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1 Introduction
Multiple-choice question answering (MCQA) remains a
dominant paradigm for evaluating LLMs because it en-
ables straightforward automatic grading and has historically
correlated with downstream utility. Yet modern “reason-
ing” models can leverage information in the answer options
themselves, risking overestimation of true problem-solving
ability when reasoning is permitted after exposure to op-
tions. We study when MCQA is a reliable proxy and when
it inflates reported skill via test exploitation.

We conduct a systematic evaluation across 15 benchmarks
spanning both MCQA and free-text QA (FTQA) and 27
LLMs ranging from small open-source models to state-of-
the-art systems. For each model–benchmark pair, we vary
whether and when the model sees the multiple-choice op-
tions and whether chain-of-thought (CoT) is allowed be-
fore or after options. We also study a “None-of-the-above”
(NOTA) condition that sometimes replaces the correct op-
tion with “No other option is correct.”

Our primary finding is simple: MCQA is a good proxy
only when CoT precedes options (Q-CoT). Allowing rea-
soning after options (e.g., QMC-CoT or MC-CoT) yields
substantial gains that do not transfer to FTQA, indicat-
ing option-based exploitation rather than genuine capability.
Conversely, when we decouple reasoning from selection—
e.g., reason on the question first, then select (Q-CoT →
MC)—scores better reflect underlying competence.

We define exploitation as the accuracy gain when options
are visible versus hidden, and we find three consistent pat-
terns. (i) reasoning models are stronger test exploiters (size
alone is not predictive). (ii) harder distractors do not elimi-
nate exploitation: on MMLU-Pro, LLMs still score well above
chance even when asked to answer given only the options
and for some models, their performance is even higher than
on MMLU. (iii) Introducing NOTA lowers exploitation, and
LLMs are frequently correct when selecting NOTA, indi-
cating the drop is not driven by indiscriminate NOTA over-
selection.

Contributions. (1) An empirical demonstration that
whether and when the LLM sees options governs MCQA
reliability; (2) a decoupled protocol that separates reasoning
from selection without changing question content; and (3)
practical guidance for reporting MCQA alongside FTQA.

2 Benchmarks
We evaluated LLMs on 15 benchmarks spanning diverse do-
mains and question formats. Except where indicated oth-
erwise, each benchmark consists entirely of four-option
multiple-choice questions.

MCQA Benchmarks We evaluate on MMLU and MMLU-Pro
(Hendrycks et al. 2020; Wang et al. 2024). We also use
the Open-LLM suite spanning standard MCQA datasets (e.g.,
ARC, WinoGrande, PIQA, CommonsenseQA, RACE, MedMCQA,
OpenBookQA) (Myrzakhan, Bsharat, and Shen 2024), and
GPQA Diamond, the hardest split of GPQA with graduate-
level science questions (Rein et al. 2023).

FTQA Benchmarks For FTQA we use GSM8K (grade-
school math), MATH (competition math), PythonIO
(program-output prediction from HumanEval and MBPP),
and STEER-ME (economics questions) (Cobbe et al. 2021;
Hendrycks et al. 2021; Chen et al. 2021; Austin et al. 2021;
Zhang et al. 2024; Raman et al. 2025).

2.1 Question Format Conversion
We aim to examine how format alone affects performance;
this section describes how we converted the MCQA bench-
marks listed above to FTQA and vice versa.

MCQA → FTQA: We start with the datasets within
Open-LLM. The dataset suite was constructed by filtering out
questions from multiple datasets, which were not suitable
for open-style answering. The filtering process they used
kept many MCQA questions that would not be viable FTQA
questions. So we employed two subsequent filtering proce-
dures: (1) Removed all questions that contained text that ex-
plicitly or implicitly mentioned the options in the stem (e.g.,
‘Which of the following’, ‘What can be concluded from the
passage’) via substring search, and (2) Removed all stems
that did not end with a period or question mark (e.g., ‘While
training the rats, the trainers have to be’). After this filter-
ing process, 62.81% of the total dataset remained of both
MCQA/FTQA questions. For more details and a breakdown
for each dataset, see Figure 4 in the appendix. Note that
this likely omitted convertible MCQA questions. We did the
same two-step filtering for MMLU-Pro, reducing the original
test set of 12,032 questions to 7,130 questions.



(a) Pass@1 accuracy of each LLM over QMC-CoT (dark) and Q-CoT (light). LLMs are sorted by pa-
rameter count. Beneath every Q-CoT bar, we plot the boost in accuracy Q-CoT would have gotten with
random guessing denoted Q-CoT+k.

(b) Exploitation by each LLM.

Figure 1: Reasoning models in red, non-reasoning in blue

FTQA → MCQA: For most of the datasets (all but
STEER-ME) that were originally instantiated in FTQA as
listed in Section 2, we used the MCQA versions created by
Zhang et al. (2024). These datasets were constructed by col-
lecting answers and incorrect predictions on GSM8K, MATH,
HumanEval and MBPP from 60 open-source models. Finally,
STEER-ME includes programmatically generated multiple-
choice options as part of the benchmark.

We do a final filtering pass, running our grading function
over the correct answers to check whether they can be con-
verted into a grade-able format. We call questions that pass
this filtering step CoT-extractable.

3 Methodology
Our goal is to quantify how much of an LLM’s MCQA per-
formance reflects genuine problem solving versus option ex-
ploitation. We specify how questions and options are shown
and then define one- and two-stage evaluation configurations
that control when reasoning happens relative to options.

3.1 Evaluation Formats
Question formats. We use four inputs: MC (options
only), MCNA (MC with NOTA), QMC (question + options),
and QMCNA (QMC with NOTA). For NOTA, in a 1/k frac-
tion of questions we replace the correct option with NOTA;
otherwise we replace a random incorrect option.

Response formats. We consider two response modes:
CoT (chain-of-thought before the final choice) and 1T
(single-token answer with no intermediate reasoning). Rea-
soning models (e.g., o-series, R1) always produce CoT; non-
reasoning models can be prompted to output 1T or CoT.

3.2 Evaluation Configurations
A configuration is an (input, response) pair. One-stage con-
figurations expose all information at once; two-stage con-

ID Input Response R NR

MC-CoT MC CoT ✁ ✁
MCNA-CoT MCNA CoT ✁ ✁
Q-CoT Q CoT ✁ ✁
QMC-CoT Q + MC CoT ✁ ✁
QMCNA-CoT Q + MCNA CoT ✁ ✁
Q-CoT-MC-1T Q → MC 1T ✂ ✁
Q-CoT-MCNA-1T Q → MCNA 1T ✂ ✁
Q-CoT-MC-CoT Q → MC CoT ✁ ✂
Q-CoT-MCNA-CoT Q → MCNA CoT ✁ ✂

Table 1: Evaluation configurations by input, response, and
model support (R for reasoning and NR for non-reasoning).
Two-stage rows first elicit Q-CoT then reveal options.

figurations first elicit reasoning on the question alone, then
show options for selection. The key design lever is timing:
whether reasoning occurs without options (Q-CoT) or after

seeing options (QMC-CoT).

One-stage. We use five one-stage configuration (the top
five configurations in Table 1). These isolate (i) pure option-
only signals, (ii) question-only reasoning, and (iii) reasoning
after option exposure.

Two-stage. Two-stage configurations first run Q-CoT to
obtain a reasoning trace, then reveal options for selection.
These decouple reasoning (on the question) from selection
(over options), letting us assess exploitation while keeping
question content fixed.

Two-stage configurations still re-expose options to the
same model that produced the initial trace. Thus, reasoning
models can exploit at selection time, so two-stage scores are
best viewed as diagnostics of option sensitivity rather than
“pure” reasoning measures. Still, we include Q-CoT-MCNA-
CoT because NOTA hides the correct option 1/k of the time.



4 Results
Figure 1a reports each LLM’s pass@1 accuracy under the
QMC-CoT format and the Q-CoT formats. A clear trend
emerges: The largest models—and the most performant—
exhibit the largest positive gaps between QMC-CoT and Q-
CoT (see Figure 1b). All models above roughly 50B param-
eters scored 30 to 40 percentage points higher when choices
are given before CoT, with the difference being even larger
for reasoning models. One might expect that a sufficient ra-
tionale for this gap is due to selecting the closest-answer
to the one arrived in the CoT. However, this heuristic was
not very common, especially among reasoning models. We
observed this behavior ↑23% of the time when a reason-
ing model was correct in QMC-CoT and wrong in Q-CoT
(see Table 3 for a breakdown for each model). Furthermore,
even when we boosted Q-CoT’s performance with the benefit
of random guessing, denoted Q-CoT+k, nearly every model
outperformed on QMC-CoT.1

Figure 1b ranks models by their ability to exploit, this is
the excess accuracy a model achieves given access to the
options. We define it as follows, for each question with k
options, let AMC be the model’s QMC-CoT accuracy, AFT

its Q-CoT accuracy, and 1/k the random-guess baseline: E =(
AMC ↓ 1

k

)
↓AFT ·

(
k→1
k

)
. Note that reasoning models are,

in general, better test exploiters.Interestingly, parameter size
is not correlated with exploitation among reasoning models.
In fact, other than DeepSeek R1 (7B), the most exploitative
reasoning models have fewer than 32B parameters, and the
top 3 are smaller than 14B. In part, this is due to satura-
tion of the QMC-CoT format; nearly all reasoning models
attain greater than 90% accuracy on QMC-CoT so the per-
formance gains by the bigger reasoning models appear in the
Q-CoT format. This is especially true for o3, where achiev-
ing 77.34% on Q-CoT makes it hard to diagnose how ex-
ploitative it can be. And in part, this is due to DeepSeek R1
(70B) having lower accuracy on both QMC-CoT and Q-CoT
than the top reasoning models, suggesting that Qwen mod-
els constitute a better base for RL fine-tuning than Llama,
matching recent results by Shao et al. (2025).

4.1 Evidence of Exploitation
We take a closer look at what information signals models
are using to exploit. We start by analyzing the performance
of all models on MC-CoT to quantify how much exploitation
is coming from reasoning over the options alone. We then
quantify the residual exploitation that arises from leveraging
extra information in the question by comparing LLM perfor-
mance on QMC-CoT and Q-CoT-MC-1T.

MC-only Exploitation Figure 5 quantifies the ability of
each LLM to exploit information in the options to beat ran-
dom guessing, plotting the accuracy above random guess-
ing for each model on MC-CoT. While most models perform
better than random guessing, the reasoning model with the
lowest MC-CoT performance is higher than the highest non-
reasoning model’s performance. Among reasoning models,
we observed that the Qwen3 models are the best MC-only

1For 4 options, Q-CoT+k = score(Q-CoT) ↑0.75 + 0.25.

exploiters, with Qwen3 (32B) obtaining 13 points above
random guessing. In Figure 6, we break down the perfor-
mance above random guessing each model obtains for each
dataset. In general, the most exploitable datasets were the
ones that were initially instantiated as MCQA. In fact, ARC,
HellaSwag, and PIQA were the datasets most susceptible to
MC-only exploitation, with every model attaining a statisti-
cally significant accuracy above random guessing, and with
all but one reasoning model obtaining higher than 80% ac-
curacy on PIQA.

QMC-based Exploitation We then analyzed the residual
exploitation that occurs when LLMs are given the question
text along with the options. Here, we ran LLMs on our two-
stage configurations; if an LLM’s performance on Q-CoT-
MC-1T (Q-CoT-MC-CoT for reasoning models) is worse than
on QMC-CoT—corrected by their MC-only exploitation—
that would be evidence of QMC-based exploiting behav-
ior. We correct for MC-only exploitation by subtracting a
model’s QMC-CoT performance by their MC-CoT perfor-
mance, and their Q-CoT-MC-1T performance by random
guessing. To account for any drop in performance due to
mapping issues, we super-scored Q-CoT-MC-1T with Q-
CoT: if a model was correct on a question on either format
then they were deemed correct. Therefore, we define QMC-
based exploitation as: EQMC = (AQMC-CoT ↓ AMC-CoT) ↓
(AS ↓ 1/k), where AS is the super-scored accuracy.

Figure 2: The MC normalized accuracy of non-reasoning
models (Qwen3 models) on QMC-CoT in dark blue (dark
red) and non-reasoning models (Qwen3 thinking mode off
in the second step) super-scored on Q-CoT and Q-CoT-MC-
1T in light blue (light red). LLMs are sorted by EQMC.

Perhaps unsurprisingly, reasoning models performed bet-
ter on super-scored Q-CoT-MC-CoT than QMC-CoT. How-
ever, Qwen3 models have the functionality to switch off
their reasoning capabilities, allowing us to evaluate them
on Q-CoT-MC-1T and compare them with non-reasoning
models. Figure 2 plots the MC-normalized accuracy for
non-reasoning and Qwen models sorted by EQMC. We see
widespread evidence of QMC-based exploitation. In fact, all
but one LLM exhibited positive EQMC. Furthermore, Qwen
models exhibited a greater prevalence of QMC-based ex-



ploitation, with larger EQMC than any non-reasoning model.

4.2 Effect of Option Design on Exploitability
Given that LLMs can do better than random guessing just by
looking at the options, we asked how specific option sets per-
mit exploitation. We first revisited our MC-only and QMC-
based probes to quantify the importance of the presence of
the correct answer. Then we compared MMLU to MMLU-Pro to
assess the efficacy of “harder” distractors on exploitability.

Effect of NOTA Under MCNA-CoT, the performance
above random guessing decreased significantly (see Figure 7
and Figure 8 in the appendix). While ARC, HellaSwag, and
PIQA remained highly exploitable datasets, performance on
other datasets more closely matched random guessing. As
a result, this reduced reasoning models’ advantage, where
on MC-CoT reasoning models scored 12.63% higher than
non-reasoning models but on MCNA-CoT, reasoning mod-
els only scored 5.29% higher than non-reasoning mod-
els. In part, this is due to higher NOTA selection rates for
reasoning models. On average, reasoning models selected
NOTA 55.82% of the time as compared to 30.05% by
non-reasoning models (the true rate is 25%). Inspecting the
CoT’s, it seems that reasoning models more often considered
the MCNA-CoT setting to be a trick question, and NOTA a
common answer to trick questions.

We then examined how NOTA affects QMC-based ex-
ploitation. We previously observed that Q-CoT-MC-CoT
allows reasoning models to refine their answers by re-
examining the options, we observed that Q-CoT-MCNA-CoT
can disrupt this second-pass shortcut (see Figure 9). Most
models exhibited at least some downward shift; suggesting
that while these LLMs achieve high accuracy when they can
reason over the full option set, their performance drops by 2
to 15 percentage points without the correct answer.

Given the behavior in MCNA-CoT, we test whether per-
formance drops are because NOTA is an attractive distractor
or because the correct answer is important for QMC-based
exploitation. We treat NOTA selection as a binary classifi-
cation task and report precision and recall for both classes
(Table 5). For questions where NOTA replaces the true an-
swer, DeepSeek R1 (70B) attains precision of 0.85 and recall
of 0.58. For questions where NOTA is not the right answer,
precision is 0.78 and recall is 0.94, indicating it rarely over-
selects NOTA when a correct option exists. Taken together,
these results suggest that the model is not unduly drawn to
NOTA as a salient choice; rather, it applies NOTA selec-
tively when its reasoning trace does not map to another valid
option. This pattern follows for most reasoning models.

Effect of Harder Options We next examined whether
making the option set “harder” (and larger) reduces MC-
only exploitation. MMLU and MMLU-Pro offer a natural testbed
for this question. For each dataset, we compute a normalized
exploitation: (k↔AMC-CoT↓1)/(k↓1), so that 0 means ran-
dom guessing and 1 means perfect accuracy from the options
alone. This puts MMLU (k = 4) and MMLU-Pro (k = 10) on a
common scale independent of the number of options.

Two patterns stand out from Figure 3: (1) For nearly all
non-reasoning models, while MMLU-Pro is strictly harder to

exploit than MMLU, the option sets leak enough signal to beat
random guessing—with values in the 5 to 10% range. Curi-
ously, the two Mistral models are the only models (including
reasoning models) that are able to exploit MMLU-Pro more

than MMLU, suggesting that increasing k and swapping in
“harder” distractors does not uniformly suppress MC-only
exploitation. (2) For reasoning models, while MMLU-Pro is
often harder to exploit than MMLU, they are able to exploit
MMLU-Pro more easily than non-reasoning models exploit
MMLU. Together, these results suggest that as models get bet-
ter at reasoning, they are better able to exploit the informa-
tion in the option set and avoid “hard” distractors.

Figure 3: The normalized MC-only exploitation of all mod-
els on MMLU and MMLU-Pro. Reasoning models are hatched.

5 Conclusions
Although LLMs are achieving higher benchmark perfor-
mances than ever, some of the improvement comes from ex-
ploiting the options. Our investigation reveals three lessons
for the design and interpretation of LLM evaluations: (1) De-
coupling is essential. By separating CoT from selection—
via Q-CoT-MC-1T and, to some extent, Q-CoT-MCNA-
CoT—we can expose latent reasoning ability and distin-
guish first-principles reasoning from test exploitation. More-
over, reasoning and selection should be reported separately.
(2) Since MCQA is likely here to stay, design for option-
independent correctness: write stems that do not reference
the options and either define a canonical free-form answer
or score via post-hoc mapping. (3) Relying solely on more
challenging distractors as an antidote to exploitation is in-
sufficient; while they may increase difficulty, they do not re-
liably mitigate test exploitation and must be used sparingly.

Ultimately, all we can observe is what we measure. With-
out careful design, high test performance may reflect profi-
ciency in exploiting the test rather than true competence. As
LLMs continue to improve and are used in the real-world,
it becomes increasingly important to align what we measure
with what we value.
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