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Abstract

Machine learning models trained in one domain often face significant challenges
when deployed in a different domain due to distribution shifts, which can degrade
both predictive performance and fairness. This paper studies the problem of
transferring fair models from a source domain to a target domain where labeled
data are scarce or unavailable, and only limited unlabeled data are accessible. We
focus on scenarios where the original training data are inaccessible due to privacy
or regulatory constraints, and fairness requirements must still be maintained in
the target domain. To address these challenges, we propose a framework that
regularizes model updates with sparsity-promoting penalties to adapt only a subset
of parameters, enabling interpretable and reliable transfer. For linear models, we
use an ℓ1-norm proximity term coupled with covariance-based fairness constraints,
while for deep neural networks, we extend this idea via group sparse regularization.
Additionally, we explore nonlinear fairness notions by incorporating χ2-divergence-
based measures inspired by the FERMI [Lowy et al., 2022] framework. Empirical
evaluations on the New Adult dataset demonstrate the effectiveness of our approach
in transferring fair models from the source to target domain (different states) under
limited target supervision. Our method achieves improved fairness-accuracy trade-
offs while preserving interpretability, making it suitable for practical deployment
in sensitive decision-making contexts such as credit eligibility across jurisdictions.

1 Introduction

Machine learning models are increasingly deployed in critical applications ranging from health-
care [Ahmad et al., 2018] and image processing [Krizhevsky et al., 2017] to education [Boselli et al.,
2018] and cybersecurity [Xin et al., 2018]. While these models offer powerful tools for tackling
complex societal problems, their uncritical deployment can lead to serious shortcomings such as
biased predictions against minority groups [Angwin et al., 2016, Buolamwini and Gebru, 2018],
susceptibility to adversarial attacks [Madry et al., 2017, Carlini and Wagner, 2017, Baharlouei et al.,
2023b], and poor generalization to unseen settings [Arjovsky et al., 2019]. Therefore, ensuring that
deployed models are trustworthy, fair, and compliant with global equality norms is of paramount
importance [Act, 1964, Elford, 2023].
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Real-world examples highlight the societal harms of biased machine learning models. The COMPAS
algorithm, studied by ProPublica [Angwin et al., 2016], demonstrated systemic bias against Black
individuals in risk assessments. Similarly, facial recognition systems exhibit unequal performance,
with significantly lower accuracy for darker-skinned females compared to lighter-skinned males [Buo-
lamwini and Gebru, 2018]. These failures have motivated the development of fairness-aware learning
algorithms, commonly categorized as pre-processing, in-processing, and post-processing techniques.

Pre-processing methods aim to transform the input data to reduce dependency on sensitive attributes
prior to training [Kamiran and Calders, 2012, Zemel et al., 2013, Ustun et al., 2019]. Post-processing
approaches adjust model predictions after training to achieve fairness criteria [Hardt et al., 2016,
Alghamdi et al., 2022]. In contrast, in-processing methods incorporate fairness directly into the
training objective, often by introducing fairness constraints or regularizers. For example,Zafar et al.
[2017] minimize the covariance between sensitive attributes and predictions, while others utilize non-
linear measures such as Rényi correlation[Baharlouei et al., 2020], χ2 divergence [Lowy et al., 2022],
or Maximum Mean Discrepancy (MMD)[Prost et al., 2019]. In-processing methods may be model-
specific[Wan et al., 2021, Aghaei et al., 2019] or generalizable across learning paradigms [Baharlouei
et al., 2020, Lowy et al., 2022].

In-processing methods alternatively add fairness constraints or regularizers, penalizing dependence
between sensitive attributes and output variables. [Zafar et al., 2017] utilizes covariance as the
measure of independence between the sensitive attributes and the predictions. While such a measure
is amenable to stochastic updates, it fails to capture correlations beyond linear. Alternatively, several
non-linear measures such as Rényi correlation [Baharlouei et al., 2020], χ2 divergence [Lowy et al.,
2022], L∞ distance [Donini et al., 2018], and Maximum Mean Discrepancy (MMD) [Prost et al.,
2019] are proposed in the literature to establish the independence of the predictors and sensitive
attributes. In-processing techniques can be model-specific [Wan et al., 2021, Aghaei et al., 2019] or
generalizable to different training algorithms [Baharlouei et al., 2020, Lowy et al., 2022].

A common assumption in many fairness-aware methods is that the source and target data distributions
are identical. However, real-world deployments often violate this assumption. For instance,Schrouff
et al. [2022] show that a fairness-aware model trained on U.S. patients for predicting skin and hair
conditions performs unfairly across age groups when applied to Colombian patients. Similarly,Ding
et al. [2021] introduce the "New Adult" dataset, revealing significant distribution shifts across time
and location, which adversely affect both performance and fairness of trained classifiers. These
observations underscore the need for fairness-aware models that are robust to distributional shifts.

As machine learning systems are deployed in diverse geographic and demographic contexts, it
becomes increasingly important to develop models that are both fair and robust to distributional
changes. In this paper, we systematically characterize various scenarios of fair classification under
distribution shift (see Table 1), based on the availability of labeled data, sensitive attributes, and
access to source models or datasets. This taxonomy helps to clarify the assumptions, challenges, and
objectives across different problem settings. Notably, we identify two underexplored yet realistic
scenarios, and propose new methods to address them.

Fair Classification in the Presence of Distribution Shifts Characterization: A wide range of
methods are proposed for transferring fair classifiers to a target domain containing of distribution
shifts compared to the source domain. However, fair classification in the presence of distribution shift
is not uniquely defined and characterized in the literature. In this section, we first describe different
scenarios (see Table 1) under the fair classification in the presence of distribution shifts, and then we
develop methods for two scenarios in which, the literature does not offer reliable solutions.

Assume two domains, source and target, with respective distributions Psource and Ptarget, and
corresponding datasets Dsource and Dtarget. We have access to n labeled samples from the source
and m ≪ n unlabeled samples from the target. The goal is to learn model parameters θ∗ within a
hypothesis class H, minimizing both prediction loss and a fairness regularization term:

θ∗ = argmin
θ∈H

E(x,y)∼Ptargetℓ(hθ(x), y) + λρfairness

(
P(hθ(x), s, y)

)
, (1)

where ρfairness is a measure of fairness as a function of the joint distribution of the model prediction,
sensitive attributes, and the label. Popular choices of such measure is covariance [Zafar et al., 2017],
Rényi [Grari et al., 2020, Baharlouei et al., 2020], χ2 divergence [Lowy et al., 2022], and in a
more general case, the family of f -divergences [Baharlouei et al., 2023a] between the classifier’s
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decision boundary and the sensitive attribute(s). In this paper, we consider both covariance (due to its
prevalence) and f -divergences due to its generality.

Dsource Available Starget Available Ytarget Available Problem Name Notable Studies
Yes No No Distributionally Robust Optimization [Taskesen et al., 2020, Baharlouei and Razaviyayn, 2023]
No Yes Yes Fair Model Transfer [Lu et al., 2023, Schrouff et al., 2022]
Yes No Yes Fair Domain Adaptation [Ding et al., 2021], Our Method
Yes Yes No Classic Domain Adaptation [Ganin et al., 2016, Long et al., 2015]
Yes No No Unsupervised Fair Domain Adaptation [Donini et al., 2018, Prost et al., 2019]
No No Yes Target-Only Fair Learning [Hardt et al., 2016, Zafar et al., 2017]

Table 1: Different scenarios for fair domain adaptation based on data availability

We list four possible scenarios in which the fair classification in the presence of the distribution shift
can be studied:

1. Fair Classification with No Data from the Target Domain If we do not have access
to any data from the test domain, the most common idea is to formulate the task as a
[distributionally] robust optimization problem [Taskesen et al., 2020, Rezaei et al., 2021,
Baharlouei and Razaviyayn, 2023]. While these methods demonstrate better performance on
the target domains containing distribution shifts, their restrictive assumptions on not having
access to zero data from the target domain neglect many real scenarios where a limited
number of samples from the target distribution is available.

2. Fair Model Transfer: In this scenario, a fair model is already learned on the training
domain, and the goal is to transfer the model to the target domain where a limited set of data
points are available (Dtarget). We can categorize this scenario as pre-training and fine-tuning
stages. Note that, the main challenge in this scenario is that we do not have access to
the training (source) data anymore, and fine-tuning of the model should be exclusively
performed on the limited target data. We investigate this scenario in Section 2.

3. Limited access to Data with Unknown Sensitive Attribute from the Target Domain:
This realistic scenario is studied in [Lu et al., 2023], where due to the privacy concerns on
the target domain, only a limited number of samples from the target domain with anonymous
sensitive attribute is available. This paper also considers another scenario, where a small
number of samples with known sensitive attribute is given from the target domain.

4. Limited Access to Unlabeled Data from the Target Distribution This is the conventional
domain adaptation problem with fairness-aware constraints. Such a scenario can happen
due to the privacy concerns as well. Surprisingly, this scenario is not explored in the context
of algorithmic fairness.

In summary, this paper makes the following contributions: (1) we provide a unified taxonomy of fair
classification under distributional shifts, clarifying problem settings based on data availability; (2) we
identify two underexplored scenarios: fair model transfer and unsupervised fair domain adaptation,
and highlight their practical importance; and (3) we develop first-order algorithms that address
fairness under these settings, with convergence guarantees and empirical validation on real datasets.

2 Transferring Fair Models Across Domains

Consider a scenario in which a fair model has already been trained on a source domain, but the
original training data is unavailable due to privacy constraints. For instance, a financial institution
may develop a credit card eligibility model using a large, labeled dataset of U.S. customers. The
institution now seeks to deploy this model in Canada, where demographic profiles, credit regulations,
and economic conditions differ significantly. However, no labeled data are available in the target
domain (Canada), and only limited unlabeled customer data can be collected due to regulatory and
privacy concerns. This shift across domains raises two key challenges: (1) the model, trained on
U.S. data, may perform poorly or unfairly in the Canadian context; and (2) any modifications to
the model must remain interpretable to satisfy legal and organizational transparency requirements.
Interpretability is critical for ensuring regulatory compliance and for maintaining trust in automated
decision-making systems deployed across jurisdictions [Yang et al., 2025].
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Let θ∗
source denote the optimal parameters of the fair model trained on the source domain:

θ∗
source = argmin

θ∈H
E(x,y)∼Psource

[
ℓ
(
hθ(x), y

)]
+ ρfairness

(
Psource(hθ(x), s, y)

)
, (2)

Our goal is to adapt this model to the target domain, such that the resulting classifier remains both
predictive and fair. Since labeled target data are unavailable, we use a small set of unlabeled target-
domain samples and regularize model adaptation using the pre-trained parameters. The fair model
transfer objective becomes:

min
θ

E(x,y)∼P̂target
[ℓ(hθ(x), y)] + α · ρfairness

(
P̂target(hθ(x), s, y)

)
+ λ∥θ − θ∗

source∥qp (3)

Here, P̂target denotes the empirical distribution of the target domain (m given samples from the target
data), ℓ(·, ·) is the predictive loss (e.g., cross-entropy), ρfairness encodes a group fairness notion (e.g.,
demographic parity or equalized odds as the notion) violation, and λ∥θ−θ∗

source∥qp penalizes deviation
from the source model to preserve learned structure.

We focus on the case of ℓ1 norm (i.e., p = q = 1) which induces sparse updates from the source
model. This means that only a subset of the parameters are adjusted in the target domain, while the
rest remain unchanged. This is especially beneficial under limited data, as it helps prevent overfitting
and promotes interpretability. In the case of a linear model (e.g., logistic regression), sparse adaptation
reveals which features behave differently across domains—enhancing transparency and auditability.

To illustrate this concretely, we analyze this formulation in the simplest case where the predictor
model is a linear classifier hθ(x) = x⊤θ, and the fairness loss is based on the covariance between
the sensitive attribute s and the decision boundary proposed by Zafar et al. [2017]:

ρfairness(θ) =
∣∣Cov(s,x⊤θ)

∣∣ = ∣∣E[s · x⊤θ]− E[s] · E[x⊤θ]
∣∣ . (4)

This fairness penalty is linear in θ, and the full objective becomes:

min
θ

1

m

m∑
i=1

ℓ
(
hθ(xi), yi

)
+ α

∣∣µ⊤θ
∣∣+ λ∥θ − θ∗

source∥1, (5)

where ℓ(hθ(xi), yi) = −yi log hθ(xi)−(1−yi) log(1−hθ(xi)) is the logistic loss, µ := E[(s−s̄)x]
is a constant that can be calculated before training as:

µ =
1

m

m∑
i=1

(si − s̄)xi, s̄ =
1

m

m∑
i=1

si,

and α, λ > 0 are hyperparameters controlling fairness and sparsity penalties. The ℓ1 term biases the
solution toward sparse updates: Only features strongly associated with unfairness are adjusted, while
others remain fixed.

Remark. Given that ℓ is the cross-entropy (logistic) loss, Formulation (5) is a non-smooth convex
function with respect to θ.

When no label information is available in the target domain, the fair model transfer objective simplifies
to:

min
θ

∣∣µ⊤θ
∣∣+ λ∥θ − θ∗

source∥1, (6)

This formulation aims to adjust the model parameters to improve fairness in the target domain,
measured via the covariance-based fairness criterion, while remaining close to the original model
trained on the source domain.

To illustrate the behavior of this objective, we consider a toy example in which both µ and θ∗
source are

sampled as 100-dimensional Gaussian vectors. Figure 1 shows the number of differing coordinates
between the optimized θ and the original θ∗

source as a function of the regularization parameter λ. As
expected, increasing λ results in fewer parameter updates. In the limit, as λ → ∞, the solution
converges to θ = θ∗

source indicating no adaptation. This sparsity pattern highlights the trade-off
between fairness improvement and model stability during domain transfer.
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Figure 1: Number of components in θ that differ from θ∗ as a function of λ. As λ increases, the
solution becomes more similar to θ∗ due to the increasing weight of the ℓ1 penalty.

2.1 Extension to Non-linear Notions of Fairness Violation

While covariance-based fairness measures (e.g., as in (4)) capture only linear dependencies between
sensitive attributes and model predictions, real-world fairness violations often arise from complex,
nonlinear relationships. To better address these, we extend our framework by incorporating the
χ2-divergence via the exponential Rényi mutual information (ERMI) measure introduced in FERMI
[Lowy et al., 2022].

Specifically, the ERMI is defined as:

DR(Ŷ ;S) := E

{
pŶ ,S(hθ(xi), s)

pŶ (hθ(xi))pS(s)

}
− 1 =

∑
j∈[m]

∑
r∈[k]

pŶ ,S(j, r)
2

pŶ (j)pS(r)
− 1, (ERMI)

where Ŷ is the discrete model prediction and S is the sensitive attribute, with m and k denoting the
number of possible values for Ŷ and S, respectively.

This measure captures nonlinear dependence between the model’s output and sensitive attributes,
encouraging statistical independence when minimized. Accordingly, the fair transfer objective
becomes:

min
θ

1

m

m∑
i=1

ℓ
(
hθ(xi), yi

)
+ α ·DR (hθ(xi); s) + λ

d∑
i=1

∥W (1)
:,i −W

∗(1)
:,i ∥2, (7)

In practice, ERMI can be efficiently estimated from discrete samples of s and the model’s predictions.

2.2 Extension to Deep Neural Networks via Group Sparse Regularization

While the formulation in Eq. (5) enables interpretable transfer for linear models by sparsely modifying
only those parameters associated with features affected by distributional shift, the same intuition does
not directly apply to deep neural networks. In non-linear architectures, individual model weights
are not directly associated with specific input features, making parameter-level sparsity harder to
interpret.

To address this, we extend our approach using group Lasso regularization [Scardapane et al., 2016],
which enables feature-level interpretability in neural networks. Specifically, we define groups of
parameters based on the input-layer connections: for each input feature i ∈ {1, . . . , d}, we define a
group Gi as the set of all weights connecting feature i to neurons in the first hidden layer:

Gi =
{
W

(1)
:,i

}
, (8)
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where W (1)
:,i denotes the i-th column of the first-layer weight matrix, i.e., all weights from feature i to

the first-layer neurons.

The fair model transfer objective for deep neural networks then becomes:

min
θ

1

m

m∑
i=1

ℓ (hθ(xi), yi) + α ·DR (hθ(xi); s) + λ

d∑
i=1

∥∥∥W (1)
:,i −W

∗(1)
:,i

∥∥∥
2
, (9)

where W
∗(1)
:,i denotes the pre-trained weights from the source model. This group-wise ℓ2 penalty

encourages entire input features to either remain unchanged or be updated as a whole. In particular,
features that do not contribute to fairness violations under domain shift will retain their original
weights (i.e., ∥W (1)

:,i −W
∗(1)
:,i ∥2 = 0), while features needing adaptation will be adjusted collectively.

This formulation preserves the interpretability of the linear case by promoting sparse feature-level
changes, even in the context of deep architectures. Thus, we can identify which features are
responsible for fairness degradation in the target domain, supporting transparency and accountability
in model deployment.

Algorithm 1 provides a proximal gradient approach for optimizing 9. At each iteration of the
algorithm, we update the parameters in θ that are not in the regularization term (smooth part) via
gradient descent, while we apply an extra proximal operator to the weights in the regularization term.
Notice that if the logistic regression loss is a special case of (9), where we have input and output
(cross-entropy loss) in a given neural network.

Algorithm 1 Proximal Gradient Algorithm for Fair Transfer with Group Lasso Regularization

Require: Initial weights θ(0), source weights W ∗(1), step size η > 0, regularization parameters α, λ,
max iterations T , data {(xi, yi)}mi=1

Ensure: Updated weights θ(T )

1: for t = 0 to T − 1 do
2: Compute gradient of smooth loss and fairness terms:

g(t) = ∇θ

(
1

m

m∑
i=1

ℓ(hθ(t)(xi), yi) + α ·DR (hθ(t)(xi); s)

)
3: Gradient descent step:

θ(t+1/2) = θ(t) − ηg(t)

4: Proximal update for group Lasso regularization on first layer weights:
5: For each input feature group i = 1, . . . , d:

W
(1)
:,i

(t+1) = prox
ηλ∥·−W

∗(1)
:,i ∥2

(
W

(1)
:,i

(t+1/2)
)

where the proximal operator for group Lasso with center W ∗(1)
:,i is:

prox
τ∥·−W

∗(1)
:,i ∥2

(v) =

W
∗(1)
:,i +

(
1− τ

∥v−W
∗(1)
:,i ∥2

)
(v −W

∗(1)
:,i ), if ∥v −W

∗(1)
:,i ∥2 > τ

W
∗(1)
:,i , otherwise

6: end for
7: return θ(T )

Note: A natural extension of our model transfer framework to the unsupervised domain adaptation
setting is to remove the predictive loss term from (9), resulting in the following objective:

min
θ

DR (hθ(x); s) + λ

d∑
i=1

∥∥∥W (1)
:,i −W

∗(1)
:,i

∥∥∥
2
, (10)
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This formulation adapts the model solely based on minimizing fairness violation in the target domain,
using only unlabeled feature data. However, a potential limitation is that it does not explicitly
preserve the predictive performance of the source model. Incorporating mechanisms that leverage
x to maintain source-domain accuracy during adaptation remains an important direction for future
work.

3 Results

To evaluate the effectiveness of our proposed fair model transfer framework, we conduct experiments
on the New Adult dataset introduced by Ding et al. [2021]. This dataset extends the widely-used Adult
dataset [Dua and Graff, 2017] by incorporating temporal and geographic diversity—spanning multiple
U.S. states and years—thus capturing natural distribution shifts in demographic and socioeconomic
features. These characteristics make it well-suited for studying domain adaptation under fairness
constraints.

3.1 Experimental Setup

We consider the task of transferring a fair classifier trained on California data (source domain) to
Texas data (target domain). These states differ significantly in demographics and economic conditions,
resulting in shifts in feature distributions and potentially different relationships between features
and outcomes such as credit eligibility. Crucially, we assume that label information is unavailable
in the target domain due to privacy and regulatory constraints, reflecting a realistic scenario. Only
the pre-trained model parameters from California and a small number of labeled or unlabeled Texas
samples are available for adaptation. Our objective is to evaluate whether our sparse, interpretable
adaptation method can maintain both predictive accuracy and fairness when transferring across these
domains.

3.2 Baselines and Evaluation Protocol

We compare our method against the following baselines:

• [Lowy et al., 2022] trained on source-only and target-only data.

• [Zafar et al., 2017] trained on the target data (excluded from source-only due to consistently
worse performance).

• Distributionally Robust FERMI [Baharlouei and Razaviyayn, 2023].

• Our method with both ℓ1 and ℓ2 proximity terms.

All models are initially trained on the source domain such that the demographic parity fairness
violation is approximately 0.02. For adaptation, we tune the hyperparameters α(125.4) and λ(3.5) to
ensure the fairness violation on the adaptation set remains close to 0.02. We then evaluate accuracy
and fairness on the full Texas dataset.

3.3 Logistic Regression Results: Performance Across Data Regimes

ℓ1 regularization yields best trade-off with 100 labeled samples. As shown in Table 2, when
the number of labeled samples in the target domain is very limited (100), our adaptation method
significantly outperforms the baselines in both accuracy and fairness. The ℓ1 regularizer yields the
best result, likely due to its sparsity-inducing nature, which is advantageous in low-data regimes.

ℓ2 regularization performs best with 1000 labeled samples. Table 3 shows that when more labeled
samples are available, adaptation still provides a significant boost. Interestingly, ℓ2 regularization
performs slightly better than ℓ1, suggesting that smoother adaptation may be more effective when
sufficient target data is available.

Direct training optimal with 10,000+ labeled samples. With large amounts of target data, Table 4
confirms that direct training on the target domain performs best. In this setting, adaptation is less
necessary, and regularization offers no clear benefit.
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Table 2: Performance comparison when training on California data and adapting with 100 labeled
samples from Texas. Our ℓ1 method achieves 73.45% accuracy while maintaining fairness at 0.020,
outperforming target-only training (62.44%) by 11 percentage points.

Method Source Accuracy (%) Target Accuracy (%) Target Fairness
[Lowy et al., 2022] on Source 76.48% 71.17% 0.054
[Lowy et al., 2022] on Target 76.48% 62.44% 0.023

Dr-FERMI 73.31% 70.59% 0.034
[Zafar et al., 2017] - 70.44% 0.063

Ours (ℓ1 norm) – 73.45% 0.020
Ours (ℓ2 norm) – 72.11% 0.020

Table 3: Performance comparison when training on California data and adapting with 1000 labeled
samples from Texas. With moderate target data, ℓ2 regularization achieves 75.16% accuracy with
0.0205 fairness, showing smoother adaptation is effective when sufficient samples are available.

Method Source Accuracy Target Accuracy Target Fairness
[Lowy et al., 2022] on Target 76.48% 70.89% 0.021

[Zafar et al., 2017] - 70.44% 0.0504
Ours (ℓ1 norm) - 74.92% 0.0204
Ours (ℓ2 norm) - 75.16% 0.0205

3.4 Deep Neural Network Results: Group Sparsity Maintains Interpretability

Next, we consider a three-layer neural network with 32 and 128 hidden units respectively. Here, we
use Algorithm 1 to optimize the objective function (9). Notably, Dr-FERMI does not provide a neural
network implementation, so it is excluded from this comparison.

As shown in Table 5, our approach with ℓ1 regularization significantly outperforms other methods in
target accuracy and fairness. The performance of ℓ2 regularization degrades substantially, which we
attribute to the non-convexity and non-uniqueness of neural network training: small ℓ2 distances may
still lead to dramatically different functional outcomes.

4 Conclusion

In this work, we presented a framework for transferring fair machine learning models across domains
in a manner that is both interpretable and effective under data and fairness constraints. Our approach
adapts a pre-trained fair model from a source domain to a target domain using sparse updates, which
allows only a small subset of model parameters to change—promoting interpretability and robustness,
especially in low-data regimes.

We introduced a general formulation that incorporates fairness constraints (including non-linear
ones such as chi-squared divergence) alongside proximity regularization to the source model. We
demonstrated that ℓ1-based regularization is particularly effective in sparse adaptation settings, while
group sparsity extensions make our method suitable for deep neural networks. Additionally, we
showed that our approach outperforms baselines on the New Adult dataset in scenarios with limited
target domain data.

Empirical results highlighted that when large amounts of target data are available, training a new
model directly on the target domain yields the best performance. However, in realistic settings
where target labels are scarce, our adaptation method offers a compelling trade-off between fairness,
accuracy, and interpretability.

Future work includes extending our method to fully unsupervised settings with mechanisms to
preserve source-domain accuracy, evaluating temporal distribution shifts alongside geographic shifts,
and validating on additional datasets to establish broader generalizability.
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Table 4: Performance comparison when training on California data and adapting with 10000 labeled
samples from Texas. With abundant target data, direct training (75.81% accuracy) outperforms
adaptation, indicating diminishing returns from regularization when labels are plentiful.

Method Source Accuracy Target Accuracy Target Fairness
[Lowy et al., 2022] on Target 76.48% 75.81% 0.0202

[Zafar et al., 2017] - 70.44% 0.041
Ours (ℓ1 norm) - 74.92% 0.0203
Ours (ℓ2 norm) - 75.38% 0.0202

Table 5: Performance comparison when training the neural network on California data and adapting
with 5000 labeled samples from Texas. Group sparse ℓ1 regularization achieves 77.22% accuracy
with 0.023 fairness, outperforming baselines while maintaining feature-level interpretability.

Method Source Accuracy Target Accuracy Target Fairness
[Lowy et al., 2022] 79.73% 74.96% 0.026
[Zafar et al., 2017] - 73.62% 0.038

Ours (ℓ1 norm) - 77.22% 0.023
Ours (ℓ2 norm) - 71.42% 0.025
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