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Figure 1: Multi-level Visual grounding in 3D Scenes: area, space, object, and part. Examples
illustrate visual grounding of daily life expressions, from functional areas for collaborative study, to
placing a cup on a nightstand in unoccupied space, referring to an object via its spatial distance from
the armchair, or moving part of an object such as pulling out a drawer from a cabinet.

Abstract

3D visual grounding has made notable progress in localizing objects within com-
plex 3D scenes. However, grounding referring expressions beyond objects in 3D
scenes remains unexplored. In this paper, we introduce Anywhere3D-Bench, a
holistic 3D visual grounding benchmark consisting of 2,886 referring expression-
3D bounding box pairs spanning four different grounding levels: human-activity
areas, unoccupied space beyond objects, individual objects in the scene, and
fine-grained object parts. We assess a range of state-of-the-art 3D visual ground-
ing methods alongside large language models (LLMs) and multimodal LLMs
(MLLMs) on Anywhere3D-Bench. Experimental results reveal that space-level and
part-level visual grounding pose the greatest challenges: space-level tasks require
a more comprehensive spatial reasoning ability, for example, modeling distances
and spatial relations within 3D space, while part-level tasks demand fine-grained
perception of object composition. Even the best performance model, OpenAl 04-
mini, achieves only 23.00% accuracy on space-level tasks and 31.46% on part-level
tasks, significantly lower than its performance on area-level and object-level tasks.
These findings underscore a critical gap in current models’ capacity to understand
and reason about 3D scenes beyond object-level semantics.
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1 Introduction

When instructed to place a floor lamp next to an armchair, humans can visually ground it in the
scene, estimating its base diameter and height, imagining its precise alignment with the armchair, and
judging whether it fits naturally within the 3D environment. Humans can naturally perceive, reason
about, and localize expressions to “anywhere” in 3D scenes. Yet can today’s 3D vision-language
models ground free-form referring expressions to precise positions and dimensions in a 3D scene,
especially when those expressions refer to regions beyond objects?

Existing 3D visual grounding models, pretrained on large 3D scene datasets, excel at aligning
expressions to objects in a scene [7, 158 2163, 161, [26]. However, these models remain constrained
to object-level alignment, with limited attention paid to the broader spatial regions beyond objects.
Meanwhile, with the rapid development of Multimodal Large Language Models (MLLMs), an
increasing number of studies have begun to explore their ability to perceive and reason about spatial
intelligence from 2D images or videos [13} 16l 51} 451 54, [17, [18} 166]. However, their ability to
predict the positions and sizes of 3D bounding boxes corresponding to free-form referring expressions
anywhere in 3D space, including both objects and regions beyond object boundaries, remains largely
unexplored.

To bridge this gap, we introduce Anywhere3D-Bench, a holistic benchmark with 2,886 referring
expression-3D bounding box pairs, categorized into four visual grounding levels: area, space, object,
and part, as illustrated in To the best of our knowledge, we are the first to propose a 3D
visual grounding benchmark that spans four hierarchical levels of grounding granularity, particularly
on aligning expressions with 3D locations and sizes at space level. More diverse and illustrative
examples can be found in At each level, we design distinct types of referring expressions to
evaluate models’ abilities to perceive and reason about various aspects of 3D scene.

We conduct experiments on three categories of models on Anywhere3D-Bench: (1) LLMs with textual
inputs , (2) MLLMs with both visual and textual inputs, and (3) 3D visual grounding specialist models.
Evaluation results reveal that current models perform poorly on our benchmark, particularly on space-
level and part-level tasks. Space-level tasks require modeling spatial relationships and distances
in unoccupied space beyond individual objects, while part-level tasks demand first identifying
the relevant object and then reasoning over its fine-grained structure to predict the appropriate
bounding box size and position. Among all models, o4-mini—a strong MLLM with visual reasoning
capabilities—achieves the best performance, yet still records only 23.00% accuracy on space-level
and 31.46% on part-level tasks. These results are significantly lower than its performance on the
object-level (55.82%) and area-level (76.19%) tasks.

With visual inputs from video frames of the scene as well as bird’s-eye view image, MLLMs
outperform their non-visual LLM counterparts, particularly on object-level and part-level tasks, where
detailed visual cues, such as object appearance and structure, can be leveraged. In contrast, gains
at the space level are limited, suggesting that spatial relational reasoning in 3D space remains a
significant bottleneck for MLLMs. Notably, LLMs and MLLMs generally outperform 3D visual
grounding specialist models, especially on space-level tasks. This advantage can be attributed to
their pretraining on large-scale image-text datasets, which endows them with stronger perceptual and
understanding capabilities. Furthermore, their exposure to real-world knowledge enables a degree of
commonsense reasoning, allowing them to infer 3D locations even beyond objects in the scene.

At the object level, our benchmark specifically assesses models’ ability to understand quantitative
object sizes and inter-object distances, which are rarely emphasized in previous 3D visual grounding
benchmarks. The best-performing 3D visual grounding model, Chat-Scene [24], achieves only
31.73% accuracy on the object-level task, substantially lower than the over 50% accuracy reported on
benchmarks such as ScanRefer [7]], highlighting current 3D visual grounding models’ limitations in
reasoning about precise object dimensions and spatial distance.

To improve models’ performance on the two most challenging grounding levels: space-level and
part-level, we introduce the following input enhancements as initial attempts: (1) incorporate global
coordinate information and object orientation to support a better understanding of spatial relationships,
(2) select key video frames that convey critical visual cues aligned with the referring expression.
While these enhancements lead to performance improvements on both space-level and part-level tasks,
the gap with human performance remains substantial, highlighting that multi-level visual grounding
demands more comprehensive perceptual and reasoning capabilities than current models possess.
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Figure 2: Multi-level visual grounding ( s s s ) with distinct expression types.
Emphasized segments highlight phrases aligned with their respective expression type.

To summarize, our contributions are as follows:

* We introduce Anywhere3D-Bench, the first benchmark for multi-level 3D visual grounding that
extends beyond the object level to cover four grounding levels in 3D scenes: area, space, object,
and part.

* Experiments on Anywhere3D-Bench reveal that space-level and part-level visual grounding are the
most challenging tasks. Even the best-performing model, 04-mini, with visual reasoning ability,
struggles with these two tasks. Furthermore, compared to MLLMSs, 3D visual grounding specialist
models exhibit limited performance and poor generalization to space-level tasks.

* Additional spatial and visual cues boost performance on the two most challenging tasks: space-level
and part-level. However, a significant gap still remains compared to human performance.

2 Anywhere3D Benchmark

Table 1: Comparison of Anywhere3D with existing visual grounding benchmarks (test splits).
Anywhere3D expands grounding level to area, space, object, and part.

Benchmark Area Space Object Part Test Source Quality Check # Scene  # Expression
ScanRefer |7} X X v X Human v 97 5,410
Nr3D [1] X v X Human v 130 7,805
Sr3D [1] X X v X Template v 255 17,726
MMScan [35] v X 4 X GPT-4 v 702 19,696
SceneFun3D [15] X X X v Human & Rephrasing v 85 1,265
ScanReason [63] X X v X GPT-4 v - 1,474
Anywhere3D (ours) v v v v GPT-4 v 276 2,886

As presented in we introduce Anywhere3D-Bench, which consists of 2,886 referring
expression-3D bounding box pairs derived from 276 scenes from the validation sets of ScanNet [[14],
MultiScan [37], 3RScan [44], and ARKitScenes [4]. Inspired by how people refer to 3D scenes in
everyday scenarios, we design four levels of grounding granularity and generate referring expressions
specifically tailored to each level: Area Level (189), Space Level (1,209), Object Level (954), and
Part Level (534). At each level, we design distinct types of referring expressions aiming at evaluating
the models’ comprehensive capabilities, as further elaborated in the following section.

2.1 Multi-level Visual Grounding

We present the data distribution of Anywhere3D-Bench in along with the representative
examples of different types of referring expressions for each level. For detailed benchmark data

analysis, please refer to Appendix
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Figure 3: Data generation pipeline of Anywhere3D-Bench. We design specific prompts for different
types of expression in four grounding levels. Human annotators are required to annotate the 3D
bounding box and refine the GPT-generated expression until they precisely match.

armchair, keeping 1 meter away from it.

Area Level Expressions belonging to the area level typically describe an indoor Activity, which
requires the model to infer the related functional area composed of multiple objects and the space
between them.

Space Level Expressions in space level refer to spatial regions beyond objects in the 3D scene and
are categorized into the following five types: Size: Expressions that require directly adjusting the
size of an object or performing transformations on its dimension (e.g., length, width, height). This
category evaluates models’ ability to interpret and manipulate quantitative object dimensions in 3D
space. Distance: Expressions involving the relocation of an object or the placement of a new object
at a specified distance from another. These tasks test models’ ability to reason about quantitative
spatial distances and relationships. Situation: Expressions involve imagining a scenario in a 3D
scene from an egocentric perspective, as introduced in SQA3D [36]]. This category evaluates models’
ability to understand the situation context and perspective within 3D environments. Commonsense:
Expressions that include commonsense knowledge about object size (e.g., “40-inch TV”) or typical
spatial locations in a scene (e.g., “room corner”). Trajectory: Expressions that specify the starting
point and path of a trajectory, requiring the model to place an object at the endpoint of the trajectory
and predict the location and size of the object.

Object Level Expressions refer to objects in the 3D scene, following the same setting as in prior
works, such as ScanRefer and Nr3D [7, [1]]. However, we place particular emphasis on models’ ability
in reasoning about the quantitative understanding of object Size, Shape, and inter-object Distance.

Part Level Expressions refer to specific parts of objects in a 3D scene and can be categorized into
the following three types: Movement requires models to predict the bounding box of an object part
after certain movement, while Relationship and Function require models to predict a specific part of
an object based on its spatial relationship or function.

2.2 Data Generation Pipeline

As shown in[Fig. 3] the data generation pipeline of Anywhere3D-Bench involves referring expression
generation using LLM guided by human-written prompts, along with iterative human annotation and
verification. Notably, our annotation interface supports resizing and moving 3D bounding boxes, as
well as a distance measurement tool, together enabling precise annotation anywhere in the 3D space.

Referring Expressions Generation To enhance the diversity of referring expressions across various
3D scenes, we leverage GPT-40 [27]] to generate expressions regarding different grounding levels
as well as different types of expressions in each level. For each scene, we first generate a 3D scene
graph following SceneVerse [29]. Each scene graph contains ground-truth object labels, IDs, and
3D bounding boxes of the objects, as well as object captions and inter-object relationships. We
then prompt GPT-40 to generate referring expressions by providing the scene graph along with
human-written prompts corresponding to a particular expression type and grounding level.



Human Annotation and Verification To ensure the quality of the benchmark, we construct a
human-in-the-loop annotation and verification workflow. Annotators are provided with visualizations
of the 3D scene as well as ground-truth object labels and sizes, which is adapted from ScanRefer’s
annotation design. They are allowed to revise the referring expressions and are required to annotate
the corresponding 3D bounding boxes via an interactive interface equipped with a bounding box
editor and distance measurement tool. A key requirement is emphasized throughout the workflow:
Each referring expression must be grounded exactly to one target 3D bounding box in the scene
without ambiguity.

All annotated expressions and 3D bounding boxes are subsequently verified by humans. Any
annotation that does not meet the quality criteria is rejected and iteratively revised until it fully
complies with the requirements. Please refer to Appendix [Section A.2|and[Section A.3|for additional
information.

3 Experiments and Results

3.1 Experimental Setting

Evaluation Metric In general, we adopt Acc@klIoU as the evaluation metric following
the standard setting of 3D visual grounding, where IoU is the Intersection over Union be-
tween the predicted 3D bounding box and the ground-truth bounding box formatted as
[centery, centery, center ,, sizey, size,, size,]. To handle geometric ambiguities at multi-level vi-
sual grounding, we apply the following for IoU computation. In our main paper, we set the
threshold ¢ = 0.05(m), & = 0.25 and report Acc@0.25IoU. For evaluations under other % thresholds
and explanation of the IoU formulation, please refer to the Appendix

TIoUZD, if level = “area”
ToU2P .1 . a d if level # “area”
IoU = \¢ {|center% —center} <t A size}"™ <t}’ at ) ’
. sizet” < t,1 € {z,y,z}
ToU=~, otherwise

ey
Baselines We evaluate three different types of models on our benchmark:

e LLMs: For each expression, the textual scene representation of LLMs are formatted as a scene
graph, consisting of ground-truth locations and sizes of objects, as well as object captions. The ob-
ject captions are generated using Qwen2.5-VL-72B [3]] conditioned on multiple object images and a
guided captioning instruction (see Appendix for comprehensive descriptions). Closed-
source models, including non-thinking model GPT-4.1 [38]] and thinking model 04-mini [39], and
open-source models, including non-thinking (Qwen2.5 [49, [3]) and thinking models (Qwen3 [41]],
DeepSeek-R1-671B [20]), are benchmarked.

e MLLMs: Following the setting in GPT4Scene [40], we incorporate a bird’s-eye view (BEV) image
and eight uniformly sampled video frames with object markers as visual inputs, in addition to the
textual scene representation used in the LLM setting. Closed-source models, including GPT-4.1
and o4-mini, as well as open-source models, including LLaVA-OneVision [31], Qwen2.5-VL [3]],
and GPT4Scene [40] are evaluated.

3D Visual Grounding Models: We also evaluate four state-of-the-art specialized 3D visual
grounding models: 3D-VisTA [64], PQ3D [65]], Chat-Scene [24] and Grounded 3D-LLM [11].
Since Chat-Scene and Grounded 3D-LLM do not provide 3D features for datasets other than
ScanNet, their evaluations are limited to the ScanNet portion of our benchmark.

Thorough experimental settings and implementations of baselines can be founded in Appendix

Human Evaluation We construct a human evaluation subset of 200 expressions through stratified
random sampling across four levels to maintain their original distribution. Human evaluators are
instructed to annotate the corresponding 3D bounding boxes for each expression. Evaluation results
on this subset are reported using the same metric as mentioned above.



3.2 Main Results

Table 2: Results are presented in Acc@0.25IoU on Anywhere3D-Bench. object bbox in the table
denotes the ground-truth object locations and sizes for simplicity. Chat-Scene*, Grounded 3D-LLM*:
evaluated only on ScanNet. Human**: performance evaluated on a subset of 200 expressions obtained
through stratified random sampling across four levels.

Open Source  Area Level Space Level ~ Object Level Part Level Overall

LLMs: object bbox, captions

non-thinking

GPT-4.1 X 76.19 +£0.75 1728 £0.70 48.00 £0.45 22.94 +£0.66 32.34 +0.08
Qwen2.5-72B v 60.14+122 785+£030 3330+£089 899+150 19.90+0.71
Qwen2.5-VL-72B 4 56.35+262 687+£035 29.19+126 993+1.86 18.05+0.74

thinking

04-mini-2025-04-16 X 71.96 +£2.24 18.03 £0.23 48.69 £0.23 23.97 £0.53 32.80 + 0.08
Qwen3-32B(thinking) v 59.79 +£3.70 12.57+0.36 40.18 +0.48 1648+ 1.04 2551 +0.40
DeepSeek-R1-671B-2025-01-28 v 7196 +£ 140 14.61+0.75 4776 +0.12 20.92+0.76 30.49 +0.48

MLLMs: object bbox, captions, BEYV, video frames
non-thinking

GPT-4.1-2025-04-14 X 81.48+225 19.03+0.58 53.88+1.04 25.85+0.53 3590+0.34
LLaVA-OneVision-7B v 19.58 2.32 8.81 4.12 5.93
Qwen2.5-VL-72B v 57.16 £ 0.50 10.56 +0.83 40.74 +0.34 13.80+1.32 24.19+0.61
GPT4Scene 4 15.34 7.19 25.16 11.99 14.55
Cthinking T oo

04-mini-2025-04-16 X 76.19 £2.24 23.00+£0.82 5582+141 31.46=+£0.27 38.90=£0.10
3D visual grounding models: point clouds, video frames

PQ3D v 30.69+0.92 836+038 2442+0.18 16.73+0.78 16.68 +0.04
3D-VisTA 4 29.10+092 744 +0.38 25.05+046 1598+028 16.26+0.05
Chat-Scene* v 49.10+2.70 6.55+047 31.73+031 22.99+047 2290+ 0.37
Grounded 3D-LLM* v 49.25 6.62 26.36 19.37 20.10
Human** - 100.00 92.00 98.00 97.00 95.00

[Table 2] presents the overall results on our benchmark. Human performance substantially surpasses
that of the best-performing model, 04-mini under the MLLM setting, particularly at the space level,
indicating that current models fall far short of human-level 3D spatial intelligence.

Area v.s. Space v.s. Object v.s. Part Grounding expressions at the space level is the most
challenging task on our benchmark. This difficulty arises from the need to understand spatial relations
and distance, situations, and reason over the absolute locations in 3D space beyond objects. The best-
performing model, 04-mini with visual reasoning ability, only achieves 23.00% accuracy. Part-level
visual grounding, though derived from object-level grounding, also poses significant challenges for
all models. It requires the model to first identify the object to which the part belongs, and then reason
about the part’s location and size based on spatial relationships, functions, and other contextual cues.
In contrast, area-level and object-level grounding are relatively easier.

LLMs v.s. MLLMs Additional visual inputs, i.e., video frames and the bird’s-eye view image,
consistently improve the performance of the same models (GPT-4.1, o4-mini, and Qwen2.5-VL-72B)
when transitioning from the LLM setting to the MLLM setting. The performance gains are notable at
object level (8.19% on average) and part level (4.76% on average), as models can leverage visual
inputs to access richer information about the object’s details, such as color and structure. However,
improvements at the space level are less pronounced (3.47% on average), suggesting that current
MLLMs have limited ability to interpret spatial relationships in 3D space from 2D images.

MLLMs v.s. 3D Visual Grounding Models Both MLLMSs and 3D visual grounding models are
provided with visual inputs, along with the ground-truth bounding box locations and sizes. However,
specialized 3D visual grounding models demonstrate limited performance, particularly at the space
level, as they are restricted to predicting objects in the scene and lack generalizability for multi-level
visual grounding tasks.
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3.3 Detailed Analysis on Grounding Levels

Furthermore, we examine model performance across different types of referring expressions at each
visual grounding level. Due to space limitations, we leave the analysis on area-level visual grounding

to the Appendix

Space Level We report the top-performing LLMs and MLLMs on different types of expressions at
the space level, as illustrated in[Fig. 4] Trajectory-based expressions are comparatively challenging,
as they require a comprehensive understanding of spatial distance, relationships, and orientation.
Expressions involving situation, distance, and commonsense also present difficulties, as they demand
reasoning about spatial regions beyond objects in the scene. In contrast, size-related expressions are
relatively easier: selecting the correct object, adjusting its size based on instructions, and performing
positional refinements require less complex spatial perception and reasoning.

Object Level demonstrates the performance of three types of expressions at object level. An
interesting observation is that, compared to MLLMs, 3D visual grounding models exhibit a more
balanced capability in interpreting object size, shape, and distances between objects. This may be
attributed to the fact that 3D models are typically trained on point clouds, which inherently encode
spatial coordinates. For MLLMs, object sizes are explicitly provided in the scene graph, contributing
to their stronger performance on size-related tasks, whereas estimating distances between objects
requires both complex computation and commonsense reasoning.

Despite 3D visual grounding models’ relatively balanced ability to understand size and distance
on the object-level tasks, they still underperform on our benchmark overall. Compared to visual
grounding results reported on ScanRefer [7], where state-of-the-art 3D models achieve around 50%
accuracy, these models’ performance show a substantial performance drop on our benchmark. This
suggests that reasoning about quantitative object size and inter-object distance remains a significant
challenge for current 3D visual grounding approaches.

Part Level shows the performance of top-performing models on different types of expressions
at part level. Expressions involving dynamic movement present the greatest challenge for all models,
as models must not only accurately identify the specific part of the object but also understand
the object’s orientation to correctly predict the position of the bounding box after the movement.
For expressions involving spatial relationships, the best-performing non-thinking model (GPT-4.1)
performs worse than the 3D visual grounding model (Chat-Scene*), while the thinking model (04-
mini) achieves only a small margin higher performance than Chat-Scene*, indicating that MLLMs
still struggle with spatial relationships in 3D environments.

4 How Can We Improve MLLMs’ Ability on Multi-level Visual Grounding?

The above experimental results and analysis indicate that space-level and part-level visual grounding
are the most challenging tasks in our benchmark. We select several representative examples from
the second-best-performing model GPT-4.1, as the best-performing model 04-mini does not provide
a reasoning process for detailed analysis. As illustrated in [Fig. 6(a), (b), and (c), on space-level
tasks, GPT-4.1 struggles with expressions involving situated contexts and trajectory, all of which
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require relational reasoning over object orientations, spatial directions, and spatial locations. On
part-level tasks, as illustrated in [Fig. 6(d) and (e), GPT-4.1 encounters difficulties in identifying
specific parts from objects, due to the uniformly sampled video frames being insufficient to capture
the key visual cues necessary for resolving the referring expressions. To address these challenges, we
introduce visual and relational input enhancements as initial attempts to improve model performance,
as detailed in the following section.



4.1 Visual Perception Enhancement

To provide the model with more query-relevant visual cues, we incorporate key video frames related
to the referring expressions in addition to the original visual inputs (i.e. uniformly sampled video
frames and bird’s-eye view image). Specifically, given the original textual and visual inputs, we
first prompt GPT-4.1 to output the candidate object IDs that it considers relevant to the referring
expression. For each candidate object, we then select one video frame in which the object appears
with the largest relative size and highlight it with a green 2D bounding box. Incorporating all these
selected video frames alongside the original inputs, we then require GPT-4.1 to predict the 3D
bounding box corresponding to the expression.

Moreover, to illustrate the “upper bound” performance of incorporating additional selected video
frames, we manually annotate the object IDs that humans consider relevant to each referring expres-
sion and select video frames accordingly. These video frames, combined with the original inputs, are
then used as input to GPT-4.1.

As demonstrated in incorporating additional related video frames improves GPT-4.1’s
performance on Anywhere3D-Bench, particularly at the part level, which demands finer-grained
object details. However, a performance gap remains between the two object selection settings, i.e.,
objects proposed by the GPT-4.1 and those identified by humans, indicating GPT-4.1’s limitations in
accurately selecting relevant objects.

4.2 Relational Reasoning Enhancement

To provide more spatial relation information to the MLLM, we adopt two approaches: scene-level
enhancement and object-level enhancement. For scene-level enhancement, we overlay the x-axis and
y-axis on the bird’s-eye view (BEV) image of the scene. For object-level enhancement, we incorporate
object orientations—predicted by Orient-Anything [45]—into the textual scene graph input. To ensure
consistency with the scene graph coordinate system, object orientations are discretized into +x, -x,
+y, -y, or “not sure,” according to predictions from Orient-Anything.

As illustrated in[Table 3| the combined use of scene-level and object-level enhancements improve
GPT-4.1’s performance at the space level and part level. However, the accuracy remains far behind
human performance. This highlights a substantial gap in spatial reasoning ability, even when models
are provided with enriched spatial cues.

For comprehensive demonstrations on qualitative examples in as well as the implementations
of visual perception enhancement and relational reasoning enhancement, please refer to Appendix

5 Related Work

3D Visual Grounding 3D vision-language learning establishes critical connections between natural
language and 3D environments, enabling applications in augmented/virtual reality [8,|60]] and em-
bodied Al systems [16]. 3D visual grounding—the precise localization of language-referred entities
in 3D scenes—has emerged as a cornerstone for spatial intelligence. Despite the proliferation of
benchmarks [7} 1} 158|130} 163} 26], existing datasets remain predominantly object-centric, constrain-
ing models to coarse-grained scene understanding. Recent efforts like SceneFun3D [15] partially
address this limitation by introducing a predefined set constrained on small functional elements
(e.g., handles, buttons). In contrast, Anywhere3D involves more open-ended object parts (e.g., toilet
tank, lampshade of the lamp) and emphasizes the visual grounding of part movements, as shown
in MMScan [33] introduces region-level visual grounding, which extends object-centric
tasks to human-activities regions, similar to our area-level tasks. However, it does not involve
visual grounding at unoccupied space, such as placing a new object or moving an existing object
to a specified unoccupied space within the scene. Concurrently, while advanced visual grounding
methods [64} 165} 12, 21} 1461134} 128116219, 152} 42} 147, 133159 15 150, 155} 166] demonstrate progress in
object-level localization, their capacity to interpret referrals at multi-levels remains underexplored.
Our benchmark bridges this gap by introducing multi-granular localization across four hierarchical
levels— area, space, object, and part—systematically evaluating model performance in complex,
real-world 3D scene grounding.



Evaluating MLLMs on 3D Spatial Understanding Recent advancements in LLMs have facilitated
their integration into 3D domains. Early approaches, often termed “3D LLMs,” such as 3D-LLM,
LEO, and Chat-Scene [22, 48| 32 19} 23], [10, 25| 24]], fine-tune LLMs to process embedded 3D
object features. However, fine-tuning for 3D tasks is computationally expensive and risks catastrophic
forgetting [56]]. In contrast, GPT4Scene [40] demonstrates that MLLMs can effectively tackle 3D
understanding through simple visual prompting, bypassing the need for task-specific adaptation,
which highlights the untapped potential of MLLMs in 3D intelligence. Concurrently, there is a
growing interest in benchmarking off-the-shelf MLLMs on 3D tasks. VSI-Bench [51] evaluates
3D spatial reasoning in video understanding, while All-Angles Bench [53] tests MLLMSs’ ability
to establish correspondence between multi-view visual data. ScanReQA [57] further investigates
how multimodal inputs affect spatial reasoning, comparing traditional 3D LLMs and MLLMs.
Space3D-Bench [43]] encompasses a variety of spatial tasks—including object localization, spatial
measurements, and navigation—that span both objects and entire rooms. Despite these efforts, the
field has yet to systematically assess the 3D visual grounding abilities of MLLMs, leaving open
questions about their precision in localizing and reasoning within complex spatial scenes. For detailed
discussion and comparison of these works, please refer to Appendix

6 Conclusion

In this paper, we present Anywhere3D-Bench, a novel and challenging benchmark that extends visual
grounding to four levels in 3D scenes. Evaluation results show that even the best-performing MLLM,
o4-mini, with visual reasoning capabilities, struggles with the two most difficult tasks—space-level
and part-level grounding. This highlights the difficulty current MLLMs face in understanding and
reasoning about 3D scenes based on 2D visual inputs. Furthermore, specialized 3D visual grounding
models consistently underperform compared to MLLMs, particularly on space-level tasks, revealing
their limited generalizability to multi-level grounding scenarios.
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NeurlIPS Paper Checklist

1. Claims

Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?

Answer: [Yes]

Justification: Yes. The main claims made in the abstract and introduction reflect the paper’s
contributions and are focused on 3D visual grounding.

Guidelines:

* The answer NA means that the abstract and introduction do not include the claims
made in the paper.

* The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

* The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

* It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]

Justification: Yes. Limitations and future directions of the work will be elaborated in the
supplemental material.

Guidelines:

* The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

 The authors are encouraged to create a separate "Limitations" section in their paper.

* The paper should point out any strong assumptions and how robust the results are to
violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

* The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

* The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

* The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

* If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

* While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs

Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?
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Answer: [NA]
Justification: This paper does not include theoretical results.
Guidelines:

» The answer NA means that the paper does not include theoretical results.

* All the theorems, formulas, and proofs in the paper should be numbered and cross-
referenced.

* All assumptions should be clearly stated or referenced in the statement of any theorems.

* The proofs can either appear in the main paper or the supplemental material, but if
they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

* Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

* Theorems and Lemmas that the proof relies upon should be properly referenced.
4. Experimental result reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]

Justification: We describe our evaluation settings in[Section 3.1} which is discussed in greater
detail in supplementary material. Besides, The full benchmark are stored on huggingface at
https://huggingface.co/datasets/txwang98/Anywhere3D_v?2, and all evaluation code with
detailed guideline is released at https://github.com/anywhere-3d/Anywhere3D.

Guidelines:

* The answer NA means that the paper does not include experiments.
* If the paper includes experiments, a No answer to this question will not be perceived
well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.
If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.
Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

While NeurIPS does not require releasing code, the conference does require all submis-

sions to provide some reasonable avenue for reproducibility, which may depend on the

nature of the contribution. For example

(a) If the contribution is primarily a new algorithm, the paper should make it clear how
to reproduce that algorithm.

(b) If the contribution is primarily a new model architecture, the paper should describe
the architecture clearly and fully.

(c) If the contribution is a new model (e.g., a large language model), then there should
either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.
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5. Open access to data and code

Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

Answer: [Yes]

Justification: The full benchmark are stored on huggingface at
https://huggingface.co/datasets/txwang98/Anywhere3D_v2, and all evaluation code is
released at https://github.com/anywhere-3d/Anywhere3D, The instructions for experimental
results reproduction is organized in the README of https://github.com/anywhere-
3d/Anywhere3D,

Guidelines:

» The answer NA means that paper does not include experiments requiring code.

* Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

* While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

* The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

* The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.
 The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they

should state which ones are omitted from the script and why.

* At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

* Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLSs to data and code is permitted.

6. Experimental setting/details

Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]

Justification: The full benchmark are stored on huggingface at
https://huggingface.co/datasets/txwang98/Anywhere3D_v2, and all evaluation code is
released at https://github.com/anywhere-3d/Anywhere3D, The instructions for reproducing
experimental results are organized in the README of https://github.com/anywhere-
3d/Anywhere3D.

Guidelines:

* The answer NA means that the paper does not include experiments.

* The experimental setting should be presented in the core of the paper to a level of detail
that is necessary to appreciate the results and make sense of them.

* The full details can be provided either with the code, in appendix, or as supplemental
material.

7. Experiment statistical significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [Yes]

Justification: We report the error bars in The detailed explanation of the error bar is
in the supplemental material.
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8.

10.

Guidelines:

* The answer NA means that the paper does not include experiments.

* The authors should answer "Yes" if the results are accompanied by error bars, confi-
dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

* The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

* The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

* The assumptions made should be given (e.g., Normally distributed errors).

¢ It should be clear whether the error bar is the standard deviation or the standard error
of the mean.

* It is OK to report 1-sigma error bars, but one should state it. The authors should
preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

* For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

e If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

Experiments compute resources

Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]

Justification: The compute resources information is provided in the supplemental material
in detail.

Guidelines:

* The answer NA means that the paper does not include experiments.

* The paper should indicate the type of compute workers CPU or GPU, internal cluster,
or cloud provider, including relevant memory and storage.

* The paper should provide the amount of compute required for each of the individual
experimental runs as well as estimate the total compute.

* The paper should disclose whether the full research project required more compute
than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

. Code of ethics

Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]
Justification: Our research conform, in any respect, with the NeurIPS Code of Ethics.
Guidelines:

¢ The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.

* If the authors answer No, they should explain the special circumstances that require a
deviation from the Code of Ethics.

* The authors should make sure to preserve anonymity (e.g., if there is a special consid-
eration due to laws or regulations in their jurisdiction).

Broader impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?
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11.

12.

Answer: [Yes]

Justification: We discuss both potential positive societal impacts and negative societal
impacts of the work in the supplemental material.

Guidelines:

» The answer NA means that there is no societal impact of the work performed.

* If the authors answer NA or No, they should explain why their work has no societal
impact or why the paper does not address societal impact.

» Examples of negative societal impacts include potential malicious or unintended uses
(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

* The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

* The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

* If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

Safeguards

Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]

Justification: All scenes in our dataset are widely recognized open-source datasets. All
expressions in our dataset go through a rigorous human check, which ensure there are no
safe concerns of the dataset content.

Guidelines:

* The answer NA means that the paper poses no such risks.

* Released models that have a high risk for misuse or dual-use should be released with
necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

 Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

* We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

Licenses for existing assets

Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]

Justification: We cite the original paper of all assets used and state the detailed information
like specific versions and licenses in the supplemental material.

Guidelines:
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13.

14.

15.

» The answer NA means that the paper does not use existing assets.

* The authors should cite the original paper that produced the code package or dataset.

 The authors should state which version of the asset is used and, if possible, include a
URL.

* The name of the license (e.g., CC-BY 4.0) should be included for each asset.

 For scraped data from a particular source (e.g., website), the copyright and terms of
service of that source should be provided.

* If assets are released, the license, copyright information, and terms of use in the package
should be provided. For popular datasets, paperswithcode.com/datasets has
curated licenses for some datasets. Their licensing guide can help determine the license
of a dataset.

* For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

* If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.
New assets

Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [Yes]

Justification: The full benchmark are stored on huggingface at
https://huggingface.co/datasets/txwang98/Anywhere3D_v2, and all evaluation code
is released at https://github.com/anywhere-3d/Anywhere3D, Both are well-documented at
the corresponding URL.

Guidelines:

* The answer NA means that the paper does not release new assets.

* Researchers should communicate the details of the dataset/code/model as part of their
submissions via structured templates. This includes details about training, license,
limitations, etc.

* The paper should discuss whether and how consent was obtained from people whose
asset is used.

* At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.
Crowdsourcing and research with human subjects

Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer: [Yes]

Justification: Human annotations are involved for data annotation and verifications. They
are provided with full instructions and a well-designed interface. The quality of the data is
ensured by veifications.

Guidelines:
* The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

* Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

* According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

Institutional review board (IRB) approvals or equivalent for research with human
subjects
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16.

Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?

Answer: [NA]
Justification: Not applicable.
Guidelines:
* The answer NA means that the paper does not involve crowdsourcing nor research with

human subjects.

* Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

* We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

* For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

Declaration of LLLM usage

Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.

Answer: [Yes]

Justification: LLMs are used for data generation. Also, in our benchmark, we evaluate
several LLMs and MLLMs performance.

Guidelines:

* The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

* Please refer to our LLM policy (https://neurips.cc/Conferences/2025/
LLM) for what should or should not be described.
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The Appendix is organized into five sections, following the same structure as the main paper:
Anywhere3D-Benchmark (Section [A), Experiments and Results (Section [B), How Can We
Improve MLLMs’ Ability on Multi-level Visual Grounding? (Section|C), Detailed Discussion on
Related Work (Section , and Limitations and Future Work (Section [E).

A Anywhere3D Benchmark

A.1 Data Statistics

We first present the number of referring expressions across the four grounding levels on ScanNet,
MultiScan, 3RScan, and ARKitScenes, as shown in[Table AT} To visually demonstrate the linguistic
diversity of referring expressions in Anywhere3D-Bench, we generate a word cloud based on all
expressions, as illustrated in[Fig. AT]
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shelves ol mefercovi? Dhase” diametss toilet ta bleught side

Figure Al: Word cloud of Anywhere3D-Bench

Furthermore, we conduct a distributional analysis of object-level expressions with respect to object
size, floor area, and inter-object distance. The results reveal a broad spectrum of referents, ranging
from small to large objects and from proximate to distant spatial references, underscoring the diversity

of expressions captured in our benchmark (see [Fig. A2] [Fig. A3] and [Fig. Ad).
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Figure A2: Dimensionality Distribution of refer-  Figure A3: Floor Area Distribution of referring
ring expressions at object level. expressions at object level

To ensure that models predict answer based on understanding and reasoning on object size and
inter-object distance, rather than simply matching object labels in the referring expressions, we
explicitly exclude ground-truth object labels from the expressions at the object level, unless there
are multiple instances of the target object in the scene. This design encourages models to identify
the correct object based on 3D scene understanding rather than relying on linguistic cues tied to
object categories. As a result, 50% of the referring expressions do not contain the corresponding
ground-truth object label, as they refer to objects with unique instance in the scene. The remaining
expressions refer to objects with multiple instances, as illustrated in the distribution shown in[Fig. A3]

As shown in[Fig. A@] the volume distribution of Anywhere3D targets exhibits greater dispersion and
heavier tails on both ends, indicating more frequent extreme small and large volumes compared to
ScanRefer, where volumes are tightly concentrated around the mean. This difference arises because
Anywhere3D expands grounding granularity beyond object-level annotations to include spaces, parts
(typically small), and areas (typically large), enabling a more comprehensive evaluation of 3D visual
grounding.
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Figure A6: The target objects’ volume distribution of Anywhere3D and ScanRefer. Logarithmic
scaling is applied to the horizontal axis.

A.2 Data Generation Details

As demonstrated in[Fig. A7} [Fig. A8] and[Fig. A9] we present the prompt messages for distance-
related referring expressions generation at space level as an example.

messages = [{ ‘role’: ‘system’, ‘content’: System prompt}, {‘role’: ‘user’, ‘content’: Scene graph of the scene to process}]

Figure A7: Prompt messages for referring expression generation with GPT-40

A.3 Human Annotation and Verification Details

A.3.1 Annotation Interface

[Fig. A10[and|Fig. All]illustrate the human annotation interface, which is adapted from ScanRefer.
Our interface comprises four main components: a control bar, a 3D scene visualization module, an
object list, and a referring expression editing box.
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You are now a helpful assistant that can generate diverse referring expressions that can be grounded to reasonable space in an indoor
scene.

The scene is represented by a scene graph in JSON dictionary format. Each entity in the scene graph denotes an object instance,
named ‘<category>-<ID>’. The ‘caption’ field describes the object’s attributes, such as ‘color’, ‘material’, etc. The ‘relations’ field
specifies the object’s spatial relationships with other objects, defined from a viewpoint along the y-axis from positive to negative
direction. The ‘position’ field contains the X, y, z coordinates of object’s center in the scene. The ‘size’ field describes the width,
length and height of the object’s 3D bounding box. The numerical values of ‘position’ and ‘size’ correspond to units in meters. For
example, from the scene graph:

59

“object_info”: “kitchen counter-1": “relations™: [“below cabinet-4”, “lower than soap dispenser-14”, “lower than paper towel
dispenser-15”], “position”: [1.27, 0.67, 0.9], “size”: [0.74, 1.86, 0.26], “caption”: “The kitchen counter is black granite with a
stainless steel sink and faucet ... It is durable, easy to clean, and has a modern, sleek design that matches the stainless steel appliances
in the Kitchen.”, ...

9

You can know that the center of “kitchen cabinets-5” is located in the x: 1.01, y: 0.37, z: 0.45, the “floor-6” has the width and length
of 4.81 meters and 3.05 meters, the “microwave-8” is placed within the area of the “cabinets-3”, the “cabinet-2" is to the left of
“water cooler-7” viewing from +y axis to -y axis, the “water cooler-7" is 3 o’clock direction near the “cabinet-2” viewing from +y
axis to -y axis.

Using the provided scene graph, design referring expressions that can be grounded to reasonable space in the 3D scene. There are
two principles you need to read and follow very carefully:

1. Clarity: Each Referring Expression must be grounded exactly to one target 3D bounding box in space. Do not include the IDs of
the objects in the referring expressions. Instead, use ordinal words, colors and relations to refer to different object instances of the
same category. Describe the grounding position of the target 3D bounding box using only the surrounding objects to avoid causing
confusion. Avoid using terms like “o” clock™ to describe relations in referring expressions. Do not refer to existing objects with their
corresponding positions in the scene! Additionally, consider whether the expressions require a specific viewpoint to ensure the target
bounding box is clearly and uniquely identifiable. In some cases, specifying a viewpoint is necessary for achieving this level of
precision. Please note that you don’t need to stick to the original viewpoint in the scene graph (which is along the y-axis, from the
positive to the negative), but if you specify a viewpoint, the spatial relations between objects in your referring expressions need to be
consistent with the scene.

2. Distance Understanding Related: You should generate referring expressions in which the position of the bounding box should be
explicitly specified based on its numerical distance from other objects in the scene. There are two main categories of referring
expressions: existing object movement (move object already existed in the scene to another place) and new object increment (Add
objects that not exist in the scene). For the category of ‘new object increment’, you may assume objects that not exist in the scene
graph in each of the referring expressions. However, they should have reasonable sizes(For example, they should not exceed the
boundary of the scene, not overlap with the existing objects.) and should be placed reasonably in the scene (For example, they are not
allowed floating in the air). Also, you need to explicitly provide the sizes, i.e. (WIDTH, LENGTH, HEIGHT) or (DIAMETER,
HEIGHT). You can also generate referring expressions beyond these categories that meet the principles above.

Below are some example referring expressions. Please note that these examples are derived from different scene graphs.
EXAMPLES

After you understand the contents above, I will provide a new scene graph below. Based on the two guiding principles and the
examples provided above, generate referring expressions corresponding to the new scene graph.

Figure A8: System Prompts for generating distance-related referring expressions at the space Level
using GPT-40
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1. Move the smaller trash bin next to the refrigerator to a spot 0.9 meters directly in front of the bicycle.
2. Facing the shower curtain, move the rug on the floor 0.3 meters to the right.
3. Pull the piano bench out by 0.5 meters to allow space for someone to sit and play the piano.

4. Move the trash can that is closest to the TV to the floor directly in front of the sink, placing it 0.7 meters away from the kitchen
cabinet.

5. Shift the television on the wall 0.1 meters to the right.

6. Facing the tv, move the coffee table 0.55 meters to its left.

7. Place a basin with a radius of 0.25 meters and a height of 0.5 meters on the floor, centered 0.35 meters to the right of the sink.
8. Place a round coffee table 0.8 meter in front of the couch. The table has a diameter of 1.2 meter and a height of 0.7 meter.

9. Move the painting on the wall next to the bed downward so that the bottom of the painting is 1 meter above the floor.

10. Add a new table in front of the big sofa with dimensions 80 cm x 60 cm x 1 m. The table should be placed 1.5 meters away from
the sofa and centered relative to it.

11. Sitting on the chair in front of the desk, place a notebook with 0.4m * 0.5m * 0.1m to the right of the laptop. Keep a distance of
0.15 meters between them.

12. Facing the whiteboard, add another foosball table in font of the old one, remaining 0.2 meters between the two tables.

Figure A9: Examples in System Prompt for GPT-40 referring expressions generations in distance-
related expressions at space level.

The control bar, located in the top-left corner, includes three primary tools: (1) a 3D bounding
box annotation tool, (2) a distance measurement tool (i.e. Scale Cylinder), and (3) a coordinate
axis visualization tool. Both the bounding box and distance measurement cylinder can be resized
and repositioned using the control bar, and can also be interactively adjusted with the mouse. The
dimensions ‘W’, ‘L, and ‘H’ represent the lengths of the bounding box along the x-, y-, and z-axes,
respectively.

The 3D scene visualization module supports interactive operations such as zooming and rotating,
allowing annotators to conduct detailed spatial exploration in the scene.

The object list, located in the top-right corner, displays all objects in the scene, along with their
associated labels and sizes.

The referring expression editing box presents the expressions initially generated by GPT-40 and
provides an interactive field for manual revision. Annotators can save their annotations or load
previously saved ones as needed.

A.3.2 Statistics on final referring expressions after human verification

Here, we provide quantitative statistics on the divergence of final expressions after human verification
from the original expressions generated by GPT.

Before annotation began, we established clear guidelines: human annotators are allowed to revise the
GPT-40-generated expressions, but they first had to estimate the proportion of modification within the
expression. If the required changes exceeded 50% of the original expression, annotators were allowed
to “skip” that referring expression. Expressions needing such extensive revision were filtered out.

Overall, 25% of the candidate expressions were marked as “skip” and thus excluded from the dataset.
For the remaining expressions, the Average Modification Ratio is approximately 42%, as calculated

by[Eq. (ATH

N
1
Average Modification Ratio = — Z

N 4
i=1

Levenshtein(ECFT, piuman)
Cig

(AD)
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where N denotes the total number of referring expressions, Levenshtein( EGTT| FHuman) represents
the Levenshtein Distance (i.e., the minimum number of single-word edits required to transform the
GPT-40-generated expression ESFT into the final human-verified expression £11Uman) and |[ESPT|
is the length of the original GPT-40-generated expression.

A.3.3 Total Cost and Duration of the Human Annotation & Verification Process
Overall, human annotation and verification process for all referring expressions cost approximately

900 USD and took around six weeks, including time for tool familiarization, pilot annotation, formal
annotation, and human verification.
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Original Referring Expressions: Choose the side panel of the sliding closet door that has a blue handle for opening.

Facing the mirror, pull out the top drawer in the first column from the right by 0.3 meters.

Start New Current ID Annotations Load Current ID Annotations Save Current ID Annotations

Figure A10: Human Annotation at part level: “Facing the mirror, pull out the top drawer in the first
column from the right by 0.3 meters.”.
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Original Referring Expressions: In the entryway near the door, place a shoe rack measuring 0.6m x 0.25m x 0.5m, aligned against the wall, 0.3m from the doorframe.

Imagine you are standing on the carpet in front of the sink cabinet. After washing your hands at the sink, turn around and walk 1.2 meters forward. Then tun right and walk 0.7 meters ahead. Place a small stool, with a base diameter of 0.3 meters and a height of 0.4 m

Start New Current ID Annotations Load Current ID Annotations Save Current ID Annotations

Figure A11: Human Annotation at space level: “Imagine you are standing on the carpet in front of
the sink cabinet. After washing your hands at the sink, turn around and walk 1.2 meters forward.
Then turn right and walk 0.7 meters ahead. Place a small stool, with a base diameter of 0.3 meters
and a height of 0.4 meters, centered at your current position.” The scale cylinder serves as good
annotation tool for trajectory annotation at space level.
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B Experiments and Results

B.1 Evaluation Metrics

In this section, we provide a detailed explanation of the IoU computation formula, as shown in
Eq. (B

IoUif , if level = “area”

if level # “area”,
size?' < t,i € {x,y,2}
ToU3P | otherwise

ToU = { IoU{Y

’ ]‘{|centeri.It —center?™ | <t A sizei’md<t} ’

(BI)

For the area level, we adopt 2DIoU on the horizontal plane as the evaluation metric, due to the
inherent ambiguity in defining the vertical extent of the bounding box. For instance, it is unclear
whether a study area comprising a desk and an office chair should extend vertically to the ceiling, as

illustrated in

Moreover, due to inevitable rendering artifacts in mesh visualization during human annotation, there
can be small positional deviations—typically within a few centimeters. For certain objects with very
small dimensions along one axis (e.g., a floor carpet that is only 0.02 meters thick(Fig. B2)), or a
wall clock with a thickness of 0.03 meters), directly computing the 3D IoU can lead to significantly
distorted results, as the metric becomes overly sensitive to minor positional misalignments. To
address this, we design a customized evaluation strategy for such objects.

Specifically, given a predefined threshold, if the ground-truth bounding box has a dimension smaller
than this threshold along any axis (X, y, or z), and if the predicted bounding box satisfy both following
conditions: (1) deviates from the ground-truth bounding box by less than the threshold along that axis
in terms of position, and (2) is also smaller than the threshold in size along that axis, we consider the
prediction to be accurate along that axis in both position and size. In this case, the IoU is computed as
a 2D ToU over the remaining two axes only. We set the value of threshold to 0.05 meters in the paper.

Table Bl|illustrates the ground-truth 3D bounding box and predicted 3D bounding box corresponding
to [F1ig. B2l The height of the carpet(i.e., the size in the z-axis) is smaller than 0.05 meters. The
predicted bounding box satisfies both of the conditions above, so the IoU between the predicted
bounding box and the ground-truth bounding box will be the 2DIoU in the XY-Plane.

Table B1: 3D bounding box of ground-truth and prediction of GPT-4.1 corresponding to The
predicted 3D bounding box meets the criteria mentioned above, so IoU between ground-truth and
prediction will be 2D IoU on the x-y plane ~ 0.4696

center_x center_y center_z size_x size y size_z

ground-truth -0.01 -1.03 -0.03 1.8 1.2 0.02
prediction -0.01 -0.68 0.01 1.2 1.8 0.02

B.2 Baseline Settings

To encourage diverse reasoning, we use the default temperature settings for all models, including GPT-
4.1, 04-mini, Qwen3-32B, Qwen2.5-72B, Qwen2.5-VL-72B, DeepSeek-R1-671B, and DeepSeek-
V3-671B. Each model is evaluated independently over three runs. The mean and standard deviation
reported in the main paper and the Appendix are computed based on these runs. [Table B2]illustrates
the specific versions of the LLMs and MLLMs used.

Table B2: Versions of LLMs and MLLM:s.

Model Qwen2.5-72B Qwen3-32B  DeepSeek-R1-671B  DeepSeek-V3-671B GPT4.1 04-mini Qwen2.5-VL-72B
Version  2024-09-19 2025-04-29 2025-01-20 2024-12-26 2025-04-14  2025-04-16 2025-01-27
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Figure B1: “Choose the area suitable for a study Figure B2: “Lay a new rectangular carpet on
or home office setting.” the floor directly in front of the sofa, ensuring

it is 0.2 meters away from the sofa. The carpet
should measure 1.2 meters wide, 1.8 meters long,
and 0.02 meters thick.”

For both LLMs and MLLMs, we design system prompts tailored to each visual grounding level. The
textual prompts consist of object ground-truth bounding boxes and captions generated by Qwen2.5-
VL-72B (as further illustrated in Appendix [Section B.3). In addition to textual inputs, MLLMs also
receive a Bird’s Eye View (BEV) image and eight uniformly sampled video frames as visual inputs,
following the setup of GPT4Scene. [Fig. B3|and[Fig. B4|show the textual inputs for LLMs at space
level, while[Fig. B5|and[Fig. B6| present the textual inputs for MLLMs at space level. An example of
the BEV and video frames used as visual inputs for MLLM:s is shown in[Fig. B7]

messages = [{‘role’: ‘system’, ‘content’: System prompt for specific grounding level}, {‘role’: ‘user’, ‘content’: “Object_info™:
Scene graph of the scene + “\n” + “Referring_expression”: referring expression}]

Figure B3: textual inputs for LLMs

Notably, we provide both LLMs and MLLMs with the ground-truth locations and sizes of objects.
This design decouples object detection from 3D visual grounding, allowing us to specifically examine
the models’ capabilities in perceiving, understanding, and reasoning within 3D scenes under ideal
localization conditions.

After obtaining the model’s output, we extract the predicted 3D bounding box location and size using
a combination of regular expressions and LLM-based parsing.

We utilize the fine-tuned checkpoints released by LLaVA-OneVision, GPT4Scene, PQ3D, 3D-VisTA,
Chat-Scene, and Grounded 3D-LLM. Among them, GPT4Scene, PQ3D, 3D-VisTA, Chat-Scene, and
Grounded 3D-LLM can only predict object IDs corresponding to the referring expressions. Therefore,
we derive the predicted 3D bounding boxes based on the size and location of the corresponding
objects in the scene graph. Moreover, Grounded 3D-LLM fails to produce visual grounding results
on some scenes of ScanNet due to feature misalignment. As a result, our evaluation is restricted to
those scenes where results can be successfully generated.
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You are now a helpful assistant capable of grounding referring expressions to specific space within a 3D scene.

The scene is represented by a scene graph in JSON dictionary format. Each entity in the scene graph denotes an object
instance, named ’<object>-<ID>’. The ’position’ field contains the X, y, z coordinates of object’s 3D bounding box center in the
scene. The ’size’ field indicates the length of the object’s 3D bounding box along the X, y, and z axes. Note that the x and y axes
correspond to the horizontal plane, while the z axis corresponds to the vertical direction. The numerical values of *position’, ’size’
correspond to units in meters. The "caption"” field contains textual description of the object generated by a vision-language model
(VLM) based on several images of the object. For example, from the scene graph:

259

“object_info”: “object-1": “position”: [1.27, 0.67, 0.9], “size”: [0.74, 1.86, 0.26], “caption”: “The kitchen counter is black granite
with a stainless steel ...”, ...

59

You can know that the center of “object-5" is located in the x: 1.01, y: 0.37, z: 0.45, the “object-6" has the length and width of 4.81
meters and 3.05 meters.

“Referring expressions” are natural language descriptions that point to a specific space within a 3D scene, which is represented by a
scene graph.

For example, a referring expression like “Facing the bed, move the nightstand 0.3 meters backward.” requires identifying the 3D
bounding box of the nightstand after it has been moved 0.3 meters backward.

Your task is to determine the 3D bounding box corresponding to the referring expression and return the following details:
1. The x, y, z coordinates of the center of the bounding box.
2. The lengths of the bounding box along the x, y, and z axes.

After reviewing the information above, I will provide a new scene graph and a referring expression. Your task is to identify the 3D
bounding box that corresponds to the referring expression within the new scene graph.

At the end of your response, please provide the following details for the identified 3D bounding box:
1. The x, y, z coordinates of its center, formatted strictly as: {xcoordinate: , ycoordinate: , zcoordinate: }

2. The length of the 3D bounding box along the x, y, and z axes, formatted strictly as: {xlength: , ylength: , zlength: }

Figure B4: System Prompts of LLMs textual inputs for space level

messages = [{‘role’: ‘system’, ‘content’: System prompt for specific grounding level}, {‘role’: ‘user’, ‘content’: “Object_info™:
Scene graph of the scene + “\n” + “Referring_expression”: referring expression + “\n” + “The subsequent images include a Bird
Eye View image as the first, followed by 8 frames extracted from the scene video. Please return the center coordinates and sizes of
predicted 3D bounding box STRICTLY following the instructed format.” }]

Figure BS: textual inputs for MLLMs

B.3 Object Caption Generation for Benchmarking

For LLMs and MLLMs, as outlined in the inputs include object captions generated
by Qwen2.5-VL-72B. For each object in the scene, we prompt Qwen2.5-VL-72B to generate a
descriptive caption using up to five uniformly sampled frames where the object is visible. To guide
the captioning process, we annotate each frame with a green bounding box—projected from 3D
space—to highlight the target object.

The prompt instructs Qwen to describe the object within the bounding box, covering its category,
material, color, shape, structure, function, and surrounding environment. The full prompt template is

provided in
An example is illustrated in
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You are a helpful assistant skilled in grounding referring expressions to specific space within a 3D scene.

Each scene is represented by the following elements:

1. scene graph: a JSON-formatted dictionary that enumerates all objects in the scene. Each entity in the scene graph
denotes an object instance, named ‘<object>-<ID>’. For each object, the ‘position’ field contains the X, y, z coordinates of the center
of its 3D bounding box. The ‘size’ field indicates the length of the 3D bounding box along the X, y, and z axes. The x and y axes
represent the horizontal plane, while the z axis represents the vertical direction. The values in “position” and ‘size’ are in meters. The
“caption” field contains textual description of the object generated by a vision-language model (VLM) based on several images of the
object.

2. Bird’s Eye View (BEV) Image: A top-down view of the scene, where objects’ IDs are labeled in the image.

3. 2D Images: A set of 8 frames captured at equal intervals from the scene video. Each frame contains several objects
with their object IDs labeled within red circles.

Note that object IDs are consistent across the scenegraph, 2D images, and BEV image.
Referring expressions are natural language descriptions that point to specific space within the 3D scene.

For example, a referring expression like “Facing the bed, move the nightstand 0.3 meters backward.” requires identify-
ing the 3D bounding box of the nightstand after it has been moved 0.3 meters backward.

Your task is to determine the position and size of the 3D bounding box corresponding to the referring expression.

After reviewing the information, I will provide a scene graph, 2D images, and a BEV image of a new scene, along with
a referring expression. Your goal is to identify the 3D bounding box that corresponds to the referring expression.

At the end of your response, please provide the following details for the identified 3D bounding box:
1. The x, y, z coordinates of its center, strictly formatted as: xcoordinate: , ycoordinate: , zcoordinate:

2. The length of the 3D bounding box along the x, y, and z axes, strictly formatted as: {xlength: , ylength: , zlength:
}

Figure B6: System Prompts of MLLMs textual inputs for space level

Figure B7: GPT4Scene Bird’s Eye View (BEV) and eight uniformly sampled video frames from
MultiScan Scene00109_00. The image at the top depicts the BEV, while the 2 x 4 grid below shows
the video frames. In both the BEV and the video frames, object labels are marked with red circles to

indicate object locations, following the visual input in GPT4Scene.
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Figure B8: An example of Qwen-generated caption: “A black plastic chair with a cushioned seat
and backrest. The frame is metallic, featuring curved legs and armrests. Designed for ergonomic
seating in office or classroom settings. Positioned near a desk with papers and books, suggesting a
workspace environment.”

Analyze the object in the green bounding box across multiple viewpoints. Generate a caption with:

1. **Category**:

- Use specific name if confident (e.g., "mug")

- Use "generic-type object" for uncertain cases (e.g., "container-type object")
- Flag low-confidence predictions with "possibly"

2. ¥*Attributes™*:

- Color patterns & material properties

- 3D shape characteristics & structural features
- Functional affordances

- Contextual placement & surrounding objects

3. #*Confidence Signals**:

- "The tapered rim suggests..."

- "While resembling a vase, the presence of..."
- "Inconclusive evidence for..."

Output template:
"A [material] [confidence][category] with [color] and [shape]. [Structure/texture details]. [Function inference]. [Contextual
placement]."

Examples:
1. High Confidence: "A glossy ceramic mug with deep blue coloring and rounded shape. Has a comfortable handle and flat base.
Made for holding hot drinks. Sitting beside a coffee maker and jar of beans on a kitchen counter.”

2. Moderate Confidence: "A possibly glass vase-type object with translucent amber coloring. Fluted body shape and
water droplets on surface. Likely floral display container. Found on windowsill with plants and pruning shears nearby."

3. Low Confidence: "A metallic tool-type object, matte silver with angular grooves. Ambiguous function between
wrench or specialized clamp. Seen in workshop environment near assembly parts."

Figure B9: Prompts for Qwen generating object captions.
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B.4 Main Results

Here we report Acc@0.5IoU and Acc@0.75I0U on Anywhere3D-Bench respectively, as presented in
[Table B3l and [Table B4l

Table B3: Results are presented in Acc@0.5IoU on Anywhere3D-Bench. object bbox in the table
denotes the ground-truth object locations and sizes for simplicity. Chat-Scene*, Grounded 3D-LLM*:
evaluations conducted on ScanNet. **Human performance is evaluated on a subset of 200 expressions
obtained through stratified random sampling across four levels.

Open Source  Area Level Space Level ~ Object Level Part Level Overall

LLMs: object bbox, captions

non-thinking

GPT-4.1 X 51.85+1.50 10.21 £0.17 45.81 £0.30 10.02+1.19 24.67 £+ 0.15
Qwen2.5-72B v 25224122 375+0.17 31.90+0.85 1.75+0.60 14.09 £ 0.47
Qwen2.5-VL-72B v 2514 £1.12 3.02+0.06 28.09+148 1.68+0.53 12.51+0.69

thinking

04-mini X 53.70 £2.62 11.66 +£0.35 46.60£0.22 10.39+0.13 2573 £0.23
Qwen3-32B v 3051 £1.62 747+£026 3840+042 6.24+0.11 18.98+0.20
DeepSeek-R1-671B 4 45504+ 140 9.15+0.24 4598 +£0.24 7.68+0.18 23.434+0.20

MLLMs: object bbox, captions, BEV, video frames
non-thinking

GPT-4.1 X 5450 £0.74 12.04 +£0.06 51.36+0.89 13.294+0.53 28.05+0.27
LLaVA-OneVision-7B v 4.76 1.08 7.02 0.38 3.16
Qwen2.5-VL-72B v 2452+ 1.10 560+026 38.89+036 3434+022 18.74+0.22
GPT4Scene v 4.23 4.14 24.21 2.81 10.53
“thinking

o4-mini X 5450 £1.50 1447 4+0.12 5378 £1.34 17.04 £0.27 30.54 £0.32
3D visual grounding models: point clouds, video frames

PQ3D v 11.82+1.33 436+0.13 2352+043 2.00+0.39 10.74 +0.04
3D-VisTA v 1235+031 389+0.16 2386+048 2.06+0.65 10.71+0.16
Chat-Scene* v 2724 £0.62 328+0.31 30.12+048 2.85+0.00 16.39+0.21
Grounded 3D-LLM* v 25.37 3.44 23.53 2.50 13.62
Human®** - 100.00 82.00 98.00 97.00 91.00

B.5 Thinking v.s. Non-thinking

We also test Deepseek-V3 as well as Qwen3 non-thinking modes for comparison between thinking
models and non-thinking models. As shown in[Table B3| Qwen3-32B thinking modes outperform non-
thinking modes consistently, and DeepSeek-R1-671B outperforms DeepSeek-V3-671B consistently.
These results underscore the importance of reasoning capabilities in effectively addressing our
benchmark.

B.6 Ablation Study on Object Captions

In our evaluations of LLMs and MLLMs, textual captions for each objects are generated by Qwen?2.5-
VL-72B, one of the strongest open-source vision-language models available at the time. Our
motivation for using Qwen2.5-VL-72B as the captioner lies in its open-source availability and to
ensure reproducibility.

Nevertheless, the choice of captioner is flexible and can be replaced with other vision-language
models, including proprietary ones. To explore the impact of different captioners on the final visual
grounding performance, we additionally generate object captions using GPT-4.1 and compare the
results to our original experimental setting, where Qwen2.5-VL-72B serves as the captioner. The
following shows the evaluation results in terms of Acc@0.25IoU on the human evaluation
subset.

As shown, when GPT-4.1 is used as the captioner, it still remains among the top-performing models,
while Qwen2.5-VL-72B still yields the lowest performance in the table. Also, utilizing models with
stronger visual and spatial understanding abilities as captioner (GPT-4.1) result in better overall
performance across all benchmarked models compared to Qwen2.5-VL-72B.
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Table B4: Results are presented in Acc@0.75IoU on Anywhere3D-Bench. object bbox in the table
denotes the ground-truth object locations and sizes for simplicity. Chat-Scene*, Grounded 3D-LLM*:
evaluations conducted on ScanNet. **Human performance is evaluated on a subset of 200 expressions
obtained through stratified random sampling across four levels.

Open Source  Area Level  Space Level Object Level  Part Level Overall

LLMs: object bbox, captions

non-thinking

GPT-4.1 X 2698 £0.74 4.05+0.12 4098 +0.29 4.68+0.27 17.88+0.25
Qwen2.5-72B v 511+£1.86 099+022 2876+1.13 1.18+0.11 10.47 £0.52
Qwen2.5-VL-72B v 6.08 £0.37 0874006 2547+148 1.124+0.00 9.39+0.54

thinking

04-mini X 30.69 +£0.00 438 +£0.12 42.194+0.52 5254027 18.76 £0.17
Qwen3-32B v 1199 £ 1.10 2.624+0.31 3498+0.26 291+0.26 13.99+0.15
DeepSeek-R1-671B v 2399 +1.53 3.89+030 4140+021 4.06+0.11 17.64+0.13

MLLMSs: object bbox, captions, BEV, video frames
non-thinking

GPT-4.1 X 2751 +£450 496+024 4591+0.30 6.08+0.40 20.18+ 042
LLaVA-OneVision-7B v 0 0.25 5.56 0 1.94
Qwen2.5-VL-72B v 388+1.10 1.88+0.13 34.63+024 200+0.11 12.86+0.10
GPT4Scene v 1.59 0.41 21.28 0.19 7.35
~thinking

o4-mini X 3254 +0.37 5544035 4842+1.04 8.05+0.00 21.93+0.14
3D visual grounding models: point clouds, video frames

PQ3D v 423 +£1.06 047+0.13 20.20+0.54 0.00£0.00 7.15+0.16
3D-VisTA v 3354031 033+£0.00 21.35+040 0.00+0.00 7.41+0.12
Chat-Scene* v 12.19+£0.62 0.60 £0.00 26.54 +0.33 0.00£0.00 12.51+0.11
Grounded 3D-LLM* v 5.97 0.86 17.86 0 8.59
Human** - 100.00 48.00 97.00 83.00 74.00

Table B5: Evaluation between thinking and non-thinking models on the Anywhere3D-Bench. Specifi-
cally, we compare Qwen3-32B in its thinking and non-thinking modes, as well as DeepSeek-R1 v.s.
DeepSeek-V3. Results are reported in terms of Acc@0.25Io0U, Acc@0.5I0U, and Acc@0.75I0U.

Open Source  Area Level Space Level Object Level Part Level Overall

Acc@0.25Io0U

Qwen3-32B(non-thinking) v 54.67 9.60 31.97 12.24 20.43
Qwen3-32B(thinking) v 59.79 12.57 40.18 16.48 25.51
DeepSeek-V3-671B v 61.38 9.81 41.06 15.61 24.59
DeepSeck-R1-671B v 71.96 14.61 47.76 20.92 30.49
Acc@0.5Io0U

Qwen3-32B(non-thinking) v 20.46 5.46 30.40 3.69 14.36
Qwen3-32B(thinking) v 30.51 7.47 38.40 6.24 18.98
DeepSeek-V3-671B v 26.63 6.18 39.52 4.81 18.29
DeepSeek-R1-671B v 45.50 9.15 45.98 7.68 23.43
Acc@0.75Io0U

Qwen3-32B(non-thinking) v 5.82 1.87 27.46 1.75 10.57
Qwen3-32B(thinking) v 11.99 2.62 34.98 2.91 13.99
DeepSeek-V3-671B v 8.82 2.23 35.50 2.18 13.65
DeepSeek-R1-671B v 23.99 3.89 41.40 4.06 17.64
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Table B6: Performance of LLMs and MLLMs under captions generated by GPT-4.1 and Qwen?2.5-
VL-72B on human evaluation subset. For simplicity, Qwen in the table denotes Qwen2.5-VL-72B.
Each model is evaluated independently across three runs, with mean values reported.

Overall Area Space Object Part

GPT-4.1 Qwen GPT-4.1 Qwen GPT-4.1 Qwen GPT-4.1 Qwen GPT-4.1 Qwen
captions captions captions captions captions captions captions captions captions captions

LLMs: object bbox, captions

GPT-4.1 38.17 32.00 80.00 71.11 20.39 14.90 48.09 43.81 44.44 33.33
04-mini 41.00 33.17 64.45 60.00 27.06 1451 50.48 46.67 46.67 41.11
Qwen-32B 30.00 25.50 51.11 33.33 14.90 12.94 42.86 4143 3222 20.00
Qwen2.5-72B 21.67 18.83 2222 17.78 8.63 6.67 39.05 34.76 17.78 16.67
Qwen2.5-VL-72B 18.33 16.17 33.33 33.33 7.45 5.10 24.76 27.62 26.67 12.22

DeepSeek-R1-671B  37.33 27.12 75.55 50.00 21.17 10.30 50.48 41.07 33.33 30.83
MLLMs: object bbox, captions, BEV, video frames

GPT-4.1 40.50 37.00 84.45 86.67 21.18 15.29 52.86 54.29 44.45 33.33
04-mini 44.33 41.00 82.22 80.00 28.24 20.00 56.19 57.14 43.33 43.33
Qwen2.5-VL-72B 28.00 26.83 68.89 68.89 9.02 8.63 4191 39.05 28.89 28.89

B.7 Detailed Analysis on Area Level

At the area level, we further categorize referring expressions into two types. The first type is Objects
Combination, where most of the relevant objects are explicitly mentioned in the expression. For
example, “Identify the conference area with the long rectangular wooden table surrounded by
chairs, used for meetings and discussions.” This expression explicitly refers to the area formed by
the table and surrounding chairs. The second type is Commonsense Reasoning, where models are
required to apply commonsense knowledge to infer implicitly indicated objects before identifying
the corresponding area. For instance, “Choose the conference area suitable for holding face-to-face
meetings.” the expression does not directly mention the objects, and the model must first deduce the
components that constitute such a conference area.

Table B7: Analysis on area level

LLM setting VLM setting
Model Qwen2.5-72B  Qwen3-32B  DeepSeek-R1-671B  GPT-4.1 o04-mini Qwen2.5-VL-72B
Object Combination 66.15 64.62 84.62 95.38 87.69 64.62
Commonsense Reasoning 58.06 53.23 66.94 76.61 72.58 53.22

demonstrates the performance of six top models on two types of expressions at area level.
All models exhibit weaker performance on expressions that necessitate commonsense reasoning for
the initial identification of the target objects, illustrating their limitations in applying commonsense
knowledge within 3D scenes.

B.8 Evaluation Cost

The inference cost varies significantly across models, with DeepSeek-R1-671B costing approximately
$40, GPT-4.1 $53, 04-mini $120, and Qwen3-32B around $9 per full evaluation on Anywhere3D-
Bench.

C How Can We Improve MLLMs’ Ability on Multi-level Visual Grounding?

C.1 Error Analysis of Bounding Box Predictions

For the incorrect bounding boxes predicted by GPT-4.1, we first aim to analyze whether the error
primarily arises from inaccuracies in the size or the position of the bounding boxes, with particular
focus on the two challenging visual grounding levels, i.e., space level and part level. We set both the
predicted and ground-truth bounding box positions to the origin (0, 0, 0) and compute Acc@0.25I0U.
This allows us to assess how many predictions fail primarily due to incorrect size estimation, as
illustrated in
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Table C1: Error analysis of GPT-4.1’s bounding box predictions. We report Acc@0.25IoU under two
settings: (1) full IoU considering both location and size (“location + size”), the same setting reported
in our main paper, and (2) IoU computed by aligning both predicted and ground-truth boxes at (0, 0,
0) to evaluate only size accuracy (“size”).

Model area space object part overall
GPT-4.1(location + size) 81.48 19.03 53.88 25.85 35.90
GPT-4.1(size) 94.18 88.67 78.36 64.98 81.24

The evaluation results reveal that GPT-4.1 achieves relatively high accuracy in predicting bounding
box sizes—88.85% at the space level and 64.51% at the part level. The substantial increase in
accuracy—from 18.95% to 88.85% at the space level, and from 29.02% to 64.5% at the part
level—demonstrates that the majority of GPT-4.1’s failures at these two levels can be attributed to
inaccurate localization rather than size estimation.

Furthermore, we evaluate cases in which the predicted bounding boxes completely deviate from the
ground truth—i.e., there is no spatial intersection between the two. To quantify whether any overlap
exists between the predicted and ground-truth bounding boxes, we compute the metric Acc@> 0, IoU,
as reported in[Table C2] Notably, at the space level, approximately 70% of the predictions exhibit no
overlap with the ground truth. This finding highlights that even the top-performing model struggles
to accurately comprehend and reason about spatial configurations at the space level.

Table C2: GPT-4.1 performance measured by Acc@> 0IoU. Under this metric, a prediction is
considered correct if there is any non-zero intersection between the predicted bounding box and the
ground-truth bounding box.

Model area space object part overall

GPT-4.1 90.48 31.44 65.00 55.90 50.92

C.2  Object Orientation Generated by Orient-Anything

In this section, we detail the process of generating object orientations using Orient Anything.

For each object in the scene graph, we first leverage meta-information from the video to select video
frames capturing it from different viewpoints. Then we feed these frames into Orient Anything, which
outputs predicted azimuth angle between the camera pose and the object, along with corresponding
confidence scores. Then, for each video frame of the object, we combine the camera extrinsic
parameters, the azimuth angle predicted by Orient Anything, and the scene coordinate system to
compute the object’s orientation in that frame. The orientation is classified into one of five categories:
“positive x”, “positive y”, “negative x”, “negative y”, or “not sure”. The “not sure” label is assigned
when (i) the object’s orientation is clearly not aligned with x-axis or y-axis, (ii) the object has no
meaningful orientation (e.g., a circular footstool), or (iii) the confidence score predicted by Orient

Anything is below 0.9.
We then apply majority voting across all video frames of the object to determine its final orientation,

selecting from one of the five predefined categories, i.e. “positive x”, “positive y”, “negative x”,
“negative y”, or “not sure”.

As illustrated in the ground-truth orientation of chair-1 is negative x. We first utilize Orient
Anything to achieve its orientation in each frame. Then decide its final orientation through majority
voting of these frames.

C.3 More results on Visual Perception and Relational Reasoning Enhancement

We apply visual perception enhancement (human-selected key frames) and relational reasoning
enhancement (BEV images with coordinate axes and object orientations predicted by Orient Anything)
jointly to evaluate model performance under both enriched input enhancements. In addition, we
manually annotate the object orientations in the scenes and use them as alternative inputs to compare

34



Negative X Negative X Negative X Not Sure Negative X

Majority
\/oting

Predicted Orientation of Object-1: Negative X

Figure C1: ground-truth orientation of object-1 and the predicted orientation of object-1 by Orient
Anything.

model performance against predicted orientations from Orient-Anything, under the same enhancement
settings.

Table C3: Effect of the visual perception enhancement and the relational reasoning enhancement,

and visual perception and relational reasoning jointly . A denotes the change in accuracy relative

to GPT-4.1. The reported results are based on the human evaluation subset and averaged across three
independent trials.

Method Area Space  Object Part Overall
GPT-4.1 86.67 15.29 54.29 33.33 37.00

A(GPT-keyframe) 444 ] 2751 286) 8901 1.007
A(Human-keyframe) 6.66 1T 7.851T 3.3317 15571 7.5071
A(BEV-axes) 6.66 1 1961 2851 5561 3.007
A(BEV-axes + ori.) 2221 5491 096) 3.341 4.007
A(Human-keyframe + BEV-axes + ori.) 6.66 T 10.591 1.421 15571 7.8371

A(Human-keyframe + BEV-axes + human ori.) 4.441 9411 52471 15571 &8.5071

As shown in[Table C3] applying both visual and relational enhancements leads to performance gains
across all grounding levels compared to the baseline GPT-4.1. However, when compared to using only
the human-keyframe visual enhancement, the addition of relational enhancement—even when using
manually annotated orientations—does not yield a significant further improvement in performance at
space level. Although object orientations and coordinate axes provide GPT-4.1 with richer spatial
information, we suspect that the model struggles to correctly interpret and utilize this information. In
particular, it appears to have difficulty reasoning about spatial relationships involving transformations
between ego-centric views, object orientations, and the global coordinate system.

To further assess the model’s understanding and reasoning of spatial information including object
orientation, ego-centric views and global coordinate system, we design an experiment to evaluate
GPT-4.1’s ability to interpret object orientations and perform spatial relationship transformations.
Specifically, we prompt the model with a question using the following template where
azes € {+x, —x,+y, —y} and direction € {left, right}:

The ground-truth answers and those answers provided by GPT-4.1 are presented in[Table C4] The
results indicate that the model struggles with spatial relationship transformations. Even in cases
where the final answer is correct, the underlying reasoning process is often flawed—for instance,
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Suppose the refrigerator’s orientation is axes direction. If you are facing the refrigerator and
using a right-handed coordinate system, which direction does your direction side point to
(+X, -X, +y, or -y)?

Figure C2: Question template to test GPT-4.1 understanding on spatial information including orienta-
tion, ego-centric view and spatial relationship transformation.

Table C4: GPT-4.1’s understanding on spatial orientations and spatial relationship transformations.

orientation of the refrigerator direction ground-truth answer GPT-4.1 answer correct reasoning process?
-X left +y +y X
-X right -y -y X
+X left -y +y X
+X right +y -y X
-y left -X -X X
-y right +X -X X
+y left +X -X X
+y right -X +X X

the model may arrive at the correct answer by making two offsetting transformation errors. This
observation helps explain why GPT-4.1 continues to struggle with relational reasoning at the space
level, even when provided with manually annotated object orientations and axes in BEV.

C.4 Detailed Analysis on Qualitative Results

Here, we provide a detailed analysis of the qualitative results. As illustrated in
Fig. C3] and[Fig. C6] ground-truth bounding boxes are shown in green, while GPT-4.1’s predicted

bounding boxes are shown in red. In the “Reasoning” section below each example, the incorrect
reasoning steps are underlined in red.

In Example (a), GPT-4.1 fails to correctly interpret the spatial relationship: the right side of the piano
should correspond to the direction of decreasing x in the coordinate system. Additionally, the model
places the small speaker on the floor rather than on top of the piano, which violates commonsense
knowledge.

In Example (b), although GPT-4.1 roughly identifies the correct location of the clock, it misunder-
stands the orientation in which the clock is placed. The term thickness should refer to the extent to
which the clock protrudes from the wall. A wall-mounted clock should be vertically aligned against
the wall, rather than lying flat.

In Example (c), the primary mistake made by GPT-4.1 lies in its misinterpretation of the sofa’s
orientation. The orientation of a sofa should correspond to the direction a person would face when
standing up from it. Additionally, the model made a minor error in identifying the starting point—it
should be the midpoint of the front edge of the sofa, rather than its geometric center.

In Example (d), although GPT-4.1 correctly identifies the cabinet and recognized that the two
compartments are distributed on the left and right sides along the y-axis, it still makes an error in
spatial reasoning by failing to correctly map the concept of "left" and "right" to the corresponding
directions of the coordinate axis.

In Example (e), GPT-4.1 simply treats the bottommost drawer as the cabinet(i.e., object-16). The
lack of fine-grained visual details makes it difficult for the model to identify the white drawer located
at the bottom of the cabinet.

In Example (f), GPT-4.1 makes errors in translating spatial relationships into coordinate-based
representations and also fails to identify an object that is placed on the floor.

In Example(g), GPT-4.1 correctly identifies the two white chairs and its mathematical calculations
are precise. However, the method it uses to compute the distance between the two objects in space
is inappropriate. Rather than using the distance between their center points, the calculation should
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Expression:

Facing the piano, place a small speaker measuring 0.2 meters
in length, 0.13 meters in width, and 0.2 meters in height
immediately next to the wall on the far right of the piano
ensuring easy listening while seated on the piano bench.

Reasoning:

**Key points:**

1. Piano location: From the scene graph and the images, object-1 is the
piano. Its position is [-1.19, -2.14, 0.5].

2. Far right wall of the piano (from someone facing the piano): From BEV
and Frame 9, the right side of the piano relative to a seated player is
toward increasing positive y. The wall is at the upper edge of the BEV,
at approximately y =~ -2.5.

3. The “piano bench” (object-12, in front of the piano) is at [-1.31, -1.51,

Expression:

Imagine you are facing the door, and install an antique clock
with a diameter of 0.4 meters and a thickness of 0.15
meters directly above the shelves on the left side of the
gate. The clock is positioned 0.3 meters above the center of
the top of the shelves, complementing the metallic texture
of the shelves perfectly.

Reasoning:

**Step 1: Identify shelves’ position and size:**
**Step 2: Positioning the clock:**

The clock should be “0.3 meters above the center of the top of the shelves™:
- x=-121

- -y=159

- -z=207+03=237

**Step 3: Clock size:**
Diameter = 0.4, so xlength = ylength = 0.4

0.23].
. Thickness = 0.15, so zlength = 0.15

Figure C3: Reasoning process of qualitative examples (a: left) (b: right).

follow commonsense reasoning—in this context, it should be the shortest distance between the two
objects on the XY plane.,

In Example (h), GPT-4.1 correctly identifies sofa-1, coffee table-2, and sofa-4 along with their
respective positions. However, a typical arrangement for 2-3 friends to sit, drink tea, and chat would
usually involve being seated on the same sofa, since the distance between sofa-1 and sofa-4 exceeds
3.5 meters.

D Detailed Related Work

In this section, we provide a more detailed discussion of recent benchmarks related to spatial
intelligence, including both task formatted as QA and visual grounding, and compare our proposed
Anywhere3D-Bench with these benchmarks on four visual grounding levels.

Object-level comparison with VSI-Bench:

* VSI-Bench is formulated as a question-answering task, while Anywhere3D-Bench is a
visual grounding benchmark.
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Expression:

Standing up from the middle of the sofa closer to the door,
walk 1.5 meters forward and then turn right. walk another 1
meter forward and stop. Place a trash bin with 0.3 meters in
both width and length and 0.45 meters in height centered at
the current position.

Reasoning:

### 1. Identify the starting point:

**“the middle of the sofa closer to the door”**

- The BEV shows the door is at the bottom-right, into the corridor/foyer
(where object-10 is close by).

- The sofa closer to this door is **object-1**, based on both position and
BEV layout.

### 2. Find the center coordinate and orientation:
- **Object-1 center:** (-0.11, 0.12, 0.64), size: [1.08, 1.63, 0.78]
- The **middle** of the sofa is its center: (-0.11, 0.12, 0.64)

#### Orientation: What does “forward” mean?

- “Walk forward” implies moving toward the front of the sofa if you are
“standing up from it,” most logically in the direction you’d be facing as
you stand from sitting towards the room (towards positive y).

Expression:

Select the compartment of the cabinet below the window,
where the r open: he right.

Reasoning:

1. **Identifying the Cabinet Below the Window:**

- From the scene graph, object-8 is described as: “A white cabinet with a
rectangular... Features two doors with vertical handles. Likely used for
storage in the kitchen. Positioned below a countertop, adjacent to a sink
and near other kitchen appliances.” matching object-8.

2. **Identifying the Correct Compartment (Right Door): **

- Object-8, from both the BEV and 2D images, consists of two
compartments (left and right doors). The rightmost compartment is the one
whose door opens to the right.

- Since object-8 has the position [2.0, 0.15, 0.58] and size [0.62, 0.98,
0.89], and has two doors, each door is roughly half the cabinet’s y-size.

3. **Predicting the 3D Bounding Box for the Right Compartment:**

- Center of the whole cabinet (object-8): [2.0, 0.15, 0.58].

- Cabinet total y-length: 0.98 m. Each compartment y-length: 0.98 / 2 =
0.49 m.

- The right door is positioned at the higher y-value (since in front view,
right side = higher y, matching with other object placements in the BEV
image).

Figure C4: Reasoning process of qualitative examples (c: left) (d: right).



Expression:

Pull the white drawer at the bottommost level directly below
the TV outward by 0.25 meters.

Reasoning:

1. The TV is object-15, positioned at [0.12, -1.44, 2.66] with size [1.17,
0.19, 0.79].

2. Directly below the TV, the most likely candidate for a bottommost white
drawer is object-16

3. The TV stand/cabinet, seen in the 2D images (frames 4 and 6), confirms
the structure has drawers. The bottommost drawer is the one closest to

the floor, matching object-16.

4. The referring expression says to pull the drawer outward by 0.25 meters.
Outward here means in the +y direction (since drawers pull towards the
viewer, who would be facing the TV from the main open part of the
room/audience in the BEV).

Expression:

Standing up from the armchair and walking 1 meter
forward, which object on the floor directly to my right is
against the wall?

Reasoning:

1. **Locate the armchair**:
- From the BEV and scene graph, ‘object-10 (“A woven wicker chair...”)
is the likely armchair. Its position is [-0.97, 1.85, 0.7].

2. **User walks 1 meter forward**:

- Forward from the armchair (based on typical room orientation and BEV
layout) would likely be decreasing y (since the opening toward the rest of
the room is in that direction).

- So, new approximate position: [-0.97, 0.85, 0.7]

3. **Qbject to the right, on the floor, and against the wall from this new
position**:

- “To the right” relative to the forward direction is toward increasing x.

- Let's look at candidate objects near [-0.97, 0.85, 0.7] with greater x and
next to the wall.

Reviewing the scene graph, these are the possible candidates:

- object-5: position [-1.8, 0.96, 1.05]

- object-6: position [-1.81, 0.96, 1.84]

- Now, with BEV confirmation:

- The wall on the right after walking forward from the armchair (by
‘object-10") would be the right-hand wall, where ‘object-5" is closely
positioned along the wall and is on the floor (bookshelf base).

Figure C5: Reasoning process of qualitative examples (e: left) (f: right).



Expression:

Locate the black chair that is 1 meter away from both white
chairs.

Reasoning:

1. Identify the white chairs in the scene

Based on the scene graph, only two objects plausibly correspond to white
chairs:

- **object-9**: ...

- **object-39%*: ...

Positions:
- object-9: [-1.87, -0.45, 0.4]
- object-39: [-0.87, -1.48, 0.37]

2. Find the black chair that is 1 meter from both object-9 and object-39
Let's compute Euclidean distances (planar, ignoring z for simplicity, as z is
the vertical):

For each black chair:

### Candidate 1: object-40 ([caption: dark gray upholstery])

- Position: [-1.53, -1.24]

Distance to object-9:

= N[(-1.53 - -1.87)> + (-1.24 - -0.45)2] = V[(0.34)* + (-0.79)?] = V(0.12 +
0.624) =~ V0.744 =~ 0.86 m

Distance to object-39:

- V[(-1.53 - -0.87)% + (-1.24 - -1.48)?] = \[(-0.66) + (0.24)?] = \(0.4356 +
0.0576) ~V0.493 = 0.70 m

So, object-40 is close to both, but not exactly 1 m.

### Candidate 10: object-24 ([caption: black coloring])

- Position: [-0.32, -0.08]

Distance to 9: [-0.32 + 1.87 = 1.55], [-0.08 + 0.45 = 0.37]
- [2.4025 +0.1369] % V2.539 ~ 1.59 m

Distance to 39: [-0.32 + 0.87 = 0.55], [-0.08 + 1.48 = 1.4]
- [0.3025 + 1.96] = ¥2.2625 = 1.50 m

Still too far.

Given the ambiguity of scene size and natural tolerance, object-40 is best
matching.

Expression:

Select an area suitable for brewing tea, drinking tea, and

chatting with two or three friends.

Reasoning:

**Requirements Breakdown:**

Space for making and drinking tea, and sitting comfortably together.
- Needs seating for 2 or 3 people, a coffee table for serving tea, and a
relaxed social setting.

**Analysis:**

- The living room space in the BEV shows two sofas (object-1 and
object-4), a coffee table (object-2), and a rug creating a gathering area.

- Object-2 (coffee table) in the scene graph is described as having a mug,
a bowl of fruit, and a plate2014which fits the 201cbrewing and drinking
teapurpose.

- Object-1 and object-4 are beige sofas placed across and adjacent to
the coffee table, offering social seating.

- The surrounding area (including the rug) forms the ideal interaction
space for relaxing and chatting, rather than the kitchen area at the top
left with the fridge and appliances.

Figure C6: Reasoning process of qualitative examples (g: left) (h: right).



* Besides, questions in VSI-Bench are constructed using eight strictly formatted question
templates (see Table 4 in VSI-Bench’s appendix). For example, object size questions in
VSI-Bench are limited to a fixed form asking about “the length of the longest dimension”,
whereas Anywhere3D features more diverse queries about objects, such as objects’ aspect
ratio and occupied floor area (as exemplified in [Fig. 7).

Part-level comparison with SceneFun3D:

* Anywhere3D emphasizes the visual grounding of part movements by predicting the parts’
positions after movement to test models’ ability of moving parts in the 3D space (e.g., “pull
the top drawer out until it touches the armchair” in[Fig. T), whereas SceneFun3D is designed
to predict the part’s original positions and motion directions.

* In addition, SceneFun3D focuses on 9 affordance categories of functional interactive ele-
ments of objects, such as “handles” and “knobs”. In contrast, Anywhere3D involves more

open-ended object parts (e.g., “toilet tank™, “lampshade of the lamp”, “top drawer of the
cabinet”).

Space- and region-level comparison with ScanReason/Space3D-Bench/MMScan:

Quite different from the spatial questions in other benchmarks, the “space-level” queries in Any-
where3D are intended to ground unoccupied space (as explained in[Fig. T]s caption and Abstract),
often involving placing a new object or moving an existing object to a specified unoccupied space
within the scene, such as:

* “Place a cup on the upper right corner of the bedside table.” (Fig. T))

* “Mount a clock on the wall above the shelf for convenient viewing.” (Fig. 6)

* “Move the chair 0.5 meters backward.”
Comparatively, ScanReason focuses on object-level visual grounding; Space3D-Bench focuses
on question-answering tasks concerning objects and rooms, whereas the area-level queries in

Anywhere3D-Bench are not limited to rooms, but also include functional areas, possibly a portion of
aroom, e.g., the study area in[Fig. T} MMScan’s region-level tasks are similar to our area-level tasks.

To clearly illustrate how Anywhere3D-Bench differs from prior benchmarks, we provide a detailed

comparison in the below:

Table D1: Comparison with recent benchmarks focusing on spatial intelligence

Benchmark Task Format Area/Region/Room Unoccupied Space Object Part
VSI-Bench template-based QA 4 X 4 X
SceneFun3D grounding X X X v (only 9 functional interactive classes)
MMScan grounding + QA 4 X 4 X
ScanReason grounding X X 4 X
Space3D-Bench grounding 4 X 4 X
Anywhere3D-Bench(ours) grounding v v v v

As shown, Anywhere3D-Bench provides a holistic evaluation for multi-level grounding in 3D scenes,
while other benchmarks touch only one or two levels. Also, the space-level tasks, requiring reasoning
about unoccupied space beyond objects, represent a particularly novel aspect of our benchmark.

E Limitations and Future Directions

In this section, we outline the limitations of our current work and propose directions for future
research.

First, we plan to develop a training set for Anywhere3D-Bench. This would enable the supervised
fine-tuning or reinforcement learning-based fine-tuning strategies to enhance the multi-level visual
grounding capabilities of both 3D visual grounding models and lightweight VLMs.

Second, we aim to perform a deeper analysis of the reasoning processes produced by models and
design corresponding evaluation metrics to assess the correctness of intermediate reasoning steps.
In some cases, even if the final bounding box prediction is correct, the intermediate reasoning may
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involve compensatory errors—e.g., two incorrect steps canceling each other out. To address this, we
are hoping to construct dual-form expressions, such as converting “Facing the sofa, place a table on
the right side of the sofa” into “Imagine sitting on the sofa, place a table on the left side.” A model’s
prediction should only be considered correct if it answers both dual expressions consistently.

Third, while current model outputs are represented as the center coordinates and size of a 3D bounding
box, we are interested in exploring a multiple-choice formulation. In this setting, the model would
select the correct bounding box from a set of candidates, including the ground-truth and several
distractors sampled from the scene.

Fourth, the proposed visual perception and relational reasoning enhancements serve as initial attempts
to improve performance on Anywhere3D-Bench, highlighting the substantial gap between current
models and humans. We hope these efforts will inspire future explorations, such as adopting video
sampling strategies or other advanced techniques.

Fifth, we hope to move beyond visual grounding alone and explore object generation at the grounded
location, such as generating corresponding 2D images of objects placed in the predicted 3D position.

Sixth, many expressions in Anywhere3D-Bench can naturally serve as instructions. In future work,
we plan to extend the benchmark toward embodied tasks, enabling agents (e.g., robots or simulated
avatars) to execute the instructions in interactive 3D environments.
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