally leads to comparison with vanilla top- K token choice (“TC”) routing. We use token rounding
for training and during evaluation we switch to top- K token choice. This assesses the capability of
in-place replacement of token rounding with token choice routing after traininéﬂ

We conduct our experiments on 0.5B and 1.4B MoE model scale by varying sparsity in Table[T} We use
the OLMOE codebase for running these experiments and construct MoE models with OLMOoE base
architecture and use OLMo tokenizer (Muennighoff et al.| 2025} |Groeneveld et al.,[2024). We use a
deduplicated version of FineWeb-Edu (Ben Allal et al., 2024)|'|for pretraining corpus. More details of
our experiments are described in Appendix[E]

Across various sparse MoE configurations in Table[I} we observe comparable quality during inference.
In fact, we observe empirically that TR achieves slightly lower validation perplexity and higher average
accuracy under the extreme sparse MoE (sparsity < 1/32) settings for the subtable (c) and (e) in Table[T]

We also benchmark the token rounding’s MoE kernel runtime (without router) against top- K token
choice routing. We focus on the settings of iso-FLOPs so we fix (7', n, K). We linearly increase
the number of experts E to increase sparsity. The results are presented in Figure[7] As we linearly
increase the number of experts (consequently sparsity), we observe a drop in TFLOPs for token-choice
routing. This is due to the tile quantization effect as the wasted FLOPs spent on padding roughly
linearly increases with the MoE sparsity as shown in Figure 3]

For the top right row with 128 experts in Figure[7, we have a MoE model with 1/64 MoE sparsity and
intermediate size as 1k, token rounding will materialize 18.2% TFLOPs difference on forward and
4.1% on backward, and end-to-end of 8.5% difference. For the bottom right row with 512 experts
in Figure[7|with 1/128 MoE sparsity, token rounding will materialize 28.6% TFLOPs difference on
forward and 12.9% on backward, and end-to-end of 17.9% difference. In general, we observe that the
larger intermediate size (as more compute-bound) and the higher MoE sparsity, the gap between
token rounding and vanilla token choice will become larger.

Token rounding is not a token-choice routing method which creates difficulty for autoregressive inference.
Here we do not apply any adaptation and switch to vanilla token choice during inference.
"nttps://huggingface.co/datasets/HuggingFaceTB/smollm—corpus
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Table 1: Comparison of token rounding vs token choice under various sparse MoE training regime.
“PPL” refers to the validation perplexity (lower is better) at the end of training. “Avg” is the mean
accuracy (higher is better) across the 11 downstream tasks.

(a) 0.5B params, 20B tokens, 8/64 sparsity (avg # tokens/expert per microbatch = 4096)

Method | PPL | Wino SIQA SciQ PIQA OBQA HS COPA CSQA BoolQ ArcE ArcC| Avg

TC 16.12 51.0 422 80.4 66.0 31.2 379 63.0 31.9 59.7 59.3 29.8 50.2

TR 15.94 51.9 413 80.8 65.5 35.0 38.7 63.0 31.2 614 58.9 27.1 504
(b) 0.5B params, 40B tokens, 2/64 sparsity (avg # tokens/expert per microbatch = 512)

TC 16.57 49.7 40.7 71.3 64.0 33.8 36.5 67.0 31.9 61.3 533 27.8 49.4
TR 15.92 514 41.6 78.4 65.4 31.6 38.1 65.0 31.0 61.1 57.4 29.1 50.0
(c) 1.8B params, 40B tokens, 8/256 sparsity (avg # tokens/expert per microbatch = 512)

TC 13.40 50.3 412 82.3 70.3 354 444 69.0 324 59.7 61.9 31.1 52.5
TR 13.10 534 42.1 81.7 69.6 35.2 453 70.0 332 61.4 63.0 334 53.5
(d) 1.4B params, 50B tokens, 8/128 sparsity (avg # tokens/expert per microbatch = 2048)

TC 13.35 52.9 42.1 83.5 69.0 34.0 45.1 69.0 342 57.6 62.5 30.1 52.7
TR 13.28 52.6 42.6 81.5 69.6 33.6 454 67.0 34.8 57.3 63.7 28.1 524
(e) 1.4B params, 100B tokens, 2/128 sparsity (avg# tokens/expert per microbatch = 512)

TC 13.61 49.8 42.0 824 67.7 342 424 68.0 32.8 58.7 59.6 28.8 51.5
TR 13.22 52.8 41.8 80.8 68.7 33.0 434 67.0 33.6 60.2 60.7 29.8 52.0
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Figure 7: Forward & backward TFLOPs (1) for different MoE kernels. We use the 7B (first row, left
with n =256 and right with n = 1k) and 30B MoE (second row, left with n =512 and right with n=1k)
configuration and keep K constant while varying E.

7 CONCLUSION

We presented SNaX, a co-design solution that jointly optimizes MoE architecture and GPU kernels
to address the training challenges of granular and sparse MoEs. Our contributions include: (1) a
memory-efficient algorithm that minimizes activation size even as MoEs become more fine-grained,
(2) GPU kernels that overlap IO with computation for throughput improvement, and (3) tile-aware
token rounding that yields additional speedup without quality loss. Future directions include extending
to low-precision and microscaling formats (FP8, MXFP8, MXFP4) for further memory savings, and
overlapping communication with computation in distributed settings like expert parallelism. We
envision future model architecture designs that optimize for quality per compute hour rather than just
quality per FLOP—jointly considering algorithmic and hardware efficiency.
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A APPENDIX

A NOTATIONS

We present the notations used in this work as follows.

Table 2: Notations used in this paper

Term/Symbol Explanation

T number of tokens

d hidden size

n expert intermediate size

d number of model parameters

E number of experts

K number of activated experts

Wi REX4%2n yeight of up projection
Wo REXnxd weight of down projection
T T x E, abinary valued matrix where m; . represents if token ¢ is routed to expert e
S T x K, router scores

Z T K x 2n, output of up projection

Y, T K xn, output of SWiGLU

Yo T K x d, output of down projection

B BENCHMARK CONFIGURATIONS

We present a detailed configuration for the benchmark in Fig[4]in Tab[3] and configuration for the
benchmark in Fig[7]in Tabf]

Table 3: Benchmark configurations for different model sizes.

Table 4: Benchmark configurations for token rounding.

Model Size T d n E K

40960 768 64 512 32
1.4B 40960 768 256 128 8
40960 768 1024 32 2

24576 1536 64 512 32
7B 24576 1536 256 128 8
24576 1536 1024 32 2

32768 4096 256 256 16
30B 32768 4096 512 128 8
32768 4096 1024 64 4

32768 4096 512 256 16
120B 32768 4096 1024 128 8
32768 4096 2048 64 4

Model Size d E K minibatchsize Ir weightdecay lr scheduler % of warmup steps
768 64 8 0.5M 6e-4 0.01 cosine w/. warmup 10
0.5B 768 64 2 M 6e-4 0.01 cosine w/. warmup 10
768 256 8 M 6e-4 0.01 cosine w/. warmup 10
1.5B 768 128 8 M 4e-4 0.01 cosine w/. warmup 10
’ 768 128 2 2M 4e-4 0.01 cosine w/. warmup 10
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Persistent tile scheduler
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Figure 8: Ping-Pong warpgroup scheduling in Hopper GPU. The green arrows in the figure mean a
consumer warpgroup signals the start of epilogue and the other consumer warpgroup can proceed with
MMA. Once this step is complete, the roles will be switched. We mainly use Ping-Pong for Y> & dZ
kernel as they both have heavy epilogue.

C MORE KERNEL DETAILS

Algorithm [3] presents the computation of SwiGLU and its derivative in the backward pass, while
Algorithm[6|describes the backward pass of the up-projection.

Algorithm 5 SwiGLU and its Derivative

Input :z={[a,b] €R**" , with a,b,0¢/y, € R**("/2)
Output :da,db,y;

y1 < a® (boOo(b)).

g=0l/dy1, da+g®(boo(b)),

db+—g®a® (a(b)er@a(b) (lfa(b))).

Algorithm 6 SNaX’s MoE kernel backward pass of up projection with SwiGLU architecture.
Input : X, 7, Wi,dZ
Output :d X, dW7.
Up-proj act dX kernel (dZ.,W1) —dX:
/I Grouped GEMM
Parallel for e € [E] do
| dXedZW,
Up-proj weight dW7 kernel (X,dZ,7) — dW7:
/I Gather + Grouped GEMM
Parallel for e € [E] do
Xe < Gather(X,m. )
L dWh,e+ X[ dZ.
Expert aggregation d.X kernel (dX ,7) — dX:
// reduce over each expert results
Parallel for t € [T] do
L dXtHZeE[E]Wt7EdX~'C7t

We further describe the Ping-Pong scheduling and index prefetching strategies incorporated in our
group GEMM kernel, as illustrated in Fig.[8|and Fig.[9] respectively.

D MORE ABLATIONS

We conduct ablation studies to assess the effectiveness of MoE granularity and token rounding. In
particular, we examine the impact of granularity and find that increasing it consistently improves
accuracy, as shown in Tab. [6] which is also consistent with the MoE Scaling Trends mentioned in
Tab[5] We further compare token rounding with subroutine as nearest rounding (“NR”) with per-expert
token count with other rounding methods. Specifically, we compare against stochastic rounding with
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Varlen K

Index Index Value Value Index
(HBM)  (RMEM) Ktile 0 Ktile 1 (HBM) LLL
wgiiil
Index AAAAS
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1 idx0 Index
varten M [ 12x0 3] (RMEM) ‘
\ J Value M T
K K
Ktile 0 Ktile 1
Grouped GEMM Mainloop Grouped GEMM Mainloop
—> >

Figure 9: Index fetching strategies for gathering M (left, used by Y; and dZ kernels) and gathering K
(right, used by dW; and dW> kernels)

Table 5: MoE Scaling Trends: granular & sparser. Activation ratio is shown as experts activated per
token / total experts. Expert granularity is shown as model embedding dimension / expert intermediate
size. Here we do not include the shared experts to the MoE sparsity calculation.

Model Release date Parameters MokE sparsity MoE granularity
Mixtral 8x22B (Mistrall|2024) 11/23 131B 25% (2/8) 6144/16384=0.375
DBRX (The Mosaic Research Team)|2024) 03/24 132B 25% (4/16) 6144/10752=0.57
Phi-3.5-MoE (Microsoft,[2024) 09/24 42B 12.5% (2/16) 4096 /6400 =0.64
OLMOoE (Muennighoff et al.||2024) 09/24 7B 12.5% (8/64) 2048/1024 =2
Granite 3.1-MoE (Granitel|2024) 12/24 3B 20% (8/40) 1536/512=3.00
DeepSeek-V3 (DeepSeck-Al et al.|[2024) 12/24 671B 3.125% (8/256)  7168/2048=3.5
Qwen3 MoE (QwenLM|[2025) 04/25 235B 6.25% (8/128)  2048/1536=1.33
QWen3-30B-A3B (Qwen|[2025) 05/25 30.5B 6.25% (8/128) 2048/768 =2.67
Kimi K2 (Kimi et al.[[2025) 07/25 1.04T 2.08% (8/384) 7168/2048 =3.5
GPT-OSS-120B (OpenAlL2025) 08/25 120B 3.125% (4/128) 2880/2880=1
GLM-4.5-Air (Zeng et al.[[2025) 08/25 106B 6.25% (8/128)  4096/1408~2.91

per-expert token count (“SR”), always round up (“UP”). The results are shown in Table[7|and we find
that our token rounding algorithm in general is robust to the specific rounding subroutines.

Table 6: Evaluation of MoE w.r.t. granularity under iso-FLOPs regime. “Train” and “Val” refers to the
evaluated perplexity ({) on training and validation set at the end of training. “Avg” is the mean accuracy
(1) across the 11 downstream tasks.

(E,K,n) | Train  Val | Wino SIQA SciQ PIQA OBQA HS COPA CSQA BoolQ ArcE ArcC| Avg
16,2, 1024 1631 1642 516 410 780 655 334 372 630 305 618 563 28.1 | 49.7
64,8,256 1605 1603 51.1 416 789 666 318 386 640 325 597 595 321 | 50.6
256,32, 64 1604 1612 51.0 422 804 660 312 379 630 319 597 593 298 | 50.2

Dense, iso-FLOPs | 19.71 19.90| 489 414 749 622 302 326 620 31.6 61.7 532 271 | 478
Dense, iso-param | 1538 1546 | 52.1 415 789 653 340 392  69.0 322 58.5 59.3 28.8 | 50.8

Table 7: Token rounding ablation: comparison of different rounding methods

Method | Train  Val | Wino SIQA SciQ PIQA OBQA HS COPA CSQA BoolQ ArcE ArcC| Avg

TC 1685 1657 | 49.7 40.7 71.3 64.0 33.8 36.5 67.0 31.9 61.3 533 278 | 494
NR 1622 1592| 514 41.6 78.4 65.4 31.6 38.1 65.0 31.0 61.1 57.4 29.1 50.0
SR 16.05 1593 | 50.8 40.9 77.4 66.9 33.0 38.4 64.0 31.1 60.7 55.8 28.1 | 49.7
UP 16.07 1589 | 50.5 40.9 78.6 64.5 322 38.2 68.0 29.9 55.2 54.2 30.1 | 493

E HYPERPARAMETER DETAILS FOR PRETRAINING

We use the OLMOE codebase (Muennighoff et al.| [2025) and its downstream tasks in the official
configuration: WinoGrande (“wino”)(Sakaguchi et all 2020), Social IQA (“SIQA”) (Sap et al.|
2019)), SciQ(Johannes Welbl, 2017), PIQA(Bisk et al.,2020), OpenBookQA (“OBQA”)(Mihaylov
et al., [2018), HellaSwag (Zellers et al., 2019), COPA(Roemmele et al.| [2011), CommonsenseQA
(“CSQA”)(Talmor et al.| 2019), BoolQ(Clark et al.,[2019), Arc-Easy and Arc-Challenge (‘ArcE” and
“ArcC”)(Clark et al.,2018)) datasets. We use deduplicated version of FineWebEdu for pretraining corpus
and all of model use sequence length 4k. More details of our experiments (e.g. hyperparameters) are
described in Appendix[E] and all of models use sequence length 4k.
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F DERIVING THE GRADIENT dZ

For an expert e, let
X R Wy eRP" Wy eR™

Forward definitions:
Ze=X W) eRTX2n v, =SwiGLU(Z.) eRT=*", Y, .=V Wy, cRTex,

Token aggregation with scores S={s; .} is

oL
Oy= Yo et, dOy=——.
t zg:st, 2,e,t t 90,
(A) Gradients through aggregation. By linearity,
oL
———=384d0y = dY3.=Broadcast(s.)dO.. 3)
8Y2,e,t ’ ’

Define the grouped-GEMM output
Y3 1=dO. W, , e RT-*™,

then from equation|3]
dYy .= dY2,eW21 =Broadcast(s.)Ys..

The score gradient is

dSte=(dO0y, Yo e 1) =(dOW, o, Y1 et ) =(Yaet, Yient) |

(B) Gradient through SwiGLU. Since Y7 . =SwiGLU(Z.) (elementwise),

‘dZe:dSwiGLU(dYLe,Ze) .

(If Z = [A, B] with SwiGLU(Z) = SiLU(A) ® B, then dA = (dY; ® B) ® SiLU’(A) and dB =
dY; ®SiLU(A), which the epilogue dSwiGLU computes.)

(C) Down-projection weight gradient. Using equation[3]
dWa,e =Y, dYs . =Y, (Broadcast(s.)dO, ) = (Broadcast(se)Y1,c) Tdo..

Yie

Hence it is sufficient to cache

’H&::Broadcast(se)YLe and then de,e:YJGdOe .

Conclusion. The three quantities produced in the algorithm block,

| dSte=(VaeYies) | |dZe=dSwiGLU(dYy..Z.)

. ‘ Y, . =Broadcast(s.)Y7 e

)

are exactly the analytical gradients and the sufficient cached tensor required to compute dWW5 . via a
grouped GEMM, thus matching the paper.

G USE OF LARGE LANGUAGE MODELS

In accordance with ICLR 2026’s policies on Large Language Model (LLM) usage, we disclose that
LLMs were employed in the preparation of this submission. Specifically, LLMs assisted in refining the
language and generating initial versions of plotting code. Subsequent to their generation, all outputs
were thoroughly reviewed and validated by human authors to ensure accuracy and compliance with
ethical standards. This approach aligns with ICLR’s Code of Ethics, which mandates transparency and
accountability in research practices.
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