
Expert Systems with Applications 36 (2009) 12113–12119
Contents lists available at ScienceDirect

Expert Systems with Applications

journal homepage: www.elsevier .com/locate /eswa
Effective solution for unhandled exception in decision tree induction algorithms

S. Appavu alias Balamurugan *, Ramasamy Rajaram
Department of Computer Science and Information Technology, Thiagarajar College of Engineering, Thiruparamkundram, Madurai, India

a r t i c l e i n f o
Keywords:
Data mining
Classification
Decision tree
Majority voting
Influence factor
Pruning
0957-4174/$ - see front matter � 2009 Published by
doi:10.1016/j.eswa.2009.03.072

* Corresponding author.
E-mail addresses: sbit@tce.edu (S. Appavu alias Bala

(R. Rajaram).
a b s t r a c t

This paper deals with some improvements to rule induction algorithms in order to resolve the tie that
appear in special cases during the rule generation procedure for specific training data sets. These
improvements are demonstrated by experimental results on various data sets. The tie occurs in decision
tree induction algorithm when the class prediction at a leaf node cannot be determined by majority vot-
ing. When there is a conflict in the leaf node, we need to find the source and the solution to the problem.
In this paper, we propose to calculate the Influence factor for each attribute and an update procedure to
the decision tree has been suggested to deal with the problem and provide subsequent rectification steps.

� 2009 Published by Elsevier Ltd.
1. Introduction

Decision tree is an important classification tool and various
improvements such as ID3 (Quinlan, 1986), ID4 (Utgoff, 1989),
ID5 (Utgoff, 1988), ITI (Utgoff, 1994), C4.5 (Quinlan, 1993) and
CART (Breiman, Friedman, Olsen, & Stone, 1984), over the original
decision tree algorithm have been proposed. All of them deal with
the concept of incrementally building a decision tree in real time.
In decision tree learning, a decision tree is induced from a set of la-
belled training instances represented by a tuple of attribute values
and a class label. Because of the vast search space, decision tree
learning is typically a greedy, top-down recursive process starting
with the entire training data and an empty tree. An attribute that
best partitions the training data is chosen as the splitting attribute
for the root, and the training data are then partitioned into disjoint
subsets satisfying the values of the splitting attribute. For each
subset, the algorithm proceeds recursively until all instances in a
subset belong to the same class. However, prior decision tree algo-
rithms do not handle the exception such as, ‘‘when two or more
classes have equal probabilities in a tree leaf”. This paper investi-
gates exception handling in decision tree construction. We exam-
ine one type of exception such as ‘‘how to produce classifications
from a leaf node which contains ties”; in such a leaf, each class is
represented equally, preventing the tree from using ‘‘majority vot-
ing” to output a classification prediction. We propose new tech-
niques for handling this exception and used real-world data sets
to show that this technique improve classification accuracy. One
of the problem identified in decision tree learning is that there is
a 20% of chance of occurrence of a conflict in a leaf node when ap-
plied to real-world data sets. On analysis it has been found that
Elsevier Ltd.

murugan), rrajaram@tce.edu
when the Influence factor values are calculated, they are equal in
the problem causing node and other nodes in the tree. In the pro-
cess of finding the source of problem, we propagate backwards in
the decision tree until we reach a level wherein the Influence factor
values are different and unique. An update procedure to the deci-
sion tree has been suggested in this paper to deal with the prob-
lem. The paper is organized as follows: Section 2 defines related
works in this area. Section 3 portrays the problem handled in this
paper. Section 4 explains our proposed algorithm. Section 5 illus-
trates our proposed update procedure with an example. Section 6
gives a note of comparison between the traditional classification
algorithms and the proposed method, highlighting its advantages.
Finally, Section 7 summarizes the proposed algorithm and con-
cludes the paper.
2. Related work

Decision tree learning is one of the most widely used and prac-
tical methods for inductive learning. The ID3 algorithm (Quinlan,
1986) is a useful concept-learning algorithm because it can effi-
ciently construct a decision tree that is well generalized. For non-
incremental learning tasks, this algorithm is often an ideal choice
for building a classification rule. However, for incremental learning
tasks, it would be far preferable to accept instances incrementally,
without the necessity to build a new decision tree each time. There
exist several techniques to construct incremental decision tree
based models. Some of the earlier efforts include ID4 (Utgoff,
1989), ID5 (Utgoff, 1988), ID5R (Utgoff, 1989), and ITI (Utgoff,
1994). All these systems work using the ID3 style ‘‘information
gain” measure to select the attributes. They are all designed to
incrementally build a decision tree using one training instance at
a time by keeping the necessary statistics (measure for information
gain) at each decision node.

mailto:sbit@tce.edu
mailto:rrajaram@tce.edu
http://www.sciencedirect.com/science/journal/09574174
http://www.elsevier.com/locate/eswa


12114 S. Appavu alias Balamurugan, R. Rajaram / Expert Systems with Applications 36 (2009) 12113–12119
The ID4 algorithm (Utgoff, 1989) builds decision trees incre-
mentally. Many learning tasks are incremental as new instances
or details become available over time. The ID4 algorithm (Utgoff,
1989) works by building a tree and updating it as new instances
become available. The ID3 algorithm can be used to learn incre-
mentally by adding each new instance to the training set as it be-
comes available and by re-running ID3 against the enlarged
training set. This is however computationally inefficient. The ID5
(Utgoff, 1988) and ID5R (Utgoff, 1989) are both incremental deci-
sion tree builders that overcome the deficiencies of ID4. The essen-
tial difference is that when tree restructuring is required, instead of
discarding a sub tree due to its high entropy, the attribute that is to
be placed at the node is pulled up to the node and the tree struc-
ture below the node is retained. In the case of ID5 (Utgoff, 1988)
the sub trees are not recursively updated while in ID5R (Utgoff,
1989) they are updated recursively. Leaving the sub trees un-
restructured is computationally more efficient. However the
resulting sub tree is not guaranteed to be the same as the one that
would be produced by ID3 on the same training instances. The
Incremental Tree Inducer (ITI) (Utgoff, 1994) is a programme that
constructs decision tree automatically from labelled examples.
The most useful aspect of the ITI algorithm is that it provides a
mechanism for incremental tree induction. If one has already con-
structed a tree, and then obtains a new labelled example, it is pos-
sible to present it to the algorithm, and have the algorithm revise
the tree as necessary. The alternative would be to build a new tree
from the scratch, based on the augmented set of labelled examples,
which is typically much more expensive. ITI handles symbolic vari-
ables, numeric variables, and missing data values. It includes a vir-
tual pruning mechanism too.

The development of decision tree learning leads to and it
encouraged by a growing number of commercial systems such as
C5.0/See5 (RuleQuest Research), MineSet (SGI), and Intelligent
Miner (IBM). Numerous techniques have been developed to speed
up decision tree learning, such as designing a fast tree-growing
algorithm, parallelization, and data partitioning.

A number of strategies for decision tree improvements have
been proposed in the literature (Buntine, 1992; Hartmann, Varsh-
ney, Mehrotra, & Gerberich, 1982; Kohavi & Kunz, 1997; Mickens,
Szummer, Narayanan, & Snitch, 2007; Quinlan, 1987; Utgoff, 2004).
They aim at ‘‘tweaking” an already robust model despite its main
obvious limitation. A number of ensemble classifiers have been
proposed in the literature (Chipman, George, and Mcculloch,
1998; Kohavi, 1996; Wang et al., 2004; Zhou and Chen, 2002)
which appear to have little improvement on accuracy especially
when the added complexity of the method is considered.
3. Problem statements

This paper addresses research question in the context of decision
tree induction: which class to choose when, classified with respect
to an attribute, the number of records having the different class val-
ues are equal, i.e. when majority voting fails (see Figs. 1–3).

The set of attributes used to describe an instance is denoted by
A, and the individual attributes are indicated as Ai, where i between
1 and the number of attributes, m. For each attribute Ai, the set of
possible values is denoted as Vi. The individual values are indicated
by vij, where j between 1 and the number of values for attributes Ai.
The notations used to represent the features of training data are,
the attributes as Aj, where j = 1 to m, the class attribute as C the val-
ues to each of the attributes will be Vij,where i = 1. . .n and j refers to
the attribute to which it belongs. The general structure of the train-
ing data set is shown in Table 1.

After analyzing the decision tree induction algorithms, we
found that the concept of majority voting has to handle different
types of inputs. Consider the attribute Ak between A1 and Am and
C be the class attribute, the value of Ak are V1k and V2k, and the va-
lue of the class attribute be C1 and C2. Classification can be done if:

1. Both Ak and C has only one distinct values.
2. When most of the attribute value V1k, V2k. . . Vnk of particular

attribute Ak belong to same class that is called majority voting.

From Table 2, the maximum occurrence of the distinct value
and its corresponding maximum occurrence of the distinct class la-
bel value is obtained. Hence majority voting is successful.

Consider the training data set is shown in Tables 3 where
majority voting fails.

Under this condition only one rule can be generated as

If Ak ¼ V2k then C ¼ C2

In Table 3, the count of the distinct value is 2. Hence two rules
should be generated from the table but only one rule is generated
with the help of majority voting and another rule cannot be
generated

If Ak ¼ V1k then C ¼ ?

In Table 3, the value for Ak can be found by majority voting as
Ak = V1k but its corresponding class value cannot be determined be-
cause among the four records there is an equal partition of class
attribute C = C1 or C2, hence the majority voting cannot be applied
in this case. The traditional decision tree induction algorithms does
not give any specific solution to handle this problem.
4. The proposed learning algorithm

The Decision tree induction algorithms update procedure to
handle the cases when the concept of majority voting fails in the
leaf node are given in Fig. 2.
5. Implementation of the proposed algorithm

To prove the efficiency of the proposed algorithm we consider
Table 4 used in the problem definition. When the concept of major-
ity voting fails in the leaf node, an exception occurs in the decision
tree induction algorithm. At this point the proposed algorithm is
used.

5.1. Step 1

Divide the training data based on the class label. In this example
the records having the class label ‘Class: Buys_computer = Yes’ are
placed in the Table 5 and the records having the class label value
‘Class: Buys_computer = No’ are placed in the Table 6. The records
1–14 form the training data and the remaining records form the
test data.

5.2. Step 2

Find the influence factor for all the attribute values. The influ-
ence factor gives the dependability of the attribute value on the
class label. The formula for Influence factor for a particular Class
Ci is given below

Influence factor I Aj ¼ \Xl"jCi
� �

¼
N Aj ¼ \Xl"jCi
� �

NðCiÞ

where N (Aj = ‘‘X”jCi) = number of records in which attribute Aj hav-
ing the value Xl has the class label Ci.

N (Ci) = total number of records in which the class label is Ci.



Fig. 1. The attribute age has the highest information gain and therefore becomes a test attribute at the root node of the decision tree. Branches are grown for each value of
age. The samples are shown partitioned according to each branch.

S. Appavu alias Balamurugan, R. Rajaram / Expert Systems with Applications 36 (2009) 12113–12119 12115
Now the influence factor of attribute say Aj in class Ci is found by
the formula

AjCi ¼Max ðIðAj ¼ \Xl"jCiÞÞ where l varies from 1 . . . k

where
Aj = attribute that is currently considered for calculation, j varies

from 1. . .n. Here n refers to maximum number of predictive attri-
butes and k is maximum number of attribute values for the attri-
bute Aj.
5.3. Step 2a

Find the influence factor for all the attribute values of the Table 5.
AGE Attribute:

I (AGE=‘‘ >40” j Buys_Computer=‘‘Yes”) = 3/9
I (AGE=‘‘31–40” j Buys_Computer=‘‘Yes”) = 4/9
I (AGE=‘‘ <30” j Buys_Computer=‘‘Yes”) = 2/9

Ageyes=Max (I (Age=‘‘Xl” j Buys_Computer=‘‘Yes”)) where l varies
from 1. . .k

Ageyes=4/9=0.4.
The influence factor is more for the attribute value ‘31–40’.
INCOME Attribute:

I (INCOME=‘‘low” j Buys_Computer=‘‘Yes”) = 3/9
I (INCOME=‘‘medium” j Buys_Computer=‘‘Yes”) = 4/9
I (INCOME=‘‘high” j Buys_Computer=‘‘Yes”) = 2/9

Incomeyes=Max (I (Age=‘‘Xl”j Buys_Computer=‘‘Yes”)) where l
varies from 1. . .k
Incomeyes=4/9=0.4.
The influence factor is more for the attribute value ‘medium’.
STUDENT Attribute:

I (STUDENT=‘‘yes” j Buys_Computer=‘‘Yes”)=6/9
I (STUDENT=‘‘no” j Buys_Computer=‘‘Yes”)=3/9

Studentyes=Max (I (Age=‘‘Xl”j Buys_Computer=‘‘Yes”)) where l
varies from 1. . .k

Studentyes=6/9=0.6.
The influence factor is more for the attribute value’yes’.
CREDIT_RATING Attribute:

I (CREDIT_RATING=‘‘fair” j Buys_Computer=‘‘Yes”)=6/9
I (CREDIT_RATING=‘‘excellent” j Buys_Computer=‘‘Yes”)=3/9

CREDIT_RATINGyes=Max (I (Age=‘‘Xl” j Buys_Computer=‘‘Yes”))
where l varies from 1. . .k

CREDIT_RATINGyes=6/9=0.6.
The influence factor is more for the attribute value’fair’.

5.4. Step 2b

Find the influence factor for all the attribute values of the Table 6.
AGE Attribute:

I (AGE=‘‘ >40” j Buys_Computer=‘‘No”)=2/5
I (AGE=‘‘31–40” j Buys_Computer=‘‘No”)=0/5
I (AGE=‘‘ <30” j Buys_Computer=‘‘No”)=3/5

Ageyes=Max (I (Age=‘‘Xl”j Buys_Computer=‘‘Yes”)) where l varies
from 1. . .k



Fig. 2. Decision tree induction algorithm update procedure to handle the cases when the concept of majority voting fails in the leaf node.

12116 S. Appavu alias Balamurugan, R. Rajaram / Expert Systems with Applications 36 (2009) 12113–12119
Ageyes=3/5=0.6.
The influence factor is more for the attribute value’ <30’.
INCOME Attribute:

I (INCOME=‘‘low” j Buys_Computer=‘‘No”)=2/5
I (INCOME=‘‘medium” j Buys_Computer=‘‘No”)=2/5
I (INCOME=‘‘high” j Buys_Computer=‘‘No”)=1/5

Incomeyes=Max (I (Age=‘‘Xl”j Buys_Computer=‘‘Yes”)) where l
varies from 1. . .k
Incomeyes=2/5=0.4.
The influence factor is more for the attribute values ‘low’ and

‘medium’.
STUDENT Attribute:

I (STUDENT=‘‘yes” j Buys_Computer=‘‘No”)=1/5
I (STUDENT=‘‘no” j Buys_Computer=‘‘No”)=4/5

Studentyes=Max (I (Age=‘‘Xl”j Buys_Computer=‘‘Yes”)) where l
varies from 1. . .k



Fig. 3. Performance of classifiers.

Table 1
General structure of the training data set.

A1 A2 A3 A4 A5 . . . Am C1

V11 V12 V13 V14 V15 . . . V1m C2

V21 V22 V23 V24 V25 . . . V2m C3

V31 V32 V33 V34 V35 . . . V3m C4
..
. ..

. ..
. ..

. ..
. ..

. ..
. ..

.

Vn1 Vn2 Vn3 Vn4 Vn5 . . . Vnm Cn

Table 2
Input format for majority voting condition.

Ak C

V1k C2

V2k C2

V1k C2

V1k C1

If AK=V1k then C = C2.
If AK=V2k then C = C2.

Table 3
Example training data set where majority voting cannot be applied.

Ak C

V1k C1

V2k C2

V1k C1

V1k C2

V1k C2

Table 4
Training data tuples from the all electronics customer database.

RID Age Income Student Credit_rating Class: Buys_computer

1. >40 Medium No Fair Yes
2. >40 Low Yes Fair Yes
3. >40 Low Yes Excellent No
4. >40 Medium Yes Fair Yes
5. >40 Medium No Excellent No
6. 31. . .40 High No Fair Yes
7. 31. . .40 Low Yes Excellent Yes
8. 31. . .40 Medium No Excellent Yes
9. 31. . .40 High Yes Fair Yes
10. <=30 High No Excellent No
11. <=30 Medium No Fair No
12. <=30 Low No Fair No
13. <=30 Low Yes Fair Yes
14. <=30 Medium Yes Excellent Yes
15. <=30 High No Fair Yes
16. <=30 High No Fair No

Table 5
The records having the class label ‘Class: Buys_computer=Yes’.

AGE INCOME STUDENT CREDIT_RATING BUYS_COMPUTER

>40 Medium No Fair Yes
>40 Low Yes Fair Yes
>40 Medium Yes Fair Yes
31–40 High No Fair Yes
31–40 Low Yes Excellent Yes
31–40 Medium No Excellent Yes
31–40 High Yes Fair Yes
<30 Low Yes Fair Yes
<30 Medium Yes Excellent Yes

Table 6
The records having the class label ‘Class:Buys_computer=No’.

AGE INCOME STUDENT CREDIT_RATING BUYS_COMPUTER

>40 Low Yes Excellent No
>40 Medium No Excellent No
<30 High No Excellent No
<30 Medium No Fair No
<30 Low No Fair No

S. Appavu alias Balamurugan, R. Rajaram / Expert Systems with Applications 36 (2009) 12113–12119 12117
Studentyes=4/5=0.8
The influence factor is more for the attribute value ‘No’.
CREDIT_RATING Attribute:

I (CREDIT_ RATING=‘‘fair” j Buys_Computer=‘‘No”)=2/5
I (CREDIT_RATING=‘‘excellent” j Buys_Computer=‘‘No”)=3/5

CREDIT_RATINGyes=Max (I (Age=‘‘Xl”j Buys_Computer=‘‘Yes”))
where l varies from 1. . .k

CREDIT_RATINGyes=3/5=0.6.
The influence factor is more for the attribute value ‘excellent’.

5.5. Step 3

Now the Maximum Influence factor is found by the formula gi-
ven below:

Maximum influence factor i:e: MIF ðAjÞ ¼ ChkMax ðAjCiÞ

where Aj = attribute that is currently considered for calculation.
AGE Attribute:

MIF (Age)=ChkMax (AgeCi)
MIF (Age)=3/5=0.6

The numerical value of Age= < 30 for buys_computer=‘no’ is great-
er. i.e. (0.6 > 0.4) so, age= < 30 is considered and given preference.



Table 7
The resulting maximum influence factor values.

AGE INCOME STUDENT CREDIT RATING

YES 31–40 Medium yes Fair
NO <30 Low/medium no Excellent

Table 8
The final table after executing proposed method.

AGE STUDENT

YES 31–40 Yes
NO <30 No

Table 9
The datasets that possess majority voting problem in the UCI Repository.

Dataset No. of
instances

No. of
attributes

Associate
tasks

Blood transfusion 748 5 Classification
Teaching assistant evaluation 151 5 Classification
SPECT heart 267 22 Classification
Haberman’s survival 306 3 Classification
Contraceptive method choice 1473 9 Classification
Hayes Roth 160 5 Classification
Concrete 1030 9 Classification
Forest-fires 517 13 Classification
Solarflare 1 323 13 Classification
Solarflare 2 1066 13 Classification

Table 10
The datasets that possess majority voting problem in the UCI repository (after
discretization).

Dataset No. of instances No. of attributes Associate tasks

Abalone 4177 9 Classification
PIMA-diabetes 768 9 Classification
Flag 194 30 Classification
Glass 214 11 Classification
Housing 506 14 Classification
Image segmentation 210 20 Classification
Ionosphere 351 35 Classification
Iris 150 5 Classification
Liver disorder 345 7 Classification
Parkinson 195 24 Classification
Yeast 1484 10 Classification

Table 11
Performance of classifiers.

Dataset C4.5 NB

CC NCC Accuracy CC NCC

Blood transfusion 154 28 84.61 157 25
Solar Flare1 55 26 67.90 46 35
Glass 35 18 66.04 15 38
Haberman 19 14 59.57 22 11
Hayes Roth 27 13 67.50 29 11
Liver disorder 55 31 63.95 40 46
Parkinson 15 15 50.00 15 15
Teaching assistant evaluation 20 17 54.00 26 11
Mean 64.20

CC – total number of correctly classified instances.
NCC – total number of incorrectly classified instances.

12118 S. Appavu alias Balamurugan, R. Rajaram / Expert Systems with Applications 36 (2009) 12113–12119
INCOME Attribute:

MIF (Income)=ChkMax (IncomeCi)
MIF (Income)=0

The numerical value of Income=‘‘medium” for buys_com-
puter=‘yes’ is equal to Income=‘‘medium/low” for buys_com-
puter=‘yes’ (0.4 = 0.4) so, Income is not considered in the decision
tree as they cause ambiguity.

STUDENT Attribute:

MIF (Student)=ChkMax (StudentCi)
MIF (Student)=0.8

The numerical value of Student=‘‘no” for buys_computer=‘no’ is
greater. i.e. (0.8 > 0.6) so, Student=‘‘no” is considered and given
preference.

CREDIT_RATING Attribute:

MIF (Credit_rating)=ChkMax (Credit_ratingCi)
MIF (Credit_rating)=0

The numerical value of Credit_rating=‘‘fair” for buys_com-
puter=‘yes’ is equal to Credit_rating=‘‘excellent” for buys_com-
puter=‘no’ (0.6 = 0.6) so, Credit_rating is not considered in the
decision tree as they cause ambiguity (see Table 7).

The final table is given as Table 8.
Now Test Data=(Age=‘‘ <30”, Income=‘‘high”, Student=‘‘no”,

Credit_Rating=‘‘fair”). Here we compare the test data with the final
table (see Table 8). Only the attribute values Age=‘‘ <30” and Stu-
dent=‘‘no” corresponds correctly. The remaining attributes i.e. in-
come and credit rating are not taken into consideration and are
thus pruned from the tree. So the final class label value is ‘‘No”
for the given test data.
6. Experimental results and performance evaluation

The performance of the proposed algorithm was evaluated on
artificial and real-world domains. Artificial domains are useful be-
cause they allow varying parameters, understanding the specific
problems that algorithms exhibit, and testing conjectures. Real-
world domain are useful because they come from real-world prob-
lems that we do not always understand and are therefore actual
problems on which we would like to improve performance. All
real-world data sets used are from the UC Irvine repository (Blake
& Merz, 2006), which contains more over 177 data sets mostly con-
tributed by researchers in the field of machine learning. The data
sets that possess majority voting problem are purportedly chosen
K-NN Proposed algorithm

Accuracy CC NCC Accuracy CC NCC Accuracy

86.26 152 30 83.51 155 27 85.16
56.79 57 24 70.37 63 18 77.78
28.30 37 16 69.81 38 15 71.70
66.67 18 15 54.54 26 7 78.79
72.50 23 17 57.50 31 9 77.50
46.51 47 29 66.28 66 20 76.74
50.00 10 20 33.33 22 8 73.33
70.27 33 4 89.19 28 9 75.68
59.66 65.57 77.09



S. Appavu alias Balamurugan, R. Rajaram / Expert Systems with Applications 36 (2009) 12113–12119 12119
for experimentation to prove the efficacy of our algorithm i.e. two
records having the same attribute values but different class value
(see Tables 9 and 10). The experiments measuring, the perfor-
mance of the proposed algorithm was conducted. The proposed
algorithms performance is compared with various existing classifi-
cation algorithms.

There are commonly four approaches for estimating the accu-
racy such as using training data, using test data, cross-validation,
and percentage splitting (Kohavi, 1995; Witten & Frank, 2005).
The evaluation function we use is percentage splitting. Table 11
shows, for each data set, the estimated predictive accuracy of the
proposed algorithm verses other classification methods. As one
can see from Table 11, the predictive accuracy of the proposed
algorithm tends to be better than the accuracy of other traditional
classification algorithms.

7. Conclusion

This paper proposes a method to resolve one of the exceptions
in basic decision tree induction algorithm. The decision tree is con-
structed based upon the information gain of the attributes in the
training data and the classification is done by applying majority
voting to the leaf node. But when this majority voting in the leaf
node fails an exception occurs, and then the class label is chose
randomly in the traditional decision tree induction algorithm.
When the proposed procedure is updated to the traditional deci-
sion tree induction algorithm, the exception due to majority voting
can be resolved. In the proposed procedure the Influence factor of
attributes are found and the tree is pruned based on this factor.
When the test data is classified based on this pruned tree the class
label can be assigned more accurately than the random assignment
by traditional decision tree induction algorithms.

References

Blake, C. L., & Merz, C. J. (2006). UCI repository of machine learning databases.
Department of Information and Computer Sciences, Irvine: University of
California, <http://www.ics.uci.edu/.mlearn/MLRepository.html>.
Breiman, L., Friedman, J., Olsen, R., & Stone, C. (1984). Classification and regression
trees. Monterey, CA: Wadsworth and Brooks.

Buntine, W. (1992). Learning classication trees. Statistics and Computing, 2, 63–73.
Chipman, Hugh, George, Edward I., & Mcculloch, Robert E. (1998). Bayesian CART

model search. Journal of the American Statistical Association, 93(443),
935–948.

Hartmann, C. R. P., Varshney, P. K., Mehrotra, K. G., & Gerberich, C. L. (1982).
Application of information theory to the construction of efficient decision trees.
IEEE Transactions on Information Theory, 28, 565–577.

Kohavi, R. (1995). A study of cross-validation and bootstrap for accuracy estimation
and model selection. Proceedings of the International Joint Conference on Artificial
Intelligence, 1137–1143.

Kohavi, R. (1996). Scaling up the accuracy of Naive Bayes classifiers: A decision tree
hybrid. Proceedings of the International Conference on Knowledge Discovery and
Data Mining, 202–207.

Kohavi, R., & Kunz, C. (1997). Option decision trees with majority votes. In
Proceedings of the 14th international conference on machine learning, Morgan
Kaufmann.

Mickens, J., Szummer, M., Narayanan, D., Snitch (2007). Interactive decision trees for
troubleshooting misconfigurations. In Proceedings of second international
workshop on tackling computer systems problems with machine learning
techniques.

Quinlan, J. R. (1986). Induction of decision trees. Machine Learning, 1(1), 81–106.
Quinlan, J. R. (1987). Simplifying decision trees. International Journal of Man–

Machine Studies, 27, 221–234.
Quinlan, J. R. (1993). C4.5: Programs for Machine Learning. Morgan Kaufman

Publishers.
Utgoff, P. E. (1988). ID5: An Incremental ID3. Proceedings of the fifth international

conference on machine learning. San Mateo, CA: Morgan Kaufmann Publishers.
pp. 107–120.

Utgoff, P. E. (1989). Incremental induction of decision trees. Machine Learning, 4,
161–186.

Utgoff, P. E. (1989). Improved training via incremental learning. In Proceedings of the
sixth international workshop on machine learning. Ithaca, NY, United States.

Utgoff, P. E. (1994). An improved algorithm for incremental induction of decision
trees. In Proceedings of the 11th international conference on machine learning, pp.
318–325.

Utgoff, P. E. (2004). Decision tree induction based on efficient tree restructuring.
International Journal of Machine Learning, Springer, pp. 5–44.

Wang et al. (2004). Improving the performance of decision tree: A hybrid approach.
LNCS, 3288, 327–335.

Witten, Ian H., & Frank, Eibe (2005). Data mining: Practical machine learning tools and
techniques with Java implementations. Morgan Kaufman Publishers.

Zhou & Chen (2002). Hybrid decision tree. Journal of Knowledge-Based Systems,
15(8), 515–528.

http://www.ics.uci.edu/.mlearn/MLRepository.html

	Effective solution for unhandled exception in decision tree induction algorithms
	Introduction
	Related work
	Problem statements
	The proposed learning algorithm
	Implementation of the proposed algorithm
	Step 1
	Step 2
	Step 2a
	Step 2b
	Step 3

	Experimental results and performance evaluation
	Conclusion
	References


