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Abstract

Computation graphs are Directed Acyclic Graphs (DAGs) where the nodes corre-
spond to mathematical operations and are used widely as abstractions in optimiza-
tions of neural networks. The device placement problem aims to identify optimal
allocations of those nodes to a set of (potentially heterogeneous) devices. Existing
approaches rely on two types of architectures known as grouper-placer and encoder-
placer, respectively. In this work, we bridge the gap between encoder-placer and
grouper-placer techniques and propose a novel framework for the task of device
placement, relying on smaller computation graphs extracted from the OpenVINO
toolkit. The framework consists of five steps, including graph coarsening, node
representation learning and policy optimization. It facilitates end-to-end training
and takes into account the DAG nature of the computation graphs. We also propose
a model variant, inspired by graph parsing networks and complex network analysis,
enabling graph representation learning and jointed, personalized graph partitioning,
using an unspecified number of groups. To train the entire framework, we use
reinforcement learning using the execution time of the placement as a reward. We
demonstrate the flexibility and effectiveness of our approach through multiple ex-
periments with three benchmark models, namely Inception-V3, ResNet, and BERT.
The robustness of the proposed framework is also highlighted through an ablation
study. The suggested placements improve the inference speed for the benchmark
models by up to 58.2% over CPU execution and by up to 60.24% compared to
other commonly used baselines.
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1 Introduction

The ability of intelligent agent systems (IASs) and cyber-physical systems (CPSs) to perceive and
accurately interpret complex environments is crucial for artificial intelligence (AI). Recently, there has
been a remarkable progress in machine learning and AI, due to the wide adoption of the transformer
architecture and foundation models (FMs) [26, 30]. FMs have allowed both academia and industry to
perform several data-demanding tasks, ranging from image and text analysis to multi-modal content
generation and human-like visual perception [18, 20, 11, 4]. This is achievable due to the self-
supervised nature of the FMs, their ability to easily generalize and the large amounts of data available
online [29]. The aforementioned properties make FMs distinguishable in specific general pre-training
tasks such as next-word prediction, compared to traditional ML architectures that use supervised
learning [2]. This recent surge in using large FMs has led to increased demand for computing power,
which is projected to grow even more in the next few years [16]. This is due to the need for more
advanced model training processes and the continuous expansion of model parameters [26, 6]. It
is clear that as FMs become increasingly complex, they demand vast computational resources not
only for training but also for fine-tuning and inference tasks. This surge in computational demand
underscores the necessity for managing the available hardware more effectively.

In light of this, the concept of device placement has gained popularity lately as a manner to speed up
and improve the inference time of deep learning models, including FMs, in systems with a mixture of
heterogeneous devices, such as CPUs, GPUs and NPUs [31, 1, 33, 15, 21]. With neural networks
evolving towards larger models, heterogeneous and multi-device computing has played a critical role
in their implementation. Device placement emerges as a pivotal factor determining the performance
of an implementation of a model. Strategically allocating neural networks across multiple devices
can significantly reduce the runtime of a model and the overall energy consumption [9]. The current
process of device placement typically involves converting a neural network into a computation
graph, where each node corresponds to an operation within the neural network. The computation
graph is then partitioned and its nodes are allocated to the appropriate devices for processing. The
effectiveness of device placement directly impacts the deployment performance of neural networks.

Early on device placement has been the main responsibility of human experts [21]. Engineers
with a substantial level of expertise and diligence were responsible for allocating each part of a
model to the best-suited device. However, this rigorous task can be daunting, considering the rapid
advancement in hardware, which leads to a serious increase in development time, bug fixing, and
code optimization [3, 19, 23]. Deep reinforcement learning (DRL) has recently been proposed to
provide effective device placements with full automation [31, 1, 21]. Two different DRL architectures
for device placement currently exist in the literature: the ‘grouper-placer’ model that reduces the
action space by merging operations into groups; and the ‘encoder-placer’ that encodes the features of
the operations to capture the topological properties of the computational graph [15, 31].

Although existing approaches have been successful, there is still space for improvement. In particular,
they demonstrate several shortcomings. To begin with, they disregard the directed and acyclic nature
of computation graphs [22]. Furthermore, they either follow a grouper-placer or an encoder-placer
architecture [22, 21]. In addition, most of them are not designed to train all of their components
simultaneously in an end-to-end fashion and they fail to capture higher-order interactions among
the operations of a computation graph. Finally, they make use of large, fine-grained computation
graphs, thereby exhibiting slow convergence and demanding a higher number of iterations during the
learning process [15].

Considering the limitations mentioned above, this paper proposes a framework to optimize for
device placement based on smaller, coarsened computation graphs produced by the OpenVINO
toolkit. Our framework consists of five steps: First, the neural network model is converted into a
computation graph. Then, local and global structural features as well as positional, node-specific
and fractal features are extracted to compose the initial node feature vectors. Following that, graph
representation learning, graph partitioning and pooling are learned jointly, facilitating the fusion of
the grouper-placer and encoder-placer models. Finally, we use the execution time of the suggested
device placements as a reward to train the entire framework. In contrast with existing approaches,
our framework allows for encoding and grouping operations of a computation graph jointly in an
end-to-end fashion. Along with the proposed framework, through one of the variant models, we
introduce a novel method tailored to computation graphs, for jointly learning node embeddings
and performing personalized graph partitioning with an unspecified number of groups for further
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coarsening. The effectiveness and robustness of the proposed approach are demonstrated through
multiple experiments with different benchmark models and a detailed ablation study.

Contributions. The main contributions of this paper are the following:

• To the best of our knowledge, this is the first flexible framework for the task of device
placement capable of learning graph and node representations as well as graph partitions and
pooling jointly in an end-to-end fashion. Even more, we introduce the concept of learning
personalized graph partitions using an unspecified number of groups.

• We propose a structure-aware device placement framework that integrates graph coarsening,
node representation learning, policy optimization and effectively combines the strengths of
grouper-placer and encoder-placer models.

• Our framework is the first of its kind that encodes features from multifractal analysis,
positional encodings, and node-specific features for the task of device placement through a
model variant, and discusses the impact of incorporating different properties on the model.

• The proposed variant of the framework achieves a state-of-the-art performance improvement
of up to 58.2% over CPU execution and 60.24% in comparison with other baseline models.

2 Proposed framework

In this section we introduce our framework titled Hierarchical Structure-Aware Device Assignment
Graph (HSDAG). It consists of five steps as shown in Figure 1. Briefly, we first convert a neural
network model into a computation graph. Then, we extract features for each node and edge of the
computation graph. The next step enriches these features via graph representation learning techniques
and simultaneously learns how to partition and pool the graphs. The learned features and groups of
nodes are utilized to train a stochastic policy, which we use for assigning each node of a graph to the
most appropriate device. We train the entire pipeline end-to-end with the objective of minimizing the
inference time of the proposed device placement.

2.1 Problem Formulation

Definition 2.1. (Computation graph). We denote a computation graph as G = (V,E). G is labeled,
unweighted, directed and acyclic with a set of nodes V = {v1, v2, ..., v|V |} representing operations
and a set of edges E ⊆ V × V representing their connections. Each graph G is associated with a
binary asymmetric adjacency matrix as A ∈ {0, 1}|V |×|V |. Each node v of G represents an operation
applied to the input data and is associated with an operation type tv ∈ T . In the context of this paper,
the terms node and operation are used interchangeably. An edge e = (v, u) ∈ E represents the flow
of data or dependency among node v and node u.
Definition 2.2. (Device placement). Given a list D of the available devices, a placement P =
{p1, p2, ..., pn} assigns each operation v of a computation graph G to a device p ∈ D, where
p ∈ {1, 2, ..., |D|}.

Problem setup. We focus on the problem of device placement in a heterogeneous computing system.
Our goal is to assign each part of a computation graph to the most suitable device, such that the
overall execution time during the inference of the model is minimized. Formally, given a computation
graph G, we learn a policy π : G→ P that assigns a placement p for all v ∈ G such that

r∗π,P = max
π,P

r(G;π, P ), (1)

where r∗π,P ∈ R is the reward by following policy π and placement P . We use a GNN (although any
model can be employed) to learn the optimal policy denoted by π∗

θ and its set of parameters θ. Let
lP (G) ∈ R+ denote the execution time of the computation graph G by following the placement P .
Our goal is to minimize execution time by learning the parameters

θ∗ = argmin
π,θ

l(G;π, θ), (2)

for the policy π that yields the best results.
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Figure 1: Overview of the proposed framework, HSDAG. Graph construction. We first convert a neural
network model c into a computation graph G, repr : c → G. Feature extraction. Then, we calculate the initial
feature matrix X(0) capturing local and global connectivity information, node-aware features, information about
the order of the nodes as well as features from fractal analysis. Learning embeddings and groups jointly. We
further enrich node features X(0) using a GNN : G → Z model and learn how to pool a graph G jointly using
a graph parsing network. In that way, we bridge the gap between grouper-placer and encoder-placer methods
for device assignment. Device placement. A learnable MLP model classifies the nodes V ′ of the coarsened
graph G′ = (V ′, E′) to the available devices D. Heterogeneous execution. We map the device placement of
V ′ to V based on the node assignment matrix X and apply the placement of all the operations into the execution
environment to measure the execution time with the corresponding reward. End-to-end parameter update. We
update our policy π parameters θ, i.e. the combination of GNN and MLP, based on the reward and renew the
node feature matrix Z with the current cluster information. The entire framework supports end-to-end parameter
updates and training.

2.2 Graph construction

Given a set of neural network models C = {c1, c2, ..., c|C|}, the first step is to decide a graph-
based code representation repr that converts a structure of a neural network model ci into a graph
Gi, repr : ci → Gi. There is a list of different graph-based representations of neural network
models including abstract syntax trees, contextual flow, control, data flow and LLVM IR graphs [17].
Although such graphs may contain valuable information and capture the latent information flow of a
program, they tend to add unnecessary complexity to the overall process. Instead, for the experiments
of this paper, we opt for representing the code of a neural network model ci as a computation graph,
due to its expressiveness, simplicity, and practicality. A computation graph is generally smaller
than its counterparts and could be easily allocated to specific devices. For instance, one can use
several popular libraries to produce the computation graph Gi of a given neural network model
ci. In this paper, we use the OpenVINO toolkit to generate the computation graphs as it generates
smaller, already coarsened graphs compared to those of TensorFlow or PyTorch. Further information
about the OpenVINO toolkit and examples of computation graphs are available in Appendix F. Even
though it is optional, further coarsening can be performed using common co-locating operations or
heuristics [22]. Such co-locating heuristics eliminate certain execution failures due to placement
rule violations. In our experiments, we apply a simple algorithm for co-location to further condense
the model into a smaller computation graph [22]. The graph construction step enables our approach
to utilize graph representation learning techniques. Note that our framework is flexible and can
be coupled with any type of graph code representation for neural networks capable of producing a
directed and acyclic graph G, similar to those of the computation graph representation.

2.3 Feature extraction

The proposed framework is also versatile as far as the initial node features are concerned. During
our experimentation with various feature combinations (see Ablation studies in Section 3), we found
that a mixture of features capturing local and global connectivity information, features from fractal
analysis as well as node-specific features (e.g. topology, the order of a node and node type) leads to
better results.
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Local structural features. Specifically, the initial feature vector x(0)
v of a node v incorporates

information about the node (operation) type tv, in-degree δinv = |Nin(v)| =
∑

u∈V A(u, v) ∈ N+

and out-degree δoutv = |Nout(v)| =
∑

u∈V A(v, u) ∈ N+ of v; here, Nin(v) and Nout(v) represent
the sets of in-neighbors and out-neighbors of a node v, respectively. Initially, we use a one-hot
encoding to embed each unique operation type i into a tensor Ti ∈ {0, 1}|T |, where |T | ∈ N+ is the
number of unique operation types among all the input models C. Formally, for each operation type
t ∈ T = {1, . . . , |T |}, the one-hot encoding is defined as

Ti =

{
1 if i = t

0 otherwise
, i ∈ {1, . . . , |T |} (3)

Similarly, we one-hot encode each unique in-degree δini and out-degree δoutj values into the ∆in
i ∈

{0, 1}|∆in| and ∆out
i ∈ {0, 1}|∆out| tensors, where |∆in| ∈ N+ and |∆out| ∈ N+ is the number of

unique in-degree and out-degree values, respectively.

Global structural features. Relying solely on local features might miss capturing important global
properties of the network. To capture the multi-scale structural properties of the network, we calculate
the fractal dimension for each node v ∈ V . The fractal dimension D(v) [28, 30] of a node v is
computed based on the mass distribution. Given the set of distances {r1, r2, . . . , rm} from node v to
other nodes in the network, the fractal dimension D(v) is calculated as follows:

D(v) =

m∑
k=1

(log(rk)− ¯log(r))(log(N(v, rk))− ¯log(N(v, r)))

m∑
k=1

(log(rk)− ¯log(r))2
(4)

where rk represents each distance in the set, N(v, rk) is the number of nodes within the distance rk,
and ¯log(r), ¯log(N(v, r)) are the mean values of log(rk) and log(N(v, rk)), respectively.

Positional features. In an attempt to inject information about the order of the nodes, we associate
each node v with an integer pos that encodes the topological order of the graph. To do so, we use a
bijective mapping function id : V → {1, . . . , |V |}. Formally, if vi is the i-th node in the topological
order, then id(vi) = i. This kind of feature can be further enhanced using a function for positional
encoding PE : R× R→ R:

PE(pos, k) =


sin ( pos

10000
2i

dpos

) if k = 2i

cos ( pos

10000
2i

dpos

) if k = 2i+ 1

, i ∈ [0,
dpos
2

] (5)

where dpos is the size of the embedding of feature pos.

Node-specific features. For each node v, we define the padded, fixed-size output shape tensor
Sv ∈ R|S|, which is also provided as a piece of information in the original computation graph. Each
digit of the output shape of a node v is represented as a new dimension in the tensor Sv . We traverse
the entire graph G and obtain the maximum data output shape |S| = maxv∈V output_shape(v).

Finally, we concatenate all the information for each individual node v and form a node feature
vector x(0)

v ∈ Rd, where d = T∥S∥∆in∥∆out∥D∥dpos. Building on top of the initial feature matrix
X(0) ∈ R|V |×d, in the next steps, we extend the representation learning capabilities of our framework
with recent techniques from the field of GNNs. While GNNs offer powerful feature extraction
methods, this step is crucial as it provides a model with information about the nodes and structure of
the graph, thereby accelerating the convergence of the process.

2.4 Learning embedding and groups jointly

We further enrich node features X(0) and learn how to partition a given graph G into an unspecified
varying number of groups by employing the Graph Parsing Network (GPN) [24]. Existing grouper-
placer methods typically operate with a predefined number of clusters during device placement
exploration. They also employ non-trainable algorithms for graph partitioning or pooling relying
mostly on human intuition and heuristics to group the nodes of a graph. This ad-hoc presetting of
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the group number leads to suboptimal solutions, which in turn inhibit the exploration and learning
process of the overall framework. Instead, our framework treats both the number of node groups and
the pooling algorithm as learnable parameters, which are trained in an end-to-end fashion. This step
consists of three components: (1) graph and node encoding, (2) edge score matrix calculation and (3)
graph partitioning and pooling.

Graph and node encoding. The graph and node encoding component is compatible with any neural
network model and generates a node embedding zv ∈ Rd′

for each node v, where d′ is the dimension
of the node feature vector. In practice, we use an embedding function GNN : G→ Z ∈ R|V |×d′

as
our main graph encoder; self-supervised techniques may also be employed to pre-train the embedding
function GNN, which aids in the downstream task of device placement [32]. As a result of using
a GNN as an encoder, the learnable feature matrix Z ∈ R|V |×d′

captures both node- and structure-
aware information about the graph G. As we mentioned before, our framework is model-agnostic and
allows for utilizing different GNN functions. In the interest of clarity, we formulate the representation
learning step using a GCN [14] model with a single graph convolutional layer:

Z = GNN(X, A) = σ(D̂−1/2ÂD̂−1/2X(0)W) ∈ R|V |×d′
(6)

where Â = A+I ∈ {0, 1}|V |×|V | denotes the adjacency matrix with self-loops and D̂ii =
∑

j=0 Âij

is the corresponding diagonal degree matrix, W ∈ Rd×d′
is a matrix of learnable parameters,

X(0) ∈ R|V |×d is a matrix with the input features of each node v and σ(·) denotes an activation
function such as ReLU(·) = max(0, ·).
Edge score matrix calculation. This component accepts any differentiable neural network model
to calculate an edge score matrix S ∈ [0, 1]|V |×|V |. Given an edge e connecting two nodes v, u and
their embeddings zv, zu, then the score Sv,u = Se is calculated as follows:

Sv,u = σ(ϕ(zv ⊙ zu)) ∈ [0, 1] s.t. S = S ⊙A (7)

where σ(x) = sigmoid(x) = 1
1+e(−x) and ϕ can be any differentiable neural network. During our

experimentation, we found that setting ϕ = MLP yields good performance w.r.t. the task of device
placement. The magnitude of an edge score Se quantifies the strength of the relationship between
the connected nodes v and u. A higher edge score Se implies a stronger relationship, increasing the
probability for the nodes v and u to be grouped into the same partition Pi ∈ P . Formally, this can be
expressed as:

P (v ∈ Pi ∧ u ∈ Pi) ∝ Se, e = (v, u) (8)

As a result, the higher the edge score Se, the higher the probability that nodes v and u will be grouped
into the same partition, reflecting their relational affinity.

Graph partitioning and pooling. The graph partitioning and pooling component uses the computed
edge scores S to partition the entire graph G. Specifically, it iterates through each node v in the
graph G and identifies the edge with the highest score among all edges connected to that node. In a
graph with |V | nodes, this process may identify up to |E| ≤ |V | such edges. Only these |E| edges
are retained and the remaining edges are discarded, automatically dividing the graph into multiple
groups. The set of the remaining edges is then defined as:

E = {(v, u)|v ∈ V, u = arg max
u′∈N(v)

Sv,u′} (9)

This grouping method ensures that nodes within each group have stronger local connectivity and
tighter relationships, making them more suitable for being assigned to the same device for execution.
The final step is to create a node assignment matrix X ∈ R|V |×|V ′| that maps each node v in the
original graph G to a node v′ in the coarsened graph G′ = (V ′, E′). To construct the node assignment
matrix X we use the graph parsing algorithm A, as proposed in [24]:

X = A(E) (10)

The adjacency matrix A′ ∈ {0, 1}|V ′|×|V ′| of the pooled graph G′ is then defined as:

A′ = X T ·A · X (11)
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Table 1: Statistics of computation graphs of the benchmarks used in our experiments. |V |: the number
of nodes, |E|: the number of edges, d̄: the average degree.

BENCHMARK |V | |E| d̄

INCEPTION-V3 728 764 1.05
RESNET 396 411 1.04
BERT 1009 1071 1.06

2.5 Reinforcenment learning for node-based device assignment

In this step, we combine the GPN from the previous component and an MLP to learn a policy
π : G′ → P ′. After we obtain the device placement P ′, we use the node assignment matrix X to map
each node v′ of the coarsened graph G′ to a node v of the original graph G. In that way, we manage
to assign a device pv for each node v of the graph G. At each RL episode, we infer the machine
learning model with the updated operation device placement P ′ and get the inference latency lP ′(G′).
Our ultimate goal is to choose a reward function that maximizes the reward when the latency is low.
Thus, we use the reward function rP ′(G′) = 1

lP ′ (G′) . To find the proper stochastic group detection
and placement policy parameters θ, we maximize the objective function

J(θ) = EP∼π(P |G′;θ)[r(P,G
′)] (12)

For each time step, we update the node embedding Zv of a node v by summing up the embedding Zv′

of its corresponding coarsened node v′: Zv = Zv + Zv′ . We then form a new graph G′ which can
also be considered as the new state. We then run a new round of representation and group learning
(Section 2.4) and device placement for the new graph G′. We update our policy parameter gradient
by REINFORCE [27] using the Adam [13] optimizer producing:

∇θJ(θ) = EP∼π(P |G′;θ)[r(P,G) · ∇θ log p(P | G′; θ)] (13)

We record x steps in the buffer and compute the reward of each device placement. After x steps, we
update the policy parameter with the cumulative reward and loss

∇θJ(θ) ≈ −
x∑

i=1

∇θ log p(P | G′; θ) · γi · r(Pi, G) (14)

where γ is the discount rate for the reward at the current time step to the previous time steps.

3 Experiments

3.1 Benchmarks

To evaluate our approach we use the computation graphs created from three popular benchmarks: (1)
Inception-V3: The Inception-V3 architecture [25] is extensively employed for image recognition
and visual feature extraction [12]. This neural network consists of multiple blocks, each comprising
various branches of convolutional and pooling layers. These branches are capable of parallel execution
and are concatenated to form inputs for the subsequent block. However, the depth of the network
limits this parallelism since later blocks must wait for the completion of earlier ones; (2) ResNet:
ResNet [10] is a widely-used model for image classification. It consists of multiple convolutional
layers and uses residual connections to reduce the effects of the vanishing gradient problem. We use
the ResNet-50, which is a 50-layer convolutional neural network; (3) BERT: BERT [6] is a language
model relying on the transformer architecture. It pre-trains deep bidirectional representations on
unlabeled data jointly. It can be used as the base to fine-tune models for a list of tasks, including
question answering and language inference. Several versions of the BERT model exist. In this
paper, we use the base uncased version. Important statistics and a more detailed description of the
benchmark models are available in Table 1 and Appendix D.
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3.2 Setup

We implement the variant of HSDAG and baseline models with the PyTorch Geometric framework [7].
The Adam [13] optimization algorithm is used for the optimization of the parameters of the models.
We run our experiments on real hardware using the OpenVINO toolkit version 2023.3.0 2.

Devices. The available devices for our experiments are the following: (1) CPU: 12th Gen Intel(R)
Core(TM) i9-12900K, (2) GPU.0: Intel(R) UHD Graphics 770 (iGPU) and (3) GPU.1: Intel(R) Data
Center GPU Flex 170 (dGPU). Our server has 64GB of memory.

3.3 Baseline comparison

Aiming to test the performance of the proposed framework, we evaluate the proposed variant against
a list of state-of-the-art baseline methods. The selected baseline models may differ from the variant
of our framework in many ways, in terms of their architecture and the algorithms they employ to
implement their components. Furthermore, they may ignore parts of the proposed framework or
implement them differently (e.g., learn node embeddings and clusters separately). The main purpose
of the baselines is the evaluation of our framework w.r.t. the task of device placement.

1. CPU-only. It assigns the entire computation graph to CPU. It does not include any part of
the proposed approach, except for the device assignment component.

2. GPU-only. It assigns the entire computation graph to GPU. Similar to CPU-only, the device
assignment part of our framework is the only one that is implemented.

3. OpenVINO-CPU. This baseline method lets the OpenVINO optimization toolkit decide
whether the entire computation graph should be assigned to CPU or GPU, with CPU set as
the first preference.

4. OpenVINO-GPU. A baseline similar to OpenVINO-CPU with GPU set as the first prefer-
ence.

5. Placeto [1]. It uses GNNs to learn features for any computation graph as proposed in [1].
Therefore it enables the transfer of a learned device placement policy to new computation
graphs without further re-training.

6. RNN-based approach [22]. An RL framework trained to optimize device placement by
utilizing a sequence-to-sequence LSTM model and a content-based attention mechanism.

Table 2 shows the performance of the compared models as far as the task of device placement and the
reduction in execution (inference) time are concerned. On Inception-V3, our framework achieves
a 17.9% speedup over the CPU-only baseline, reducing the inference time from 0.0128 seconds to
0.0105 seconds. This performance surpasses other baselines, such as GPU-only (6.25% speedup) and
Placeto (9.38% speedup). Similarly, on ResNet, our framework delivers a 52.1% speedup, reducing
the inference time to 0.00766 seconds, which is significantly better than the GPU-only (51.2%
speedup) and OpenVINO-GPU (45.3% speedup) baselines. The most substantial improvement
is observed on the BERT benchmark, where our framework achieves a 58.2% speedup, reducing
the inference time to 0.00267 seconds, outperforming the GPU-only baseline (56.5%speedup).
These results highlight the efficiency and effectiveness of the proposed device placement approach,
leveraging graph coarsening, node representation learning, and reinforcement learning to optimize
computation graph execution on heterogeneous hardware environments.

3.4 Ablation studies

To understand the impact of the components, steps and configurations of HSDAG, we conduct an
ablation study. Various modifications to the framework were tested, such as removing graph structural
features, output shape features, and node IDs. Overall, the results are shown in Table 3. indicate that
each of these components plays a significant role in achieving optimal performance.

No graph structural features. For each node of v in the computation graph G, we ignore features
from fractal analysis, in-degree, and out-degree. Removing graph structural features clearly impacts
the framework’s ability to capture the global and local structural information of the computation

2https://github.com/openvinotoolkit
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Table 2: Evaluation results of different models on the device placement task. The best results for
each baseline model across benchmarks are highlighted in bold. lP (G) denotes the execution time
(in seconds) for each model. Speedup % denotes the speedup with respect to the CPU-only baseline.
On the execution time lP (G) column, lower (↓) scores are better. On the Speedup % column, higher
(↑) scores are better. To get accurate results, we measure the inference time with the same device
displacement 10 times and take the average of the last 5 measurements. OOM: out of memory.

Inception-V3 ResNet BERT
lP (G) Speedup % lP (G) Speedup % lP (G) Speedup %

CPU-only 0.0128 0 0.0160 0 0.00638 0
GPU-only 0.0120 6.25 0.00781 51.2 0.00277 56.5

OpenVINO-CPU 0.0128 0 0.0234 −46.3 0.00657 −2.98
OpenVINO-GPU 0.0138 −7.81 0.00876 45.3 0.00284 55.5

Placeto 0.0116 9.38 0.00932 41.8 0.00651 −2.04
RNN-based 0.0128 0 0.00875 45.3 OOM OOM

HSDAG 0.0105 17.9 0.00766 52.1 0.00267 58.2

Table 3: Results of the framework variants of the ablation study on the device placement task. lp(G)
denotes the execution time (in seconds) for each model. Speedup % denotes the speedup with respect
to the CPU-only baseline. On the execution time lp(G) column, lower (↓) scores are better. On the
Speedup % column, higher (↑) scores are better. To get accurate results, we measure the inference
time with the same device displacement 10 times and take the average of the last 5 measurements.

Inception-V3 ResNet BERT
lP (G) Speedup % lP (G) Speedup % lP (G) Speedup %

CPU-only 0.0128 0 0.0160 0 0.00638 0

Original 0.0105 17.9 0.00766 52.1 0.00267 58.2
w/o output shape 0.0117 8.59 0.00768 52.0 0.00278 56.4

w/o node ID 0.0117 8.59 0.00768 52.0 0.00279 56.4
w/o graph structural features 0.0109 14.8 0.00766 52.1 0.00268 58.2

graph. The results from this ablation show a decrease in performance, although not as important as
other feature removals. For example, the inference time speedup on Inception-V3 drops to 14.8%
from 17.9% when these features are excluded. This indicates the importance of these features in
capturing the hierarchical and interconnected nature of computation graphs.

No output shape features. We assume that the output data shape of each operation reflects the
computation requirement for the corresponding operation. We do not include the output data shape in
the node feature vector to test its effectiveness. We observe a significant decrease in performance.
The speedup for Inception-V3 drops from 17.9% to 8.59%. This suggests that the features related
to the output shape are crucial for understanding the computational load associated with each node
in the graph. Without this information, the framework’s ability to optimize device placement is
compromised, leading to less efficient computation graph execution.

No node ID. In this case, we do not use the node ID to encode the topological sequence of the node
v in a given computation graph G. Omitting information about the node ID results in a significant
performance drop. The speedup for Inception-V3 is reduced to 8.59%. This highlights the critical role
of node IDs in preserving the order and dependencies within the computation graph. The framework
lacks essential information about the execution order of operations, leading to sub-optimal device
placement and reduced overall efficiency.

3.5 Downstream Model Performance and Runtime Complexity

As a sanity check for our method, we show the performance on downstream tasks is not affected.
Theoretically, since the end-to-end training pipeline itself does not change, we do not expect any
impact on the performance. Nonetheless, we show experimental results on 3 exemplar cases to
empirically verify statement.

Inception-V3: We performed image classification inference on images depicting Samoyed dogs.
All the parameters are directly derived from the torchvision pre-trained model. We did not change
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any configuration on the data type of the model. The classification accuracy of Inception-V3 using
the best device placement is 82.77%. For the GPU-only experiments the classification accuracy is
82.72%. For the CPU-only experiments the classification accuracy is 82.33%.

ResNet: Similarly, we performed image classification inference using the ResNet model on the same
dataset. The classification accuracy with the best device placement is 45.37%. For the GPU-only
experiments the classification accuracy is 45.37%. For the CPU-only experiments the classification
accuracy is 45.44%.

BERT: We evaluated the performance of the BERT model using the output embeddings from the
different device placements. We calculated their mean squared error, cosine similarity and Euclidean
distance (MSE: the lower the better, Cosine Similarity: the higher the better, euclidean distance: the
lower the better). The results are shown on Table 4.

Table 4: BERT performance on downstream tasks.

Comparison MSE CS L2 norm

CPU vs GPU 3.049e-05 0.999 0.432
CPU vs HSDAG 6.819e-07 0.999 0.064
GPU vs HSDAG 3.174e-05 0.999 0.441

Table 5: Empirical runtime complexity comparison.

Model Inception-V3 ResNet BERT

Placeto 2808s 1162s 4512s
RNN-based 3706s 1212s OOM
HSDAG 2454s 1047s 2765s

These experiments empirically demonstrate that HSDAG does not affect the performance of the
model in the downstream tasks. All models have similar performance regardless of the running
device (e.g. CPU, GPU or heterogeneous device). Finally, we also conducted an empirical runtime
complexity estimation in order to show HSDAG’s superiority in terms of execution time. We compare
against the Placeto and the RNN-based device placement methods for the same 3 models. The results
are shown in Table 5.

4 Conclusion

We introduce a flexible framework for the task of device placement. Our framework relies on smaller
computation graphs and is divided into five steps such as graph coarsening, node representation
learning and policy optimization using reinforcement learning. It supports end-to-end model train-
ing and is aware of the directed and acyclic nature of the computation graphs under consideration.
Additionally, we propose a model variant that facilitates graph representation learning and person-
alized graph partitioning jointly with an unspecified number of node clusters. The experimental
results highlighted that our framework is flexible, and robust and mitigates the shortcomings of the
grouper-placer and encoder-placer models by capitalizing on the best aspects of the two worlds. The
suggested placements improve the inference speed for the benchmark models compared to widely
used baselines. One interesting future work direction is to explore different RL problem formulations
as well as different reward structures, such as the incremental rewards used in [1]. Another direction
is to study the interplay of the reward and generalizability as well as potentially using reward models
rather than measuring reward. This could unlock a more efficient algorithm as the current setup relies
on measuring the inference latency, which has practical limitations.

Limitations. The latency measurements did not consider the temperature change of the environment
of the system and surroundings. During our experiments, we allocate the CPU for both experiment
and policy due to the limitation of the setup. At the same time, iGPU is not considered throughout
the experiment because we consider it to be always slower than both CPU and GPU. We attempted
to obtain the source code for the baseline methods, but they were not made available from the
corresponding authors. As such, we implemented and reproduced the baseline methods with our best
effort from their published papers.
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A Code availability

The source code is available at https://github.com/hping666/HSDAG.

B Related work

A plethora of methods have been developed to optimize device placement [21, 33, 1]. These methods
can be categorized as (1) heuristic methods or (2) methods relying on RL techniques and deep
learning. Heuristic methods are able to identify relatively optimal device placement solutions in a
short time, but they require ad-hoc adjustments on different devices. Furthermore, they often fail to
achieve the best outcomes [21]. In contrast, using RL for device placement generates better placement
schemes for various devices.

The work in [22] first proposed an RL framework trained with the REINFORCE algorithm to optimize
device placement, utilizing an attentional sequence-to-sequence model with LSTM and a content-
based attention mechanism. Building on [22], the authors in [21] introduced a feed-forward neural
network as a ‘grouper’, transforming the simple sequence-to-sequence model into a hierarchical
model. This hierarchical model enhances the grouping ability of the RL framework, facilitating the
rapid identification of more suitable placement solutions.

As opposed to using sequence-to-sequence models as the agent of the RL framework, Placeto [1]
employed graph neural networks to extract and learn essential features of computation graphs,
enabling the transfer of a learned placement policy to unseen computation graphs without the
need for retraining. The proposed approach used the structural information of the graph to better
understand the interdependencies and communication costs, leading to more informed placement
decisions. However, its node-by-node placement methodology might lead to longer training times
and difficulties in scaling to very large computational graphs. The work in [33] combined graph
neural networks and sequence-to-sequence models into an RL framework, initially encoding the
computation graphs using GraphSAGE [8], then placing operations onto devices in one shot with
the Transformer-XL model [5]. Leveraging the combination of GNNs and sequence-to-sequence
models, the authors in [15] adopted contrastive learning as a pretraining method for GNNs, potentially
impacting the training process of the RL framework. They introduced a GNN model that incorporates
both the graph structure of the computation task and the characteristics of the hardware devices. Their
model predicts the execution time of various operations across different devices, providing a holistic
view that guides the placement algorithm.

Relevance to our approach. According to [33], all device placement frameworks relying on RL can
be split into two main categories: ‘grouper-placer’ and ‘encoder-placer’. The former structure initially
divides the entire computation graphs into multiple groups and then allocates devices for each group.
The latter learns features of computation graphs in the first phase and then predicts the device for each
operation within the computation graphs based on the extracted features. The authors in [33] stated
that the ‘encoder-placer’ structure offers more flexibility and generality than traditional ‘grouper-
placer’ designs. The two structures share the same concept of grouping computation graphs with
their main difference being that the ‘grouper-placer’ structure explicitly defines group partitioning,
whereas the ‘encoder-placer’ structure achieves the concept of grouping through feature grouping
encoding. Therefore, previous works essentially employed the technique of grouping and achieved
encouraging results. Following a similar direction, our framework builds on the concept of grouping
and utilizes a GNN as an agent to learn a policy for the device placement problem.

C Preliminaries

Graph. Consider a graph G = (V,E) where V denotes the set of vertices and E ⊆ V ×V represents
the edges connecting these vertices. Each vertex v ∈ V is associated with a feature vector xv . Edges
can also have feature vectors denoted by xuv∀(u, v) ∈ E, representing the features of the edge from
node u to node v.

Neighborhood of a node. The neighborhood of a node v is defined as follows:

N (v) = Nin(v) ∪Nout(v) = {u ∈ V : (u, v) ∈ E ∨ (v, u) ∈ E} (15)
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C.1 Message-Passing neural networks

The core operation of GNNs involves a message-passing mechanism where nodes communicate and
update their states. The iterative update process involves several layers and can be formulated as
follows.

Message function. For each edge (u, v) a message m
(t)
uv is computed at each layer t. This message

is a function of the features of the adjacent nodes and the edge itself:

m(t)
uv = MESSAGE(h(t)

u ,h(t)
u ,xuv) (16)

where h
(t)
u and h

(t)
v are the feature vectors of nodes u and v at layer t.

Aggregation function. Each node v aggregates messages from its neighborhood of nodes N (v):

a(t+1)
v = AGGREGATE({m(t)

uv : u ∈ N (v)}) (17)

Update function. The feature vector of each node v is updated based on its previous state and the
aggregated messages:

h(t+1)
v = UPDATE(h(t)

v ,a(t+1)
v ) (18)

In all the cases above, UPDATE, AGGREGATE and MESSAGE can be any arbitrary differentiable
function (i.e., neural networks).

Layer and model configuration. A GNN consists of several layers, where each layer applies the
message, aggregation and update functions iteratively. The output h(T )

v after T layers can be utilized
for various tasks such as classification, regression or other predictive tasks relevant to the nodes or
the entire graph. In our case, we use the output h(T )

v for the device placement problem.

D Benchmark models

D.1 Inception-V3

Inception-V3 [25] is an advanced convolutional neural network (CNN) that has significantly con-
tributed to the field of image recognition. Building on the architecture of its predecessors, Inception-
V3 incorporates several key innovations to enhance both accuracy and computational efficiency. The
model utilizes factorized convolutions, which decompose traditional convolutions into smaller, more
efficient operations, effectively reducing the computational burden without compromising perfor-
mance. Additionally, Inception-V3 employs auxiliary classifiers at intermediate layers to combat the
vanishing gradient problem, thereby improving the training process. The model also extensively uses
batch normalization to stabilize and accelerate convergence. These enhancements enable Inception-
V3 to achieve state-of-the-art results on large-scale image datasets such as ImageNet, making it a
robust and efficient choice for a variety of computer vision tasks, including image classification and
object detection.

D.2 ResNet

ResNet (Residual Networks) [10] represents a groundbreaking advancement in the field of deep
learning, particularly in the domain of image recognition. ResNet addresses the challenge of training
very deep neural networks by incorporating residual learning. The key innovation lies in its use of
residual blocks, which allow the network to learn residual functions with reference to the input layer.
This approach helps mitigate the vanishing gradient problem, enabling the training of networks with
hundreds or even thousands of layers without degrading performance. Each residual block contains
skip connections or shortcuts, that bypass one or more layers, facilitating better gradient flow and
making the optimization of deep networks more feasible. ResNet models have achieved remarkable
success in various competitions, including the ImageNet Large Scale Visual Recognition Challenge,
where they set new benchmarks for accuracy. The architecture’s robustness and scalability have made
ResNet a preferred choice for numerous computer vision tasks, from image classification and object
detection to semantic segmentation and beyond.
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D.3 BERT

BERT (Bidirectional Encoder Representations from Transformers) [6] is a transformative model in
NLP. Unlike traditional NLP models that process text either from left to right or right to left, BERT
utilizes a bidirectional approach, allowing it to consider the full context of a word by looking at
the words that come before and after it. This bidirectional capability is achieved through the use of
Transformer encoders, which leverage self-attention mechanisms to weigh the importance of different
words in a sentence relative to each other. One of BERT’s key innovations is its pre-training and
fine-tuning approach. BERT is first pre-trained on a large corpus of text using two unsupervised
tasks: Masked Language Modeling (MLM) and Next Sentence Prediction (NSP). In MLM, some
of the words in the input are masked at random, and the model is trained to predict these masked
words based on their context. In NSP, the model is trained to predict if two sentences are consecutive.
After pre-training, BERT can be fine-tuned on a variety of specific tasks such as question answering,
sentiment analysis, and named entity recognition, by adding just a few additional output layers.

E Algorithm Pseudocode

In this section, we present the detailed pseudocode for our main method, HSDAG.

Algorithm 1 Hierarchical Structure-Aware Device Assignment Graph (HSDAG)
1: Initialize computation graph G, coarsened graph G′, node features F, and maximum iterations

maxinterations.
2: Initialize parameters θ of Graph Parsing Network (GPN) and Multi-Layer Perceptron (MLP).
3: Initialize node assignment matrix X, Adam optimizer, buffer size x, and discount factor γ.
4: for t = 1 to maxinterations do
5: Apply GPN: (C,Fc) = GPN(G,F), where C are clusters and Fc are cluster features.
6: Apply MLP: P′ = MLP(Fc) to get device placement for the coarsened graph.
7: Map P′ to original graph G using assignment matrix X.
8: Deploy G with device placement P′ and measure inference latency lp′(G′).
9: Calculate reward: rp′(G′) = 1/lp′(G′).

10: Update embeddings: Zv = Zv + Zv′ for each node v and its corresponding coarsened v′.
11: Form a new coarsened graph G′ as the new state.
12: Run a new round of representation and group learning for a new graph G′.
13: Store step information (P,G′, rp′(G′)) in buffer.
14: if buffer reaches x steps then
15: Compute gradient: ∇θJ(θ) ≈ −

∑x
i=1∇θ log p(P |G′; θ) · γi · r(Pi, G)

16: Update policy parameters θ using Adam optimizer with the computed gradient.
17: Clear buffer.
18: end if
19: if convergence criteria are met then
20: Break
21: end if
22: end for
23: return optimal device placement Popt.

The Graph Parsing Network algorithm is explained in detail in [24] and is reproduced in Algorithm 2
for convenience.

F Computation graph construction using the OpenVINO toolkit

The OpenVINO (Open Visual Inference and Neural Network Optimization) toolkit, developed by
Intel, is a comprehensive toolkit designed to accelerate the development of applications involving deep
learning inference and computer vision. It enables developers to deploy pre-trained models across a
variety of Intel hardware, including CPUs, integrated graphics, VPUs (Vision Processing Units), and
FPGAs (Field Programmable Gate Arrays), thereby optimizing performance and efficiency.
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Algorithm 2 Graph Parsing Network

1: Initialize input graph G with node features X(0) and adjacency matrix A.
2: Initialize learnable parameters W for the GNN.
3: for each iteration do
4: Perform graph and node encoding: Z = GNN(X,A) = σ

(
D̂−1/2ÂD̂−1/2X(0)W

)
where

Â = A+ I, D̂ii =
∑

j=0 Âij

5: Calculate edge score matrix:Sv,u = σ (ϕ(zv, zu)) where ϕ is MLP.
6: Apply Graph Parsing Algorithm A:
7: Stage 1: Ĉ(k) ← DOM(C(k))
8: Initialize: s← ∅, p← 0
9: Stage 2: While sum(Ĉ(k)) ̸= 0:

10: idx← argmax(Ĉ(k))
11: q ← |idx|
12: (l, idx′)← EXP (idx, Ĉ(k))
13: idx← union(idx, idx′)
14: While |idx| = q:
15: s← union(s, (i, p)|i ∈ l)

16: Ĉ
(k)
i,j ← 0,∀(i, j) ∈ idx

17: p← p+ 1
18: Stage 3: Finalize clusters.
19: Create node assignment matrix: X = A(E)
20: Define adjacency matrix for pooled graph: A′ = X T ·A · X
21: end for
22: return pooled graph G′ and node assignment matrix X

F.1 Key Features and Components

• Model Optimizer: This component is a cross-platform command-line tool that facilitates the
conversion of trained models from popular deep learning frameworks such as TensorFlow,
Caffe, MXNet, Kaldi, and ONNX into an optimized Intermediate Representation (IR) format.
This format consists of a pair of files (.xml and .bin) which describe the network structure
and contain the binary weights, respectively. The Model Optimizer reduces the model size
and increases inference speed by performing transformations such as batch normalization
folding, constant folding, and layer fusion.

• Inference Engine: The Inference Engine is a high-performance, inference delivery library
that provides an API to deploy the optimized models on various Intel hardware. It abstracts
the complexity of hardware-specific optimizations and provides a unified API for different
devices, allowing developers to write their code once and run it across different Intel
hardware without modification. The Inference Engine supports heterogeneous execution,
enabling the distribution of computational workloads across multiple devices.

• Pre-Trained Models: OpenVINO includes a Model Zoo that provides a collection of
optimized and pre-trained models for a wide range of applications, including image clas-
sification, object detection, semantic segmentation, and more. These models can be used
directly or fine-tuned for specific use cases, significantly reducing the time required to
develop and deploy AI solutions.

• Deep Learning Workbench: This is a graphical interface that helps developers visualize,
fine-tune, and optimize models. The Deep Learning Workbench provides tools for accuracy
validation, performance benchmarking, and deployment configuration, streamlining the
model optimization process.

• Support for Heterogeneous Execution: OpenVINO supports the deployment of deep
learning models across heterogeneous hardware environments, enabling simultaneous use of
CPUs, GPUs, VPUs, and FPGAs. This flexibility allows developers to maximize resource
utilization and achieve optimal performance for their applications.

• Extensive Documentation and Community Support: Intel provides extensive documenta-
tion, tutorials, and sample applications to assist developers in leveraging the full capabilities
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of OpenVINO. Additionally, an active community and support forum offer assistance and
facilitate knowledge sharing among developers.

F.2 Applications and Use Cases

OpenVINO is widely used in various industries, including healthcare, retail, automotive, and industrial
automation. It enables applications such as medical imaging diagnostics, retail analytics, autonomous
driving, and smart manufacturing. The toolkit’s ability to optimize and deploy deep learning models
on edge devices makes it particularly suitable for real-time, low-latency applications where efficient
resource utilization is critical.

F.3 Computation graphs of the benchmark models

Incepetion-V3 Resnet50 BERT

Before

Grouping

After

Grouping

Figure 2: The computation graph of each of the benchmark models before and after the graph
partitioning and pooling.

G Co-location heuristic

Following the methodology outlined in [22], we implemented a co-location heuristic to coarsen the
graph. For each vertex vi ∈ V considered in topological order, we applied the following criteria:
if vj is the sole child neighbor of vi, and simultaneously, vi is the sole parent neighbor of vj , then
vi and vj are grouped into the same co-location set Cs. These co-location sets were used to form a
coarsened graph CG, with the operation type of each co-location set Cs determined by the mean of
the operation types of all v ∈ Cs.

H Parameters and Hyper-parameters

This is section we provide some implementation details, namely several parameters and hyper-
parameter choices, to aid in the reproducibility of our results. The meaning of each parameter is
listed bellow as well.

Parameter Descriptions

• num_devices: Represents the number of processors used to run the model.

• hidden_channel: Represents the dimension of the node embeddings generated by GNN
encoding.
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Table 6: Model Parameters

Parameter Value Parameter Value

num_devices 2 dropout_parsing 0.0
hidden_channel 128 link_ignore_self_loop True
layer_trans 2 activation_final True
layer_gnn 2 learning_rate 0.0001
layer_parsingnet 2 max_episodes 100
gnn_model GCN update_timestep 20
dropout_network 0.2 K_epochs 4

• layer_trans: Represents the number of MLP layers used to map the initial node embeddings
in the GNN encoding part.

• layer_gnn: Represents the number of GNN layers used in the GNN encoding part.
• layer_parsingnet: Represents the number of layers in the parsing module.
• gnn_model: Represents the type of GNN layer used in the GNN encoding.
• dropout_network: Represents the proportion of edges randomly dropped in the grouping

module.
• dropout_parsing: Represents the proportion of edges randomly dropped in the parsing

module.
• link_ignore_self_loop: Indicates whether to ignore self-loops in the network links.
• act_final: Indicates whether to apply activation in the final layer.
• learning_rate: Represents the learning rate of the framework.
• max_episodes: Represents the number of learning episodes for the framework.
• update_timestep: Represents the length of the timestep for exploration within each episode.
• K_epochs: Represents the number of policy updates within each episode.
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NeurIPS Paper Checklist

1. Claims
Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?
Answer: [Yes]
Justification: We have shown our experiment result in Table 2 that our framework provides
faster execution time in the OpenVINO framework
Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]
Justification: We mentioned our limitation in the conclusion section.
Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory Assumptions and Proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?
Answer: [NA]
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Justification: It is not applicable to our research.
Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.
4. Experimental Result Reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?
Answer: [Yes]
Justification: We have provided all the system, measurement, toolkit, inference model, and
hyper-parameter setups to the best of our knowledge. All critical the result is reproducible in
our own setup at least two times. Meanwhile, the source code of this framework is available
to the public.
Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
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Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?
Answer: [Yes]
Justification: We provided the README file in our GitHub that will guide the viewer to run
our framework in Appendix A.
Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental Setting/Details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?
Answer: [Yes]
Justification: We have all mentioned the hyperparameters setting of the model in the
Appendix. The detail file of the model and the exact configuration is also uploaded to the
GitHub repository.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.
7. Experiment Statistical Significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?
Answer: [Yes]
Justification: We have measured the execution time in different setting for multiple times in
the Appendix. According to the baseline and our own measurement experiment, we believe
our measurement is an accurate reflection of the execution time under a given environment.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.
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• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.
• It is OK to report 1-sigma error bars, but one should state it. The authors should

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments Compute Resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]

Justification: We have provided all the devices/workers required for completing the research
experiments in section 3.2.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code Of Ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]

Justification: We reviewed and followed the NeurIPS Code of Ethics.

Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).

10. Broader Impacts
Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [Yes]

Justification: We discussed that our goal is to improve the efficiency of the execution of
the machine learning model in the introduction. We believe the proposed device placement
policy will save computation power in order to face the increasingly complex and expensive
Foundation Model.
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Guidelines:

• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
• Examples of negative societal impacts include potential malicious or unintended uses

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]

Justification: Our paper has no such risks.

Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]

Justification: We have properly cited all the assets we used.

Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
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• For scraped data from a particular source (e.g., website), the copyright and terms of
service of that source should be provided.

• If assets are released, the license, copyright information, and terms of use in the
package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New Assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?
Answer: [Yes]
Justification: We have provided anonymized URL for our new assets and documented the
guideline of asset in the URL.
Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and Research with Human Subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?
Answer:[NA]
Justification: Crowdsourcing and Research with Human Subjects is not applicable to our
research
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional Review Board (IRB) Approvals or Equivalent for Research with Human
Subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?
Answer: [NA]
Justification: Not applicable.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.
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• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.
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