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Abstract

We revisit the fundamental problem of learning Axis-Aligned-Rectangles over a
finite grid X¢ C R? with differential privacy. Existing results show that the sample

complexity of this problem is at most min {d- log | X|, d*®- (log* |X\)1'5}. That

is, existing constructions either require sample complexity that grows linearly with
log | X|, or else it grows super linearly with the dimension d. We present a novel al-

gorithm that reduces the sample complexity to only O (d- (log" | X |)1'5), attaining

a dimensionality optimal dependency without requiring the sample complexity to
grow with log | X |. The technique used in order to attain this improvement involves
the deletion of “exposed” data-points on the go, in a fashion designed to avoid the
cost of the adaptive composition theorems. The core of this technique may be of
individual interest, introducing a new method for constructing statistically-efficient
private algorithms.

1 Introduction

Differential privacy [Dwork et al.,2006]] is a mathematical definition for privacy, that aims to enable
statistical analyses of databases while providing strong guarantees that individual-level information
does not leak. More specifically, consider a database containing data pertaining to individuals, and
suppose that we have some data analysis procedure that we would like to apply to this database. We
say that this procedure preserves differential privacy if no individual’s data has a significant effect
on the distribution of the outcome of the procedure. Intuitively, this guarantees that whatever is
learned about an individual from the outcome of the computation could also be learned with her data
arbitrarily modified (or without her data). Formally,

Definition 1.1 (Dwork et al.| [2006]). A randomized algorithm A is (e, §)-differentially private if for
every two databases S, S’ that differ on one row (such databases are called neighboring), and every
set of outcomes F, we have Pr[A(S) € F] < e° - Pr[A(S’) € F] + ¢. The definition is referred to
as pure differential privacy when § = 0, and approximate differential privacy when 6 > 0.

Over the last decade, we have witnessed an explosion of research on differential privacy, and by now
it is largely accepted as a gold-standard for privacy preserving data analysis. In particular, there has
been a lot of interest in designing private learning algorithms, which are learning algorithms that
guarantee differential privacy for their training data. Intuitively, this guarantees that the outcome of
the learner (the identified hypothesis) leaks very little information on any particular point from the
training set. Works in this vein include [Kasiviswanathan et al. 2011} Beimel et al., 2014, |2019b|
2016, (2020, |Bun et al., 2015} [Feldman and Xiaol 2015} Bun et al., 2019, |Beimel et al., 20194} |Kaplan
et al.,[2019, 20204l |/Alon et al., [2020, [Kaplan et al.,|2020bl Bun et al.,[2020, |Alon et al., [2019]], and
much more.
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However, in spite of the dramatic progress made in recent years on the theory and practice of private
learning, much remains unknown and answers to fundamental questions are still missing. In this
work, we revisit one such fundamental open question, specifically,

Question 1.2. What is the sample complexity of learning axis-aligned rectangles with privacy?

Non-privately, learning axis aligned rectangles is one of the most simple and basic of learning
tasks, often given as the first example for PAC learning in courses or teaching books. Nevertheless,
somewhat surprisingly, the sample complexity of learning axis-aligned rectangles with differential
privacy is not well-understood. In this work we make a significant progress towards understanding
this basic question.

1.1 Existing and New Results

Recall that the VC dimension of the class of all axis-aligned rectangles over R is O(d), and hence
a sample of size O(d) suffices to learn axis-aligned rectangles non-privately (we omit throughout
the introduction the dependency of the sample complexity in the accuracy, confidence, and privacy
parameters). In contrast, it turns out that with differential privacy, learning axis-aligned rectangles
over R? is impossible, even when d = 1 [Feldman and Xiaol |2015} |Bun et al., 2015, |Alon et al.,
2019]). In more detail, let X = {1,2,...,|X]|} be a finite (one dimensional) grid, and consider the
task of learning axis-aligned rectangles over the finite d-dimensional grid X¢ C R¢. In other words,
consider the task of learning axis-aligned rectangles under the promise that the underlying distribution
is supported on (a subset of) the finite grid X 9.

For pure-private learning, [Feldman and Xiao [2015]] showed a lower bound of 2 (d - log | X|) on
the sample complexity of this task. This lower bound is tight, as a pure-private learner with sample
complexity © (d - log | X|) can be obtained using the generic upper bound of [Kasiviswanathan et al.
[2011]]. This should be contrasted with the non-private sample complexity, which is independent of
| X].

For approximate-private learning, Beimel et al.|[2016] showed that the dependency of the sample
complexity in |X| can be significantly reduced. This, however, came at the cost of increasing the
dependency in the dimension d. Specifically, the private learner of Beimel et al.| [2016] has sample
complexity O (d° - 81°%” IXI). We mention that a dependency on log™ | X | is known to be necessary
[Bun et al.l 2015] |Alon et al., 2019]. Recently, Beimel et al.| [2019a] and [Kaplan et al.| [2020b]
studied the related problem of privately learning halfspaces over a finite grid X 4, and presented
algorithms with sample complexity O (d2 - 8'°¢” IX1) . Their algorithms can be used to privately
learn axis-aligned rectangles over X ¢ with sample complexity O (d'* - 8'°¢” IXI). This can be further
improved using the recent results of [Kaplan et al.|[2020a]], and obtain a differentially private algorithm
for learning axis-aligned rectangles over X¢ with sample complexity O (d1'5 - (log"™ | X |)1‘5>. We
consider this bound to be the baseline for our work, and we will elaborate on it later.

To summarize, our current understanding of the task of privately learning axis-aligned rectangles
over X? gives us two kinds of upper bounds on the sample complexity: Either d - log|X| or

d5 - (log* | X|)"*°. That is, current algorithms either require sample complexity that scales with
log | X|, or else it scales super linearly in the dimension d. This naturally leads to the following
question.

Question 1.3. Is there a differentially private algorithm for learning axis-aligned rectangles with
sample complexity that scales linearly in d and asymptotically smaller than log | X |?

We answer this question in the affirmative, and present the following theorem.

Theorem 1.4 (informal). There exists a differentially private algorithm for learning axis-aligned
1.5

rectangles over X® with sample complexity O (d - (log™ | X1)
1.2 Baseline Construction using Composition

Before we present the technical ideas behind our construction (obtaining sample complexity linear in
d), we first elaborate on the algorithm obtaining sample complexity O (d1'5 - (log™ | X \)1'5), which

we consider to be the baseline for this work. This baseline algorithm is based on a reduction to
(privately) solving the following problem, called the interior point problem.



Definition 1.5 (Bun et al|2015). An algorithm A is said to solve the Interior Point Problem for
domain X with failure probability B and sample complexity n, if for every m > n and every database
S containing m elements from X it holds that: Primin(S) < A(S) < max(S)] > 1 — g.

That is, given a database S containing (unlabeled) elements from a (one dimensional) grid X, the
interior point problem asks for an element of X between the smallest and largest elements in S. The
baseline we consider for privately learning axis-aligned rectangles is as follows. Suppose that we
have a differentially private algorithm .4 for the interior point problem over domain X with sample
complexity n (let us ignore the failure probability for simplicity). We now use A to construct the
following algorithm B that takes a database .S containing labeled elements from X <. For simplicity,
we assume that S’ contains “enough” positive elements, as otherwise we could simply return the
all-zero hypothesis.

1. For every axis i € [d]:
(a) Project the positive points in .S onto the ith axis.
(b) Let A; and B; denote the smallest n and the largest n (projected) points, without their labels.
(c) Leta; + A(A4;) and b; + A(B;).

2. Return the axis-aligned rectangle defined by the intervals [a;, b;] at the different axes.

Now, recall that each application of algorithm .4 returns an interior point of its input points. Hence,
for every axis 1, it holds that the interval [a;, b;] contains (the projection) of all but at most 2n of the
positive examples in the ith axis. Therefore, the rectangle returned in Step 2] contains all but at most
2nd of the positive points (and it does not contain any of the negative points, because this rectangle is
contained inside the target rectangle). So algorithm B errs on at most 2nd of its input points.

Assuming that |\S| > 2nd, we therefore get that algorithm B3 has small empirical error. As the VC
dimension of the class of axis-aligned rectangles is O(d), this means that algorithm 5 is a PAC learner
for this class with sample complexity O(nd). The issue here is that algorithm 3 executes algorithm
A many times (specifically, 2d times). Hence, in order to argue that B is (&, §)-differentially private,
standard composition theorems for differential privacy require each execution of algorithm A to be
done with a privacy parameter of &~ /+/2d. This, in turn, would mean that n (the sample complexity
of algorithm A) needs to be at least v/2d, which means that algorithm B errs on 2nd ~ d*® input
points, which translates to sample complexity of | S| > d'5.

The takeaway from this baseline learner is that in order to reduce the sample complexity to be linear
in d, we want to bypass the costs incurred from composition. That is, we still want to follow the
same strategy (apply algorithm A twice on every axis), but we want to do it without appealing to
composition arguments in the privacy analysis. We now briefly survey two intuitive attempts that fail
to achieve this, but are useful for the presentation.

Failed Attempt #1. As before, let A denote an algorithm for the interior point problem over domain
X with sample complexity n. Consider the following modification to algorithm 5 (marked in red).
As before, algorithm 13 takes a database S containing labeled elements from X ¢, where we assume
for simplicity that S contains “enough” positive elements.

1. For every axis 7 € [d]:
(a) Project the positive points in .S onto the ith axis.
(b) Let A; and B; denote the smallest n and the largest n (projected) points, without their labels.
(c) Leta; < A(A;) and b; < A(B;).
(d) Delete from S all points (with their labels) that correspond to A; and B;.
2. Return the axis-aligned rectangle defined by the intervals [a;, b;] at the different axes.

The (incorrect) idea here is that by adding Step 1d we make sure that each datapoint from S is “used
only once”, and hence we do not need to pay in composition. In other words, the hope is that if every
execution of algorithm A4 is done with a privacy parameter ¢, then the whole construction would
satisfy differential privacy with parameter O(¢).

The failure point of this idea is that by deleting one point from the data, we can create a “domino effect”
that effects (one by one) many of the sets A;, B; throughout the execution. Specifically, consider



two neighboring datasets S and S’ = S U {(2', ')} for some labeled point (z’,3') € X x {0,1}.
Suppose that during the execution on S’ it holds that #’ € A;. So the additional point 2" participates
“only” in the first iteration of the algorithm, and gets deleted afterwards. However, since the size of
the sets A;, B; is fixed, during the execution on .S (without the point x’) it holds that a different point
z gets included in A; instead of 2/, and this point z is then deleted from S (but it is not deleted from
S’ during the execution on S’). Therefore, also during the second iteration we have that S and S’
are not identical (they still differ on one point) and this domino effect can continue throughout the
execution. That is, a single data point can affect many of the executions of .4, and we would still
need to pay in composition to argue privacy.

Failed Attempt #2. In order to overcome the previous issue, one might try the following variant of
algorithm B.

1. For every axis ¢ € [d]:
(a) Project the positive points in .S onto the ith axis.
(b) Letsizea, = 2n + Noise and let sizep, = 2n + Noise.

(c) Let A; and B, denote the smallest size 4, and the largest sizep, (projected) points, respec-
tively, without their labels.

(e) Delete from S all points (with their labels) that correspond to A; and B;.

2. Return the axis-aligned rectangle defined by the intersection of the intervals [a;, b;] at the different
axes.

The idea now is that the noises we add to the sizes of the A;’s and the B;’s would “mask” the domino
effect mentioned above. Specifically, the hope is as follows. Consider the execution of (the modified)
algorithm B on S and on S = SU{(2,4')}, and let i be the first axis such that 2’ € A; U B; during
the execution on S’. Suppose w.l.0.g. that 2’ € B;. Now, the hope is that if during the execution
on S we have that the noisy sizepg, is smaller by 1 than its value during the execution on S’, then
this eliminates the domino effect we mentioned, because we would not need to add another point
instead of a’. Specifically, during time i, the point =’ gets deleted from S’, and every other point is
either deleted from both S, S’ or not deleted from any of them. So after time 7 the two executions
continue identically. Thus, the hope is that by correctly “synchronizing” the noises between the two
executions (such that only the size of the “correct” set gets modified by 1) we can make sure that
only one application of A is effected (in the last example — only the execution of A(B;) is effected),
and so we would not need to apply composition arguments.

Although very convincing, this idea fails. The (very subtle) issue here is that it is not clear how to
synchronize the noises between the two executions. To see the problem, let us try to formalize the
above argument.

Fix two neighboring databases S and S = S U {(2,y')}. Let us write A;, B; and A}, B! to denote
these sets during the executions on S and on S’, respectively. Aiming to synchronize the two execu-
tions, let us define a mapping 7 : R2¢ — R2? from noise vectors during the execution on S’ to noise
vectors during the execution on S (determining the values of size4,,sizep,,...,sizea,,sizep,),
such that throughout the execution we have that A; = A} and B; = B for all i except for a single
pair, say B; # B/, of neighboring sets.

The straightforward way for defining such a mapping is as follows: Let j be the first time step in
which the additional point z” gets included in a set A’ or BB}, and say that it is included in B’. Then
the mapping would be to reduce (by 1) the value of sizep; (the noisy size of B; during the execution
on S). This would indeed make sure that, conditioned on the noise vectors v’ and v = m(v’), the two
executions differ only in a single application of the interior point algorithm A, and hence the outcome
distribution of these two (conditioned) executions are very similar (in the sense of differential privacy).
That is, for any noise vector v and any event F',

Pr[B(S’) € Flv] <e® - Pr[B(S) € Flr(v)] + 4.

Furthermore, (assuming an appropriate noise distribution) we can make sure that the probability of
obtaining the noise vectors v and 7r(v) are similar, with densities differing by at most an e factor (as



is standard in the literature of differential privacy). Therefore, had the mapping m we defined was a
bijection, for any event F' we would have that

Pr(B(S’) € F] =Y Prlv] - Pr[B(S) € Flu]
< Z e® - Pr[n(v)] - (e® - Pr[B(S) € F|r(v)] + 9)
= Z e - Pr[n(v)] - (e° - Pr[B(S) € F|r(v)] +¢)
(v)

=e* . Pr[B(S) € F] +¢° -4,

which would be great. Unfortunately, the mapping = we defined is not a bijection, and hence the
second-to-last equality above is incorrect. To see that it is not a bijection, suppose that d = 2 and
consider a database S containing the following positively labeled points: Many copies of the point
(0,0), as well as 10 copies of the point (1,0) and 10 copies of the point (0, 1). The neighboring
database S’ contains, in addition to all these points, also the point (1 L ) Now suppose that during
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the execution on S’ we have that | Bj| = 5 and | B5| = 4. That is, the additional point is included in

B]. During the execution on S we therefore reduce (by 1) the size of By and so |B;| = |B2| = 4.
Now suppose that during the execution on S’ we have that |B{| = 4 and |Bj| = 5. Here, during
the execution on S we reduce the size of By and so, again, |B;| = |Bz| = 4. This shows that the

mapping 7w we defined is not a bijection. In general, in d dimensions, it is only a d-to-1 mapping,
which would would break our analysis completely (it will not allow us to avoid the extra factor in d).

1.3 Our Solution - A Technical Overview

We now present a simplified version of our construction, that overcomes the challenges mentioned
above. We stress that the actual construction is a bit different. Consider the following (simplified)
algorithm.

1. For every axis ¢ € [d]:
(a) Project the positive points in .S onto the ith axis.

(b) Letsizes, = 100n 4 Noise and let sizep, = 100n + Noise, where the standard deviation
of these noises is, say, 10n.

(c) Let A; and B, denote the smallest size 4, and the largest sizep, (projected) points, respec-
tively, without their labels.

(d) Let A»ner C A; be the n largest points in A;. Similarly, let Bi""** C B; be the n smallest
points in B;.

(e) Leta; + A(AP2r) and b; < A(Bimner).

(f) Delete from S all points (with their labels) whose projection onto the ith is not in the interval
[ai, bZ] .

2. Return the axis-aligned rectangle defined by the intersection of the intervals [a;, b;] at the different
axes.

There are two important modifications here. First, we still add noise to the size of the sets A;, B;,
but we only use the n “inner” points from these sets. Second, we delete elements from S not based
on them being inside A; or B;, but only based on the (privately computed) interval [a;, b;]. We
now elaborate on these ideas, and present a (simplified) overview for the privacy analysis. Any
informalities made herein are removed in the sections that follow.

Let S and S’ = S U {(«,y’)} be neighboring databases, differing on the labeled point (z’,y’).
Consider the execution on .S and on S’. The privacy analysis is based on the following two lemmas.

Lemma 1.6 (informal). With probability at least 1 — 5, throughout the execution it holds that x'
participates in at most O(log(1/6)) sets A;, B;.

This lemma holds because of our choice for the noise magnitude. In more detail, given that 2’ € A;,
there is a constant probability that 2’ € A; \ A"™". Since the interior point a; is computed from



Aii““er, in such a case we will have that 2’ < a;, and hence, 2’ is deleted from the data during this
iteration. This means that every time 2’ is included in A;, there is a constant probability that =" will
be deleted from the data. Thus, one can show (using concentration bounds) that the number of times
i such that 2’ € A; is bounded (w.h.p.). A similar argument also holds for B;.

Lemma 1.7 (informal). In iterations i in which x’ is not included in A; or B;, we have that a; and
b; are distributed exactly the same during the execution on S and on S’.

Indeed, in such an iteration, the point 2’ has no effect on the outcome distribution of A (who computes
a;, b;). Overall, w.h.p., there are at most O(log %) axes the point 2’ effects. We pay in composition
only for those axes, while in all other axes we get privacy “for free”. This allows us to save a factor
of v/d in the sample complexity, and obtain an algorithm with sample complexity linear in d.

Note that the definition of privacy we work with is that of (e, §)-differential privacy. In contrast to
the case of (¢, 0)-differential privacy, where it suffices to analyze the privacy loss w.r.t. every single
possible outcome, with (g, §)-differential privacy we must account for arbitrary events. To tackle this,
we had to perform a more explicit and meticulous analysis than that outlined above. Our analysis
draws its structure from the proof of the advanced-composition theorem [Dwork et al., [2010], but
instead of composing everything we aim to preform effective composition, meaning that we incurr a
privacy loss only on a small fraction of the iterations. To achieve this, as we mentioned, we partition
the iterations into several types — iteration on which we “pay” in privacy and iterations on which we
do not. However, this partition must be done carefully, as the partition itself is random and needs to
be different for different possible outcomes.

We believe that ideas from our work can be used more broadly, and hope that they find new applica-
tions in avoiding (or reducing) composition costs in other settings.

Remark 1.8. To simplify the presentation, in the technical sections of this paper we assume that the
target rectangle is placed at the origin. Our results easily extend to arbitrary axis-aligned rectangles.

Notations. Two datasets S, S’ € X are said to be neighboring if they differ exactly on one element,
formally, dg (.S, 5’) = 1. Given a number ¢ € N and a dataset .S containing points from an ordered
domain, we use min(.S, ¢) (or max(.S, £)) to indicate the subset of £ minimal (or maximal) values
within S. When S contains points from a d-dimentional domain, we write min; (.S, £) (or max; (S, £))
to denote the subset of £ minimal (or maximal) values within S w.r.t. the i*" axis. We write Lap(y, b)
to denote the Laplase distribution with mean p and scale b, when the mean is zero we will simply
write Lap(b). See the full version of this paper for additional preliminaries from learning theory.

2 The Algorithm

In this work we investigate the problem of privately learning the class of axis-aligned rectangles,
defined as follows.

Definition 2.1 (Axis Aligned Rectangles). Let X = {0, ..., X }¢ be a finite discrete d-dimensional
domain. Every p = (p1,...,pa) € X, induces a classifier h, : X — {0, 1} s.t for a given input
r € X we have

hp(@) = {0, otherwise

Define the class of all axis-aligned and origin-placed rectangles as RECS = {h, : p € X'}.

Let A be an (¢, 0)-differentially private algorithm for solving the interior point problem over domain
{0,..., X} with failure probability 3 and sample complexity I P4 (¢, 6, 3). We propose Algorithm|I]
which we call RandMargins, and prove the following theorem.

Theorem 2.2. Lete < 1,0 < e%, a, B. Algorithmis (a, B, €, 5)-PPAC learner, for the RECy,
class, given a labeled sample of size O (IPA (€,6,8) - g log (é) log (%)),forg = (d + 2)d, and
€= 0 (elog(1/d)).

3Note that the use of the Laplace noise is different from the standard use in the literature of differential
privacy. Unlike the standard use of the Laplace noise, we do not use it in order to obtain a private estimation for
some real-valued function of the data. We use it in order to mask the domino effect mentioned in the introduction.
Hence, it is not proportional to the sensitivity, but rather to the output of the .4 algorithm.



Algorithm 1: RandMargins

Input: Data S C R of size n, and parameters 3 < i and § < 1/e? ¢
Tool used: An (e, §)-private algorithm A for solving the interior point problem with failure
probability 5 and sample complexity I P4 (e, d, 3).

Denote A = [Py (,0,3)
Denote ;1 = 4Alog(1/5)
Initialize S < {z € S | x is labeled 1}
fori=1toddo
w; ~ Lap(24) f]
B; = max; (S, [n+ w;])
pi < A(Dil876a ﬂ)
R ={y € S:yli] > pi}
end for
Return (pla s 7pd)

Remark 2.3. [Kaplan et al.| [2020a|] introduced an algorithm A for the interior point problem with
sample complexity IP4 (¢,6, 8) = O (é log!® (1) (log* (\X|))15) . Hence, using their algorithm
within Algorithm[l|provides the result of Theorem

We analyze the privacy guarantees of Algorithm|[T]in Section[3] and show the following lemma.
Lemma 24. Let & and § < e%, given a labeled sample of size
@ (IPA (e,6,0) - glog (%) log <%)) Algorithmis (8, 6)-differentially private, for 6 = (d+2)0,
and € = O (elog(1/9)) .

We analyze the utility guarantees of Algorithm [I]in Section[d] and show the following lemma.

Lemma 2.5. Let o, 3,¢,0, given a labeled sample of size O (IPA (e,6,0) - g log (é) log (%))
with probability at least 1 — (3 Algorithm([l)is a-accurate.

3 Privacy Analysis

Proof of Lemma[24] Let S and S’ = S U {(z/,y')} be neighboring databases, differing on the
labeled point («,y"). Consider the execution on S and on S’.

We denote by ind;(x) the position of the point x in the remaining data S, when the data is sorted by
the i*" coordinate.

Denote by i* the first iteration on which z'[i] > p;, note that i* is a random variable. For an input set
S, denote by S; the remaining set at the beginning of the i'" iteration and its size by 7.

Partition the iterations in the following way: Z;,, = {i < i* | 2’ € B.}, Zouwt = {i <i* |2’ ¢ B},
Tofrer = {i | i > i},

We first argue that |Z;,, | is small (with high probability). Intuitively, this follows from the fact that
conditioned on 2’ € B}, with constant probability, we get that 2’ € B} \ D;. Note that in such a
case, projecting on the i* axis, 2’ is bigger (or equal) than any point in D;. Furthermore, as the
interior point p; is computed from D;, w.h.p. we get that =’ [i] > p;, and hence z’ is removed from
the data. To summarize, conditioned on 2’ € B there is a constant probability that 2’ is removed
from the data, and hence the number of times such that 2’ € B! must be small (w.h.p.). We make this
argument formal in the full version of this paper, obtaining the following claim.

Claim 3.1. Pr[|Z;,| > 35log(1/0)] < 4.

Next, we will denote by 3 the inner steps of the loop in the algorithm. Meaning, the input is S;, which
BB uses, along with the random noise and the mechanism A, in order to output p;. We now argue,



briefly, that B is (¢, 0)-differentially private for every fixture of w;. This, in particular, would mean
that B is (¢, §)-differentially private. So fix w;, and fix two neighboring inputs .S;, S} to algorithm B.
Since S;, S! are neighboring, we also have that B; and B! are nelghbormg (the sets containing the
top ¢ + w; elements in S; and S/, respectively). By the same reasoning, we also have that D; and D/,
are neighboring. As a result, the outcome distributions of the given mechanism .4, on D; and on D;
are (e, )-indistinguishable, showing that 5 is (e, ¢)-differentially private.

For convenience, we will assume that the 5’s output includes the noise value w;, and that the final
output of RandMargins includes the noise vector w = (wy,...,wy). As will be proven below,
algorithm RandMargins remains differentially private even when releasing this noise vector (in
addition to the output (p1, .. .,pq)).

Lemma 3.2 (Vadhan| [2017])). For every (g,0)-private algorithm M and every two neighboring
datasets S, S, there exist an event G = G(M, S, S") such that (i) Pr[M(S) € G] > 1 — 0, and (ii)

Pr[M(S") € G] > 11—, and (iii)) Vx € G : ‘ln (%)} <e

Define the event G = {(p,w) | Vj € [d] : (p;,w;) € G(B,S;,S})}, where G(B, S}, 5}) is the
event guaranteed to exist by applying Lemmato B, S;, S’j

Note that by Lemma [3.2]and the union bound Pr[G] > 1 — dJ.

We wish to prove that for any possible output set P, it holds that
Pr[RandMargins(S) € P] < ¢° - Pr[RandMargins(S’) € P] + 0.

n={o n (iR~

where RM is an abbreviation for RandMargins.

Define the set

Now note that for every event P,
Pr[RM(S) € P] < Pr[RM(S) € R] + Pr[RM(S) € P\ R]
< Pr[RM(S) € R] + ¢ Pr[RM(S’) € P\ R]
< Pr[RM(S) € R| + e Pr[RM(S') € P]

So it is down to show that Pr[RM(S) € R] < 4. That is, we need to prove that

nwef;er(S) [ln <113);((77§//\\44<(;)> :Z;:Z)J > é} < 6.

We calculate,

b RM(S) [m (15;((77344((5)) ii:%) g é} -

o Kln (ﬁff%f?) ii%) pwes > é) OR (1“ (éj:((gﬁ((?) :—Z’,Z))) pwee > Eﬂ
)

I Pr(RM(S) = p,w) N
< .
S i | (Pr(RM(S’) = pw) ) tewes > €|
Pr(RM(S) = p,w) .
+ p,we];)ZrM(S) |:1n (PI‘(RM(S/ =Dp, w) ]]-p.,ng - €
R

< Pr
DwW—RM(S) |

< P I ( Pr(RM(S) = p,
Pw—RM(S) |

)
) Lowea > + 1 PG
)

: ]]-p,wEG > é: + d(5



It remains to prove that Pr;, = aq(s) {ln (%) lpwea > 5} < 4. We calculate,

Pr(RM(S) = p,w) .
e () {1“ (Pr(RM(S’) ~pw) ) e >E

d
Pr(RM(S)i = pi, w; | p<i, w<;) _
= P 1 . ]].
paweRM(S) | (H PrRM(S"); = prvw; | pesywes) ) - P67 F

PI‘(RM(S)Z = Pi, W4 ‘ p<i7'u)<i) ~
= P 1 L .
T Z n ( r(RM(S); = pi,wi | = peis weq) pweG > €

P )
< B Z <1n (Pr(RM(S» = piwi | peirwai) ) ,

i = Pi, W; | p<i7w<i)

]lpuwi EGi(&Si,SD) > €

=
s
<
@

P
Pr(RM(S)i = pi, w; | p<i, w<;)
= P 1 -1 ) g. g
pﬂu«—RIM(S) Z (n (Pr(RM(S’)i = Pi, W; | P<i, W<y) Pi,wi€Gi(B,5:,57)

Li€Lin
+ In ( 1y wcc (5. 5
i;m ( Pr(RM(S")i = pi,wi | pei,wei) ) P €GiB5050
Pr(RM(S)i = pi, w; | p<i, w<i) ) > .
+ ln( ‘1, wea.(ss.5) | =&
z‘e;fm ( Pr(RM(S"); = pi, wi | p<is w<s) piwi €G:(B,5,5;)

We will prove the following

i Pr(RM(S)i=p:i,wilp<i,w<i) \ . o _
@ Pr [Zielafter In (Pr(RM(S’),;:pi,wi\p<i,w<,;) Ly wiec,8,5:.,5) =0 =1

—_

s Pr(RM(S)i=pi,wilp<i,w<i) '\ . o _
(i) Pr [Eiezwt In (Pr(RM(S,)i:pi,wilp<i’w<i) lpi,quEG,;(B,S,;,S{) =0| =

Pr(RM(S)i=pi,wilp<i,w<i) ~ - =
(iii) Pr [Zielm In (Pr(RM(S’)fv,:pi,wi\pii,wii)) Ly wieci(8.5:,8) = 5} >1-9

Combining the above three claims implies a bound on (T]) and finishes the proof.

Proof of (i). After i*, by the algorithm definition, =’ gets removed from S’. Hence, for every i > i*,
conditioning on RM(S); = p;, it holds that B; = B;. This implies that, for every i € Z, f¢cr,

Pr(RM(S); = pi,w; | p<iywe;) = Pr(RM(S"); = pi,w; | p<i, we;)
which yields

Pr(RM(S); = pi, w; | p<i, w<;) -1
Pr(RM(S")i = pi, wi | p<isw<i)

= Pr Z In ( Pr(RM(S)’L = Pi, W | p<i7w<i)

1, wea(ss ay=0[=1
.- Pr(RM(S"); = pi, w; |p<i,w<i)> piwi €G3 (B,5:,57)
g after

Proof of (ii). Recall that by the definition of Z,,,; for every i € Z,,,; it holds that 2’ ¢ B!, and hence,

conditioning on the previous outputs, B} = B;. We therefore get that the distribution of the i*" output
is also the same. Formally,

Pr(RM(S); = pi,wi | p<i,we;) = Pr(RM(S); = pi, w; | p<is w<i).

“Note that the outer probability is over p and w. This allows the partition of the iterations into
Lins Lout, Zagter to be well-defined, as this partition depends on p, w.



This results in
I Pr(RM(S); = pi,w; | p<i, w<;) 1 N
Pr(RM(S")i = pi,w; | p<i, w<i) prowi €GB8

Z n PI' RM( )z:piawi|p<iaw<’i) .1 s an =20
Pr(RM(S"); = pi, wi | p<is w<;) pinn €GBS

= Pr

1€Louy

Proof of (iii). Note that, as we assume that the output of %M includes the random Laplasian noise,
then by fixing the past output-point p;, w; we also fix S;, S.. So,
In Pr(RM(S); = pi, w; | p<i,w<i) 1 o
Pr(RM(S"); = pi,w; | p<i, we;) pi,wi €G;(B,5,57)
S;

ln<Pr(8(_) piywi)) | Tpew GBS

Moreover, by the definition of the events G; it holds that

PT(B(Sz) = p“wz) ) ]]_ o
Pr(B(S!) = pi, w;) pi.w; €G;(B,5:,57)

Pr

—
=

SQ&:} =1

which yields

[ Pr(B(S;) = pi, w;) s
Pri) In (m(s(; Zpwy)) TremeciB S8 > €

) —puwi)
[Z 2e > ¢

1€Lin

< Pr {|Im > } <,

g
2e

where the last inequality follows from Claim 3.1]and from our choice of € = O (¢ log(1/9)) .

4 Utility

Proof of Lemma[2.3] First, we must ensure that at every iteration, with high probability, we have
enough points left in S. At the same time we must ensure that the axillary algorithm .4 will output
an inner point of the given subset. Denote a; = w; + p. By the definition of the noise w and the
mean p, we get that for every iteration i:  Pr[a; > 6Alog(1/8)] < 5. Hence, with probability
> 1 —dp, it holds that for every i a; < 6Alog(1/8). This means that the total number of removed
point is at most 6dA log(1/3). Therefore, for a sample of size 6dA log(1//) with high probability
S will contain enough points.

Regarding the algorithm’s accuracy, we notice that at every iteration j, A outputs a point which is
at least the a;-th largest point from the points left in the set. This means that, in the worst case, we
delete a; points from the data set at this iteration. Hence, again in worst case, we will output the

°%_, a;-th largest point in the j*" axis.

By the above reasoning, with high probability we can say that for every i it holds that a; <
6A log(1//). Meaning that every p is at least the Z;lzl a; < 6dAlog(1/B) largest point in the axis.

This implies that, for sample of size O (42 log(1/c) log(1//3)). denoting the by h,, the hypothesis
induces by the output of Algorithm[1|Prgpn[errg(h,) > «/2] < /2. Since the VC-dimension
of the class RECy is 2d, by the VC-theory bounds and the fact that the sample size is at least as

the sample complexity bound O (é (dlog (1) +1og ( ))) it holds that:  Prg.pn[errp(hp) >
errg(hp) + a/2] < B/2. Combining the two bounds concludes the proof. O
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