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Abstract

Conversational question answering (CQA) sys-001
tems aim to provide natural-language an-002
swers to users in information-seeking conver-003
sations. Existing benchmarks compare CQA004
models with pre-collected human-human con-005
versations, using ground-truth answers pro-006
vided in conversational history. It remains un-007
clear whether we can rely on this static evalua-008
tion for model development, and whether cur-009
rent systems can well generalize to real-world010
human-machine conversations. In this work,011
we conduct the first large-scale human evalu-012
ation of state-of-the-art CQA systems, where013
human evaluators converse with models and014
judge the correctness of their answers. We find015
that the distribution of human-machine conver-016
sations drastically differs from that of human-017
human conversations, and evaluating with gold018
answers is inconsistent with human evalua-019
tion. We further investigate how to improve020
automatic evaluations and propose a question021
rewriting mechanism based on predicted his-022
tory, which better correlates with human judg-023
ments. Finally, we analyze the impact of vari-024
ous modeling strategies. We hope our findings025
can shed light to how to develop better CQA026
systems in the future.027

1 Introduction028

Conversational question answering (CQA) aims to029

build machines to answer questions in conversa-030

tions, and has the promise to revolutionize the way031

humans interact with machines for information-032

seeking. With recent development of large-scale033

datasets (Choi et al., 2018; Saeidi et al., 2018;034

Reddy et al., 2019; Campos et al., 2020), rapid035

progress has been made in better modeling of con-036

versational QA systems.037

Current datasets are collected by crowdsourcing038

human-human conversations, where the questioner039

asks questions based on an evidence passage and040

conversational history and the answerer provides041

corresponding answers. When evaluating CQA sys- 042

tems, a set of held-out conversations are used for 043

asking models questions in turn. Since the eval- 044

uation builds on pre-collected conversations, the 045

gold history of the conversation is always provided, 046

regardless of models’ actual predictions (Figure 1). 047

Despite the extremely competitive performance of 048

current systems on this static evaluation, it is ques- 049

tionable whether this can faithfully reflect models’ 050

true performance in real-world applications. To 051

what extent do human-machine conversations devi- 052

ate from human-human conversations? What will 053

happen if models have no access to ground-truth 054

answers in a conversation? 055

To answer these questions and better understand 056

the performance of CQA systems, we carry out 057

the first large-scale human evaluation with four 058

state-of-the-art models on the QuAC dataset (Choi 059

et al., 2018), by having human evaluators converse 060

with the models and judge the correctness of their 061

answers. We collected 1,446 human-machine con- 062

versations in total, with 15,059 question-answer 063

pairs. Through a careful analysis, we identify a 064

significant distribution shift from human-human 065

conversations and discover a clear inconsistency 066

of model performance between current evaluation 067

protocol and human evaluation. 068

This finding motivates us to improve the auto- 069

matic evaluation so that it is better aligned with 070

human evaluation. Mandya et al. (2020); Siblini 071

et al. (2021) identify a similar issue in gold-history 072

evaluation and propose to use models’ own predic- 073

tions for automatic evaluation. However, predicted- 074

history evaluation poses another challenge: since 075

all the questions have been collected beforehand, 076

using predicted history will invalidate some of the 077

questions because of changes in the conversational 078

history (see Figure 1 for an example). 079

Based on this insight, we propose a question 080

rewriting mechanism, which automatically detects 081

and rewrites invalid questions with predicted his- 082
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Topic: Spandau Ballet (English pop band)  

What was the band’s first success 
album at the international level?

They achieved platinum status.

1985.

What year did this happen?

What was the band’s first success 
album at the international level?

They achieved platinum status.

“Only When You Leave”.

What songs were in it?

Gold answer: “Parade” from 1984.

What was the band’s first success 
album at the international level?

They achieved platinum status.

???

Human evaluation Automatic evaluation w/

What songs were in it?

Automatic evaluation w/
predicted historygold history

Figure 1: Examples of human evaluation and automatic evaluations with gold history and predicted history. The
model answers the first question incorrectly. (a) A human questioner inquires based on the model’s prediction.
(b) Automatic evaluation with gold history asks pre-written questions and uses gold answers as the conversation
history. (c) Using predicted history in automatic evaluation may invalidate the next question.

tory (Figure 4). We use a coreference resolution083

model (Lee et al., 2018) to detect coreference incon-084

sistency of question text between predicted history085

and gold history, and then rewrite those questions086

by substituting with the correct mentions, so that087

the questions are resolvable in the context. Com-088

pared to predicted-history evaluation, we find that089

incorporating rewriting better aligns with human090

judgements and reflects models’ true performance.091

Finally, we also investigate the impact of differ-092

ent modeling strategies on human evaluation. We093

find that accurately detecting unanswerable ques-094

tions and explicitly modeling question dependen-095

cies on the context are crucial in model perfor-096

mance. Equipped with all the insights, we discuss097

directions for CQA modeling. We will release our098

human evaluation dataset and hope that our find-099

ings can shed light on future development of better100

conversational QA systems.101

2 Preliminary102

2.1 Evaluation of Conversational QA103

In conversational question answering, there is an104

evidence passage P , a (human) questionerH that105

has no access to P , and a model M that has ac-106

cess to P . The questioner asks questions about P107

and the model answers them based on P and the108

conversational history so far (see an example in109

Figure 1). Formally, for the i-th turn, the human110

asks a question based on the previous conversation,111

Qi ∼ H(Q1, A1, ..., Qi−1, Ai−1),112

and then the model answers it based on both the113

history and the passage,114

Ai ∼M(P,Q1, A1, ..., Qi−1, Ai−1, Qi),115

where Qi and Ai represent the question and the 116

answer at the i-th turn. If the question is unanswer- 117

able from P , Ai = CANNOT ANSWER. The model 118

M is evaluated by the correctness of answers. 119

Evaluating CQA systems requires having human 120

in the loop and it is expensive to collect the judg- 121

ments. Instead, current CQA benchmarks use au- 122

tomatic evaluation with gold history (Auto-Gold). 123

For example, QuAC (Choi et al., 2018) collects a 124

set of human-human conversations for automatic 125

evaluation. For each passage, one annotator asks 126

questions without seeing the passage, while the 127

other annotator provides the answers. Denote the 128

collected questions and answers as Q∗i and A∗i 129

(gold answers). In gold-history evaluation, we in- 130

quire the model with pre-defined questions Q∗i : 131

Ai ∼M(P,Q∗1, A
∗
1, ..., Q

∗
i−1, A

∗
i−1, Q

∗
i ), 132

and we evaluate the model by comparing Ai to A∗i 133

(measured by word-level F1). This process does not 134

require human effort, but it can’t truly reflect the 135

distribution of real human-machine conversations, 136

since the questioner may ask different questions 137

based on different models’ predictions. 138

In this work, we choose the QuAC dataset for 139

our main evaluation, since it is closer to real-world 140

information-seeking conversations, where the ques- 141

tioner cannot see the evidence passage. It prevents 142

the questioner asking questions that simply over- 143

laps with the passage and encourages truly unan- 144

swerable questions. QuAC also adopts extractive 145

question answering that restricts the answer as a 146

span of text, and more modeling work has been 147

done than in free-form question answering. 148
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2.2 Models149

For human evaluation and analysis, we choose the150

following four representative CQA models:151

BERT. A simple BERT baseline, which con-152

catenates the passage, the previous two turns of153

question-answer pairs, and the question as the input154

and predicts the answer as in Devlin et al. (2019).1155

GraphFlow. Chen et al. (2020) propose a recur-156

rent graph neural network on top of BERT embed-157

dings to model the question dependencies on the158

history and the passage.159

HAM. Qu et al. (2019) propose a history atten-160

tion mechanism (HAM) to softly select the most161

relevant previous turns.162

ExCorD. Kim et al. (2021) train a question rewrit-163

ing model on CANARD (Elgohary et al., 2019) to164

generate context-independent questions, and then165

use both the original and the generated questions166

to train the QA model. This model achieves the167

current state-of-the-art on QuAC (67.7 F1).168

For all the models except for BERT, we use the169

original implementations for a direct comparison.170

3 Human Evaluation171

In this section, we carry out a large-scale human172

evaluation with the four models discussed above.173

3.1 Conversation Collection174

We collect human-machine conversations using175

100 passages from the QuAC development set on176

Amazon Mechanical Turk.2 We also design a set177

of qualification questions to make sure that the an-178

notators fully understand our annotation guideline.179

For each model and each passage, we collect three180

conversations from three different annotators.181

We collect each conversation in two steps:182

(1) The annotator has no access to the passage183

and asks questions. The model extracts the answer184

span from the passage in a human-machine conver-185

sation interface.3 We provide the title, the section186

title, the background of the passage, and the first187

question from QuAC as a prompt to annotators. An-188

notators are required to ask at least 8 and at most 12189

questions. We encourage context-dependent ques-190

tions, but also allow open questions like “What191

1We use bert-base-uncased as the encoder.
2We restrict the annotators from English-speaking coun-

tries, having finished at least 1,000 HITS with an acceptance
rate at least 95% for high quality.

3We used ParlAI (Miller et al., 2017) to build the interface.

else is interesting” if asking a follow-up question 192

is difficult. (2) After the conversation ends, the 193

annotator is shown the passage and asked to check 194

whether the model’s answers are correct or not. 195

We noticed that the annotators are biased when 196

evaluating the correctness of answers. For ques- 197

tions to which the model answered CANNOT 198

ANSWER, annotators tend to mark the answer as in- 199

correct without checking if the question is answer- 200

able. Additionally, for answers with the correct 201

types (for example, a date as an answer to “When 202

was it?”), annotators tend to mark it as "correct" 203

without verifying from the passage. Therefore, we 204

asked another group of annotators to verify ques- 205

tion answerability and answer correctness. 206

3.2 Answer Validation 207

For each collected conversation, we ask two ad- 208

ditional annotators to validate annotated answers. 209

First, each annotator reads the passage before see- 210

ing the conversation. Then, the annotator sees the 211

question (and question only) and selects whether 212

the question is (a) ungrammatical, (b) unanswer- 213

able, or (c) answerable. If the annotator chooses 214

“answerable”, the interface then reveals the answer 215

and asks about its correctness. If the answer is “in- 216

correct”, the annotator selects the answer span from 217

the passage. We discard all questions that both an- 218

notators find “ungrammatical” and the correctness 219

is taken as the majority of the 3 annotations. 220

In total, we collected 1,446 human-machine con- 221

versations and 15,059 question-answer pairs. The 222

data distribution is very different from the human- 223

human conversations (the QuAC dataset): we see 224

more open questions and unanswerable questions, 225

due to less fluent conversation flow caused by 226

model mistakes, and that models cannot provide 227

feedback to questioners like human annotators do. 228

(see more detailed analysis in §6.2). This collection 229

not only supports our comparison and analysis, but 230

also complements existing datasets. 231

3.3 Annotator Agreement 232

Deciding the correctness of answers is challenging 233

for humans in some cases, especially when ques- 234

tions are relatively short and ambiguous. We mea- 235

sure annotators’ agreement and calculate the Fleiss’ 236

Kappa (Fleiss, 1971) on the agreement between 237

annotators in the validation phase. For deciding 238

one turn is unanswerable, correct, or incorrect, we 239

achieve κ = 0.598 (moderate agreement). For de- 240

ciding whether one turn is unanswerable, we have 241
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Figure 2: Model performance of human evaluation
(accuracy) and automatic evaluation with gold history
(F1). Human evaluation and Auto-Gold rank BERT
and GraphFlow differently.

κ = 0.679 (substantial agreement).242

4 Disagreements between Human and243

Gold History Evaluation244

We now compare the results from the human evalua-245

tion and the automatic evaluation with gold history.246

Note that the two sets of numbers are not directly247

comparable: (1) the human evaluation reports ac-248

curacy, while the automatic evaluation reports F1249

scores; (2) the absolute numbers of human eval-250

uation are much higher than those of automatic251

evaluations. In automatic evaluations, the gold an-252

swers cannot capture all possible correct answers253

to open-ended questions or questions with multiple254

answers. However, the annotators can evaluate the255

correctness of answers easily in human evaluations.256

Nevertheless, we can compare the rankings and the257

relative gaps between models.258

Figure 2 shows different trends between human259

evaluation and Auto-Gold. Current standard evalu-260

ation cannot reflect model performance in human-261

machine conversations: (1) Human evaluation and262

Auto-Gold rank BERT and GraphFlow differently;263

(2) The gap between HAM and ExCorD is signifi-264

cant in Auto-Gold but the two models perform on265

par in human evaluation.266

5 Strategies for Automatic Evaluation267

The inconsistency between human evaluation and268

gold-history evaluation suggests that we need bet-269

ter ways to evaluate and develop our CQA models.270

When placed in realistic settings, the models never271

have access to the ground truth (gold answers) and272

are only exposed to the conversational history and273

Unresolved coreference (44.0%)

Q∗1: What was Frenzal Rhomb’s first song?
A∗1: Punch in the Face.
A1: CANNOT ANSWER.

Q∗2: How did it fare?

Incoherence (39.1%)

Q∗1: Did Billy Graham succeed in becoming a chaplain?
A∗1: He contracted mumps shortly after...
A1: After a period of recuperation in Florida, he ...

Q∗2: Did he retire after his mumps diagnosis?

Correct answer changed (16.9%)

Q∗1: Are there any other interesting aspects?
A∗1: ... Steve Di Giorgio returned to the band...
A1: ... bassist Greg Christian had left Testament again...

Q∗2: What happened following this change in crew?

Figure 3: Examples of invalid questions with predicted
history. Some are shortened for better demonstration.
Q∗

i , A
∗
i : questions and gold answers from the collected

dataset, Ai: model predictions.

the passage. Intuitively, we can simply replace 274

gold answers by the predicted answers of models 275

and we name this as predicted-history evaluation 276

(Auto-Pred). Formally, the model makes predic- 277

tions based on the questions and their own answers: 278

279
Ai ∼M(P,Q∗1, A1, ..., Q

∗
i−1, Ai−1, Q

∗
i ). 280

This evaluation has been suggested by several re- 281

cent works (Mandya et al., 2020; Siblini et al., 282

2021) which reported a significant performance 283

drop using predicted history. We observe the same 284

performance degradation, shown in Table 1. 285

However, another issue naturally arises with pre- 286

dicted history: Q∗i s were written by the dataset an- 287

notators based on (Q∗1, A
∗
1, ..., Q

∗
i−1, A

∗
i−1) which 288

may become unnatural or invalid if we change the 289

history to (Q∗1, A1, ..., Q
∗
i−1, Ai−1). We investigate 290

this issue in depth next. 291

5.1 Predicted History Invalidates Questions 292

We examined 100 QuAC conversations with the 293

best-performing model (ExCorD) and identified 294

three categories of invalid questions caused by pre- 295

dicted history. We find that 23% of the questions 296

become invalid after using the predicted history. 297

We summarize the types of invalid questions as 298

follows (see Figure 3 for examples): 299

• Unresolved coreference (44.0%). The question 300

becomes invalid for containing either a pronoun 301
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What was the band’s first success 
album at the international level?

Became the band’s last American hit.

What songs were in it Coreference
resolution 

Gold answer:   “Parade”  from 1984.

They achieved  platinum status .

Coreference results using
predicted and gold history
do not match.

What songs were in “Parade” Rewritten by gold history
coreference results.

First single “Only When You Leave” .

Gold answer:  “Only When You Leave” .

How did  it  do on the charts? Coreference
resolution 

Coreference results match.
No rewriting needed.

Figure 4: An example of question rewriting. We
rewrite the second question with referent in the gold his-
tory, because predicted and gold history have different
coreference results. We do not rewrite the third ques-
tion as coreference results are the same.

or a definite noun phrase that refers to an entity302

unresolvable without the gold history.303

• Incoherence (39.1%). The question is incoher-304

ent with the conversation flow (e.g., mentioning305

an entity non-existent in predictions). While hu-306

mans may still answer the question using the307

passage, this leads to an unnatural conversation308

and a train-test discrepancy for models.309

• Correct answer changed (16.9%). The an-310

swer to this question with the predicted history311

changes from when it is based on the gold history.312

We further analyze the reasons for the biggest313

“unresolved coreference” category and find that the314

model either gives an incorrect answer to the previ-315

ous question (“incorrect prediction”, 17.5%), or the316

model predicts a different (yet correct) answer to317

an open question (“open question”, 16.3%), or the318

model returns CANNOT ANSWER incorrectly (“no319

prediction”, 4.2%), or the gold answer is longer320

than prediction and the next question depends on321

the extra part (“extra gold information”, 6.0%).322

Invalid questions result in compounding errors323

as the model is not able to parse them correctly,324

which may further affect how the model interprets325

the next questions. Since “unresolved coreference”326

accounts for most of invalid questions, we aim to327

address them with a better automatic evaluation.328

5.2 Evaluation with Question Rewriting329

Among all the invalid question categories, “unre-330

solved coreference” questions are the most criti-331

cal ones. They lead to incorrect interpretations332

of questions and hence wrong answers. We pro- 333

pose to improve our evaluation by incorporating 334

a state-of-the-art coreference resolution system to 335

automatically detect invalid questions categorized 336

as "unresolved coreference". More specifically, we 337

use the coreference model from Lee et al. (2018) 338

in AllenNLP (Gardner et al., 2018). We make 339

the assumption that if the coreference model re- 340

solves mentions in Q∗i differently using gold his- 341

tory (Q∗1, A
∗
1, ..., A

∗
i−1, Q

∗
i ) and predicted history 342

(Q∗1, A1, ..., Ai−1, Q
∗
i ), thenQ∗i is identified as hav- 343

ing an unresolved coreference issue. 344

Detecting invalid questions. The inputs to the 345

coreference model for Q∗i are the following: 346

S∗i = [BG;Q∗i−k;A
∗
i−k;Q

∗
i−k+1;A

∗
i−k+1; ...;Q

∗
i ]

Si = [BG;Q∗i−k;Ai−k;Q
∗
i−k+1;Ai−k+1; ...;Q

∗
i ],

347

where BG is the background 4, S∗i and Si denote 348

the inputs for gold and predicted history. We are 349

only interested in the entities mentioned in the cur- 350

rent question Q∗t and we filter out named entities 351

(e.g., the National Football League) because they 352

can be understood without coreference resolution. 353

After the coreference model returns entity cluster 354

information given S∗i and Si, we extract a list of en- 355

tities E∗ = {e∗1, ..., e∗|E∗|} and E = {e1, ..., e|E|}. 356

We say Q∗i is valid only if E∗ = E, that is, 357

|E∗| = |E| and e∗j = ej ,∀ej ∈ E, 358

assuming e∗j and ej has a shared mention in Q∗i . 359

We determine whether e∗j = ej by checking if 360

F1(s∗j,1, sj,1) > 0, where s∗j,1 is the first mention of 361

e∗j and sj,1 is the first mention of ej , and F1 is the 362

word-level F1 score, i.e. e∗j = ej as long as their 363

first mentions have word overlap. 364

Question rewriting through entity substitution. 365

Our first strategy is to substitute the entity names 366

in Q∗i with entities in E∗, if Q∗i is invalid. The 367

rewritten question, instead of the original one, will 368

be used in the conversation history and fed into 369

the model. We denote this evaluation method 370

as rewritten-question evaluation (Auto-Rewrite), 371

and Figure 4 illustrates a concrete example. Our 372

algorithm rewrites ∼12% of the questions for all 373

of the models. An analysis of rewritten questions’ 374

quality is provided in Appendix B. 375

4QuAC provides a short background for each passage,
which is the first paragraph of the article the passage is from.
It is empirically helpful for associating different spans in the
conversation to the same entity mention.
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Overall Performance Answerable Q. Performance

BERT GraphFlow HAM ExCorD BERT GraphFlow HAM ExCorD

Auto-Gold (F1) 63.2 64.9 65.4 67.7 61.8 66.6 64.5 66.4
Auto-Pred (F1) 54.6 49.6 57.2 61.2 52.7 54.5 54.6 59.2
Auto-Rewrite (F1) 54.5 48.2 57.3 61.9 51.2 51.9 55.1 59.7
Auto-Replace (F1) 54.2 47.8 57.1 61.7 50.7 51.7 54.8 59.7

Human (Accuracy) 82.6 81.0 87.8 87.9 75.9 83.2 84.8 85.3

Table 1: Model performance in automatic and human evaluations. We report overall performance on all questions
and also performance on answerable questions only.

Question replacement using CANARD. Alterna-376

tive to automatically rewriting questions, we also377

tried replacing the invalid questions with its human-378

written context-independent counterpart from CA-379

NARD (Elgohary et al., 2019), which we denote380

as replaced-question evaluation (Auto-Replace).381

Since collecting context-independent questions is382

expensive, Auto-Replace is limited to evaluating383

models trained with QuAC, thus we do not treat384

this as a generic method for CQA evaluation.385

6 Automatic vs Human Evaluation386

In this section, we compare human evaluation re-387

sults with all the automatic evaluations we have388

introduced: gold-history evaluation (Auto-Gold),389

predicted-history evaluation (Auto-Pred), and our390

proposed Auto-Rewrite and Auto-Replace. We first391

explain how we compare different evaluation re-392

sults and then discuss the findings.393

6.1 Agreement Metrics394

Model performance and rankings. We first con-395

sider using model performance reported by differ-396

ent evaluation methods. Considering numbers of397

automatic and human evaluations are not directly398

comparable, we also calculate models’ rankings399

and compare whether the rankings are consistent400

between automatic and human evaluations. Model401

performance is reported in Table 1. In human eval-402

uation, GraphFlow < BERT < HAM ≈ ExCorD;403

in Auto-Gold, BERT < GraphFlow < HAM < Ex-404

CorD; in other automatic evaluations, GraphFlow405

< BERT < HAM < ExCorD.406

Unanswerable statistics. Percentage of unanswer-407

able questions is an important attribute for conver-408

sations. Automatic evaluations using static datasets409

have a fixed number of unanswerable questions,410

while in human evaluation, the amount of unan-411

Human Evaluation QuAC
BERT GraphFlow HAM ExCorD

34.6 20.6 34.1 33.2 20.2

Table 2: Percentage of unanswerable questions (%) in
each model’s human evaluation and the original QuAC
dataset (used for all automatic evaluations).

30 40 50 60 70
Agreement (%)

B/E

H/B

H/E

G/B

G/E

G/H

M
od

el
 P

ai
rs Gold History

Pred History
Rewritten Q
Replaced Q

Figure 5: Pairwise agreement of different model pairs
comparing automatic evaluations to human evaluation.
B: BERT; G: GraphFlow; H: HAM; E: ExCorD.

swerable questions asked by human annotators 412

varies with different models. The statistics of unan- 413

swerable questions is shown in Table 2. 414

Pairwise agreement. For a more fine-grained eval- 415

uation, we perform a passage-level comparison for 416

every pair of models. More specifically, for ev- 417

ery single passage we use one automatic metric 418

to decide whether model A outperforms model B 419

(or vice versa) and examine the percentage of pas- 420

sages that the automatic metric agrees with human 421

evaluation. For example, if the pairwise agreement 422

of BERT/ExCorD between human evaluation and 423

Auto-Gold is 52%, it means that Auto-Gold and hu- 424

man evaluation agree on 52% passages in terms of 425

6



Predicted Unans. Q. Precision Recall

B G H E B G H E B G H E

Auto-Gold 27.1 21.5 27.1 28.3 56.8 62.3 57.1 57.9 68.1 59.3 68.4 72.5
Auto-Pred 27.8 13.8 28.6 28.9 50.0 53.9 52.3 53.3 61.4 33.0 66.1 68.2
Auto-Rewrite 27.3 13.1 25.1 26.0 48.6 55.0 52.4 53.9 65.7 35.7 65.1 69.4
Auto-Replace 27.5 12.9 25.2 25.7 48.6 54.2 52.1 53.8 66.1 34.7 64.9 68.4

Human 42.3 14.7 37.2 36.0 75.0 93.0 86.8 87.4 95.2 72.5 93.7 93.3

Table 3: The percentage of models’ predicted unanswerable questions, and the precision and recall for detecting
unanswerable questions in different evaluations. B: BERT; G: GraphFlow; H: HAM; E: ExCorD.

which model is better. Higher agreement means the426

automatic evaluation is closer to human evaluation.427

Figure 5 shows the results of pairwise agreement.428

6.2 Key Findings429

Automatic evaluations have a significant distri-430

bution shift from human evaluation. We draw431

this conclusion from the three following points.432

• Human evaluation shows a much higher model433

performance than all automatic evaluations, as434

shown in Table 1. Two reasons caused this huge435

discrepancy: (a) Many CQA questions have mul-436

tiple possible answers, and it’s hard for the static437

dataset in automatic evaluations to capture all the438

answers. It is not an issue in human evaluation for439

all answers are judged by human evaluators. (b)440

There are more unanswerable questions and open441

questions in human evaluation (reason discussed442

in the next paragraph), which are relatively easy.443

• Human evaluation has a much higher unanswer-444

able question rate, as shown in Table 2. The445

reason is that in human-human data collection,446

the answers are usually correct and the question-447

ers can ask followup questions upon the high-448

quality conversation; in human-machine interac-449

tions, since the models can make mistakes, the450

conversation flow is less fluent and it is harder451

to have followup questions. Thus, questioners452

chatting with models tend to ask more open or453

unanswerable questions. This also suggests that454

current CQA models are far from perfection.455

• All automatic evaluation methods have a pairwise456

agreement lower than 70% with human evalua-457

tion, as demonstrated in Figure 2.458

Auto-Rewrite is closer to human evaluation.459

First, we can clearly see that among all automatic460

evaluations, Auto-Gold deviates the most from the461

human evaluation. From Table 1, only Auto-Gold 462

shows different rankings from human evaluation, 463

while Auto-Pred, Auto-Rewrite, and Auto-Replace 464

show consistent rankings to human judgments. 465

In Figure 2, we see that Auto-Gold has the lowest 466

agreement with human evaluation; among others, 467

Auto-Rewrite better agrees with human evaluation 468

for most model pairs. Surprisingly, Auto-Rewrite is 469

even better than Auto-Replace – which uses human 470

annotated context independent questions – in most 471

cases. It shows that our rewriting policy can better 472

reflect the real-world CQA performance. 473

7 Towards Better Conversational QA 474

With insights drawn from human evaluation and 475

comparison with automatic evaluations, we discuss 476

the impact of different modeling strategies, as well 477

as future directions towards better CQA systems. 478

Modeling question dependencies on conversa- 479

tional context. When we focus on answerable 480

questions (Table 1), we notice that GraphFlow, 481

HAM and ExCorD perform much better than 482

BERT. We compare the modeling differences of 483

the four systems in Figure 6, and identify that all 484

the three better systems explicitly model the ques- 485

tion dependencies on the conversation history and 486

the passage: both GraphFlow and HAM highlight 487

repeated mentions in questions and conversation 488

history by special embeddings (turn marker and 489

PosHAE) and use attention mechanism to select 490

the most relevant part from the context; ExCorD 491

adopts a question rewriting module that generates 492

context-independent questions given the history 493

and passage. All those designs help models better 494

understand the question in a conversational context. 495

Unanswerable question detection. Table 3 496

demonstrates models’ performance in detecting 497

unanswerable questions. We notice that Graph- 498

Flow predicts much fewer unanswerable questions 499
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Figure 6: Modeling structures of BERT, GraphFlow, HAM, and ExCorD.

than the other three models, and has a high pre-500

cision and a low recall in unanswerable detection.501

This is because GraphFlow uses a separate network502

for predicting unanswerable questions, which is503

harder to calibrate, while the other models jointly504

predict unanswerable questions and answer spans.505

This behavior has two effects: (a) GraphFlow’s506

overall performance is dragged down by its poor507

unanswerable detection result (Table 1). (b) In508

human evaluation, annotators ask fewer unanswer-509

able questions with GraphFlow (Table 2) – when510

the model outputs more, regardless of correctness,511

the human questioner has a higher chance to ask512

passage-related followup questions. Both suggest513

that how well the model detects unanswerable ques-514

tions significantly affects its performance and the515

flow in human-machine conversations.516

Optimizing towards the new testing protocols.517

Most existing works on CQA modeling focus on518

optimizing towards Auto-Gold evaluation. Since519

Auto-Gold has a large gap from the real world520

evaluation, more efforts are needed in optimizing521

towards the human evaluation, or Auto-Rewrite,522

which better reflects human evaluation. One po-523

tential direction is to improve models’ robustness524

given noisy conversation history, which simulates525

the inaccurate history in real conversations that526

consists of models’ own predictions. In fact, prior527

works (Mandya et al., 2020; Siblini et al., 2021)528

that used predicted history in training showed that it529

benefits the models in predicted-history evaluation.530

8 Related Work531

Conversational question answering. In recent532

years, several conversational question answering533

datasets have emerged, such as QuAC (Choi534

et al., 2018), CoQA (Reddy et al., 2019), and535

DoQA (Campos et al., 2020). Different from single-536

turn QA datasets (Rajpurkar et al., 2016), CQA537

requires the model to understand the question in 538

the context of conversational history. There have 539

been many methods proposed to improve CQA per- 540

formance (Ohsugi et al., 2019; Chen et al., 2020; 541

Qu et al., 2019; Kim et al., 2021) and significant 542

improvement has been made on CQA benchmarks. 543

Besides text-based CQA tasks, there also exist 544

CQA benchmarks that require other forms of mod- 545

eling ability, such as combining textual evidence 546

with background knowledge (Saeidi et al., 2018), 547

utilizing structured knowledge base (Saha et al., 548

2018; Guo et al., 2018), as well as CQA in other 549

modalities (Das et al., 2017). 550

Evaluation with predicted history. Only recently 551

has it been noticed that the current method of evalu- 552

ating CQA models is flawed. Mandya et al. (2020); 553

Siblini et al. (2021) point out that using gold an- 554

swers in history is not consistent with the real- 555

world scenario and propose to use predicted history 556

for evaluation. Different from prior work, in this 557

paper, we conduct a large scale human evaluation 558

to support our claims, identify the issues with pre- 559

dicted history, and propose rewriting questions to 560

further mitigate the gap to human evaluation. 561

9 Conclusion 562

In this work, we carry out the first large-scale hu- 563

man evaluation on CQA systems. We show that 564

current standard automatic evaluation with gold 565

history cannot reflect models’ performance in hu- 566

man evaluation, and that human-machine conver- 567

sations have a large distribution shift from static 568

CQA datasets of human-human conversations. To 569

tackle these problems, we propose to use predicted 570

history with rewriting invalid questions for evalu- 571

ation, which reduces the gap between automatic 572

evaluations and the real-world human evaluation. 573

We also use the human evaluation results to ana- 574

lyze current CQA systems and identify promising 575

directions for future development. 576

8



References577

Jon Ander Campos, Arantxa Otegi, Aitor Soroa, Jan578
Deriu, Mark Cieliebak, and Eneko Agirre. 2020.579
DoQA - accessing domain-specific FAQs via con-580
versational QA. In Association for Computational581
Linguistics (ACL), pages 7302–7314.582

Yu Chen, Lingfei Wu, and Mohammed J Zaki. 2020.583
Graphflow: Exploiting conversation flow with graph584
neural networks for conversational machine compre-585
hension. In International Joint Conference on Artifi-586
cial Intelligence (IJCAI).587

Eunsol Choi, He He, Mohit Iyyer, Mark Yatskar, Wen-588
tau Yih, Yejin Choi, Percy Liang, and Luke Zettle-589
moyer. 2018. QuAC: Question answering in context.590
In Empirical Methods in Natural Language Process-591
ing (EMNLP), pages 2174–2184.592

Abhishek Das, Satwik Kottur, Khushi Gupta, Avi593
Singh, Deshraj Yadav, José M. F. Moura, Devi594
Parikh, and Dhruv Batra. 2017. Visual dialog. In595
IEEE/CVF Conference on Computer Vision and Pat-596
tern Recognition (CVPR), pages 1080–1089.597

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and598
Kristina Toutanova. 2019. BERT: Pre-training of599
deep bidirectional transformers for language under-600
standing. In North American Chapter of the As-601
sociation for Computational Linguistics: Human602
Language Technologies (NAACL-HLT), pages 4171–603
4186.604

Ahmed Elgohary, Denis Peskov, and Jordan Boyd-605
Graber. 2019. Can you unpack that? learning to606
rewrite questions-in-context. In Empirical Methods607
in Natural Language Processing and International608
Joint Conference on Natural Language Processing609
(EMNLP-IJCNLP), pages 5918–5924.610

Joseph L Fleiss. 1971. Measuring nominal scale agree-611
ment among many raters. Psychological bulletin,612
76(5):378.613

Matt Gardner, Joel Grus, Mark Neumann, Oyvind614
Tafjord, Pradeep Dasigi, Nelson F. Liu, Matthew Pe-615
ters, Michael Schmitz, and Luke Zettlemoyer. 2018.616
AllenNLP: A deep semantic natural language pro-617
cessing platform. In Proceedings of Workshop for618
NLP Open Source Software (NLP-OSS), pages 1–6.619

Daya Guo, Duyu Tang, Nan Duan, Ming Zhou, and620
Jian Yin. 2018. Dialog-to-action: Conversational621
question answering over a large-scale knowledge622
base. In Advances in Neural Information Process-623
ing Systems (NeurIPS), pages 2942–2951.624

Gangwoo Kim, Hyunjae Kim, Jungsoo Park, and Jae-625
woo Kang. 2021. Learn to resolve conversational626
dependency: A consistency training framework for627
conversational question answering. In Association628
for Computational Linguistics (ACL), pages 6130–629
6141.630

Kenton Lee, Luheng He, and Luke Zettlemoyer. 2018. 631
Higher-order coreference resolution with coarse-to- 632
fine inference. In North American Chapter of the 633
Association for Computational Linguistics: Human 634
Language Technologies (NAACL-HLT), pages 687– 635
692. 636

Angrosh Mandya, James O’ Neill, Danushka Bolle- 637
gala, and Frans Coenen. 2020. Do not let the his- 638
tory haunt you: Mitigating compounding errors in 639
conversational question answering. In International 640
Conference on Language Resources and Evaluation 641
(LREC), pages 2017–2025. 642

Alexander Miller, Will Feng, Dhruv Batra, Antoine 643
Bordes, Adam Fisch, Jiasen Lu, Devi Parikh, and 644
Jason Weston. 2017. ParlAI: A dialog research soft- 645
ware platform. In Empirical Methods in Natural 646
Language Processing (EMNLP): System Demonstra- 647
tions, pages 79–84. 648

Yasuhito Ohsugi, Itsumi Saito, Kyosuke Nishida, 649
Hisako Asano, and Junji Tomita. 2019. A simple 650
but effective method to incorporate multi-turn con- 651
text with BERT for conversational machine compre- 652
hension. In Proceedings of the First Workshop on 653
NLP for Conversational AI, pages 11–17. 654

Chen Qu, Liu Yang, Minghui Qiu, Yongfeng Zhang, 655
Cen Chen, W Bruce Croft, and Mohit Iyyer. 2019. 656
Attentive history selection for conversational ques- 657
tion answering. In ACM International Confer- 658
ence on Information and Knowledge Management 659
(CIKM), pages 1391–1400. 660

Pranav Rajpurkar, Jian Zhang, Konstantin Lopyrev, and 661
Percy Liang. 2016. SQuAD: 100,000+ questions 662
for machine comprehension of text. In Empirical 663
Methods in Natural Language Processing (EMNLP), 664
pages 2383–2392. 665

Siva Reddy, Danqi Chen, and Christopher D. Manning. 666
2019. CoQA: A conversational question answering 667
challenge. Transactions of the Association of Com- 668
putational Linguistics (TACL), pages 249–266. 669

Marzieh Saeidi, Max Bartolo, Patrick Lewis, Sameer 670
Singh, Tim Rocktäschel, Mike Sheldon, Guillaume 671
Bouchard, and Sebastian Riedel. 2018. Interpreta- 672
tion of natural language rules in conversational ma- 673
chine reading. In Empirical Methods in Natural Lan- 674
guage Processing (EMNLP), pages 2087–2097. 675

Amrita Saha, Vardaan Pahuja, Mitesh M. Khapra, 676
Karthik Sankaranarayanan, and Sarath Chandar. 677
2018. Complex sequential question answering: To- 678
wards learning to converse over linked question an- 679
swer pairs with a knowledge graph. arXiv preprint 680
arXiv:1801.10314. 681

Wissam Siblini, Baris Sayil, and Yacine Kessaci. 682
2021. Towards a more robust evaluation for con- 683
versational question answering. In Association for 684
Computational Linguistics and International Joint 685
Conference on Natural Language Processing (ACL- 686
IJCNLP), pages 1028–1034. 687

9

https://doi.org/10.18653/v1/2020.acl-main.652
https://doi.org/10.18653/v1/2020.acl-main.652
https://doi.org/10.18653/v1/2020.acl-main.652
https://arxiv.org/pdf/1908.00059.pdf
https://arxiv.org/pdf/1908.00059.pdf
https://arxiv.org/pdf/1908.00059.pdf
https://arxiv.org/pdf/1908.00059.pdf
https://arxiv.org/pdf/1908.00059.pdf
https://doi.org/10.18653/v1/D18-1241
https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=8099604&tag=1
https://doi.org/10.18653/v1/N19-1423
https://doi.org/10.18653/v1/N19-1423
https://doi.org/10.18653/v1/N19-1423
https://doi.org/10.18653/v1/N19-1423
https://doi.org/10.18653/v1/N19-1423
https://doi.org/10.18653/v1/D19-1605
https://doi.org/10.18653/v1/D19-1605
https://doi.org/10.18653/v1/D19-1605
http://www.wpic.pitt.edu/research/biometrics/Publications/Biometrics%20Archives%20PDF/395-1971%20Fleiss0001.pdf
http://www.wpic.pitt.edu/research/biometrics/Publications/Biometrics%20Archives%20PDF/395-1971%20Fleiss0001.pdf
http://www.wpic.pitt.edu/research/biometrics/Publications/Biometrics%20Archives%20PDF/395-1971%20Fleiss0001.pdf
https://doi.org/10.18653/v1/W18-2501
https://doi.org/10.18653/v1/W18-2501
https://doi.org/10.18653/v1/W18-2501
https://proceedings.neurips.cc/paper/2018/file/d63fbf8c3173730f82b150c5ef38b8ff-Paper.pdf
https://proceedings.neurips.cc/paper/2018/file/d63fbf8c3173730f82b150c5ef38b8ff-Paper.pdf
https://proceedings.neurips.cc/paper/2018/file/d63fbf8c3173730f82b150c5ef38b8ff-Paper.pdf
https://proceedings.neurips.cc/paper/2018/file/d63fbf8c3173730f82b150c5ef38b8ff-Paper.pdf
https://proceedings.neurips.cc/paper/2018/file/d63fbf8c3173730f82b150c5ef38b8ff-Paper.pdf
https://aclanthology.org/2021.acl-long.478.pdf
https://aclanthology.org/2021.acl-long.478.pdf
https://aclanthology.org/2021.acl-long.478.pdf
https://aclanthology.org/2021.acl-long.478.pdf
https://aclanthology.org/2021.acl-long.478.pdf
https://aclanthology.org/N18-2108.pdf
https://aclanthology.org/N18-2108.pdf
https://aclanthology.org/N18-2108.pdf
https://aclanthology.org/2020.lrec-1.248
https://aclanthology.org/2020.lrec-1.248
https://aclanthology.org/2020.lrec-1.248
https://aclanthology.org/2020.lrec-1.248
https://aclanthology.org/2020.lrec-1.248
https://doi.org/10.18653/v1/D17-2014
https://doi.org/10.18653/v1/D17-2014
https://doi.org/10.18653/v1/D17-2014
https://doi.org/10.18653/v1/W19-4102
https://doi.org/10.18653/v1/W19-4102
https://doi.org/10.18653/v1/W19-4102
https://doi.org/10.18653/v1/W19-4102
https://doi.org/10.18653/v1/W19-4102
https://doi.org/10.18653/v1/W19-4102
https://doi.org/10.18653/v1/W19-4102
https://arxiv.org/pdf/1908.09456.pdf
https://arxiv.org/pdf/1908.09456.pdf
https://arxiv.org/pdf/1908.09456.pdf
https://doi.org/10.18653/v1/D16-1264
https://doi.org/10.18653/v1/D16-1264
https://doi.org/10.18653/v1/D16-1264
https://doi.org/10.1162/tacl_a_00266
https://doi.org/10.1162/tacl_a_00266
https://doi.org/10.1162/tacl_a_00266
https://aclanthology.org/D18-1233.pdf
https://aclanthology.org/D18-1233.pdf
https://aclanthology.org/D18-1233.pdf
https://aclanthology.org/D18-1233.pdf
https://aclanthology.org/D18-1233.pdf
https://arxiv.org/pdf/1801.10314.pdf
https://arxiv.org/pdf/1801.10314.pdf
https://arxiv.org/pdf/1801.10314.pdf
https://arxiv.org/pdf/1801.10314.pdf
https://arxiv.org/pdf/1801.10314.pdf
https://doi.org/10.18653/v1/2021.acl-short.130
https://doi.org/10.18653/v1/2021.acl-short.130
https://doi.org/10.18653/v1/2021.acl-short.130


A Human Evaluation Statistics688

Table 4 shows the human evaluation statistics, in-689

cluding numbers of conversations and questions690

regarding each model.691

BERT GraphFlow HAM ExCorD QuAC
Dev

#Conv 357 359 373 357 1,000
#Q 3,755 3,666 3,959 3,679 7,354

Table 4: Numbers of conversations and questions col-
lected in human evaluation, using 100 QuAC develop-
ment set passages. We also put the statistics for QuAC
development set for reference.

B Quality of Rewriting Questions692

To analyze how well Auto-Rewrite does in detect-693

ing and rewriting questions, we manually check694

100 conversations of ExCorD from the QuAC de-695

velopment set. We find that Auto-Rewrite can de-696

tect invalid questions with a precision of 72% and697

a recall of 72%. We notice that the coreference698

model sometimes detects the pronoun of the main699

character in the passage, which almost shows up700

in every question, as insolvable. This issue causes701

the low precision but is not a serious problem in702

our case – whether rewriting the pronoun of the703

main character does not affect models’ prediction704

much, because the model always sees the passage705

and knows who the main character is.706

Among all correctly detected invalid questions,707

we further check the quality of rewriting, and in708

68% of the times Auto-Rewrite gives a correct709

context-independent questions. The most common710

error is being ungrammatical: For example, using711

the gold history of "... Dee Dee claimed that Spec-712

tor once pulled a gun on him", the original question713

"Did they arrest him for doing this?" was rewritten714

to "Did they arrest Phillip Harvey Spector for doing715

pulled?" While this creates a distribution shift on716

question formats, it is still better than putting an717

invalid question in the flow.718

C Importance of Explicit Dependency719

Modeling.720

Figure 7 gives an example where GraphFlow, HAM721

and ExCorD correctly resolve the question phrase722

from long conversation history while BERT failed.723

This is caused by BERT’s lack of explicit question724

dependency modeling.725

Tom McCall – Vortex I
... McCall decided to hold a rock festival at Milo McIver
State Park, Oregon called “Vortex I: A Biodegradable
Festival of Life”...

Q∗1: Was Vortex I popular?
B: The festival, “The Governor’s Pot Party” ... X
G/H/E: The festival, “The Governor’s Pot Party” ... X
...
Q4: Who played at the festival?
B: CANNOT ANSWER 7

G/H/E: Gold, The Portland Zoo, Osceola, Fox... X

Figure 7: An example of BERT failing to resolve the
festival in Q∗

4, while all other models with explicit de-
pendency modelings succeeded.
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