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ABSTRACT

Recently, inspired by repetitive block structure of modern ConvNets, such as
ResNets, parameter-sharing among repetitive convolution layers has been proposed
to reduce the size of parameters. However, naive sharing of convolution filters
poses many challenges such as overfitting and vanishing/exploding gradients,
resulting in worse performance than non-shared counterpart models. Furthermore,
sharing parameters often increases computational complexity due to additional
operations for re-parameterization. In this work, we propose an efficient parameter-
sharing structure and an effective training mechanism for recursive ConvNets.
In the proposed ConvNet architecture, convolution layers are decomposed into
a filter basis, that can be shared recursively, and non-shared layer-specific parts.
We conjecture that a shared filter basis combined with a small amount of layer-
specific parameters can retain, or further enhance, the representation power of
individual layers, if a proper training method is applied. We show both theoretically
and empirically that potential vanishing/exploding gradients problems can be
mitigated by enforcing orthogonality to the shared filter bases. Experimental
results demonstrate that our scheme effectively reduces redundancy by saving up
to 63.8% of parameters while consistently outperforming non-shared counterpart
networks even when a filter basis is shared by up to 10 repetitive convolution layers.

1 INTRODUCTION

Modern networks such as ResNets usually have massive identical convolution blocks and recent
analytic studies (Jastrzebski et al., 2018) show that these blocks perform similar iterative refinement
rather than learning new features. Inspired by these massive identical block structure of modern
networks, recursive ConvNets sharing weights across iterative blocks have been studied as a promising
direction to parameter-efficient ConvNets (Jastrzebski et al., 2018; Guo et al., 2019; Savarese &
Maire, 2019). However, repetitive use of parameters across many convolution layers incurs several
challenges that limit the performance of such recursive networks. First of all, deep sharing of
parameters might result in vanishing gradients and exploding gradients problems, which are often
found in recurrent neural networks (RNNs) (Pascanu et al., 2013; Jastrzebski et al., 2018). Another
challenge is that overall representation power of the networks might be limited by using same filters
repeatedly for many convolution layers.

To address aforementioned challenges, in this paper, we propose an effective and efficient parameter-
sharing mechanism for modern ConvNets having many repetitive convolution blocks. In our work,
convolution filters are decomposed into a fundamental and reusable unit, which is called a filter basis,
and a layer-specific part, which is called coefficients. By sharing a filter basis, not whole convolution
filters or a layer, we can impose two desirable properties on the shared parameters: (1) resilience
against vanishing/exploding gradients, and (2) representational expressiveness of individual layers
sharing parameters. We first show theoretically that a shared filter basis can cause vanishing gradients
and exploding gradients problems, and this problem can be controlled to a large extent by making
filter bases orthogonal. To enforce the orthogonality of filter bases, we propose an orthogonality
regularization to train ConvNets having deeply shared filter bases. Our experimental results show
that the proposed orthogonality regularization reduces the redundancy not just in deeply shared filter
bases, but also in none-shared parameters, resulting in better performance than over-parameterized
counterpart networks. Next, we make convolution layers with shared parameters more expressive
using a hybrid approach to sharing filter bases, in which a small number of layer-specific non-shared
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filter basis components are combined with shared filter basis components. With this hybrid scheme,
the constructed filters can be positioned in different vector subspaces that reflect the peculiarity of
individual convolution layers. We argue that these layer-specific variations contribute to increasing
the representation power of the networks when a large portion of parameters is shared.

Since our focus is not on pushing the state-of-the-art performance, we show the validity of our work
using widely-used ResNets as a base model on image classification tasks with CIFAR and ImageNet
datasets. Our experimental results demonstrate that when each filter basis is shared by up to 10
convolution layers, our method consistently outperforms counterpart ConvNet models while reducing
a significant amount of parameters and computational costs. For example, our method can save up to
63.8% of parameters and 33.4% of FLOPs, respectively, while achieving lower test errors than much
deeper counterpart models.

Our parameter sharing structure and training mechanism can be applied to modern compact networks,
such as MobileNets (Howard et al., 2017) and ShuffleNets (Zhang et al., 2018) with minor adaptations.
Since these compact models already have decomposed convolution blocks, some parts of each block
can be identified as a shareable filter basis and the rest of the layer-specific parts. In Experiments,
we demonstrate that compact MobileNetV2 can achieve further 8-21% parameter savings with our
scheme while retaining, or improving, the performance of the original models.

2 RELATED WORK

Recursive networks and parameter sharing: Recurrent neural networks (RNNs) (Graves et al.,
2013) have been well-studied for temporal and sequential data. As a generalization of RNNs,
recursive variants of ConvNets are used extensively for visual tasks (Socher et al., 2011; Liang & Hu,
2015; Xingjian et al., 2015; Kim et al., 2016; Zamir et al., 2017). For instance, Eigen et al. (2014)
explore recursive convolutional architectures that share filters across multiple convolution layers.
They show that recurrence with deeper layers tends to increase performance. However, their recursive
architecture shows worse performance than independent convolution layers due to overfitting. In
most previous works, filters themselves are shared across layers. In contrast, we propose to share
filter bases that are more fundamental and reusable building blocks to construct layer-specific filters.

More recently, Jastrzebski et al. (2018) show that iterative refinement of features in ResNets suggests
that deep networks can potentially leverage intensive parameter sharing. Guo et al. (2019) introduce
a gate unit to determine whether to jump out of the recursive loop of convolution blocks to save
computational resources. These works show that training recursive networks with naively shared
blocks leads to bad performance due to the problem of gradient explosion and vanish like RNN (Pas-
canu et al., 2013; Vorontsov et al., 2017). In order to mitigate the problem of gradient explosion and
vanish, they suggest unshared batch normalization strategy. In our work, we propose an orthogonality
regularization of shared filter bases to further address this problem.

Savarese & Maire (2019)’s work is also relevant to our work. In their work, the parameters of
recurrent layers of ConvNets are generated by a linear combination of 1-2 parameter tensors from a
global bank of templates. Though similar to our work, our work suggests more fine-grained filter
bases as more desirable building blocks for effective parameter sharing since filter bases can be
easily combined with layer-specific non-shared components for better representation power. Our
result shows that these layer-specific non-shared components are critical to achieve high performance.
Although they achieve about 60% parameter savings, their approach does not outperform counterpart
models and incurs slight increases in computational costs due to the overheads in reparameterizing
tensors from the templates.

Model compression and efficient convolution block design: Reducing storage and inference time
of ConvNets has been an important research topic for both resource constrained mobile/embedded
systems and energy-hungry data centers. A number of research techniques have been developed
such as filter pruning (LeCun et al., 1990; Polyak & Wolf, 2015; Li et al., 2017; He et al., 2017),
low-rank factorization (Denton et al., 2014; Jaderberg et al., 2014), quantization (Han et al., 2016),
and knowledge distillation (Hinton et al., 2015; Chen et al., 2017), to name a few. These compres-
sion techniques have been suggested as post-processing steps that are applied after initial training.
Unfortunately, their accuracy is usually bounded by the approximated original models. By contrast,
our models are trained from scratch as in Ioannou et al. (2017)’s work and our result shows that
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Figure 1: Illustration of the proposed filter basis sharing method. A normal convolution layer in (a)
can be decomposed into a filter basis Wbasis and coefficients α as in (b). A filter basis is a generic
building block that can be shared by repetitive convolution layers as in (c). Some layer-specific
components (W (i)

basis and α(i)) can be combined for better expressiveness of recursive layers.

parameter-sharing approaches can outperform the counterpart models, if a proper training method is
combined, while achieving significant savings in parameters.

Some compact networks such as ShuffleNet (Zhang et al., 2018) and MobileNet (Howard et al.,
2017; Sandler et al., 2018) show that delicately designed internal structure of convolution blocks
acquire better ability with lower computational complexity. Our work can be applied to these compact
networks since they already exploit decomposed convolutions for their efficient convolution blocks.
For instance, since MobileNet’s convolution blocks have pointwise-depthwise-pointwise convolution
steps, the first two convolution steps can be considered a reusable filter basis and the last step can be
considered layer-specific coefficients. In Experiments, we show that MobileNetV2 combined with
our parameter-sharing scheme outperforms the original models while saving about 8-21% parameters.

3 DEEP RECURSIVE SHARING OF A FILTER BASIS

In this section, we discuss how to decompose typical convolution layers into more recursive units, or
filter bases, and remaining layer-specific parts. We also discuss how to train ConvNets effectively
when filter bases are deeply shared by repetitive convolution layers.

3.1 FILTER BASES OF CONVOLUTION LAYERS

We assume that a convolution layer with S input channels, T output channels, and a set of filters
W = {Wt ∈ Rk×k×S , t ∈ [1..T ]}. Each filter Wt can be decomposed using a lower rank filter basis
Wbasis and coefficients α:

Wt =

R∑
r=1

αr
tW

r
basis, (1)

where Wbasis = {W r
basis ∈ Rk×k×S , r ∈ [1..R]} is a filter basis, and α = {αr

t ∈ R, r ∈ [1..R], t ∈
[1..T ]} is scalar coefficients. In Equation 1, R is the rank of the basis. In a typical convolution layer,
output feature maps Vt ∈ Rw×h×T , t ∈ [1..T ] are obtained by the convolution between input feature
maps U ∈ Rw×h×S and filters Wt, t ∈ [1..T ]. With Equation 1, this convolution can be rewritten as
follows:

Vt = U ∗Wt = U ∗
R∑

r=1

αr
tW

r
basis (2)

=

R∑
r=1

αr
t (U ∗W r

basis), where t ∈ [1..T ]. (3)

In Equation 3, the order of the convolution operation and the linear combination of filter basis is
reordered according to the linearity of convolution operators. This result shows that a standard
convolution layer can be replaced with two successive convolution layers as shown in Figure 1-(b).
The first decomposed convolution layer performs R convolutions between W r

basis, r ∈ [1..R] and
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input feature maps U , and it generates an intermediate feature map basis Vbasis ∈ Rw×h×R. The
second decomposed convolution layer performs point-wise 1×1 convolutions that linearly combineR
intermediate feature maps Vbasis to generate output feature maps V . The computational complexity of
the original convolution is O(whk2ST ) while the decomposed operations take O(wh(k2SR+RT )).
As far as R < T , the decomposed convolution has lower computational complexity than the original
convolution. Due to this computational efficiency, many compact networks such as MobileNets
and ShuffleNets also have similar block structures of decomposed convolution layers. For instance,
MobileNets have repetitive convolution blocks of pointwise-depthwise-pointwise convolutions. The
filters in the first two steps can be considered a reusable filter basis and the remaining 1x1 filters in
the last step can be considered layer-specific coefficients.

3.2 RECURSIVE SHARING OF A FILTER BASIS

In typical ConvNets, convolution layers have different filters W s and, hence, each decomposed
convolution layer has its own filter basis Wbasis and coefficients α. In contrast, our primary goal in
decomposing convolution layers is to share a single filter basis (or a small number of filter bases)
across many recursive convolution layers. Unlike some previous works (Jastrzebski et al., 2018;
Köpüklü et al., 2019), in which convolution filters W themselves are shared recursively, we argue
that a filter basis Wbasis is a more intrinsic and reusable building block that can be shared effectively
since a filter basis constitutes a subspace, in which high dimensional filters across many convolution
layers can be approximated.

Though components of a basis only need to be independent and span a vector subspace, some specific
bases are more convenient and appropriate for specific purposes. For the purpose of sharing a filter
basis, we need to find an optimal filter basis Wbasis that can expedite the training of filters of shared
convolution layers. Although this optimization can be done with a typical stochastic gradient descent
(SGD), one problem is that exploding/vanishing gradients problems might prevent efficient search of
the optimization space. More formally, we consider a series of N decomposed convolution layers, in
which a filter basis Wbasis is shared N times. Let xi be the input of the i-th convolution layer, and
ai+1 be the output of the convolution of xi with the filter basis Wbasis

ai(xi−1) = W>basisx
i−1. (4)

In Equation 4, Wbasis ∈ Rk2S×R is a reshaped filter basis that has basis components at its columns.
We assume that input x is properly adapted (e.g., with im2col) to express convolutions using a
matrix-matrix multiplication. Since Wbasis is shared across N recusrive convolution layers, the
gradient of Wbasis for some loss function L is:

∂L

∂Wbasis
=

N∑
i=1

∂L

∂aN

N−1∏
j=i

(
∂aj+1

∂aj

)
∂ai

∂Wbasis
, (5)

, where
∂aj+1

∂aj
=
∂aj+1

∂xj

∂xj

∂aj
= Wbasis

∂xj

∂aj
(6)

If we plug Wbasis
∂xj

∂aj in Equation 6 into Equation 5, we can see that
∏

∂aj+1

∂aj is the term that makes
gradients unstable since Wbasis is multiplied many times. This exploding/vanishing gradients can
be controlled to a large extent by keeping Wbasis close to orthogonal (Vorontsov et al., 2017). For
instance, if Wbasis admits eigendecomposition, [Wbasis]

N can be rewritten as follows:

[Wbasis]
N = [QΛQ−1]N = QΛNQ−1, (7)

where Λ is a diagonal matrix with the eigenvalues placed on the diagonal and Q is a matrix composed
of the corresponding eigenvectors. If Wbasis is orthogonal, [Wbasis]

N neither explodes nor vanishes,
since all the eigenvalues of an orthogonal matrix have absolute value 1. Similarly, an orthogonal
shared basis ensures that forward signals neither explodes nor vanishes. We also need to ensure that
the norm of ∂xj

∂aj in Equation 5 is bounded (Pascanu et al., 2013) for stability during forward and
backward passes. It is shown that batch normalization after non-linear activation at each convolution
layer ensures healthy norms (Ioffe & Szegedy, 2015; Guo et al., 2019; Jastrzebski et al., 2018).

4



Under review as a conference paper at ICLR 2021

For training networks, the orthogonality of shared bases can be enforced with an orthogonality
regularizer. For instance, when each residual block group of a ResNet shares a filter basis for its
convolution layers, the objective function LR can be defined to have an orthogonality regularizer in
addition to the original loss L:

LR = L+ λ

G∑
g

‖W (g)
basis

> ·W (g)
basis − I‖

2, (8)

where W (g)
basis is a shared filter basis for g-th residual block group and λ is a hyperparameter.

3.3 A HYBRID APPROACH TO SHARING A FILTER BASIS

In our filter basis sharing approach, filters of many convolution layers are constructed by the linear
combination of a shared filter basis as in Equation 1. This implies that those high-dimensional
filters are all in the same low-dimensional subspace. If the rank of a filter basis is too low, it is
very challenging to find such subspace that can express individual peculiarity of many layers’ filters.
Conversely, if the rank of a shared filter basis is too high (e.g., R ≥ T ), the gain in computational
complexity from decomposing filters is mitigated. One way to increase the representational power of
each convolution layer, while still maintaining its computational complexity low, is adding a small
number of layer-specific components to the filter basis. For instance, we build a filter basis Wbasis

not only using shared components, but also using non-shared components:

Wbasis = Wbs_shared ∪Wbs_unique, (9)

where Wbs_shared = {W r
bs_shared ∈ Rk×k×S , r ∈ [1..n]} are shared filter basis components,

and Wbs_unique = {W r
bs_unique ∈ Rk×k×S , r ∈ [n+1..R]} are per-layer non-shared filter basis

components. With this hybrid scheme, filters in different convolution layers are placed in different
layer-specific subspace. One disadvantage of this hybrid scheme is that non-shared filter basis
components require more parameters. The ratio of non-shared basis components can be varied to
control the tradeoffs. But, our results in Section 4 show that only a few per-layer non-shared basis
components is enough to achieve high performance.

4 EXPERIMENTS

In this section, we perform a series of experiments on image classification tasks. Using ResNets (He
et al., 2016) as base models, we train networks with the proposed method and compare them with
the baseline networks. We also analyze the effect of the orthogonality regularization and the hybrid
scheme.

4.1 RESULTS ON CIFAR

4.1.1 MODEL CONFIGURATION AND TRAINING DETAILS

Throughout the experiments, we use ResNets (He et al., 2016) as base networks by replacing their
3×3 convolution layers to decomposed convolution layers sharing filter bases. Since each residual
block group of ResNets have different number of channels and kernel sizes, our networks share a
filter basis only in the same group (Figure 5 in Appendix). In each group with n residual blocks, the
first block has a different stride, and, hence, it does not share a filter basis. Each residual block of
the baseline ResNets has two 3×3 convolution layers, and, hence, our networks’ each group has
2(n − 1) decomposed convolution layers sharing a filter basis. Throughout the experiments, we
denote by ResNetL-SsUu a ResNet with L layers that has a filter basis with s shared components
and u layer-specific non-shared components in the first residual block group. This ratio between s
and u is maintained for all residual block groups.

The CIFAR-10/100 datasets contains 50,000 and 10,000 three-channel 32× 32 images for training
and testing, respectively. For training networks, we follow a similar training scheme in He et al.
(2016). Standardized data-augmentation and normalization are applied to input data. Networks are
trained for 300 epochs with SGD optimizer with a weight decay of 5e-4 and a momentum of 0.9. The
learning rate is initialized to 0.1 and is decayed by 0.1 at 50% and 75% of the epochs.
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4.1.2 RESULTS

Table 1 shows the results on CIFAR-100. Networks trained with the proposed method consistently
outperform their ResNet counterparts. For instance, ResNet34-S32U1 requires only 36.2% parameters
and 66.6% FLOPs of the counterpart ResNet34 while achieving even lower test error (21.84%) than
much deeper ResNet50 (22.36%). To show the generality of our work, we apply the proposed method
to DenseNet (Huang et al., 2017), ResNeXt (Xie et al., 2017), and MobileNetV2 (Sandler et al.,
2018). Although the overall gain is not as great as ResNets’, we still observe reduction of resource
usages in these networks. For instance, ResNeXt50-S64U4 outperforms the counterpart ResNeXt50
while saving parameters and FLOPs by 16.7% and 12.1%, respectively. In ResNeXt, the gain is
limited since they mainly exploit group convolutions; each group convolution is decomposed for
filter basis sharing in our network. Similarly, for DenseNet, each 3 × 3 convolution layer has a
relatively small number of output channels, and, hence the overall gain is not pronounced as much
as ResNets’. Unlike the other networks, MobileNetV2 already has a factorized block structure
(pointwise-depthwise-pointwise), and, hence, we choose to share the pointwise-depthwise layers
across successive convolution blocks with the same number of channels (Figure 7 in Appendix).
During the training, the proposed orthogonality regularization is applied to these shared filters
separately. Though MobileNetV2 does not have as many repeating blocks as ResNets, we observe
that our MobileNetV2-Shared saves about 21.9% of parameters while outperforming the original
MobileNetV2.

Table 1: Error (%) on CIFAR-100. ‘?’ denotes having 2 shared bases in each group. ‘†’ denotes
orthogonality regularization is not applied.

Baseline Model Params FLOPs Error

ResNet34 ResNet34 (baseline) 21.33M 2.33G 22.49
ResNet34-S32U1† (ours) 7.73M 1.55G 22.92
ResNet34-S32U1 (ours) 7.73M 1.55G 21.84

DenseNet121 DenseNet121 (baseline) 7.05M 1.81G 21.95
DenseNet121-S16U1 (ours) 5.08M 1.43G 22.15

ResNeXt50 ResNeXt50 (baseline) 23.17M 2.71G 20.71
ResNeXt50-S64U4 (ours) 19.3M 2.38G 20.09

MobileNetV2 MobileNetV2 (baseline) 2.43M 0.14G 27.79
MobileNetV2-Shared?(ours) 1.90M 0.14G 27.20

Table 2: Error (%) on CIFAR-10. ‘?’ denotes having 2 shared bases in each group. ‘†’ denotes
orthogonality regularization is not applied.

Baseline Model Params FLOPs Error

ResNet32 ResNet32 (baseline) 0.46M 0.14G 7.51
ResNet32-S16U1? (ours) 0.24M 0.16G 6.95

ResNet56 ResNet56 (baseline) 0.85M 0.25G 6.97
ResNet56-S16U1† (ours) 0.27M 0.30G 7.70
ResNet56-S16U1 (ours) 0.27M 0.30G 7.46
ResNet56-S16U1? (ours) 0.31M 0.30G 6.33
Filter Pruning (Li et al., 2017) 0.77M 0.18G 6.94
KSE (Li et al., 2019) 0.43M 0.12G 6.77
DR-Res 40 (Guo et al., 2019) 0.50M 0.22G 6.51

The result on CIFAR-10 is presented in Table 2. Unlike networks on CIFAR-100, networks on
CIFAR-10 has much fewer channels (e.g. 16 channels in the first residual block group) and, hence,
projecting filters to such low dimensional subspace might limit the performance of the networks.
For instance, in ResNet32-S8U1, filters are supposed to be projected onto 9 dimensional subspace
consisting of 8 shared and 1 layer-specific filter basis components. By increasing the rank of filter
bases, the better accuracy can be achieved at the cost of increased FLOPs. For deeper networks such
as ResNet56, a filter basis is supposed to be shared by many residual blocks in the group, and it can
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damage the performance. For example, every filter basis in ResNet56-S16U1 is shared by 8 residual
blocks, or 16 convolution layers. Due to this excessive sharing, though ResNet56-S16U1 saves 41.3%
parameters, its testing error (7.46%) is higher than the counterpart ResNet56’s (6.97%).

To remedy this problem, we introduce a variant, in which each residual block group of the networks
uses 2 shared bases; one basis is shared by the first convolution layers of all residual blocks, and the
other is shared by the second convolution layers of the same blocks. In Table 2, networks with a
‘?’ mark denote this variant. Though this variant slightly increases the parameters of the networks,
it can prevent excessive sharing of parameters. For example, although ResNet56-S16U1? needs
0.04M more parameters for additional shared bases, it still saves 63% parameters of the counterpart
ResNet56 and achieves lower testing error, 6.33%.

In Table 2, we compare our results with similar state-of-the-art techniques. Our method achieves
better performance and parameter-saving than other approaches such as filter pruning (Li et al., 2017),
kernel clustering (Li et al., 2019), and recursive sharing (Guo et al., 2019).

4.1.3 ANALYSIS: EFFECTS OF ORTHOGONAL BASES
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Figure 2: The flows of gradients in 4 shared bases of ResNet34-S16U1 at the same epoch. For
comparison, orthogonal regularization and batch normalization (BN) following the bases are turned
on and off. In (b) and (c), BNs and orthogonal regularization, respectively, improve the flow of
gradients. In (d), when both BNs and orthogonal regularization are applied simultaneously, the
strongest flow of gradients is observed. This trend is consistently observed during the training.

To inverstigate the effect of orthogonality regularization during training, we track the flows of
gradients while training ResNet34-S16U1. Figure 2 shows the maximum and mean absolute gradients
in the four shared bases during the 20th epoch. Jastrzebski et al. (2018) and Guo et al. (2019) showed
that unshared batch normalization (BN) mitigates vanishing/exploding gradients problems, and our
result in Figure 2-(b) shows that unshared BNs following shared bases improves the flow of gradients.
When the proposed orthogonality regularization is applied to the shared bases, similar effect on
gradient flows is observed in Figure 2-(c). When both unshared BN and orthogonality regularization
are applied together, in Figure 2-(d), further stronger, but still bounded, flow of gradients are observed.
This trend is consistently observed during the training. We conjecture that this healthy flow of
gradients improve the optimization process during training.

To further analyze the effect of the orthogonality regularization, in Figure 3, we illustrate absolute
cosine similarities of all filter basis components and coefficients of the 2nd and the 3rd residual
block groups of ResNet34-S16U1. In the upper low, the X and Y axes display the indexes to
the shared basis components first, and all non-shared basis components in respective groups next.
As expected, the shared filter basis components have almost zero cosine similarities when the
orthogonality regularization in Equation 8 is applied. The bottom low shows the absolute cosine
similarities of coefficients of the corresponding groups. In Figure 3, we can clearly see that coefficients
manifest lower similarities when the orthogonality regularization is applied. Without the orthogonality
regularization, interesting grid patterns are observed in coefficients. This repetitive grid pattern might
be related to ResNets’ nature of iterative refinement (Jastrzebski et al., 2018). However, since bases
and coefficients are used to build filters of recursive layers, such high cosine similarity is directly
related to the higher redundancy in the networks. When the orthogonality regularization is applied,
such repetitive patterns are less evident, implying that recursive layers perform less repetitive tasks.
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Figure 3: Cosine similarities of bases and coefficients of ResNet34-S16U1 (2-th and 3-th groups.) In
the upper row, X and Y axis are indexes to the shared/unique components of the bases. The first 32 and
64 basis components of the 2-th and 3-th groups are shared by 6 and 10 recursive convolution layers,
respectively. The others are non-shared unique basis components of those layers. Orthogonality
regularization is applied only to shared components. The lower row shows corresponding coefficients
in the residual block groups. Brighter color corresponds to higher similarity.
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Figure 4: Testing errors vs. the number of parameters and FLOPs on CIFAR-100. The number of
shared basis components (s), and non-shared basis components (u) are varied. Using more shared
basis components results in better performance. In contrast, using more non-shared components does
not always improve performance.

4.1.4 ANALYSIS: EFFECTS OF RANKS OF SHARED/UNSHARED BASES

Figure 4 shows test errors as parameters and FLOPs are increased by varying the number of
shared/non-shared basis components of networks. In general, the higher performance is expected
with the more parameters. We observe that this presumption is true for shared basis components. For
instance, when the number of shared basis components s is varied from 8 to 32, the test error sharply
decreases from 23.1% to 21.7%. However, non-shared basis components manifest counter-intuitive
results. Although a small number of non-shared basis components (e.g., u = 1) are clearly beneficial
to the performance, the higher u’s do not always lead to the higher performance. For instance,
when u = 4, both ResNet34-S16Uu and ResNet34-S32Uu show the worst performance. This result
demonstrates the difficulty of training networks with larger parameters. Further study is required for
this problem.
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4.2 RESULTS ON IMAGENET

We evaluate our method on the ILSVRC2012 dataset (Russakovsky et al., 2015) that has 1000
classes. The dataset consists of 1.28M training and 50K validation images. We use ResNet34/50
and MobileNetV2 as base models. Since the block structure of ResNet50 and MobileNetV2 already
resembles the decomposed convolution blocks, our models derived from ResNet50 and MobileNetV2
share the first 1x1 and 3x3 convolution layers recursively without filter decomposition for repeating
convolution blocks (Figure 6 and 7 in Appendix). We train the ResNet-derived models for 150 epochs
with SGD optimizer with a mini-batch size of 512, a weight decay of 1e-4, and a momentum of 0.9.
The learning rate starts with 0.1 and decays by 0.1 at 60-th, 100-th, and 140-th epochs. MobileNetV2
and our MobileNetV2-Shared models are trained for 300 epochs with a weight decay of 1e-5. Its
learning rate starts with 0.1 and decays by 0.1 at 150-th, 225-th, and 285-th epochs.

Table 3: Error (%) on ImageNet. ‘?’ denotes having 2 shared bases in each residual block group.
In MobileNetV2-Shared†, the first 1x1 step of each block shares parameters recursively. Latency is
measured on Nvidia Jetson TX2 (GPU, batch size = 1).

Baseline Model Params FLOPs top-1 top-5 Latency

ResNet34 ResNet34 (baseline) 21.80M 7.34G 26.70 8.58 33.6ms
ResNet34-S32U1 (ours) 8.20M 4.98G 27.83 9.42 31.6ms
ResNet34-S48U1? (ours) 11.79M 6.52G 26.67 8.54 38.6ms
Filter Pruning (Li et al., 2017) 19.30M 5.52G 27.83 - -

ResNet50 ResNet50 (baseline) 25.56M 8.22G 23.85 7.13 43.8ms
ResNet50-Shared (ours) 18.26M 8.22G 23.95 7.14 43.5ms
FSNet (Yang et al., 2020) 13.9M - 26.89 8.63

MobileNetV2 MobileNetV2 (baseline) 3.50M 0.66G 28.0 9.71 18.4ms
MobileNetV2-Shared† (ours) 3.24M 0.66G 27.61 9.34 17.9ms
MobileNetV2-Shared (ours) 2.98M 0.66G 28.21 9.85 17.8ms
FBNet-A (Wu et al., 2019) 4.3M 0.49G 27.0 - -
DR-MobileNetV2 (Guo et al., 2019) 2.96M 0.53G 28.2 9.72 -

The results in Table 3 show that ResNet34-S48U1? outperforms the counterpart ResNet34 while using
only 54.0% parameters of the counterpart. Although ResNet34-S48U1? requires lower FLOPs than
the counterpart ResNet34, it takes 14% longer latency on Jetson TX2. This overhead mostly comes
from performing convolution operations separately for shared and non-shared basis components.

Since our ResNet50- and MobileNetV2-derived models do not decompose convolution blocks to
define shared bases, overall parameter-saving is not as pronounced as in ResNet34. However, they still
save about 28.6% and 14.9% parameters, respectively, while achieving comparable performance. For
example, MobileNetV2-Shared† even outperforms the counterpart model by 0.51%. This result shows
that even compact models such as MobileNetV2 can benefit from the proposed parameter-sharing
mechanism using orthogonality regularization. Since our ResNet50- and MobileNetV2-derived
models do not perform separate convolution for shared and non-shared basis, their theoretical FLOPs
are equal to the counterpart models’. However, the latency of our parameter-efficient models is
slightly lower than the counterpart models on actual devices. This is because our parameter-efficient
models better make use of the limited cache and memory of the embedded device.

5 CONCLUSIONS AND FUTURE WORKS

In this work, we propose to share filter bases of decomposed convolution layers for efficient and
effective sharing of parameters in ConvNets. We both theoretically and empirically show that
gradient explosion/vanishing problem of deeply shared filter bases can be effectively addressed by
the proposed orthogonality regularization of the filter bases. With our approach, while a significant
amount of parameters is shared, the representation power of each convolution layer is retained,
or further enhanced, by reducing the redundancy effectively. Experimental results show that our
approach consistently outperforms the counterpart models while significantly reducing parameters.
We believe that the proposed parameter-sharing and training method suggests important architectural
possibilities for future neural architecture search (NAS) for resource-efficient networks.
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A APPENDIX

(a) Basic residual block
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Figure 5: Block structure of ResNet34 and a shared basis. For basic blocks, a shared basis is defined
by decomposing original 3x3 convolution filters.

(a) Bottleneck residual block (b) Shared bottleneck block 

conv1x1

conv 3x3

+
BN

BN, ReLU

conv1x1

X

BN, ReLU

+
BN

BN, ReLU

conv1x1

X

BN, ReLU

conv1x1

conv 3x3

Shared bases

repeating blocksReLU ReLU

Figure 6: Block structure of ResNet50 and shared bases. In the shared bottleneck block, the first
1x1 convolution and the second 3x3 convolution are considered as two bases of the bottleneck block.
During training, orthogonal regularization is applied to these bases separately.

(a) Basic block (b) Shared block 
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Figure 7: Block structure of MobileNetV2 and shared bases. In the shared block, the first 1x1
pointwise convolution and the second 3x3 depthwise convolution are considered as two bases of the
block. During training, orthogonal regularization is applied to these bases separately.
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