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Abstract

The electrocardiogram (ECG) is a fundamental tool in cardiovascular diagnostics
due to its powerful and non-invasive nature. One of the most critical usages is to
determine whether more detailed examinations are necessary, with users ranging
across various levels of expertise. Given this diversity in expertise, it is essen-
tial to assist users to avoid critical errors. Recent studies in machine learning
have addressed this challenge by extracting valuable information from ECG data.
Utilizing language models, these studies have implemented multimodal models
aimed at classifying ECGs according to labeled terms. However, the number of
classes was reduced, and it remains uncertain whether the technique is effective
for languages other than English. To move towards practical application, we uti-
lized ECG data from regular patients visiting hospitals in Japan, maintaining a
large number of Japanese labels obtained from actual ECG readings. Using a con-
trastive learning framework, we found that even with 98 labels for classification,
our Japanese-based language model achieves accuracy comparable to previous
research. This study extends the applicability of multimodal machine learning
frameworks to broader clinical studies and non-English languages.

1 Introduction

Electrocardiograms (ECGs) provide crucial information about the electrical activity of the heart,
usually obtained from 12-lead measurement device, and play a significant role in detecting various
heart diseases. Due to their simplicity, ECGs have been widely used as a diagnostic tool for many
years [6]. They are recorded in a wide range of facilities, from clinics to general hospitals and
university hospitals. The results of these ECGs are used by professionals with varying levels of
expertise, ranging from cardiologists to non-internal medicine physicians, and even nurses. ECG
interpretation is complex because of many observation results, and the results of interpretation could
vary significantly depending on the interpreter’s level of expertise [14]. Therefore, the development
of AI systems to assist in the interpretation of ECGs and bridge the gap in expertise is an important
area of research.

There are already studies on medical multimodal AI such as LLaVA-Med [16], which has been
developed for healthcare based on language models. This model includes data such as X-ray images
but does not yet support ECG which is a type of data composed by 12 time-series. Research on
multimodal machine learning models that have learned from ECG data is limited to a few models
such as MedGemini [26], and further investigation is needed on how to utilize ECGs in the field of
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Figure 1: The overall schematics of our model. The encoder of MedLlama3-JP-v2text [28] is em-
ployed as the frozen lanuguage model. ResNet1d-18 [9] is adopted as the ECG encoder. The text
embeddings and ECG embeddings are denoted as ti and ei, respectively.

machine learning. In particular, how machine learning models can process ECG data is a crucial
area of study.

CLIP [24] has acquired knowledge about the relationships between different modalities through pre-
training on a large amount of data. Following this, there has been research that conducted pretraining
using both ECG and language data [17], allowing for partially zero-shot classification about previ-
ously unseen categories [27]. There are also studies that report improved performance by enhancing
clinical knowledge in LLMs through reinforcement prompt engineering, utilizing a clinically vali-
dated knowledge database created by external experts [19]. Another study reported performance im-
provements by generating digital twins of ECGs using GANs [7] and extracting ECG features [11].
These studies often simplify the labels to categories such as five classes. However, ECG interpre-
tation in real clinical settings is complex, requiring the accurate reading of a greater number of
labels from the ECG. Additionally, the ECG dataset [20, 30] uses English labels, and it is unclear
whether the same performance can be achieved in other languages. Therefore, in practical applica-
tions, where a wide range of reading results is required and various languages are spoken, we need
a machine learning model that can handle more comprehensive labeling and multiple languages.

Aiming for real-world implementation, we constructed a multimodal ECG model leveraging the data
obtained from patients who visit Japanese hospitals for usual medical examination. We used enough
number of Japanese labels which are utilized in normal hospital works and created by multiple
cardiology specialists. The evaluation is conducted through the classification task where partially
zero-shot task is included.

2 Method

2.1 Frozen pretrained language models

In the previous study [17], ClinicalBERT [1], pretrained on the MIMIC-III dataset [12] from
BioBERT [15], was used as a language model with medical knowledge. In this study, we de-
cided to select a Japanese language model based on two key criteria. The first criterion is that
we should select autoregressive models. In the previous study, a BERT model [2] was used for
contrastive learning with ECG data. In this study, considering future applications, we trained the
ECG encoder using an autoregressive language model, such as GPT [23] or LLaMA [29], in order
to integrate the created ECG model into a large multimodal model. We used the last layer of the
hidden layers for the language embeddings. The second criterion is that the model should have med-
ical knowledge in Japanese. Since the data used in this study consists of Japanese medical reports,
it was essential to use a Japanese medical language model. The language model was selected from
among Llama3 [4], MMed-Llama-3 [22] OpenBioLLM [20], MedAlpaca [8], Clinical GPT [31],
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and MedLlama3-JP-v2 [28]. To evaluate each LLM, cardiology specialists posed questions related
to ECG in Japanese and they assessed the answers. The model judged to have the best performance
was MedLlama3-JP-v2. MedLlama3-JP-v2 is a merged model consisting of Llama 3-Swallow [21],
OpenBioLLM, MMed-Llama-3, and Llama-3-ELYZA-JP [10]. It has also achieved an accuracy of
46.6% on IgakuQA [13], a Japanese medical QA dataset. We chose MedLlama3-JP-v2 among the
8B models available on Hugging Face due to its superior medical language knowledge in Japanese.

2.2 ECG encoder

We adopted ResNet1d-18 [9] model based on the findings from the previous study [18]. They
suggested that ResNet-based models [9] outperform Vision Transformer (ViT) [3] in both zero-shot
and linear probing tasks, and ResNet models are more effective in capturing ECG patterns.

2.3 Multimodal contrastive learning and classification

We will describe the method for calculating the contrastive loss. Let the batch size be N . The
output from the last hidden layer of the language model is referred to as the text embedding t. The
output of ResNet1d is referred to as the ECG embedding e. Both t and e are processed by linear
layers respectively to ensure they have the same embedding dimensions. Under this condition, the
contrastive loss is calculated by treating the same pair (ti, ei) as a positive pair and the different
pair (ti, ej) as a negative pair. The similarity between the two vectors is measured using cosine
similarity (sim). The cosine similarity between the two vectors is as follows:

sim(t, e) =
tT e

∥t∥∥e∥
. (1)

The contrastive loss consists of two loss functions. The first loss is the ECG-to-Text contrastive loss.

li
(e→t) = − log

exp (sim(ti, ei)/τ)∑N
j=1 exp (sim(ti, ej)/τ)

(2)

τ is initialized to 0.07. The second is the Text-to-ECG contrastive loss.

li
(t→e) = − log

exp (sim(ei, ti)/τ)∑N
j=1 exp (sim(ei, tj)/τ)

(3)

Finally, the contrastive loss is calculated as the average combination of the two losses for all positive
pairs within a batch.

L =
1

N

N∑
i=1

li
(e→t) + li

(t→e)

2
(4)

After pre-training, we evaluated the performance of classification tasks. First, We used the prompts
similar to the labels used in training. Additionally, referring to the previous research [17], We
created a superset of the labels to evaluate zero-shot performance. The correspondence between
each observation and the superset is detailed in the Appendix Table 8. We do not conduct the Form
test set from [17] because there were no corresponding labels available in our data.

2.4 Data

The data used in this study consists of 37285 ECG records obtained from the University of Tokyo
Hospital and Mitsui Hospital. The ECGs were recorded by Fukuda Denshi (Tokyo, JAPAN) equip-
ment. The ECG data is sequence data with a shape of 12× 5000. The experiments were conducted
using 98 labels contained in the data. The labels were selected by two cardiologists in our team out
of the 157 ECG’s labels specified by the equipment of Fukuda Denshi. We formatted these speci-
fied reports in order to make training prompts in Japanese as “この心電図から{reports}が認めら
れます.” (“This ECG shows {reports}.”). To avoid data leakage, ECG data from the same patients
were not present across any two data splits.At the test phase evaluating the zero-shot performance,
we used the same labels described in the prior research [17], that are Supersetdiagnosis labels,
Rhythm labels, and MIT-BIT labels.
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2.5 Implementation details

In this study, we used Hugging Face library. The learning rate was set to 1 × 10−3, weight decay
was set to 1 × 10−3, and the global batch size was 32. We trained our model over 200 epochs.
Other hyperparameters related to training were set to the default values of the Hugging Face Trainer.
Training was conducted using two NVIDIA A100-SXM4-80GB GPUs.

3 Result

After pretraining, we firstly evaluated the performance of the classification task by using the ECG
reports in the test data as the ground truth labels. We calculated accuracy for both top-1 and top-5
predictions. The results with the top 5 scores are listed in Table 1. The overall results and results
of the individual labels are detailed in the Appendix Table 9. The results for each label suggest that

Table 1: Results with the top 5 scores (excluding results with fewer than 10 labels)
Results with the top 5 scores

Labels Top-1 Accuracy Top-5 Accuracy

Pacemaker Rhythm 89.41% 93.73%
Left Anterior Fascicular Block 88.00% 88.00%
Normal 78.40% 90.45%
Ventricular Couplet 77.78% 77.78%
Ventricular Bigeminy 76.92% 84.62%

our model could correctly identify normal ECGs (normal range) with high accuracy and accurately
detect pacemaker rhythms (Artificial Pacemaker Rhythm). However, it struggled to interpret the
reports quantified from ECG waveforms, such as Prolonged PR Interval and Prolonged QT Interval.
The labels related to "Short Run of Supraventricular Premature Contractions" and "Myocardial In-
farction" show a significant gap between the top-1 and top-5 accuracy. For these labels, we examined
the top-5 prediction results. The result is Output 2. The outputs were originally in Japanese.

label: Short Run of Supraventricular Premature Contractions
predict: This ECG shows Ventricular Premature Contractions Couplets.
predict: This ECG shows Frequent Supraventricular Premature Contractions.
predict: This ECG shows Supraventricular Bigeminy.
predict: This ECG shows Supraventricular Premature Contractions.
predict: This ECG shows Short Run of Supraventricular Premature Contractions.

label: Suspected Inferior Wall Infarction
predict: This ECG shows Suspected Inferior Wall Infarction.
predict: This ECG shows Suspected Anterior Wall Infarction.
predict: This ECG shows Suspected Lateral Wall Infarction.
predict: This ECG shows Suspected High Posterior Wall Infarction.
predict: This ECG shows Suspected Acute Inferior Wall Infarction.

Output 2 The examples of the outputs of diagnosis predictions

From this output, it can be inferred that even if the top-1 prediction does not accurately identify
the label, the model is still capable of detecting the ECG reports to some extent. In the first case,
based on the top 5 outputs, the model appears to have the capability to detect the events at superior
ventricles. In the second case, the model can detect myocardial infarction. This proposes that,
although the predictions is not correct, the pretrained model seems to understand some contents of
the ECG reports.

Second, referencing the prior study [17], we created the superset labels: Superclass diagnosis,
Rhythm, and MIT-BIH and then evaluated the zero-shot performance. The results are in Table 2,
Table 3, Table 4.
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Table 2 Superclass diagnosis result
Superclass diagnosis result

Labels Accuracy

all 64.11%
Normal ECG 81.53%
Conduction Disturbance 89.15%
Mycardinal Infarction 63.55%
Hypertrophy 42.35%
ST/T change 45.39%

Table 3 Rhythm result
Rhythm result

Labels Accuracy

all 78.88%
Sinus rhythm 95.31%
Atrial fibrillation 67.09%
Sinus tachycardia 78.05%
Sinus arrhythmia 43.37%
Sinus bradycardia 63.46%

Table 4 MIT-BIH diagnostic result
MIT-BIH diagnostic result

Labels Accuracy

all 76.43%
Normal beat 94.52%
Left bundle branch block beat 87.77%
Right bundle branch block beat 58.64%
Atrial premature beat 41.30%
Premature ventricular contraction 75.26%

Table 3 and 4 show that the performance of our model approaches the previous study [17] on the
Rhythm test and MIT-BIH diagnostic test set. In the previous study [17], the model recorded an
accuracy of 74.60% for Rhythm test and 79.40% for MIT-BIH test. This indicates that the contrastive
learning method is generally effective for Japanese clinical reports as well. From the superclass
diagnosis test in Table 2, the model developed for this study shows shortcomings in the reports
related to hypertrophy. One reason for this result is that diagnosing hypertrophy typically requires
confirmation through echocardiography and while there are criteria for evaluating hypertrophy from
an ECG, their sensitivity is relatively low [25]. This issue implies the importance of training with
echocardiographic data.
Based on the results of this study, there was significant variability in accuracy depending on the
labels. For the labels with low accuracy, further improvement in the ECG interpretation capabilities
is essential. On the other hand, we consider that linking ECG with other information for training,
such as echocardiographic data, is also important and we are planning to implement this approach
in the future.
In addition, ablation study was conducted. we evaluated the classification performance of Superset
labels using the Swallow model [5, 21], which has not trained for medical purposes. The results are
shown in Tables 5, 6, and 7.
In Tables 5, 6, and 7, The overall accuracy is lower than the value achieved with MedLlama3-JP-v2.
This suggests that medical knowledge within the language model contributes to learning the rela-
tionship between medical texts and ECG data. For some conditions, like ST/T change and atrial
premature beat, accuracy drops to around 30%. Swallow, used in the ablation study, lacked knowl-
edge about these conditions and produced hallucinations. However, for conditions like hypertrophy,
the accuracy is higher than that with MedLlama3-JP-v2, which indicates the necessity for further
investigation about these specific cases.

4 Conclusion
To assist physicians who read ECG data in the field of healthcare, we have built a ECG-specific
CLIP model that interprets ECG data. Incorporating contrastive learning, a multimodal model has
been constructed using ECG data and Japanese medical reports. During the training, we adopted a
medical language model with frozen parameters and found that contrastive learning between ECG
and text can effectively learn the correspondence between ECG and text in Japanese, and can also
recognize detailed reports. This suggests that pretraining with ECG data and medical reports can
efficiently extract semantic ECG features across multiple languages. The machine learning model
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Table 5 Normal Swallow Superclass diagnosis
result

Superclass diagnosis result

Labels Accuracy

all 60.49%
Normal ECG 66.82%
Conduction Disturbance 86.28%
Mycardinal Infarction 68.60%
Hypertrophy 51.70%
ST/T change 35.66%

Table 6 Normal Swallow Rhythm result
Rhythm result

Labels Accuracy

all 71.47%
Sinus rhythm 83.72%
Atrial fibrillation 60.76%
Sinus tachycardia 71.95%
Sinus arrhythmia 46.99%
Sinus bradycardia 63.46%

Table 7 Normal Swallow MIT-BIH diagnostic result
MIT-BIH diagnostic result

Labels Accuracy

all 73.76%
Normal beat 89.36%
Left bundle branch block beat 82.01%
Right bundle branch block beat 59.19%
Atrial premature beat 28.26%
Premature ventricular contraction 78.87%

that interprets ECG is expected to be applied in broader ways other than assisting users engaging
in the field of healthcare. For example, a representative one is wearable device which measures the
human electrical signals in daily lives. The device could be used by everyone to detect the signs and
prevent diseases. By developing the approach used in our study, we hope the result will contribute
to those downstream applications.
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6 Appendix

Table 8 Mapping between ECG Labels and Zero-Shot Labels

Diagnosis Superclass Diag-
nosis

Rhythm MIT-BIH

Sinus Tachycardia Sinus Tachycar-
dia

Short Run of Supraventricular Pre-
mature Contractions

Sinus Arrhythmia Atrial premature
beat

Pacemaker Rhythm Conduction Dis-
turbance

Short PR Interval
Flat T Wave ST/T change
Severe Tachycardia
Borderline Q Wave Mycardinal

Infarction
Sinus Arrhythmia Sinus Arrhythmia
Mild ST-T Abnormality ST/T change
Negative T Wave ST/T change
Prolonged PR Interval Conduction Dis-

turbance
ST-T Abnormality ST/T change
Suspected Inferior Wall Infarction Mycardinal

Infarction
Complete Right Bundle Branch
Block

Conduction Dis-
turbance

Right bundle
branch block beat

Left Ventricular Hypertrophy with
Left Atrial Enlargement

Hypertrophy

Possible Inferior Wall Infarction Mycardinal
Infarction

Frequent Ventricular Premature
Contractions

Premature ven-
tricular contrac-
tion

Inferior Wall Infarction Mycardinal
Infarction

Supraventricular Premature Con-
tractions

Sinus Arrhythmia Atrial premature
beat

Continued on next page
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Continued from previous page

Diagnosis Superclass Diag-
nosis

Rhythm MIT-BIH

Second-degree Atrioventricular
Block (Wenckebach)

Conduction Dis-
turbance

Bradycardia
First-degree Atrioventricular Block Conduction Dis-

turbance
Suspected Anteroseptal Infarction Mycardinal

Infarction
Severe Bradycardia Mycardinal

Infarction
Atrial Fibrillation Atrial fibrillation
Poor R Wave Progression Mycardinal

Infarction
Left Ventricular Hypertrophy Hypertrophy
Incomplete Right Bundle Branch
Block

Conduction Dis-
turbance

Right bundle
branch block beat

Abnormal Q Wave Mycardinal
Infarction

Intraventricular Conduction Delay Conduction Dis-
turbance

Ventricular Premature Contractions Premature ven-
tricular contrac-
tion

Suspected Left Anterior Fascicular
Block

Conduction Dis-
turbance

Left bundle
branch block beat

Anteroseptal Infarction Mycardinal
Infarction

Sinus Bradycardia Sinus Bradycar-
dia

Complete Left Bundle Branch
Block

Conduction Dis-
turbance

Left bundle
branch block beat

Mild Left Ventricular Hypertrophy
with Left Atrial Enlargement

Hypertrophy

Supraventricular Tachycardia Sinus Arrhythmia Atrial premature
beat

RSR’ Pattern Conduction Dis-
turbance

Right bundle
branch block beat

Suspected Lateral Wall Infarction Mycardinal
Infarction

Suspected Anterior Wall Infarction Mycardinal
Infarction

Lateral Wall Infarction Mycardinal
Infarction

Tachycardia
Suspected Mild ST-T Abnormality ST/T change
Left Anterior Fascicular Block Conduction Dis-

turbance
Left bundle
branch block beat

Atrial Flutter Sinus Arrhythmia
Suspected High Posterior Wall In-
farction

Mycardinal
Infarction

Left Atrial Enlargement
Suspected Acute Inferior Wall In-
farction

Mycardinal
Infarction

Possible Lateral Wall Infarction Mycardinal
Infarction

Continued on next page
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Continued from previous page

Diagnosis Superclass Diag-
nosis

Rhythm MIT-BIH

Anterior Wall Infarction Mycardinal
Infarction

Mild Left Axis Deviation
High Voltage (Leads Correspond-
ing to Left Ventricle)

Hypertrophy

Frequent Supraventricular Prema-
ture Contractions

Sinus Arrhythmia Premature ven-
tricular contrac-
tion

Right Axis Deviation
Left Axis Deviation
Possible Anteroseptal Infarction Mycardinal

Infarction
Left Posterior Fascicular Block Conduction Dis-

turbance
Left bundle
branch block beat

Supraventricular Trigeminy Sinus Arrhythmia Atrial premature
beat

Biventricular Hypertrophy Hypertrophy
Prolonged QT Interval
Mild Left Ventricular Hypertrophy Hypertrophy
Acute Anterior Wall Infarction Mycardinal

Infarction
Low Voltage (Limb Leads)
Severe Right Axis Deviation
Ventricular Couplet Premature ven-

tricular contrac-
tion

Subacute Anteroseptal Infarction Mycardinal
Infarction

Right Atrial Enlargement
Mild Right Ventricular Hypertro-
phy

Hypertrophy

Normal Normal ECG Normal Beat
Clockwise Rotation
Counterclockwise Rotation
Right Ventricular Hypertrophy Hypertrophy
Ventricular Rhythm
T-wave Elevation ST/T change
S1, S2, S3 Pattern
Mild ST Elevation ST/T change
Ventricular Bigeminy Premature ven-

tricular contrac-
tion

Possible Anterior Wall Infarction Mycardinal
Infarction

Ventricular Tachycardia
Sinoatrial Block Mycardinal

Infarction
Indeterminate Arrhythmia
Subacute Anterior Wall Infarction Mycardinal

Infarction
Subacute Lateral Wall Infarction Mycardinal

Infarction
Subacute Inferior Wall Infarction Mycardinal

Infarction

Continued on next page
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Continued from previous page

Diagnosis Superclass Diag-
nosis

Rhythm MIT-BIH

Mild Right Ventricular Hypertro-
phy with Left Atrial Enlargement

Hypertrophy

Right Ventricular Hypertrophy with
Right Atrial Enlargement

Hypertrophy

Low Voltage (Chest Leads)
Second-degree Atrioventricular
Block (Mobitz)

Conduction Dis-
turbance

Mild Right Ventricular Hypertro-
phy with Right Atrial Enlargement

Hypertrophy

Right Ventricular Hypertrophy with
Left Atrial Enlargement

Hypertrophy

Suspected Acute Lateral Wall In-
farction

Mycardinal
Infarction

Ventricular Premature Contractions
Couplets

Sinus Arrhythmia Atrial premature
beat

Ventricular Trigeminy Premature ven-
tricular contrac-
tion

Supraventricular Bigeminy Sinus Arrhythmia Premature ven-
tricular contrac-
tion

Complete Atrioventricular Block Conduction Dis-
turbance

Possible High Posterior Wall In-
farction

Mycardinal
Infarction

Acute Lateral Wall Infarction Mycardinal
Infarction

Suspected Acute Anterior Wall In-
farction

Mycardinal
Infarction

Table 9 Top-1 and Top-5 Accuracy for Various Diagnoses

Diagnosis (Data Counts) Top-1 Accuracy Top-5 Accuracy

all labels (7710) 35.91% 44.80%
Sinus Tachycardia (82) 73.17% 75.61%
Short Run of Supraventricular Premature Contractions (4) 0.00% 75.00%
Pacemaker Rhythm (255) 89.41% 93.73%
Short PR Interval (62) 38.71% 53.23%
Flat T Wave (444) 22.75% 32.66%
Severe Tachycardia (42) 61.90% 61.90%
Borderline Q Wave (123) 18.70% 26.83%
Sinus Arrhythmia (63) 1.59% 4.76%
Mild ST-T Abnormality (278) 16.91% 28.06%
Negative T Wave (258) 24.81% 34.11%
Prolonged PR Interval (150) 40.67% 47.33%
ST-T Abnormality (501) 36.13% 44.31%
Suspected Inferior Wall Infarction (50) 16.00% 42.00%
Complete Right Bundle Branch Block (278) 58.27% 63.31%
Left Ventricular Hypertrophy with Left Atrial Enlargement (22) 18.18% 36.36%
Possible Inferior Wall Infarction (77) 23.38% 35.06%
Frequent Ventricular Premature Contractions (22) 68.18% 86.36%
Inferior Wall Infarction (61) 42.62% 50.82%

Continued on next page

11



Continued from previous page

Diagnosis (Data Counts) Top-1 Accuracy Top-5 Accuracy

Supraventricular Premature Contractions (80) 13.75% 22.50%
Second-degree Atrioventricular Block (Wenckebach) (1) 0.00% 100.00%
Bradycardia (12) 8.33% 16.67%
First-degree Atrioventricular Block (81) 48.15% 58.02%
Suspected Anteroseptal Infarction (46) 36.96% 58.70%
Severe Bradycardia (5) 40.00% 40.00%
Atrial Fibrillation (316) 57.59% 64.56%
Poor R Wave Progression (146) 32.19% 39.73%
Left Ventricular Hypertrophy (296) 13.18% 25.68%
Incomplete Right Bundle Branch Block (191) 35.60% 40.31%
Abnormal Q Wave (51) 3.92% 7.04%
Intraventricular Conduction Delay (75) 28.00% 30.67%
Ventricular Premature Contractions (156) 10.26% 21.79%
Suspected Left Anterior Fascicular Block (53) 69.81% 86.79%
Anteroseptal Infarction (63) 52.38% 53.97%
Sinus Bradycardia (52) 57.69% 61.54%
Complete Left Bundle Branch Block (59) 59.32% 83.05%
Mild Left Ventricular Hypertrophy with Left Atrial Enlargement (4) 25.00% 25.00%
Supraventricular Tachycardia (3) 0.00% 0.00%
RSR’ Pattern (75) 24.00% 41.33%
Suspected Lateral Wall Infarction (28) 0.00% 3.57%
Suspected Anterior Wall Infarction (53) 7.55% 28.30%
Lateral Wall Infarction (79) 27.85% 27.85%
Tachycardia (54) 0.00% 5.56%
Suspected Mild ST-T Abnormality (40) 15.00% 30.00%
Left Anterior Fascicular Block (25) 88.00% 88.00%
Atrial Flutter (6) 16.67% 33.33%
Suspected High Posterior Wall Infarction (5) 0.00% 0.00%
Left Atrial Enlargement (174) 6.90% 17.82%
Suspected Acute Inferior Wall Infarction (5) 0.00% 0.00%
Possible Lateral Wall Infarction (40) 0.00% 0.00%
Anterior Wall Infarction (57) 24.56% 24.56%
Mild Left Axis Deviation (293) 42.66% 59.39%
High Voltage (Leads Corresponding to Left Ventricle) (126) 22.22% 44.44%
Frequent Supraventricular Premature Contractions (3) 33.33% 33.33%
Right Axis Deviation (209) 25.36% 33.01%
Left Axis Deviation (147) 18.37% 30.61%
Possible Anteroseptal Infarction (5) 0.00% 20.00%
Left Posterior Fascicular Block (2) 0.00% 0.00%
Supraventricular Trigeminy (2) 0.00% 0.00%
Biventricular Hypertrophy (17) 0.00% 0.00%
Prolonged QT Interval (214) 12.62% 18.22%
Mild Left Ventricular Hypertrophy (55) 21.82% 30.91%
Acute Anterior Wall Infarction (4) 0.00% 0.00%
Low Voltage (Limb Leads) (140) 53.57% 54.29%
Severe Right Axis Deviation (48) 18.75% 18.75%
Ventricular Couplet (18) 77.78% 77.78%
Subacute Anteroseptal Infarction (3) 0.00% 0.00%
Right Atrial Enlargement (73) 16.44% 26.03%
Mild Right Ventricular Hypertrophy (39) 0.00% 5.13%
Normal (639) 78.40% 90.45%
Clockwise Rotation (187) 9.63% 11.23%
Counterclockwise Rotation (203) 41.38% 48.77%
Right Ventricular Hypertrophy (10) 0.00% 10.00%
Ventricular Rhythm (1) 0.00% 0.00%

Continued on next page
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Continued from previous page

Diagnosis (Data Counts) Top-1 Accuracy Top-5 Accuracy

T-wave Elevation (20) 45.00% 55.00%
S1, S2, S3 Pattern (25) 20.00% 24.00%
Mild ST Elevation (21) 9.52% 14.29%
Ventricular Bigeminy (13) 76.92% 84.62%
Possible Anterior Wall Infarction (12) 0.00% 0.00%
Ventricular Tachycardia (3) 0.00% 33.33%
Sinoatrial Block (1) 0.00% 0.00%
Indeterminate Arrhythmia (4) 0.00% 0.00%
Subacute Anterior Wall Infarction (3) 33.33% 33.33%
Subacute Lateral Wall Infarction (4) 75.00% 75.00%
Subacute Inferior Wall Infarction (8) 62.50% 62.50%
Mild Right Ventricular Hypertrophy with Left Atrial Enlargement (11) 36.36% 45.45%
Right Ventricular Hypertrophy with Right Atrial Enlargement (2) 100.00% 100.00%
Low Voltage (Chest Leads) (19) 31.58% 31.58%
Second-degree Atrioventricular Block (Mobitz) (1) 0.00% 0.00%
Mild Right Ventricular Hypertrophy with Right Atrial Enlargement (2) 100.00% 100.00%
Right Ventricular Hypertrophy with Left Atrial Enlargement (4) 75.00% 75.00%
Suspected Acute Lateral Wall Infarction 0.00% 0.00%
Ventricular Premature Contractions Couplets (2) 66.67% 66.67%
Ventricular Trigeminy (2) 0.00% 100.00%
Supraventricular Bigeminy (2) 0.00% 50.00%
Complete Atrioventricular Block (2) 0.00% 0.00%
Possible High Posterior Wall Infarction (2) 0.00% 0.00%
Acute Lateral Wall Infarction (1) 0.00% 0.00%
Suspected Acute Anterior Wall Infarction (2) 0.00% 0.00%
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NeurIPS Paper Checklist
1. Claims

Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?
Answer: [Yes]
Justification: This study showed the effectiveness of contrastive learning for ECG and text
in both Japanese and many labels settings.
Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these
goals are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]
Justification: It was shown that there are differences compared to previous studies in some
ECG reports. It was also noted that training with different data is necessary for ECG reports
such as hypertrophy.
Guidelines:

• The answer NA means that the paper has no limitation while the answer No means
that the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The au-
thors should reflect on how these assumptions might be violated in practice and what
the implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the ap-
proach. For example, a facial recognition algorithm may perform poorly when image
resolution is low or images are taken in low lighting. Or a speech-to-text system might
not be used reliably to provide closed captions for online lectures because it fails to
handle technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to ad-
dress problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory Assumptions and Proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?
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Answer: [No]
Justification: Some reports lacked sufficient labels, which prevented adequate validation.
Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theo-

rems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a
short proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be comple-
mented by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.
4. Experimental Result Reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main
experimental results of the paper to the extent that it affects the main claims and/or conclu-
sions of the paper (regardless of whether the code and data are provided or not)?
Answer: [No]
Justification: Since the data used is from within a hospital, validation with open data re-
mains necessary.
Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps
taken to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture
fully might suffice, or if the contribution is a specific model and empirical evaluation,
it may be necessary to either make it possible for others to replicate the model with
the same dataset, or provide access to the model. In general. releasing code and data
is often one good way to accomplish this, but reproducibility can also be provided via
detailed instructions for how to replicate the results, access to a hosted model (e.g., in
the case of a large language model), releasing of a model checkpoint, or other means
that are appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all sub-
missions to provide some reasonable avenue for reproducibility, which may depend
on the nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear

how to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to re-
produce the model (e.g., with an open-source dataset or instructions for how to
construct the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case au-
thors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
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Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

Answer: [No]

Justification: The experiments were conducted using closed data from within the hospital.

Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines

(https://nips.cc/public/guides/CodeSubmissionPolicy) for more de-
tails.

• While we encourage the release of code and data, we understand that this might not be
possible, so“No”is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run
to reproduce the results. See the NeurIPS code and data submission guidelines
(https://nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental Setting/Details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]

Justification: The libraries and hyperparameters used in the experiments are described in
the Methods section.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of

detail that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.

7. Experiment Statistical Significance
Question: Does the paper report error bars suitably and correctly defined or other appropri-
ate information about the statistical significance of the experiments?

Answer: [NA]

Justification: This study is not focused on testing statistical significance but rather on eval-
uating Japanese language capability and many labels capabilities.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.
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• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.
• It is OK to report 1-sigma error bars, but one should state it. The authors should prefer-

ably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis of
Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments Compute Resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]

Justification: Information about the GPUs used in the experiments is provided in the Meth-
ods section.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments
that didn’t make it into the paper).

9. Code Of Ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]

Justification: Detailed information about the models and training methods used in the ex-
periments has been provided to facilitate the possibility of following experiments.

Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).

10. Broader Impacts
Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [Yes]

Justification: The conclusion includes implications for application to multimodal medical
AI.

Guidelines:
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• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
• Examples of negative societal impacts include potential malicious or unintended uses

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact spe-
cific groups), privacy considerations, and security considerations.

• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitiga-
tion strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [Yes]

Justification: The paper uses the medical data of our hospital with considerations for pri-
vacy.

Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by re-
quiring that users adhere to usage guidelines or restrictions to access the model or
implementing safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]

Justification: The source of the data has been added to the Methods section.

Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
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• For scraped data from a particular source (e.g., website), the copyright and terms of
service of that source should be provided.

• If assets are released, the license, copyright information, and terms of use in the pack-
age should be provided. For popular datasets, paperswithcode.com/datasets has
curated licenses for some datasets. Their licensing guide can help determine the li-
cense of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New Assets
Question: Are new assets introduced in the paper well documented and is the documenta-
tion provided alongside the assets?
Answer: [Yes]
Justification: Details of the experiments have been included in the Methods section, and
results from experiments with many labels have been documented in the Appendix.
Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can
either create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and Research with Human Subjects
Question: For crowdsourcing experiments and research with human subjects, does the pa-
per include the full text of instructions given to participants and screenshots, if applicable,
as well as details about compensation (if any)?
Answer: [NA]
Justification: This study did not involve crowdsourcing experiments or research with hu-
man subjects.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research
with human subjects.

• Including this information in the supplemental material is fine, but if the main contri-
bution of the paper involves human subjects, then as much detail as possible should
be included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, cura-
tion, or other labor should be paid at least the minimum wage in the country of the
data collector.

15. Institutional Review Board (IRB) Approvals or Equivalent for Research with Human
Subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?
Answer: [NA]
Justification: This study do not involve human subjects.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research
with human subjects.
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• Depending on the country in which research is conducted, IRB approval (or equiva-
lent) may be required for any human subjects research. If you obtained IRB approval,
you should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity
(if applicable), such as the institution conducting the review.

20


