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Abstract

Test-time compute has empowered multimodal large language models to generate
extended reasoning chains, yielding strong performance on tasks such as multi-
modal math reasoning. However, we observe that this improved reasoning ability
often comes with increased hallucination: as generations become longer, models
tend to drift away from image-grounded content and rely more on language priors.
Attention analysis reveals that longer reasoning chains reduce focus on visual
inputs, contributing to hallucination. To systematically study this phenomenon, we
introduce RH-AUC, a metric that quantifies how a model’s perception accuracy
changes with reasoning length, enabling evaluation of whether the model preserves
visual grounding while reasoning. We also release RH-Bench, a diagnostic bench-
mark covering diverse multimodal tasks, designed to jointly assess the balance of
reasoning ability and hallucination. We find that (i) larger models generally exhibit
a better balance between reasoning and perception; (ii) reasoning and perception
balance depends more on the types and domains of the training data than its volume.
Our findings highlight the need for evaluation frameworks that account for both
reasoning quality and perceptual reliability.

1 Introduction

Large reasoning models scale test-time computation to improve complex reasoning. These models [0}
7,132, 2] generate longer outputs and engage in deeper reasoning before producing final answers,
resulting in more comprehensive solutions for complex mathematical and scientific problems. This
paradigm has been extended to multimodal large language models: non-reasoning base models are
supervised finetuned (SFT), or finetuned with reinforcement learning (RL) to obtain strong reasoning
ability [36} 156111049, |54, 21]], demonstrating exceptional capabilities in multimodal reasoning tasks,
particularly in domains like mathematical problem solving.

Most existing studies on multimodal reasoning models focus on enhancing reasoning performance,
with limited attention paid to perception-focused tasks. As illustrated in Figure [Th, although the
reasoning model generates an extended reasoning chain in visual question answering, its answer is
largely driven by language priors rather than visual evidence, leading to hallucination. Our empirical
study reveals a consistent and significant finding: although reasoning models can generate more
detailed reasoning chains, they introduce more hallucinations in perception-focused tasks than the
non-reasoning counterparts, as shown in Figure[Tp.

Through attention analysis, we investigate the decrease of attention on visual tokens in multimodal
reasoning models, which exacerbates visual hallucinations. The reasoning model allocates signif-
icantly less attention to visual tokens compared to its non-reasoning counterpart, while directing
more attention to the instruction tokens. This bias increases reliance on language priors and amplifies

"https://mlrm-halu.github.io/, Work was partially done while ZX was visiting Stanford.

39th Conference on Neural Information Processing Systems (NeurIPS 2025).


mailto:chengzhi@ucsb.edu
mailto:zhongxingxu1@gmail.com
mailto:shengl@stanford.edu
https://mlrm-halu.github.io/

66.0

@P tion Task l\?w::z‘sjsv" (B":‘st:) sports ball in th &80 Q‘.WHZJ_VLJB Owen2.5-VL-7B
'erception 1asl lo, there is no visible spor- all in the , 64.0 A . . . ,
P image. The image shows a baseball game (Base) > (Base)  ThinkLite-VL-7B
with a batter, catcher, and umpire, but Ocean-R1-7B
Is there a sports  the baseball itself is not visible. %
ball in the image? ﬁz‘“}'

v
*
o

62.0
MM-Eureka-7B

o
>
o

. R1-OneVison (Reasoning) Ocean-R1-3B
<think> Let me start by analyzing the
image itself. Although no specific
mention of a sports ball is made, the
context strongly implies its presence,
as baseball games inherently involve a

60.0 MM-R1-7B

w
[
o

Curr-ReFT-3B
[ ]

oV o
58.0 OpenVLThinker-7B

Perception Accuracy (%
g .
o

ball. </think> <Answer> Yes, there is a 56.0 R1-OneVision-7B
sports ball in the image...</Answer> »
@ 48.0 LLM-R1-3B
54.0
40.0 42.0 44.0 46.0 440 460 480 500 52.0 540 560 58
@) Reasoning Accuracy (%) ®) Reasoning Accuracy (%)

Figure 1: (a) Example of outputs from a reasoning model and a non-reasoning model on a perception
task. Red highlights indicate visual hallucination. Multimodal reasoning models are generally more
prone to amplifying hallucinations during the reasoning process compared to their non-reasoning
counterparts. (b) Performance of different models on reasoning and perception tasks in the RH-Bench
dataset. Better performing models are positioned in the upper right corner. Baseline non-reasoning
models of varying scales typically exhibit weaker reasoning capabilities and fewer hallucination,
whereas reasoning models display the opposite trend.

hallucination risk. Moreover, the extension of the reasoning chain further weakens the visual atten-
tion allocation, leading to an increase in hallucinations, as the model becomes more dependent on
language-based reasoning rather than visual evidence.

Based on these findings, we further investigate the impact of reasoning chain length on model
reasoning and hallucination. The results indicate that the influence of reasoning chain length on
reasoning-hallucination exhibits a non-monotonic relationship. Additionally, the optimal reasoning
range differs across tasks, while traditional evaluation metrics, such as accuracy and hallucination
rate, are inadequate for capturing the dynamic balance between reasoning and visual grounding.

To address this, we introduce RH-AUC, a new metric designed to assess the balance between
reasoning and hallucination in multimodal reasoning models. This metric is computed by calculating
the area under the curve formed by reasoning performance and hallucination performance at different
reasoning lengths, with higher values indicating better balance. Alongside this metric, we release
RH-Bench, a diagnostic benchmark containing 1,000 samples across various reasoning and perception
tasks, with each task featuring both multiple-choice questions and open-ended questions. Through
the evaluation of RH-Bench, we observe three key findings: (i) Larger models typically demonstrate
better reasoning and hallucination balance. (ii) RL-only training models promote more adaptive
reasoning, resulting in a better balance between reasoning and hallucination compared to SFT+RL.
(iii) Reasoning-Hallucination balance is more influenced by the types and domains of the training
data than by its volume. To sum up, our contributions are listed as follows:

*  We observe that multimodal reasoning models are more prone to hallucinations than their non-
reasoning counterparts in perception tasks, which can be attributed to a decline in visual attention
allocation. Longer reasoning chains further diminish visual attention.

*  We reveal that the relationship between reasoning chain length and the model’s reasoning and
perception performance is non-monotonic, with the optimal length varying across tasks.

*  We introduce the new RH-AUC metric and the RH-Bench diagnostic dataset to systematically
evaluate the balance between reasoning and hallucination across varying reasoning lengths in
multimodal reasoning models.

2 Multimodal Reasoning Can Amplify Visual Hallucination

In this section, we begin by investigating whether multimodal reasoning models introduce more hallu-
cination in perception-focused tasks. Specifically, we compare 8 recent multimodal reasoning models
against their backbone non-reasoning-based counterparts across multiple hallucination benchmarks,
including MMVP [42], MMEval-Pro [13]], VMCBench [61],Bingo [S],MMHAL [39].

2.1 Hallucination Increases Consistently Compared to Base Models

To systematically assess the impact of multimodal reasoning on visual grounding, we evaluated
eight reasoning-augmented models against their non-reasoning Qwen2.5-VL backbones on five




hallucination datasets. As shown in Figure[2] all reasoning models trace markedly smaller radar areas
than their baselines, indicating uniformly higher hallucination rates on perception-focused tasks. This
deficit remains consistent at both the 3 B and 7 B scales, demonstrating that the elevated hallucination
rate stems from the reasoning paradigm itself rather than model size.
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Figure 2: Comparison of reasoning and non-reasoning models on five perception benchmarks. Results
are shown for 3B models (left) and 7B models (right). Higher scores indicate lower hallucination.

2.2 Does Training Paradigm Matter? Comparison Between RL and SFT+RL

Current multimodal reasoning models typically adopt one of two training regimes: (1) pure re-
inforcement learning (RL-only) or (2) supervised fine-tuning followed by reinforcement learning
(SFT+RL). Figure [3|shows a consistent performance hierarchy across four perception benchmarks:
The Qwen2.5-VL baseline achieves the highest scores, followed by RL-only fine-tuning, with the
SFT+RL pipeline performing the worst. This pattern highlights the robustness of baseline model in
visual grounding and indicates that subsequent RL or hybrid fine-tuning weakens this robustness,
with the supervised-preceded RL strategy leading to the most significant performance degradation.
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Figure 3: Performance across four perception benchmarks comparing Base, RL, and SFT+RL.

2.3 Case Study of Hallucinations in Reasoning Models

Figure [4] presents two representative hallucination patterns observed in multimodal reasoning models,
arising from visual misrecognition and reasoning bias, respectively. In Figure[dh, the reasoning model
fails to identify fine-grained visual cues and miscounts four individuals as three, reflecting a localized
deficiency in visual perception. In Figure[dp, the reasoning model increasingly relies on linguistic
priors during the reasoning process while overlooking early visual evidence, ultimately generating an
incorrect response. In contrast, the baseline model exhibits a lower hallucination rate under identical
inputs. These observations raise a crucial question: why do multimodal reasoning models, despite
their strong reasoning performance, exhibit weakened visual grounding? In the next section, we
provides an in-depth analysis based on the internal attention mechanisms of the reasoning models.



g Base: Yes, the image shows four people: an

0 adult and three children, all wearing wetsuits
LT Are there four people and holding surfboards, standing in the ocean
appear in this image? waves.
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[...]There's no indication of any additional
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Figure 4: Two common types of hallucination patterns observed in multimodal reasoning models.
(a) corresponds to hallucinations caused by visual misrecognition, while (b) reflects hallucinations
arising from reasoning biases. Hallucinated spans are highlighted in red.
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Takeaway 1: Reasoning Models Amplify Visual Hallucinations

Across training paradigms and model scales, multi-modal reasoning models exhibit a
consistent drop in accuracy and rise in hallucination rates on general visual benchmarks.

3 Why Reasoning Models Amplify Hallucinations?

Many previous studies have investigated the role of attention mechanisms in hallucination, identifying
insufficient attention allocation as a potential key factor contributing to hallucinations[14} 16} 53]. In
this section, we conduct an attention based analysis to explore the underlying causes of hallucination
amplification in multimodal reasoning models. Section [3.1]indicates that hallucinations may result
from limited attention allocated to visual inputs, while Section[3.2]shows that longer reasoning chains
further weaken the model’s visual focus.

3.1 Hallucination Resulting from Weak Visual Attention

We conduct a comparative analysis of the attention distributions over visual, instruction, and system
tokens across all layers in the reasoning and non-reasoning models. As shown in Figure [Sh, the
reasoning model consistently assigns low attention to visual tokens, with a further decrease observed
in deeper layers, indicating a limited ability to integrate visual evidence. Meanwhile, more attention
is shifted to instruction tokens, reflecting a heightened reliance on linguistic priors. In contrast,
the non-reasoning maintains a relatively high and stable level of visual attention from shallow to
intermediate layers. The visual attention heatmap in Figure [5p further supports this observation:
while the non-reasoning model progressively focuses on semantically salient regions, the reasoning
model exhibits sparse and dispersed attention, failing to consistently engage with key visual areas.
This phenomenon indicates that the weakening of visual attention undermines the reasoning model’s
ability to achieve effective visual grounding, exacerbating the occurrence of hallucinations.

?
[ Visual Tokens Instruction Tokens System Tokcns] gr_s there cheese on the pasta?
Qwen2.5-VL-7B (Non-Reasoning) R1-OneVision (Reasoning) Layer 5 Layerl0 Layerl5

1.0 1.0 ]

iy

-

0.8 0.8 >

_ 4

206 0.6 %

E &
=04 0.4

]

02 02 2

£

0.0 0.0 Q

0 3 6 9 12 15 18 21 24 27 T0 3 6 9 12 15 18 21 24 27 =

Layer Layer =

(@ (b)

Figure 5: Attention allocation and visual grounding between reasoning and non reasoning models.
The reduction of visual attention in reasoning models amplifies visual hallucinations.



3.2 Visual Focus Declines with Longer Reasoning Chains

As shown in Figure [ we visualize the attention distributions of the reasoning model under two
reasoning modes: normal thinking and overthinking. As the reasoning chain length increases, the
heatmaps clearly reveal a systematic shift in the model’s attention focus: under the overthinking mode,
attention to visual tokens significantly decreases, while attention to instruction tokens intensifies.
This pattern indicates that longer reasoning chains cause the model to increasingly rely on linguistic
cues rather than grounded visual evidence. For instance, when asked whether a gray wall is present,
the model under normal thinking correctly identifies the gray well and provides a correct response. In
contrast, under over-reasoning conditions, the model exhibits further diminished attention to visual
tokens, with increased focus directed toward the end of the user instruction. This suggests that
longer reasoning chains tend to further exacerbate the degradation of the model’s visual grounding,
potentially leading to an increase in hallucinations.
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Figure 6: Attention shift in the reasoning model under different reasoning length. In normal thinking,
the model generates outputs as typically expected, while in overthinking, the reasoning length is
adjusted using Latent State Steering (Section[d.1). Longer reasoning chains further exacerbate the
degradation of attention to visual information and focus toward linguistic priors.

4 Effects of Reasoning Length on Reasoning-Hallucination Balance

In this section, we explore the impact of reasoning length on the balance between hallucination and
reasoning. Section[d.I] provides an overview of the proposed control strategy: latent state steering as
well as techniques that are previously used in the literature[31]: budget forcing, and test time scaling.
In Section.2] we explore the optimal generation length for various benchmarks and analyze the
trade-off between hallucination and reasoning performance as reasoning length varies.

4.1 Overview of Reasoning Length Control Straregies

To systematically control the reasoning length in reasoning models, we adopt three strategies:

(1) Token Budget Forcing: A hard constraint on reasoning length is enforced by predefining a
generation budget at decoding time, directly limiting the number of tokens allocated for the reasoning.

(2) Test Time Scaling: Reasoning is incrementally extended during inference through staged gener-
ation. The model first produces partial reasoning under a 4096-token constraint and halts midway.
It is then prompted to continue by appending a simple token ("Wait"), enabling soft extension of
reasoning while preserving contextual coherence.

(3) Latent State Steering: Inspired by recent works on latent space steering for behavior control in
large language models [23} 22, 1| 29], we propose a method to steer the model toward generating
reasoning traces of varying lengths. Specifically, we extract steering directions from the post-attention
hidden states by computing the difference of latent states between long and short reasoning trajectories.
These direction vectors are obtained and applied across all layers of the text decoder, with a scaling
factor controlling both the magnitude of guidance on the reasoning length. Specifically, we collect
responses from the test benchmark and categorize them into long reasoning traces Riong and short
reasoning traces Rgnorr based on token length. The query and reasoning steps for each sample are
input into the model, from which hidden representations S* are extracted at each layer. S%(q,t)
denotes the hidden representation at layer ¢ for token position ¢ in the response to query q. We



compute the average hidden representation over reasoning tokens, where H,; represents the set of
token positions within the reasoning span. The average representation is then calculated across the
long and short reasoning traces to obtain layerwise embeddingS'

Siong = |R]mg| Z ZSZ (6:1), Shon = mhm‘ 2 ZSK (¢:1) (D)
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The reasoning length direction at layer ¢ is defined as the difference between the long and short
embeddings, denoted as d’, which captures the variation in the model’s representation resulting
from different reasoning chain lengths. To adjust the hidden representation based on this direction,
We introduce a parameter « € [—0.15,0.15] to dynamically control the reasoning length and its
magnitude. As « increases, the length of the reasoning chain extends, as shown below:

4 £ £ ¢ ¢
d” = Slong Sshorl? Ssteermg =S + ad”. (2)
These strategies are applied to five representative multimodal reasoning models and evaluated on

six benchmark datasets, covering both reasoning and perception tasks. In Figure[7, we present two
benchmarks for both tasks. All implementation details and results are provided in Appendix C.
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Figure 7: Reasoning-Hallucination balance of multimodal reasoning models under varying reasoning
lengths. Thinking lengths are controlled within [0-600] tokens for reasoning and [0-300] for
hallucination, corresponding to the longer chains required for reasoning and shorter for hallucination.

4.2 Dynamic Balance Between Reasoning and Hallucination

Non-monotonic Effect of Reasoning Length on Reasoning and Perception Performance. The
relationship between reasoning length and model performance typically exhibits a non-monotonic
pattern under reasoning and perception tasks. Across various length control strategies, a consistent
trend emerges: moderate reasoning depth tends to yield optimal performance, whereas overly short
or excessively long reasoning chains often lead to a decline in accuracy. As shown in Figure[7} we
employ the Latent State Steering method adjusts the thinking step for reasoning and perception tasks.
It is evident that as the thinking length increases, the model’s performance across tasks generally
follows a rising-then-falling trajectory. This indicates that enhanced reasoning does not linearly
improve model performance, but instead follows a dynamic trade-off pattern.

Task-Specific Variability of Optimal Reasoning Intervals. While most tasks exhibit non-monotonic
relationships between reasoning length and performance, we further observe that the optimal rea-
soning length varies significantly across tasks. Figure[7]reveals that reasoning benchmarks such as
MathVista [27] tend to benefit from longer reasoning chains, whereas perception and hallucination-
oriented tasks such as MMHalu achieve their best performance at shorter or moderate lengths. This
indicates that the balance between reasoning depth and performance is task-specific, and unified
length control strategies are unlikely to be effective across all task types.

Impact of the Zerothink Condition. Zerothink retains the reasoning structure but lacks substantive
content. As shown in Figure [/} this setting leads to a consistent drop in model performance on
both reasoning and perception benchmarks, notably lower than results under normal reasoning
lengths. These results indicate that the absence of reasoning content diminishes the reasoning model’s
performance in both perception and reasoning.

Limitation of Conventional Metric. Conventional metrics like reasoning accuracy and hallucination
rate, when computed at a fixed generation length, fail to capture the dynamic balance between deeper



reasoning and perception. Figure [7| shows that reasoning and perception often peak at different
reasoning lengths, making it misleading to evaluate models using single-point metrics or simple
averages between reasoning and hallucination performance. For instance, a short reasoning trace may
yield a lower hallucination rate but poor reasoning depth, while a longer trace may improve reasoning
at the cost of increased hallucination, yet both scenarios could yield the same average score.

To capture this evolving balance, in the next section, we propose an AUC-style metric that summarizes
the balance curve between reasoning and perception fidelity across various reasoning lengths. This
provides a more faithful and holistic measure of performance, revealing both the model’s optimal
balance and its stability across varying generation lengths.

Reasoning length exerts a non-monotonic effect on model performance: both insufficient
and excessive reasoning degrade accuracy, and the optimal length is task-dependent.

5 Evaluation on the Reasoning-Hallucination Balance

To comprehensively quantify the balance between reasoning and hallucination in multimodal large
reasoning models at different reasoning depths, we introduce a new metric RH-AUC. This metric
captures how hallucination risk evolves with reasoning depth while also reflecting the cumulative
effects of reasoning and perception. Additionally, we present RH-Bench, a new diagnostic dataset of
1000 samples, designed for the integrated evaluation of reasoning and perception tasks, offering a
robust basis for analyzing reasoning ability and perceptual hallucinations.

5.1 Setup

Benchmark Overview. RH-Bench consists of two types of tasks: reasoning and perception, with each
task including two types of questions: multiple-choice and open-ended. The reasoning task includes
500 samples sourced from MathVision [44], MathVista [27], MMMU [55]], and ScienceQA [28],
while the visual perception task includes 500 samples from MMhalu, MM VP, HallusionBench, and
VMCBench. Both task types use accuracy as the evaluation metric. For multiple-choice questions,
evaluation is based on matching the final options. For open-ended questions, both tasks are evaluated
using GPT-40. The reasoning task determines whether the generated response is consistent with
the correct answer, whereas the visual task evaluates the generated response against the correct
answer, assigning a score within the range of 0 to 6. Responses with a score below 3 are classified as
hallucinations. All sample ground-truth and evaluation answers have undergone manual inspection.

Method Paradigms Perception Reasoning Training Data | RH-AUC
Acc.(%)1 Length | Acc.(%) T Length | Perc. Reas.
LLM-R1-3B RL 48.7 121.9 43.8 391.8 65k 40k 0.46
Curr-ReFT-3B SFT+RL 50.6 133.7 425 472.61 6k 3k 0.47
Ocean-R1-3B RL 52.8 131.2 45.6 414.5 20k 63k 0.53
"RI-OneVision-7B | SFT+RL | 557 1629 | 442 4573 | 80k 77k | 046
ThinkLite-VL-7B RL 63.3 110.4 50.4 4354 62k 8k 0.52
OpenVLThinker-7B | SFT+RL 59.2 187.7 48.9 460.1 25k 25k 0.54
MM-Eureka-7B RL 62.0 139.6 54.0 450.5 - 15k 0.55
MM-R1-7B RL 60.3 139.6 54.0 430.0 - 6k 0.57
Ocean-R1-7B RL 62.3 90.4 51.8 262.2 20k 63k 0.63

Table 1: Comparison of model performance on RH-Bench, including task-specific accuracy and RH-
AUC scores. Perc. and Reas. respectively denote training data for visual perception and reasoning.

RH-AUC We define reasoning length as 7', which controls the extent of the model’s generated
reasoning trace. For each length T', we compute R, which represents the reasoning performance at
length T', and Hr, representing performance on hallucination at the same length.

By evaluating the model at multiple lengths on the RH-bench benchmark, we obtain a series of
(R, Hr) pairs that form a balance curve between reasoning and perceptual hallucination. To compute
the area under this curve, we first sort the pairs in ascending order of reasoning performance Rr. Let



the sorted indices be denoted as 70, 7 . T(=1 ‘such that Ry < Rpa) < -+ < Rpne).
To ensure comparability across models, both Ry and Hr are min-max normalized to the range [0, 1].
The RH-AUC is then computed using the trapezoidal rule as:

n—2
Ry — Rro

RH-AUC = 5

“(Hpewn + Hpw) 3)
i=0

where n is the number of evaluated reasoning lengths. A higher RH-AUC indicates a model that

better balances reasoning and hallucination across different reasoning lengths.
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Figure 8: (a) Accuracy trends on the RH-Bench reasoning task across different reasoning lengths
for 3B and 7B models. Larger models typically exhibit more stable performance across varying
reasoning lengths. (b) Comparison of SFT+RL and RL-only training paradigms in terms of RH-AUC,
with arrow directions indicating the increase in reasoning length for SFT+RL relative to RL-only.
RL-only training tends to generate more concise reasoning chains, leading to a better perception
hallucination balance. (¢) Case study comparing RL-only and SFT+RL models. SFT+RL models
often introduce rigid imitation reasoning paths, which limit the flexibility of visual reasoning.

5.2 Result Diagnosis

We conduct an in-depth analysis of model performance based on the evaluation results from the
RH-Bench diagnostic dataset, investigating the influence of three key factors: model scale, training
paradigm, and training dataset on the reasoning-hallucination balance.

Model Scaling. As shown in Table[I] the 7B model generally outperforms the 3B model in RH-Bench,
demonstrating higher RH-AUC, primarily due to its larger parameter size and stronger representational
capacity. As illustrated in Figure B, the larger model maintains higher stability, especially under
longer reasoning chains, while the smaller models show a noticeable decline in performance. This
suggests that larger models typically exhibit better robustness and adaptability.

Training Paradigms. A comparison between the two-stage SFT+RL-trained model and the RL-only
trained model reveals that RL demonstrates a stronger balance between reasoning and perception. For
example, in Figure[8, although the OpenVLThinker model maintains a longer reasoning chain, the
introduction of redundant reasoning interferes with visual perception, leading to an incorrect inference
that the shoe is already tied. In contrast, the RL-only model, Ocean-R1, uses a shorter reasoning
chain, enabling it to more efficiently capture key visual features and avoid unnecessary complex
reasoning steps. This advantage is particularly evident at different reasoning length, as shown in the
average RH-AUC in Figure [8p, which is significantly higher for the RL-only model compared to
SFT+RL. This phenomenon suggests that although SFT helps the model learn reasoning formats,
it may introduce rigid imitation reasoning paths, limiting the model’s adaptability to dynamic tasks
and ultimately resulting in redundant reasoning. In contrast, RL encourages the model to generate
more adaptive reasoning behaviors, enhancing the integration of reasoning and perception.

Training Dataset. The diversity and quality of training data play a crucial role in the reasoning-
hallucination balance of models. Through a statistical analysis of the multimodel reasoning models
training data and a comparison with the results in Table |1, we have observed some interesting
phenomena: (1) More visual perception data does not necessarily improve the balance between
reasoning and perception. Increasing the training samples of visual perception data can enhance the
balance of reasoning models to a certain degree. For example, the ThinkLite-VL model, supported by
large scale visual perception data, demonstrates strong hallucination and reasoning balance. Similarly,



the Ocean-R1 model adopts a two-stage training strategy, first enhancing reasoning ability and
then strengthening visual perception, achieving the highest RH-AUC on RH-bench. However, this
phenomenon is not consistent. For example, despite the R1-OneVision model utilizing a large amount
of visual perception data, it demonstrates a weaker balance between reasoning and perception, which
may be attributed to the limitations of its training paradigm design. (2) Perception and Reasoning
balance can be achieved through training on domain-specific data. Training on domain-specific
data helps enhance the balance of the reasoning model. For example, the MM-Eureka model, trained
on a larger mathematical dataset, shows a higher RH-AUC, proving its effectiveness in balancing
reasoning and perception. Similarly, despite being trained on only 6k mathematical data, the MM-R1
model still performs well on RH-bench. This highlights the potential of domain-specific data to
stimulate the balance capabilities of reasoning models, even with smaller datasets. (3) The size of
the training data is not always a guarantee for the reasoning-perception balance. The traing data
size does not always directly correlate with the model’s balance capability. For example, both the
LLM-R1, trained on over 60k visual perception samples, and the R1-OneVision, with a dataset of
150k samples, exhibit inadequate reasoning-hallucination balance, with the RH-AUC of only 0.46.

6 Related Work

Multimodal Reasoning Tasks. Multimodal reasoning requires integrating information across
modalities to solve complex problems. It is generally categorized into general reasoning and domain-
specific reasoning. General reasoning typically occurs in natural image scenarios, where models
must combine visual perception with knowledge and commonsense. Representative benchmarks
include multiple-choice datasets such as MMMU [55]], MMVP [42], MMBench [24], MMStar [3],
MMEval-Pro [13]], and VMCBench [61]], as well as open-ended evaluations like Bingo [5)], MMHAL-
Bench [13], POPE [19]], CHAIR [35]], and HallusionBench [[12]]. Domain-specific reasoning focuses
on technical tasks within particular domains. For mathematical reasoning, benchmarks such as
MathVista [27]], MATH-Vision [44], MM-Math [37]], WeMath [34]] evaluate models’ ability to solve
math problems grounded in visual contexts. For physical reasoning, datasets like PhysBench [4] and
CRAVE [38]] test understanding of physics and commonsense reasoning from visual inputs.

Reinforcement Learning in MLLMs. Recent approaches enhance the reasoning capabilities of multi-
modal large models by incorporating chain-of-thought supervision during supervised fine-tuning or re-
inforcement learning [62} 158} 48,411 150}52]. Methods like RLHF-V [54], LLaVA-Reasoner [60], and
Insight-V [11] leverage large-scale CoT-style datasets and preference optimization to improve model
reasoning. Following DeepSeek-R1, the GRPO (Group Relative Policy Optimization) algorithm has
become a standard paradigm in training multimodal large reasoning models [26, 57,147,143 18145, 25].
Some models, such as R1-OneVision [51], Reason-RFT [40]], and R1-VL [59], follow a two-stage
SFT + RL pipeline, while others like Ocean-R1 [20], ThinkLite-VL [46], and MM-Eureka [30] apply
rule-based reinforcement learning directly at scale.

7 Conclusion

In conclusion, this paper investigates the balance between reasoning and hallucination in multimodal
reasoning models, with a focus on how reasoning chain length and visual attention allocation
impact performance. While longer reasoning chains enhance performance on complex tasks, they
also exacerbate hallucinations by diminishing visual attention and increasing reliance on language
priors. To address these challenges, the paper introduces the RH-AUC metric and the RH-Bench
benchmark, which provide a systematic method to evaluate the balance between reasoning ability
and hallucination risk. The findings reveal that reasoning-augmented models are more prone to
hallucinations, highlighting the importance of developing evaluation frameworks that assess both the
quality of reasoning and the accuracy of perception.

Limitation. Although our study provides a comprehensive analysis of visual hallucinations in
multimodal reasoning models, it also has several limitations. First, our evaluation is limited to
models built on the Qwen2.5-VL backbone, which may constrain the generalizability of our findings
to architectures with different modalities or pretraining objectives. Second, our analysis of the
influence of training data is based solely on technical reports and publicly available documentation of
existing models, without conducting controlled retraining experiments. Therefore, our conclusions
are observational and may not fully capture causal effects.
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NeurlIPS Paper Checklist

1. Claims

Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?

Answer: [Yes]
Justification: Our contributions are summarized in the Abstract and Introduction sections.
Guidelines:

e The answer NA means that the abstract and introduction do not include the claims
made in the paper.

* The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

* The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

* It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]
Justification: Please see Conclusion.
Guidelines:

* The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

* The authors are encouraged to create a separate "Limitations" section in their paper.

The paper should point out any strong assumptions and how robust the results are to
violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

* The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

* The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

* The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

* While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs

Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?

Answer: [NA]
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Justification: This paper does not include theoretical results.
Guidelines:

* The answer NA means that the paper does not include theoretical results.

* All the theorems, formulas, and proofs in the paper should be numbered and cross-
referenced.

* All assumptions should be clearly stated or referenced in the statement of any theorems.

* The proofs can either appear in the main paper or the supplemental material, but if
they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

¢ Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

* Theorems and Lemmas that the proof relies upon should be properly referenced.

4. Experimental result reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]

Justification: Please see the Setup in sec.5.1 and Detailed Experimental Settings in appendix
A

Guidelines:

* The answer NA means that the paper does not include experiments.
* If the paper includes experiments, a No answer to this question will not be perceived
well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.
If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.
Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

While NeurIPS does not require releasing code, the conference does require all submis-

sions to provide some reasonable avenue for reproducibility, which may depend on the

nature of the contribution. For example

(a) If the contribution is primarily a new algorithm, the paper should make it clear how
to reproduce that algorithm.

(b) If the contribution is primarily a new model architecture, the paper should describe
the architecture clearly and fully.

(c) If the contribution is a new model (e.g., a large language model), then there should
either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code

Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?
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Answer: [Yes]

Justification: As mentioned in the Abstract, our code and data will be made publicly
available.

Guidelines:

* The answer NA means that paper does not include experiments requiring code.

* Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

* While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

* The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

* The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

* The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

* At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

* Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLSs to data and code is permitted.
6. Experimental setting/details

Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]
Justification: The detailed results can be found in Appendix.
Guidelines:

* The answer NA means that the paper does not include experiments.

* The experimental setting should be presented in the core of the paper to a level of detail
that is necessary to appreciate the results and make sense of them.

¢ The full details can be provided either with the code, in appendix, or as supplemental
material.
7. Experiment statistical significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [Yes]
Justification: The detailed results can be found in Appendix.
Guidelines:

* The answer NA means that the paper does not include experiments.

* The authors should answer "Yes" if the results are accompanied by error bars, confi-
dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

* The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

* The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

* The assumptions made should be given (e.g., Normally distributed errors).
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8.

10.

« It should be clear whether the error bar is the standard deviation or the standard error
of the mean.

It is OK to report 1-sigma error bars, but one should state it. The authors should
preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

» For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

* If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.
Experiments compute resources

Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]
Justification: The detailed results can be found in Appendix.
Guidelines:

* The answer NA means that the paper does not include experiments.

 The paper should indicate the type of compute workers CPU or GPU, internal cluster,
or cloud provider, including relevant memory and storage.

* The paper should provide the amount of compute required for each of the individual
experimental runs as well as estimate the total compute.

* The paper should disclose whether the full research project required more compute
than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

. Code of ethics

Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]

Justification: We have read the NeurIPS Code of Ethics and confirm that our research
complies with these ethical standards.

Guidelines:

¢ The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.

* If the authors answer No, they should explain the special circumstances that require a
deviation from the Code of Ethics.

* The authors should make sure to preserve anonymity (e.g., if there is a special consid-
eration due to laws or regulations in their jurisdiction).
Broader impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [Yes]
Justification: Please see the Appendix G.
Guidelines:

* The answer NA means that there is no societal impact of the work performed.

* If the authors answer NA or No, they should explain why their work has no societal
impact or why the paper does not address societal impact.

» Examples of negative societal impacts include potential malicious or unintended uses
(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.
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11.

12.

» The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

* The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

* If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

Safeguards

Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]
Justification: This paper poses no such risks.
Guidelines:

* The answer NA means that the paper poses no such risks.

* Released models that have a high risk for misuse or dual-use should be released with
necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

 Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

* We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

Licenses for existing assets

Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]

Justification: All the thing in this paper credited and are the license and terms of use
explicitly mentioned and properly respected.

Guidelines:

* The answer NA means that the paper does not use existing assets.

* The authors should cite the original paper that produced the code package or dataset.

 The authors should state which version of the asset is used and, if possible, include a
URL.

* The name of the license (e.g., CC-BY 4.0) should be included for each asset.

* For scraped data from a particular source (e.g., website), the copyright and terms of
service of that source should be provided.

 If assets are released, the license, copyright information, and terms of use in the
package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

* For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.
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14.

15.

16.

* If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

New assets

Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [NA]
Justification: This paper does not release new assets.
Guidelines:

* The answer NA means that the paper does not release new assets.

» Researchers should communicate the details of the dataset/code/model as part of their
submissions via structured templates. This includes details about training, license,
limitations, etc.

* The paper should discuss whether and how consent was obtained from people whose
asset is used.

* At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.
Crowdsourcing and research with human subjects

Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer: [NA]
Justification: This paper does not involve crowdsourcing nor research with human subjects.
Guidelines:
* The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

* Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

* According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

Institutional review board (IRB) approvals or equivalent for research with human
subjects

Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?

Answer: [NA]
Justification: This paper does not involve crowdsourcing nor research with human subjects.
Guidelines:
* The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

* Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

* We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

* For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

Declaration of LLM usage
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Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.

Answer: [NA]

Justification: The method development in this paper does not involve LLMs as any compo-
nents.

Guidelines:

* The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

¢ Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.
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Appendix

A Detailed Experimental Settings

Datasets. We evaluate our model on both discriminative and generative datasets, as listed below. (a)
MMVP evaluates recognition and reasoning performance across nine categories of basic visual
patterns. (b) MMEval-Pro assesses cross-modal understanding through triplet-based object
and attribute recognition in natural images. (¢) VMCBench [61]] use adversarial distractors to test
fine-grained discriminative ability across diverse tasks such as commonsense reasoning, image-text
matching. All three datasets (a—c) adopt accuracy as the evaluation metric. (d) Bingo [3]] evaluates
bias and interference hallucinations, with GPT-40 used to score hallucination severity and response
quality. (¢) MMHAL-Bench [39] evaluates model capabilities beyond object hallucination, with
GPT-40 used to assess hallucination rate and response informativeness.

Implementation Details. We select nine representative multimodal reasoning models to evaluate
their hallucination performance on general vision tasks. We categorize these models into two major
training paradigms: (1) the RL-only paradigm, where models are trained solely via reinforcement
learning, including LMM-R1 [33]], MM-R1[17]], ThinkLite-VL[46], MM-Eureka[30]], and Ocean-
RI1[20]; (2) the two-stage paradigm, combining supervised fine-tuning (SFT) with reinforcement
learning, including Vision-R1[[13]], R1-OneVision[51], OpenVLThinker[9]], and Curr-ReFT [8]. All
models are post-trained on Qwen2.5-VL-3B or Qwen2.5-VL-7B, which are used as baseline models.

B Reasoning Models Attention-Based Analysis

B.1 Visual Attention Heatmap

Figure [OHI0| compares the visual attention distribution between multimodal reasoning models and
their corresponding non-reasoning models. The results indicate that, compared to non-reasoning
models, reasoning models exhibit weaker focus on key image details, with attention more dispersed
across other regions of the image. Specifically, reasoning models display a greater degree of attention
dispersion at lower layers, and their attention is not concentrated on critical areas of the image. In
contrast, non-reasoning models demonstrate more precise visual grounding. For instance, as shown
in Figure[T0] the attention maps of the non-reasoning model at layers 10 and 15 consistently focus on
the target object, the white mouse, highlighting its sustained attention on the target.

Layer 10 Layer 15

Figure 9: Case Study 1: Attention Heatmap in Counting Tasks.

L i

Figure 10: Case Study 2: Attention Heatmap in Object Localization.

Layer 5

©
gme there four people appear in this
image?

Reasoning

Non-Reasoning

B Layer 5
Is the white mouse on the right of
the black keyboard?

Reasoning

Non-Reasoning
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B.2 More Examples of the Impact of Reasoning Length on Visual Perception Degradation

This section presents an additional example, including a visual task involving counting, comparing
the results of reasoning models and their corresponding attention maps under different reasoning
lengths. It is evident that an excessively lengthy reasoning process causes the model to disregard the
visual information inherent in the image, instead relying more heavily on prior linguistic knowledge.
In Figure[TT] the attention maps clearly show that, under over reasoning conditions, the model’s
attention shifts more towards the instruction tokens following the image tokens, particularly towards
the latter part of the instruction. This suggests that prolonged reasoning reduces the model’s focus
on the visual information, leading it to depend more on the guidance provided by the linguistic
instructions.

? Overthinking A ﬁﬁ
How many traffic lights are <think> Upon examining the image, T observe that there are three traffic @Over‘rhinking Normal Think
-

there in the image? lights at the intersection. Two of them, located on the left side of the image,
are likely controlling traffic from different directions. The third light on the
right appears to be a separate signal controlling another traffic flow.
Furthermore, the absence of significant obstructions on the right side of the
image suggests that this traffic light is fully visible. Based on this reasoning, T
conclude that there are three traffic lights at this intersection, each managing
traffic from distinct directions. </think> Thus, the answer is 3 traffic lights.

- r | ] -
H -
Normal Think ]
| |
<think> Based on the image, I see that there are four traffic lights. The two
lights on the left side of the image seem to be part of the intersection, and -
there are two more on the right side of the image, likely for controlling L8
traffic in different directions. </think> So, the answer is 4 traffic lights. B
Image Token Image Token

Figure 11: Attention shift in the reasoning model under different reasoning length.

B.3 Error Analysis

In this section, we further focus on the error rates of multimodal reasoning models and non-reasoning
models across different problem types, conducting a statistical analysis to compare the differences
between the two. Figure[T2h presents the error type statistics for the Bingo benchmark samples. By
combining GPT-40 evaluations with manual inspection, we analyze the reasoning process and final
answers of the reasoning model to determine whether the errors stem from reasoning or perception.
If the model’s errors arise from both reasoning and perception, we classify them as "perception
and reasoning" errors. The statistical results indicate that the proportion of perception errors in the
reasoning model decreases, with more errors originating from the reasoning process. This suggests
that the reasoning model does not completely fail to interpret the image information, but rather
diminishes its focus on perceptual information during reasoning. The evaluation results in Figure[T2p
further confirm this phenomenon: the overall error rate of the reasoning model is higher than that of
the non-reasoning model, with a more prominent proportion of errors coming from reasoning.

MMVP Hallucination mmm MMhalu Hallucination

MMVP Reasoning MMhalu Reasoning
70
Perception + Reasoning
g e
Perception Error Reasoning Error &
S 50
-]
g 40
12% £
22% 2
o E 30
30% 58% 50% § 20
b E . l
1o
o
Non-Reasoning Reasoning Qwen2.5-VL R 1-Onevision Ocean-R1 MM-Eureka
@) (b)

Figure 12: Error type distribution and error proportions across reasoning and non-reasoning models
in Bingo benchmark. (a) Pie charts showing the distribution of perception and reasoning errors for
non-reasoning and reasoning models, with the breakdown of perception error, reasoning error, and
combined perception & reasoning errors. (b) Bar chart illustrating error proportions in the MM VP
and MMhalu benchmarks, comparing hallucination and reasoning errors across reasoning models.
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C Reasoning Length Control

C.1 Comparison of Three Reasoning Length Control Straregies

In the manuscript, we have thoroughly explored three methods: Token Budget Forcing, Test Time
Scaling, and Latent State Steering. The first two methods directly control the model’s reasoning
length by using fixed-length truncation or soft expansion of the reasoning length, ensuring dynamic
expansion within a predefined thinking length range. However, the limitations of Token Budget
Forcing and Test Time Scaling are that they can only control the model’s reasoning length to shorten
or lengthen, lacking flexibility for more nuanced adjustments. In contrast, Latent State Steering
introduces a tuning coefficient «, allowing more flexible control over the model’s reasoning length.
By adjusting the value of o, we can effectively quantify changes in the extent of reasoning. All of our
Latent State Steering experiments are dynamically adjusted within the range of « € [—0.15,0.15].
Furthermore, in the subsequent RH-bench calculation of RH-AUC, it is precisely due to the flexibility
of the Latent State Latent State Steering Strategy that we apply it to dynamically regulate the reasoning
length and perform further quantification.

C.2 Model Performance Variation of the Latent State Steering Length Control Strategy

Figures [I3] presents the visualization of performance variations for different models under the Latent
State Steering strategy, with o ranging from [—0.15,0.15]. In Figure the star symbol represents
the performance under the base condition. It is clearly observed that the variation in reasoning length
shows that the optimal intervals for reasoning models differ between reasoning and hallucination
tasks, with both exhibiting non-monotonicity.
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Figure 13: Model performance variation of the Latent State Steering strategy. The star symbol
represents the original thinking length of the model without steering or test-time intervention.

24



D More Examples from RH-Bench

In this section, we present samples from different tasks and question types in the RH-Bench benchmark.
As shown in Figures[T4h and [T4p, we display samples of open-ended responses and multiple-choice
questions for the visual perception task. Additionally, Figures[I5h and [I5p showcase samples of
multiple-choice questions and open-ended responses for the visual reasoning task. The focus of the
questions differs across tasks. For instance, the visual perception task typically emphasizes image
content recognition and understanding, whereas the visual reasoning task places more focus on the
ability to draw conclusions from the image. To ensure the accuracy of the evaluation, we select
samples that maintain as much independence between tasks as possible, minimizing interference
between different tasks. This independence allows each task to reflect the model’s performance in a
specific task type, thereby providing a more accurate assessment of the model’s performance across
various tasks and its ability to balance performance between different task types.
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Choices: (A) behind the dog, and the dog's nose is

?
? 0 L . .
B f ‘Wh the t lative to the dog?
gHow many teddy bears are What can you see in the Ts the elephant's trunk raised or L ) [HRRE I R
on the stairs? reflection from the sunglasses? lowered? Choices: (A) Raised (B)
i Lowered

facing right. (B) the right of the dog's nose, and the.
dog's nose is facing right. (C) directly in front of the
dogs nose. the dogs nose is facing left. (D) above the
dog's head, and the nose is pointing backward.

(b)

Figure 14: Examples of visual perception in RH-Bench.

Every one of these six building blocks The sum of the points on the opposite sides of a
Question: In which period the number of full time Clare Jaccard has $5,000 to invest. Because she is only consists of 5 little cubes. The little cubes common dice is 7 . This dice is placed in the first
employees is the maximum? Choices:(A) Jul ‘21 (B) 25 years old, she is not concerned about the length of the are either white or grey. Cubes of equal square as shown in the figure, and then rolled as
Jun'21 (C) Mar 21 (D) May 21 (E) Apr 21 investment's life. What she is sensitive to is the rate of CD;PUT 40:‘* '°U;h each ﬂzherv How m’gﬂy shown in the figure, to the fifth square. When the
return she will earn on the investment.... Calculate, to the it elwhizelcvbeslaneitherelinkiotaly dice reach the last square, what s the product of the
nearest 1%, the rate of return on investment B available 2 O [ 5"’”’(" on ;"e frclceloredieqica
to Clare. Choices: (A) 6% (B) 9% () 10% (D) 8% aces?
Investment Single amount  Investment life (years) /\
A $8:400 6 /= /\
B 15,900 15 VAR
C 7,600 4
- D 13,000 10 ..
(a) (b)

Figure 15: Examples of visual reasoning in RH-Bench.
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E Visualization Results

This section presents the responses of reasoning models and their corresponding non-reasoning
models across different visual tasks. As shown in Figures[T6and [I7] in these error examples, it
is evident that reasoning models typically exhibit errors during the reasoning process, leading to
inaccurate reasoning results and, consequently, the emergence of hallucinations in the final answers.

y

?
I~ Is the word in the logo
"penarth pier built 1894"?

Non-Reasoning Model

The sign has large, green, stylized letters that read "PENARTH PIER," followed by
"BUILT 1894" underneath. The layout and font suggest it's a title or landmark sign. T

also notice a smaller logo on the bottom right which includes the words "VALE OF
GLAMORGAN LEISURE," indicating it may be part of a local council or tourism boar: Q
Given the context, this is likely a historical pier with some heritage value.

Reasoning Model

<think>

Okay, so I need to figure out if the word in the logo is “Penarth Pier Built 1894." Let me
start by looking directly at the image itself. As seen in the image, there is a sign that reads
"Penarth Pier" with "Built 1894" underneath it. The text is in green on a white background,
and there's also a logo for "Valley Glamorgan Leisure." However, the question specifically
asks about the word in the logo, not the entire sign.

The logo mentioned is part of the Valley Glamorgan Leisure branding, which includes a
stylized design with a green leaf motif. This logo is separate from the main sign that
mentions Penarth Pier and its construction date. Therefore, the word in the logo is likely
Jjust the name “Valley Glamorgan Leisure,” not “Penarth Pier Built 1894."So, putting it all
together, the word in the logo isn't “Penarth Pier Built 1894’; it's something else. </think>
No. The word in the logo is "Valley Glamorgan Leisure," not "Penarth Pier Built 1894."

Figure 16: Hallucination example 1 of reasoning models in visual tasks.

?
@)There a yellow brick
building in the image?

Non-Reasoning Model

I closely examined the buildings in the image. The ones on the left are mostly made of

red brick and white walls, while those on the right appear to be covered in light gray or
beige materials. The tall structure near the center-right looks more like it has a light
brown or cream-colored surface, not the distinct tone or texture of yellow brick.
Therefore, no building in the image clearly appears to be made of yellow brick. @

Reasoning Model

<think> Okay, so I need to determine if there's a yellow brick building in the image based on
the provided content. Let me go through this step by step. First, I'll examine the image
itself. The image shows an urban street scene with multi-story buildings on the left side.
These buildings have a mix of architectural styles and colors—some are white with red
accents, others are red-brick with white trim. There's also a modern building with a flat roof
and a wooden facade visible further down the street. Next, I'll look at the bounding boxes
provided. One box is labeled “a yellow brick building” with coordinates xmin: 208, ymin: 175,
xmax: 346, ymax: 292. This indicates that within these specific coordinates, there is indeed
ayellow brick building present in the image. Therefore, based on both the image and the

R

bounding box information, there is a yellow brick building in the image.
</think> Yes, there is a yellow brick building in the image. The image shows a yellow bric
building within the specified coordinates, confirming its presence.

Figure 17: Hallucination example 2 of reasoning models in visual tasks.
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F RH-Bench Evaluation Prompts

RH-Bench Visual Reasoning MCQ & Open-Ended Prompt

MCQ: You are an impartial evaluator assessing the correctness of a model’s answer to a
multiple-choice question.

Question: {question}

Choices: {choices}

Model’s Answer: {model answer}
Correct Answer: {ground truth}

Please evaluate whether the model’s answer is correct by considering:

1. Whether the model’s answer matches the correct answer exactly (e.g., same option letter).
2. If the model’s answer is a value, whether it matches the value of the correct option.

3. Whether the model’s reasoning (if provided) supports its answer.

Your response should be a JSON object with the following structure:

{

"is_correct": <true or false>,

"reason": "<brief explanation of your evaluation>"

}

Open-Ended: You are an impartial evaluator assessing the correctness of a model’s answer
to a multiple-choice question.

Question: {question}
Model’s Answer: {model answer}
Correct Answer: {ground truth}

Please evaluate whether the model’s answer is correct by considering:

1. Whether the model’s answer matches the correct answer exactly (e.g., same option letter).
2. If the model’s answer is a value, whether it matches the value of the correct option.

3. Whether the model’s reasoning (if provided) supports its answer.

RH-Bench Visual Perception MCQ Prompt

Please evaluate whether the model’s answer to the multiple-choice question is correct by
considering: 1. Whether the model’s answer matches the correct answer exactly (same option
letter).

2. If the model’s answer is a value, whether it matches the value of the correct option.

3. Whether the model’s reasoning (if provided) supports its answer.

Question: {}

Options: {}

Correct Answer: {}

Model’s Answer: {}

Your response should be a JSON object with the following structure:

{

"is_correct": <boolean>,
n,on

"reason": "<explanation of your evaluation>",
"model_answer_extracted": "<the extracted answer from the model’s response>"

27



RH-Bench Visual Perception Open-Ended Prompt

Please act as an impartial and objective judge to evaluate the presence and severity of
hallucination in the response provided by a Large Multimodal Model (LMM) to the user
question. Hallucination, in this context, refers to a situation where the LMM generates
a response that includes information not present or implied in the image or previous
conversation. A hallucination could be a false claim about an object, action, emotion, or any
other detail not grounded in the image.

Your task is to determine whether hallucination exists and, if present, to categorize its severity
based on the extent and impact of the false information. Use the provided image contents,
question, standard human-generated answer, and LMM response to make your judgment.

Evaluation Guidelines:

Compare the LMM response with the standard human-generated answer. Identify any claims
in the LMM response that are not supported by the image or question. Assess the severity
of hallucination based on the nature and extent of the false information. The standard
human-generated answer may not describe all objects or details comprehensively, so focus on
whether the LMM introduces false claims rather than omitting details. Detailed reasoning or
analysis by the LMM that is consistent with the image contents is acceptable and should not
be considered hallucination.

Task: Evaluate the LMM response for hallucination based on the provided image contents,
question, and standard human-generated answer. Provide a brief explanation of your analysis,
identifying any false claims and their severity. Then, assign a rating from the following six
levels:

Rating: 5: No hallucination (response is fully consistent with image contents).

Rating: 4: Minimal hallucination (minor, negligible false detail that does not significantly
alter the response’s accuracy, e.g., a slight misdescription of color or background).

Rating: 3: Mild hallucination (small false claim that adds unsupported but non-critical detail,
e.g., mentioning a minor object or attribute not present).

Rating: 2: Moderate hallucination (clear false claim that affects the response’s accuracy, e.g.,
incorrect object count or unsupported environmental detail).

Rating: 1: Severe hallucination (significant false claim that misrepresents key elements, e.g.,
entirely wrong objects or actions).

Rating: 0: Extreme hallucination (response is largely or entirely detached from the image
contents, with multiple or critical false claims).

Question { }

Ground-Truth Answer {}

LMM Response to Evaluate {}

Your response should be a JSON object with the following structure:

"hallucination_score": <integer from 0 to 5>,

n,oon

"reason": "<brief explanation of your evaluation>"
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