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Abstract

Partial observations of continuous time-series dynamics at arbitrary time stamps
exist in many disciplines. Fitting this type of data using statistical models with con-
tinuous dynamics is not only promising at an intuitive level but also has practical
benefits, including the ability to generate continuous trajectories and to perform
inference on previously unseen time stamps. Despite exciting progress in this area,
the existing models still face challenges in terms of their representation power and
the quality of their variational approximations. We tackle these challenges with
continuous latent process flows (CLPF), a principled architecture decoding contin-
uous latent processes into continuous observable processes using a time-dependent
normalizing flow driven by a stochastic differential equation. To optimize our
model using maximum likelihood, we propose a novel piecewise construction of a
variational posterior process and derive the corresponding variational lower bound
using importance weighting of trajectories. An ablation study demonstrates the
effectiveness of our contributions and comparisons to state-of-the-art baselines
show our model’s favourable performance on both synthetic and real-world data.

1 Introduction

Sparse and irregular observations of continuous dynamics are common in many areas of science,
including finance [15, 36], healthcare [16], and physics [30]. Time-series models driven by stochastic
differential equations (SDEs) provide an elegant framework for this challenging scenario and have
recently gained popularity in the machine learning community [11, 18, 24]. The SDEs are typically
implemented by neural networks with trainable parameters and the latent processes defined by the
SDEs are then decoded into an observable space with complex structure. Due to the lack of closed-
form transition densities for most SDEs, dedicated variational approximations have been developed
to maximize the observational log-likelihoods [2, 18, 24].

Despite the progress of existing works, challenges still remain for SDE-based models to be applied to
irregular time-series data. One major challenge is the model’s representation power. The continuous-
time flow process (CTFP; [11]) uses a series of invertible mappings continuously indexed by time
to transform a simple Wiener process to a more complex stochastic process. The use of a simple
latent process and invertible transformations permits CTFP models to evaluate the exact likelihood of
observations on any time grid efficiently, but they also limit the set of stochastic processes that CTFP
can express to some specific form which can be obtained using Ito’s Lemma and excludes many
commonly seen stochastic processes. Another constraint of representation power in practice is the
Lipschitz property of transformations in the models. The latent SDE model proposed by Hasan et al.
[18] and CTFP both transform a latent stochastic process with constant variance to an observable one
using injective mappings. Due to the Lipschitz property existing in many invertible neural network
architectures, some processes that can be written as a non-Lipschitz transformation of a simple process,
like geometric Brownian motion, cannot be expressed by these models unless specific choices of
non-Lipschitz decoders are used. Apart from the model’s representation power, variational inference
is another challenge in training SDE-based models. The latent SDE model in the work of Li et al. [24]
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Figure 1: Overview. Our architecture uses a stochastic differential equation (SDE; left) to drive a time-dependent
normalizing flow (NF; right). At time t1, t2 (grey bars), the values of the SDE trajectories (colored trajectories
on the left) serve as conditioning information for the decoding of a simple base process (grey trajectories on
the right) into a complex observable process (colored trajectories on the right). The color gradient on the right
shows the individual trajectories of this transformation, which is driven by an augmented neural ODE. Since all
stochastic processes and mappings are time-continuous, we can model observed data as partial realizations of a
continuous process, enabling modelling of continuous dynamics and inference on irregular time grids.

uses a principled method of variational approximation based on importance weighting of trajectories
between a variational posterior and a prior process. The variational posterior process is constructed
using a single SDE conditioned on all observations and is therefore restricted to be a Markov process.
This approach may lack the flexibility to approximate the true posterior process well enough in
complex inference tasks, e.g., in an online setting or with variable-length observation sequences.

In this work we propose Continuous Latent Process Flows (CLPFs)2, a model that is governed by
latent dynamics defined by an expressive generic stochastic differential equation. Inspired by [11],
we then use dynamic normalizing flows to decode each latent trajectory into a continuous observable
process. Driven by different trajectories of the latent stochastic process continuously evolving with
time, the dynamic normalizing flow can map a simple base process to a diverse class of observable
processes. We illustrate this process in Fig. 1. This decoding is critical for the model to generate
continuous trajectories and be trained to fit observations on irregular time grids using a variational
approximation. Good variational approximations and proper handling of complex inference tasks
like online inference depend on a flexible variational posterior process. Therefore, we also propose a
principled method of defining and sampling from a non-Markov variational posterior process that is
based on a piecewise evaluation of SDEs and can adapt to new observations. The proposed model
excels at fitting observations on irregular time grids, generalizing to observations on more dense time
grids, and generating trajectories continuous in time.

Contributions. In summary, we make the following contributions: (1) We propose a flow-based
decoding of a generic SDE as a principled framework for continuous dynamics modeling of irregular
time-series data. (2) We improve the variational approximation of the observational likelihood through
a flexible non-Markov posterior process based on a piecewise evaluation of the underlying SDE; (3)
We validate the effectiveness of our contributions in a series of ablation studies and comparisons to
state-of-the-art time-series models, both on synthetic and real-world datasets.

2 Preliminaries

2.1 Stochastic Differential Equations

SDEs can be viewed as a stochastic analogue of ordinary differential equations (ODEs) in the sense
that dZt

dt = µ(Zt, t) + random noise · σ(Zt, t). Let Zt be a variable which continuously evolves
with time. An m-dimensional SDE describing the stochastic dynamics of Zt usually takes the form

dZt = µ(Zt, t) dt+ σ(Zt, t) dWt, (1)

where µ maps to an m-dimensional vector, σ is an m × k matrix, and Wt is a k-dimensional
Wiener process. The solution of an SDE is a continuous-time stochastic process Zt that satisfies the
integral equation Zt = Z0 +

∫ t

0
µ(Zs, s) ds+

∫ t

0
σ(Zs, s) dWs with initial condition Z0, where

2Code available at https://github.com/BorealisAI/continuous-latent-process-flows
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the stochastic integral should be interpreted as a traditional Itô integral [27, Chapter 3.1]. For each
sample trajectory ω ∼ Wt, the stochastic process Zt maps ω to a different trajectory Zt(ω).

Latent Dynamics and Variational Bound. SDEs have been used as models of latent dynamics
in a variety of contexts [2, 18, 24]. As closed-form finite-dimensional solutions to SDEs are rare,
variational approximations are often used in practice. Li et al. [24] propose a principled way of
re-weighting latent SDE trajectories for variational approximations using Girsanov’s theorem [27,
Chapter 8.6]. Specifically, consider a prior process and a variational posterior process in the interval
[0, T ] defined by two stochastic differential equations dZt = µ1(Zt, t) dt + σ(Zt, t) dWt and
dẐt = µ2(Ẑt, t) dt+ σ(Ẑt, t) dWt, respectively. Furthermore, let p(x|Zt) denote the probability
of observing x conditioned on the trajectory of the latent process Zt in the interval [0, T ]. If there
exists a mapping u : Rm × [0, T ] → Rk such that σ(z, t)u(z, t) = µ2(z, t) − µ1(z, t) and u
satisfies Novikov’s condition [27, Chapter 8.6], we obtain the variational lower bound

log p(x) = logE[p(x|Zt)] = logE[p(x|Ẑt)MT ] ≥ E[log p(x|Ẑt) + logMT ], (2)

where MT = exp(−
∫ T

0
1
2

∣∣∣u(Ẑt, t)
∣∣∣2 dt−

∫ T

0
u(Ẑt, t)

T dWt). See [24] for a formal proof.

2.2 Normalizing Flows

Normalizing flows [3, 8, 12, 13, 21, 22, 23, 28, 29, 31] employ a bijective mapping f : Rd → Rd

to transform a random variable Y with a simple base distribution pY to a random variable X
with a complex target distribution pX . We can sample from a normalizing flow by first sampling
y ∼ pY and then transforming it to x = f(y). As a result of invertibility, normalizing flows can
also be used for density estimation. Using the change-of-variables formula, we have log pX(x) =

log pY (g(x)) + log
∣∣∣det( ∂g

∂x

)∣∣∣, where g is the inverse of f .

Continuous Indexing. More recently, normalizing flows have been augmented with a continuous
index [6, 10, 11]. For instance, the continuous-time flow process (CTFP; [11]) models irregular
observations of a continuous-time stochastic process. Specifically, CTFP transforms a simple d-
dimensional Wiener process Wt to another continuous stochastic process Xt using the transformation
Xt = f(Wt, t), where f(w, t) is an invertible mapping for each t. Despite its benefits of exact
log-likelihood computation of arbitrary finite-dimensional distributions, the expressive power of
CTFP to model stochastic processes is limited in the following two aspects: (1) An application of
Itô’s lemma [27, Chapter 4.2] shows that CTFP can only represent stochastic processes of the form

df(Wt, t) = {df
dt

(Wt, t) +
1

2
Tr(Hwf(Wt, t))} dt+ (∇wfT (Wt, t))

T dWt, (3)

where Hwf is the Hessian matrix of f with respect to w and ∇wf is the derivative. A variety
of stochastic processes, from simple processes like the Ornstein-Uhlenbeck (OU) process to more
complex non-Markov processes, fall outside of this limited class and cannot be learned using CTFP
(see Appendix A for formal proofs); (2) Many normalizing flow architectures are compositions of
Lipschitz-continuous transformations [7, 8, 17]. It is therefore challenging to model certain stochastic
processes that are non-Lipschitz transformations of simple processes using CTFP without prior
knowledge about the functional form of the observable processes and custom-tailored normalizing
flows with non-Lipschitz transformations (see Appendix B for an example).

A latent variant of CTFP is further augmented with a static latent variable to introduce non-Markovian
behavior. It models continuous stochastic processes as Xt = f(Wt, t;Z), where Z is a latent
variable with standard Gaussian distribution and f(·, ·; z) is a CTFP model that decodes each sample
z of Z into a stochastic process with continuous trajectories. Latent CTFP can be used to estimate
finite-dimensional distributions using a variational approximation. However, it is unclear how much a
latent variable Z with finite dimensions can improve CTFPs representation power.

3 Model

Equipped with these tools, we can now describe our problem setting and model architecture. Let
{(xti , ti)}ni=1 denote a sequence of d-dimensional observations sampled at arbitrary points in time,
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where xti and ti denote the value and time stamp of the observation, respectively. The observations
are assumed to be partial realizations of a continuous-time stochastic process Xt. Our training
objective is the maximization of the observational log-likelihood induced by Xt on a given time grid,

L = log pXt1 ,...,Xtn
(xt1 , . . . ,xtn), (4)

for an inhomogeneous collection of sequences with varying lengths and time stamps. At test-time, in
addition to the maximization of log-likelihoods, we are also interested in sampling sparse, dense, or
irregular trajectories with finite-dimensional distributions that conform with these log-likelihoods.
We model this challenging scenario with Continuous Latent Process Flows (CLPF). In Section 3.1,
we present our model in more detail. Training and inference methods will be discussed in Section 3.2.

3.1 Continuous Latent Process Flows

A Continuous Latent Process Flow consists of two major components: an SDE describing the continu-
ous latent dynamics of an observable stochastic process and a continuously indexed normalizing flow
serving as a time-dependent decoder. The architecture of the normalizing flow itself can be specified
in multiple ways, e.g., as an augmented neural ODE [14] or as a series of affine transformations [10].
The following paragraphs discuss the relationship between these components in more detail.

Continuous Latent Dynamics. Analogous to our overview in Section 2.1, we model the evolution
of an m-dimensional time-continuous latent state Zt in the time interval [0, T ] using a flexible
stochastic differential equation driven by an m-dimensional Wiener Process Wt,

dZt = µγ(Zt, t) dt+ σγ(Zt, t) dWt, (5)

where γ denotes the (shared) learnable parameters of the drift function µ and variance function σ. In
our experiments, we implement µ and σ using deep neural networks (see Appendix E for details).
Importantly, the latent state Zt exists for each t ∈ [0, T ] and can be sampled on any given time grid,
which can be irregular and different for each sequence.

Time-Dependent Decoding. Latent variable models decode a latent state into an observable
variable with complex distribution. As an observed sequence {(xti , ti)}ni=1 is assumed to be a partial
realization of a continuous-time stochastic process, continuous trajectories of the latent process
Zt should be decoded into continuous trajectories of the observable process Xt, and not discrete
distributions. Following recent advances in dynamic normalizing flows [6, 10, 11], we model Xt as

Xt = Fθ(Ot;Zt, t), (6)

where Ot is a d-dimensional stochastic process with closed-form transition density3 and Fθ( · ; zt, t)
is a normalizing flow parameterized by θ for any zt, t. The transformation Fθ decodes each sample
path of Zt into a complex distribution over continuous trajectories Xt if Fθ is a continuous mapping
and the sampled trajectories of the base process Ot are continuous with respect to time t. Unlike [11],
who use a Wiener process as base process, we use the Ornstein–Uhlenbeck (OU) process, which has
a stationary marginal distribution and bounded variance. As a result, the variance of the observation
process does not increase due to the increase of variance in the base process and is primarily
determined by the latent process Zt and flow transformation Fθ.

Flow Architecture. The continuously indexed normalizing flow Fθ( · ; zt, t) can be implemented in
multiple ways. Deng et al. [11] use ANODE [14], defined as the solution to the initial value problem

d
dτ

(
h(τ)
a(τ)

)
=

(
fθ(h(τ),a(τ), τ)

gθ(a(τ), τ)

)
,

(
h(τ0)
a(τ0)

)
=

(
ot

(zt, t)
T

)
, (7)

where τ ∈ [τ0, τ1], h(τ) ∈ Rd, a(τ) ∈ Rm+1, fθ : Rd × Rm+1 × [τ0, τ1] → Rd, gθ : Rm+1 ×
[t0, t1] → R, and Fθ is defined as the solution of h(τ) at τ = τ1. Note the difference between t and
τ : while t ∈ [0, T ] describes the continuous process dynamics, τ ∈ [τ0, τ1] describes the continuous
time-dependent decoding at each time step t. Alternatively, Cornish et al. [10] propose a variant of
continuously indexed normalizing flows based on a series of N affine transformations fi,

h
(i+1)
t = fi(h

(i)
t ; zt, t) = k(h

(i)
t · exp(−u(i)(zt, t))− v(i)(zt, t)), (8)

3More precisely, the conditional distribution pOti
|Otj

(oti |otj ) must exist in closed form for any tj < ti.
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(a) Generation (b) Inference

Figure 2: Graphical Model of Generation and Inference. Red circles represent latent variables Zti . Unfilled
blue circles represent samples from the OU process at discrete time points Oti . Blue diamonds in Fig. 2a
indicate each Xti is the result of a deterministic mapping of Zti and Oti . Filled blue circles in Fig. 2b represent
observed variables Xti .

where h
(0)
t = ot, h

(N)
t = xt, u(i) and v(i) are unconstrained transformations, and k is an invertible

mapping like a residual flow [8]. The temporal relationships among Zt, Ot, and Xt from a graphical
model point of view are shown in Fig. 2a.

3.2 Training and Inference

With the model fully specified, we can now focus our attention on training and inference. Computing
the observational log-likelihood (Eq.(4)) induced by a time-dependent decoding of an SDE (Eq.(6))
on an arbitrary time grid is challenging, because only few SDEs have closed-form transition densities.
Consequently, variational approximations are needed for flexible SDEs such as Eq.(5). We propose a
principled way of approximating the observational log-likelihood with a variational lower bound based
on a novel piecewise construction of the posterior distribution of the latent process. In summary, we
first express the observational log-likelihood as a marginalization over piecewise factors conditioned
on a latent trajectory, then approximate this intractable computation with a piecewise variational
posterior process, and finally derive a variational lower bound for it.

Observational Log-Likelihood. The observational log-likelihood can be written as an expectation
over latent trajectories of the conditional likelihood, which can be evaluated in closed form,

L = log pXt1 ,...,Xtn
(xt1 , . . . ,xtn)

= logEω∼Wt

[
pXt1

,...,Xtn |Zt
(xt1 , . . . ,xtn |Zt(ω))

]
= logEω∼Wt

[
n∏

i=1

pXti
|Xti−1

,Zti
,Zti−1

(xti |xti−1
,Zti(ω),Zti−1

(ω))

]
,

(9)

where Zt(ω) denotes a sample trajectory of Zt driven by ω ∼ Wt. For simplicity, we assume
w.l.o.g. and in this section only Z0,X0 to be given. As a result of invertibility, the conditional
likelihood terms pXti

|Xti−1
,Zti

,Zti−1
can be computed using the change-of-variables formula,

log pXti
|Xti−1

,Zti
,Zti−1

(xti |xti−1 ,Zti(ω),Zti−1(ω))

= log pOti
|Oti−1

(oti |oti−1
)− log

∣∣∣∣det ∂Fθ(oti ;Zti(ω), ti)

∂oti

∣∣∣∣, (10)

where oti = F−1
θ (xti ;Zti(ω), ti).

Piecewise Construction of Variational Posterior. Directly computing the observational log-
likelihood is intractable and we use a variational approximation during both training and inference.
Good variational approximations rely on variational posteriors that are close enough to the true
posterior of the latent trajectory conditioned on observations. Previous methods [24] use a single
SDE to propose the variational posterior conditioned on all observations. Instead, we develop a more
flexible method that can update the posterior process parameters when a new observation is seen
and naturally adapts to different time grids. Our posterior process is not constrained by the Markov
property of SDE solutions. Moreover, the proposed method serves as the basis for a principled
approach to online inference tasks using variational posterior processes.
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Our construction makes use of a further decomposition of the observational log-likelihood based on
the following facts: {Ws+t −Ws}t⩾0 is also a Wiener process ∀s ⩾ 0 and the solution to Eq.(5) is
a Markov process. Specifically, let {(Ω(i),F (i)

ti−ti−1
, P (i))}ni=1 be a series of probability spaces on

which n independent m-dimensional Wiener processes W (i)
t are defined. We can sample a complete

trajectory of the Wiener process Wt in the interval [0, T ] by sampling independent trajectories
of length ti − ti−1 from Ω(i) and adding them, i.e., ωt =

∑
{i:ti<t} ω

(i)
ti−ti−1

+ ω
(i∗)
t−ti∗−1

, where
i∗ = max{i : ti < t}+ 1. As a result, we can solve the latent stochastic differential equations in a
piecewise manner. Samples of Zti can be obtained by solving the stochastic differential equation

dẐt = µγ(Ẑt, t+ ti−1) dt+ σγ(Ẑt, t+ ti−1) dW (i)
t (11)

in the interval [0, ti− ti−1], with Zti−1
as the initial condition. The log-likelihood of the observations

can thus be rewritten as

L = logE
ω(1),...,ω(n)∼W

(1)
t ×···×W

(n)
t

[
n∏

i=1

p(xti |xti−1
, zti , zti−1

, ω(i))

]
= logE

ω(1)∼W
(1)
t

[
p(xt1 |xt0 , zt1 , zt0 , ω

(1)) . . .

E
ω(i)∼W

(i)
t

[
p(xti |xti−1

, zti , zti−1
, ω(i))E

ω(i+1)∼W
(i+1)
t

[. . . ] . . .
]
.

(12)

It is worth noting that the value of xti is determined by zti and oti . With the distribution of Oti
depending on the value of oti−1 , and thus on zti−1 and xti−1 , after marginalizing over oti each
conditional likelihood term in Eq.(12) is conditioned on xti−1 , zti , and zti−1 . For simplicity we also
omit conditioning of each term on Wiener process trajectories up to ti−1, i.e., ω(1), ω(2), . . . , ω(i). In
preparation of our variational approximation we can now introduce one posterior SDE

dZ̃t = µϕi(Z̃t, t+ ti−1) dt+ σγ(Z̃t, t+ ti−1) dW (i)
t (13)

for each expectation E
ω(i)∼W

(i)
t

[
p(xti |xti−1

, zti , zti−1
, ω(i))E

ω(i+1)∼W
(i+1)
t

[. . . ] . . .
]

in Eq.(12).

Variational Lower Bound with Piecewise Importance Weighting. The posterior SDEs in Eq.(13)
form the basis for a variational approximation of the expectations in Eq.(12). Specifically, sampling
z̃ from the posterior SDE, the expectation can be rewritten as

E
ω(i)∼W

(i)
t

[
p(xti |xti−1

, z̃ti , zti−1
, ω(i))M (i)(ω(i))E

ω(i+1)∼W
(i+1)
t

[. . . ] . . .
]
, (14)

where M (i) = exp(−
∫ ti−ti−1

0
1
2 |u(Z̃s, s)|2 ds−

∫ ti−ti−1

0
u(Z̃s, s)

T dW (i)
s ) serves as importance

weight for the sampled trajectory between the prior latent SDE (Eq.(11)) and posterior latent SDE
(Eq.(13)), with u satisfying σγ(z, s+ ti−1)u(z, s) = µϕi

(z, s+ ti−1)− µγ(z, s+ ti−1). We can
define such a posterior latent SDE for each interval. As a result, a sample z̃ti can be obtained by
solving the posterior SDEs defined on the intervals up to ti given the initial value z̃t0 and sample
paths of Wiener processes up to ti, i.e., ω(1), ω(2), . . . , ω(i). After applying the importance weight to
each interval and Jensen’s inequality, we can derive the following evidence lower bound (ELBO) of
the log-likelihood:

L = logE
ω(1)∼W

(1)
t

[
p(xt1 |xt0 , z̃t1 , z̃t0 , ω

(1))M (1) . . .E
ω(i)∼W

(i)
t

[
p(xti |xti−1 , z̃ti , z̃ti−1 , ω

(i))M (i) . . .
]]

= logE
ω(1),...,ω(n)∼W

(1)
t ×···×W

(n)
t

[
n∏

i=1

p(xti |xti−1
, z̃ti , z̃ti−1

, ω(i))M (i)(ω(i))

]

⩾ E
ω(1),...,ω(n)∼W

(1)
t ×···×W

(n)
t

[
n∑

i=1

log p(xti |xti−1
, z̃ti , z̃ti−1

, ω(i)) +

n∑
i=1

logM (i)(ω(i))

]
.

(15)

The bound above can be further extended into a tighter bound in IWAE [5] form by drawing multiple
independent samples from each W

(i)
t . The variational parameter ϕi is the output of an encoder

RNN that takes as inputs the sequence of observations up to ti, {xt1 , . . . ,xti}, and the sequence
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of previously sampled latent states, {zt1 , . . . ,zti−1}. The parameter ϕi is thus updated based on
both the latest observation and past history. As a result, the variational posterior distributions of the
latent states Zti are no longer constrained to be Markov and the parameterization of the variational
posterior can flexibly adapt to different time grids. The dependency structure between latent and
observed variables during inference is depicted in Fig. 2b.

4 Related Work

The introduction of neural ODEs [7] unified modeling approaches based on differential equations and
modern machine learning. Explorations of time-series modeling leveraging this class of approach
have been conducted, which we review here.

The latent ODE model [7, 32] propagates a latent state across time using ordinary differential
equations. As a result, the entire latent trajectory is solely determined by its initial value. Even though
latent ODE models have continuous latent trajectories, the latent state is decoded into observations
at each time step independently. Neural controlled differential equations (CDEs) [20] and rough
differential equations (RDEs) [25] propagate a hidden state across time continuously using controlled
differential equations driven by functions of time interpolated from observations on irregular time
grids. Neural ODE Processes (NDPs) [26] construct a distribution over neural ODEs in order to
effectively manage uncertainty over the underlying process that generates the data.

Among existing time-series works with continuous dynamics, the latent SDE model [24] is most
similar to ours. The SDE model includes an adjoint sensitivity method for training SDEs; the
derivation of the variational lower bound in our proposed model is based on the same principle of
trajectory importance weighting between two stochastic differential equations. The posterior process
there is defined as a global stochastic differential equation. Our model further exploits the given
observation time grid of each sequence to induce a piecewise posterior process with richer structure.

The continuous-time flow process [11] (CTFP) models irregular time-series data as an incomplete
realization of continuous-time stochastic processes obtained by applying normalizing flows to the
Wiener process. We have discussed the limits of CTFP in Sec. 2.2. Because CTFP is a generative
model that is guaranteed to generate continuous trajectories, we use it as the decoder of a latent
process for better inductive bias in modeling continuous dynamics. Apart from CTFP, there are
also works outside the deep learning literature that apply invertible transformations to stochastic
processes [33, 34]. Warped Gaussian Processes [33] transform Gaussian processes to non-Gaussian
processes in observation space using monotonic functions. Copula Processes [34] extend the concept
of copulas from multivariate random variables to stochastic processes. They transform a stochastic
process via a series of marginal cumulative distribution functions to obtain another process while
preserving the underlying dependency structure.

Alternative training frameworks have also been explored for neural SDEs [18, 19]. Stochastic
differential equations can be learned as latent dynamics with a variational approximation [18].
Connections between generative adversarial network (GAN) objectives and neural SDEs have been
drawn [19]. Brownian motion inputs can be mapped to time-series outputs. Alongside a CDE-based
discriminator GAN-based training can be conducted to obtain continuous-time generative models.

5 Experiments

We compare our proposed architecture against several baseline models with continuous dynamics
that can be used to fit irregular time-series data, including CTFP, latent CTFP, latent SDE, and latent
ODE. We also run experiments with Variational RNN (VRNN) [9], a model that can be used to fit
sequential data. However, VRNN does not define a continuous dynamical model and cannot generate
trajectories with finite-dimensional distributions that are consistent with its log-likelihood estimation.
All implementation and training details can be found in the supplementary material.

5.1 Synthetic Data

We evaluate our model on synthetic data sampled from known stochastic processes to verify its ability
to capture a variety of continuous dynamics. We use the following processes:
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Table 1: Quantitative Evaluation (Synthetic Data). We show test negative log-likelihoods (NLLs) of four
synthetic stochastic processes across different models. Below each process, we indicate the intensity of the
Poisson process from which the time stamps for the test sequences were sampled for testing. [GBM: geometric
Brownian motion (ground truth NLLs: [λ = 2, λ = 20] = [0.388,−0.788]); LSDE: linear SDE; CAR:
continuous auto-regressive process; SLC: stochastic Lorenz curve]

Model GBM LSDE CAR SLC

λ = 2 λ = 20 λ = 2 λ = 20 λ = 2 λ = 20 λ = 20 λ = 40

VRNN [9] 0.425 -0.650 -0.634 -1.665 1.832 2.675 2.237 1.753

Latent ODE [32] 1.916 1.796 0.900 0.847 4.872 4.765 9.117 9.115
CTFP [11] 2.940 0.678 -0.471 -1.778 383.593 51.950 0.489 -0.586
Latent CTFP [11] 1.472 -0.158 -0.468 -1.784 249.839 43.007 1.419 -0.077
Latent SDE [24] 1.243 1.778 0.082 0.217 3.594 3.603 7.740 8.256
CLPF (ours) 0.444 -0.698 -0.831 -1.939 1.322 -0.077 -2.620 -3.963

Geometric Brownian Motion dXt = µXt dt + σXt dWt. Even though geometric Brownian
motion can theoretically be captured by the CTFP model, it would require the normalizing flow to be
non-Lipschitz; there is no such constraint for the proposed CLPF model.

Linear SDE dXt = (a(t)Xt + b(t)) dt + σ(t) dWt. The drift term of the SDE is a linear
transformation of Xt and the variance term is a deterministic function of time t. An application of
Itô’s lemma shows that the solution is a stochastic process that cannot be captured by CTFP.

Continuous AR(4) Process. This process tests our model’s ability to capture non-Markov processes
(see Appendix C for implementation details):

Xt = [d, 0, 0, 0]Yt,

dYt = AYt dt+ e dWt,
, where A =

 0 1 0 0
0 0 1 0
0 0 0 1
a1 a2 a3 a4

 . (16)

Stochastic Lorenz Curve. We evaluate our model’s performance on multi-dimensional (3D) data:

dXt = σ(Yt −Xt) dt+ αx dWt,

dYt = (Xt(ρ−Zt)− Yt) dt+ αy dWt,

dZt = (XtYt − βZt) dt+ αz dWt.

(17)

In all cases, we sample the observation time stamps from a homogeneous Poisson process with
intensity λ. To demonstrate our model’s ability to generalize to different time grids, we evaluate it
using different intensities λ. An approximate numerical solution to the SDEs is obtained using the
Euler-Maruyama scheme for the Itô integral.

Our results on synthetic data are displayed in Table 1. We train and evaluate all models on observations
of sample trajectories in the interval [0, 30] with observation time stamps sampled from a Poisson
process with intensity λ = 2, except for the stochastic Lorenz curve which is sampled in the interval
[0, 2]. The results demonstrate the proposed CLPF model’s favourable performance across the board.
In particular, our model outperforms both CTFP variants on all four synthetic datasets. We attribute
this competitive edge to the expressive power of a generic SDE over a static latent variable. The
CTFP models also perform relatively poorly on the Continuous AR(4) process, which is non-Markov.
As the Continuous AR(4) process has an underlying 4-dim. stochastic process Yt and is generated by
projecting Yt to a 1-dim. observation space Xt, models driven by a high-dimensional latent process
like latent SDE and CLPF show better performance in this case.

To evaluate our model’s performance in capturing continuous dynamics, we increase the (average)
density of observations and generate observation time stamps from a Poisson process with intensity
λ = 20 (λ = 40 for SLC). The results show that models that can generate continuous trajectories,
including CTFP, latent CTFP and CLPF, generalize better to dense observations than the other models.
In the first row of Fig. 3, we visualize sample sequences from CLPF and VRNN models trained on
LSDE data and compare them with samples from an LSDE ground truth process. We run both CLPF
and VRNN on a time grid between 0 and 30, with a gap of 0.01 between steps. Samples from the
CLPF models share important visual properties with samples from the ground truth process. On
the other hand, VRNN fails to generate sequences visually similar to the ground truth, despite its
competitive density estimation results on sparse time grids.
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Table 2: Likelihood Estimation (Real-World Data).
We show test negative log-likelihoods (NLLs; lower
is better). For CTFP, the reported values are exact;
for the other models, we report IWAE bounds using
K = 125 samples. CLPF-ANODE stands for a CLPF
model implemented with augmented neural ODEs.
CLPF-iRes stands for a CLPF model implemented
with indexed residual flows.

Model Mujoco [32] BAQD [35] PTBDB [4]

VRNN [9] -15.876 -1.204 -2.035

Latent ODE [32] 23.551 2.540 -0.533
Latent SDE [24] 3.071 1.512 -1.358
CTFP [11] -7.598 -0.170 -1.281
Latent CTFP [11] -12.693 -0.480 -1.659

CLPF-ANODE (ours) -14.694 -0.619 -1.575
CLPF-iRes (ours) -10.873 -0.486 -1.519

Table 3: Ablation Study (Synthetic Data). We show
test negative log-likelihoods across different variants
of the proposed model. We report IWAE bounds using
K = 125 samples with observation time stamps sam-
pled from a Poisson point process with λ = 2. [CLPF-
Global: single global posterior SDE in latent SDE
style [24]; CLPF-Independent: independent decoder
instead of CTFP-decoder; CLPF-Wiener: Wiener base
process instead of OU-process]

Model GBM LSDE CAR SLC

CLPF-Global 0.447 -0.821 1.552 -3.304
CLPF-Independent 0.800 -0.326 4.970 7.924
CLPF-Wiener 0.390 -0.790 1.041 -1.885

Latent SDE 1.243 0.082 3.594 7.740
CLPF 0.444 -0.831 1.322 -2.620

Table 4: Sequential Prediction (Real-World Data). We report the average L2 distance between prediction
results and ground truth observations in a sequential prediction setting. The prediction is based on the average of
125 samples. Results are reported in the format mean, [25th percentile, 75th percentile].

Model Mujoco [32] BAQD [35] PTBDB [4]

VRNN [9] 1.599, [0.196, 1.221] 0.519, [0.168, 0.681] 0.037, [0.005, 0.032]

Latent ODE [32] 13.959, [9.857, 15.673] 1.416, [0.936, 1.731] 0.224, [0.114, 0.322]
Latent SDE [24] 7.627, [2.384, 8.381] 0.848, [0.454, 1.042] 0.092, [0.032, 0.111]
CTFP [11] 1.969, [0.173, 1.826] 0.694, [0.202, 0.966] 0.055, [0.006, 0.046]
Latent CTFP [11] 1.983, [0.167, 1.744] 0.680, [0.189, 0.943] 0.065, [0.007, 0.059]

CLPF-ANODE (ours) 1.629, [0.149, 1.575] 0.542, [0.150, 0.726] 0.048, [0.005, 0.041]
CLPF-iRes (ours) 1.846, [0.177, 1.685] 0.582, [0.183, 0.805] 0.055, [0.006, 0.049]

5.2 Real-world Data

Many real-world systems, despite having continuous dynamics, are recorded via observations at
a fixed sampling rate. Mujoco-Hopper [32], Beijing Air-Quality Dataset (BAQD) [35] and PTB
Diagnostic Database (PTBDB) [4, 16] are examples of such datasets. We create training/testing data
at irregular times by drawing time stamps from a Poisson process and mapping them to the nearest
observed sample points (see Appendix D for details).

We demonstrate our model’s ability to fit this type of observation as a surrogate for its ability to capture
real-world continuous dynamics. Additionally, we also evaluate CLPF on a sequential prediction
task to illustrate its benefits in an online inference setting. The results for these experiments are
reported in Table 2 and Table 4. In the likelihood estimation task our model achieves competitive
performance with respect to other methods that generate continuous dynamics. We do observe low
negative log-likelihoods (NLLs) by VRNN on these data, though note that VRNN does not generate
true continuous dynamics. In the sequential prediction task CLPF outperforms the other baselines
with continuous dynamics; the performance gap between CLPF and VRNN is significantly reduced
compared to likelihood estimation.

In the second row of Fig. 3, we also visualize one dimension of sample sequences generated from
CLPF and VRNN models trained on a dense time grid of BAQD data (gap between steps: 0.01)
and compare with ground truth samples from the dataset. We can see that VRNN fails to generate
trajectories visually similar to samples from the ground truth data on a dense time grid, despite its
favourable NLL on a sparse and irregular time grid. The sampled trajectories tend to converge and
show little variance after running VRNN for a large number of iterations (1500 for t = 1.5). We also
observe that VRNN fails to generate trajectories with consistent visual properties when we sample
observations on different time grids (see supplementary material for more qualitative samples).

5.3 Ablation Study

We compare the proposed CLPF models against three variants that are obtained by making changes
to key components of CLPF. The results with these models are shown in Table 3. CLPF-Global is
a variant created by replacing our piecewise construction with a global posterior process similar to
latent SDE [24]. CLPF-Independent is a variant where the continuously indexed normalizing flows
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(a) CLPF
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(c) Ground Truth

Figure 3: Qualitative Samples on Dense Time Grid of CLPF and VRNN Models. We generate the sample
sequences from CLPF and VRNN trained with LSDE (first row) and BAQD (second row) data and compare the
samples generated from the model to samples from the ground truth process (LSDE) or training set (BAQD).

and CTFP-decoding are replaced with static distributions and independent decoders. CLPF-Wiener
is a variant that uses a Wiener process as the base process for the CTFP decoder.

CLPF-Global differs from CLPF in a manner similar to the difference between latent SDE and
CLPF-Independent. In both comparisons we can see modest improvements of performance when
we replace the posterior process defined by a single SDE with a piecewise constructed posterior.
Both the comparisons between CLPF and CLPF-Independent and between CLPF-Global and latent
SDE show that a CTFP-style decoding into continuous trajectories is indeed a better inductive bias
when modeling data with continuous dynamics. Although the comparison with CLPF-Wiener does
not show a clear trend, CLPF still delivers an overall better performance on the synthetic datasets.
Therefore we use the OU process as our base process in all CLPF experiments.

6 Discussion and Conclusion

Limits. While being more expressive than the CTFP model, the proposed CLPF model is not capable
of exact likelihood evaluation and relies on variational approximations for estimation and optimization.
The CLPF model can also comprise up to two differential equations that need to be numerically
solved, potentially incurring higher computational cost. Fortunately, this computational cost can be
controlled via additional parameters: (1) The approximation error of numerical ODE/SDE solutions
can be controlled through the tolerance parameters of numerical solvers and the inversion error of
residual flows can be controlled through the number of fixed-point iterations. [3]; (2) The tightness of
the IWAE bound for likelihood estimation can be controlled through the number of latent samples.

Broader Impact. As an expressive generative model for continuous time-series, we believe CLPF
can be used to model continuous dynamics from partial observations in a wide range of areas,
including physics, healthcare, and finance. Furthermore, it can potentially be leveraged in a variety
of downstream tasks, including data generation, forecasting, and interpolation. However, care must
be taken that CLPF models are not used for adverse inference on restricted data. Protection of
critical unobserved information is an active area of research [1] that can be explored as an orthogonal
component in future versions of our model.

Conclusion. We have presented Continuous Latent Process Flows (CLPF), a generative model of
continuous dynamics that enables inference on arbitrary real time grids, a complex operation for which
we have also introduced a powerful piecewise variational approximation. Our architecture is built
around the representation power of a flexible stochastic differential equation driving a continuously
indexed normalizing flow. An ablation study as well as a comparison to state-of-the-art baselines
for continuous dynamics have demonstrated the effectiveness of our contributions on both synthetic
and real-world datasets. A set of qualitative results support our findings. In the future, we plan to
explore the theoretical properties of our model in more detail, including an analysis of its universal
approximation properties and its ability to capture non-stationary dynamics.

10



References
[1] Martin Abadi, Andy Chu, Ian Goodfellow, H Brendan McMahan, Ilya Mironov, Kunal Talwar, and

Li Zhang. Deep Learning with Differential Privacy. Proceedings of the 2016 ACM SIGSAC Conference on
Computer and Communications Security, 2016.

[2] Cedric Archambeau, Dan Cornford, Manfred Opper, and John Shawe-Taylor. Gaussian Process Ap-
proximations of Stochastic Differential Equations. Proceedings of Machine Learning Research (PMLR),
2007.

[3] Jens Behrmann, Will Grathwohl, Ricky T. Q. Chen, David Duvenaud, and Joern-Henrik Jacobsen. Invertible
Residual Networks. International Conference on Machine Learning (ICML), 2019.

[4] R Bousseljot, D Kreiseler, and A Schnabel. Nutzung der EKG-Signaldatenbank CARDIODAT der PTB
über das Internet. Biomedizinische Technik/Biomedical Engineering, 1995.

[5] Yuri Burda, Roger Grosse, and Ruslan Salakhutdinov. Importance Weighted Autoencoders. International
Conference on Learning Representations (ICLR), 2016.

[6] Anthony Caterini, Rob Cornish, Dino Sejdinovic, and Arnaud Doucet. Variational Inference with
Continuously-Indexed Normalizing Flows. arXiv:2007.05426, 2020.

[7] Ricky T. Q. Chen, Yulia Rubanova, Jesse Bettencourt, and David Duvenaud. Neural Ordinary Differential
Equations. Advances in Neural Information Processing Systems (NeurIPS), 2018.

[8] Ricky T. Q. Chen, Jens Behrmann, David Duvenaud, and Jörn-Henrik Jacobsen. Residual Flows for
Invertible Generative Modeling. Advances in Neural Information Processing Systems (NeurIPS), 2019.

[9] Junyoung Chung, Kyle Kastner, Laurent Dinh, Kratarth Goel, Aaron C Courville, and Yoshua Bengio. A
Recurrent Latent Variable Model for Sequential Data. Advances in Neural Information Processing Systems
(NeurIPS), 2015.

[10] Rob Cornish, Anthony Caterini, George Deligiannidis, and Arnaud Doucet. Relaxing Bijectivity Constraints
with Continuously Indexed Normalising Flows. International Conference on Machine Learning (ICML),
2020.

[11] Ruizhi Deng, Bo Chang, Marcus A Brubaker, Greg Mori, and Andreas Lehrmann. Modeling Continuous
Stochastic Processes with Dynamic Normalizing Flows. Advances in Neural Information Processing
Systems (NeurIPS), 2020.

[12] Laurent Dinh, David Krueger, and Yoshua Bengio. NICE: Non-linear Independent Components Estimation.
International Conference on Learning Representations (ICLR), 2015.

[13] Laurent Dinh, Jascha Sohl-Dickstein, and Samy Bengio. Density Estimation using Real NVP. International
Conference on Learning Representations (ICLR), 2017.

[14] Emilien Dupont, Arnaud Doucet, and Yee Whye Teh. Augmented Neural ODEs. Advances in Neural
Information Processing Systems (NeurIPS), 2019.

[15] Ramazan Gençay, Michel Dacorogna, Ulrich A Muller, Olivier Pictet, and Richard Olsen. An Introduction
to High-frequency Finance. Elsevier, 2001.

[16] Ary L Goldberger, Luis AN Amaral, Leon Glass, Jeffrey M Hausdorff, Plamen Ch Ivanov, Roger G Mark,
Joseph E Mietus, George B Moody, Chung-Kang Peng, and H Eugene Stanley. PhysioBank, PhysioToolkit,
and PhysioNet: Components of a New Research Resource for Complex Physiologic Signals. Circulation,
2000.

[17] Will Grathwohl, Ricky T. Q. Chen, Jesse Bettencourt, and David Duvenaud. Scalable Reversible Generative
Models with Free-form Continuous Dynamics. International Conference on Learning Representations
(ICLR), 2019.

[18] Ali Hasan, João M Pereira, Sina Farsiu, and Vahid Tarokh. Identifying Latent Stochastic Differential
Equations with Variational Auto-Encoders. arXiv:2007.06075, 2020.

[19] Patrick Kidger, James Foster, Xuechen Li, Harald Oberhauser, and Terry Lyons. Neural SDEs as Infinite-
dimensional GANs. International Conference on Machine Learning (ICML), 2021.

[20] Patrick Kidger, James Morrill, James Foster, and Terry Lyons. Neural Controlled Differential Equations
for Irregular Time Series. Advances in Neural Information Processing Systems (NeurIPS), 2021.

[21] Durk P Kingma and Prafulla Dhariwal. Glow: Generative Flow with Invertible 1x1 convolutions. Advances
in Neural Information Processing Systems (NeurIPS), 2018.

[22] Durk P Kingma, Tim Salimans, Rafal Jozefowicz, Xi Chen, Ilya Sutskever, and Max Welling. Improved
Variational Inference with Inverse Autoregressive Flow. Advances in Neural Information Processing
Systems (NeurIPS), 2016.

[23] Ivan Kobyzev, Simon Prince, and Marcus A Brubaker. Normalizing Flows: Introduction and Ideas.
arXiv:1908.09257, 2019.

11



[24] Xuechen Li, Ting-Kam Leonard Wong, Ricky T. Q. Chen, and David Duvenaud. Scalable Gradients
for Stochastic Differential Equations. International Conference on Artificial Intelligence and Statistics
(AISTATS), 2020.

[25] James Morrill, Cristopher Salvi, Patrick Kidger, James Foster, and Terry Lyons. Neural Rough Differential
Equations for Long Time Series. International Conference on Machine Learning (ICML), 2021.

[26] Alexander Norcliffe, Cristian Bodnar, Ben Day, Jacob Moss, and Pietro Lio. Neural ODE Processes.
International Conference on Learning Representations (ICLR), 2021.

[27] Bernt Oksendal. Stochastic Differential Equations: An Introduction with Applications. Springer Science &
Business Media, 2013.

[28] George Papamakarios, Theo Pavlakou, and Iain Murray. Masked Autoregressive Flow for Density
Estimation. Advances in Neural Information Processing Systems (NeurIPS), 2017.

[29] George Papamakarios, Eric Nalisnick, Danilo Jimenez Rezende, Shakir Mohamed, and Balaji Lakshmi-
narayanan. Normalizing Flows for Probabilistic Modeling and Inference. Journal of Machine Learning
Research (JMLR), 2021.

[30] Kira Rehfeld, Norbert Marwan, Jobst Heitzig, and Jürgen Kurths. Comparison of Correlation Analysis
Techniques for Irregularly Sampled Time Series. Nonlinear Processes in Geophysics, 2011.

[31] Danilo Rezende and Shakir Mohamed. Variational Inference with Normalizing Flows. International
Conference on Machine Learning (ICML), 2015.

[32] Yulia Rubanova, Ricky T. Q. Chen, and David Duvenaud. Latent Ordinary Differential Equations for
Irregularly-Sampled Time Series. Advances in Neural Information Processing Systems (NeurIPS), 2019.

[33] Edward Snelson, Carl Edward Rasmussen, and Zoubin Ghahramani. Warped Gaussian Processes. Advances
in Neural Information Processing Systems (NeurIPS), 2004.

[34] Andrew G Wilson and Zoubin Ghahramani. Copula Processes. Advances in Neural Information Processing
Systems (NeurIPS), 2010.

[35] Shuyi Zhang, Bin Guo, Anlan Dong, Jing He, Ziping Xu, and Song Xi Chen. Cautionary Tales on
Air Quality Improvement in Beijing. Proceedings of the Royal Society A: Mathematical, Physical and
Engineering Sciences, 2017.

[36] Gilles Zumbach and Ulrich Müller. Operators on Inhomogeneous Time Series. International Journal of
Theoretical and Applied Finance, 2001.

12


	Introduction
	Preliminaries
	Stochastic Differential Equations
	Normalizing Flows

	Model
	Continuous Latent Process Flows
	Training and Inference

	Related Work
	Experiments
	Synthetic Data
	Real-world Data
	Ablation Study

	Discussion and Conclusion

