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ABSTRACT

We give a concise condition for contraction of the continuous-time mirror dynam-
ics which was recently shown to be the vanishing-step-size limit of the Sinkhorn
algorithm. This condition is essentially coercivity of a conditional expectation
operator.

1 INTRODUCTION

Recently, entropy-regularized optimal transport and the closely related Schrodinger bridge problem
Léonard| (2013) have found theoretically attractive and experimentally competitive applications in
generative modeling |De Bortoli et al.| (2021)). Its increasing usage and analysis is due in large part
to the use of the Sinkhorn algorithm for entropy-regularized OT |Cuturi|(2013). Recent work Karimi
et al.| (2024) has shown that the limit of vanishing step-sizes of Sinkhorn is a mirror-gradient flow,
and provide asymptotic convergence rates of the objective function. Here we leverage methods from
contraction analysis Wensing & Slotine|(2020) to give criteria for contraction (exponential pairwise
convergence of two particular solutions) of this flow as a coercivity condition on a certain conditional
expectation operator.

2 BACKGROUND

2.1 SCHRODINGER BRIDGE PROBLEM

Recall that the Schrodinger bridge problem (in hydrodynamic form) is

1
inf/ K(ug, pt)dt  where K(u,p)z/ lu(z)*p(z)dx (D)
wPJo R

s.t. Oip+ V- pruy = elApy, po and p; given 2)
for prescribed initial and terminal densities pg, p1. (We work exclusively with hydrodynamic rather
than stochastic control forms. The control formulation illuminates that problem|[I]is that of attaining
a bridge X; between pg, p1 with Law(X;) = p; which is closest in the sense of K to a reference
diffusion, here the Brownian motion.) By introducing a change of variables v = u — €V log p, it
was shown in [Chen et al.| (2016) that system [I| 2]is equivalent to the alternative hydrodynamic form

1
. €
it [ k() + 7 (0] dt, where F(p) = [ [Vlogpla)Pp)is ()
v, 0 R
s.t.Ogp+V-pv=0, poand p; given, ()

showing that the Schrédinger bridge problem is an e-regularization of Benamou & Brenier| (2000)’s
formulation of optimal transport by the Fisher information functional F. Introducing A as a La-
grange multiplier enforcing equation ] it can be shown that v is of gradient form v = VA where A
solves the Hamilton-Jacobi equation

1
O\ + §||V)\||2 =0. )

Let u € P(X),v € P(Y) be target marginals for a plan in 7 € II(, v), whose actual marginals we
will denote by 7%, 7Y Recall that the entropy-regularized optimal transport problem is

OT.= inf [Eq[d]+eH(n|lp@V)]. (6)
weIl(p,v)
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Here, and throughout, we will denote the sets with one-sided marginal constraints as
I(p, ) ={reP(X xY)| X = uh, (o, v)={m e P(X xY) | 7y = v} 7

for convenience. A remarkable fact is that Schrédinger bridge problem [T} 2]is equivalent to 6] An
iterative scheme for solving|[6]is the Sinkhorn algorithm

dmy o exp(—c/e)d(p @ v) 3

n = 1 H n 9

Tn+1 argwerﬁiﬂ,) (m][mn) ©)

Tnio = arg min  H(w||m,41) (10)
mell(-,v)

which iterates a minimizing-entropy scheme with fixed endpoints x, v at the odd and even steps
respectively.

2.2 SINKHORN FLOW AS MIRROR DESCENT

It has recently been shown in|Karimi et al.|(2024) that the Sinkhorn algorithmadmits a continuous-
time formulation as a mirror descent, where

oh OF drY
(,th = =5 (m) =—log d; , F(r)=H(r"||v), hy € L"N(X xY) (11

is the flow in the dual space L' (X x Y), and

*

mo(, y)e" ¥ u(z)
f]Rd 0 (.’17, y/)eh(x,y’)dy/

is the flow in the primal space P(X x Y), noting that #¥ = y by construction. Here, F is the
objective and  the mirror map, and ¢* is the Legendre transform (Fenchel conjugate) of the mirror

map ¢

(he) =7, @*(h) = (7,h) — H(#||m0), 7 =

12)

¢*(h) = Srlll(p )<7T,h> —p(m), where p(m) = H(7|[m0) + tr1(p, (), (13)
mell(up,-

which is shown to have the formby Lemma 3, |[Karimi et al.| (2024).

2.3 DEFINITIONS

Definition 2.1 (Conditional expectation operator). Define
1
(PN = Eolf1Y =3) = s [ Syl (14)
™ (y) Jx

which is an orthogonal projection on L?(), since, for all f,g € L?(7),

1. P is a projection by the tower property
Pwprf:Eﬂ[Eﬂ[f‘Y”Y] :E‘rr[f|y] = Prf, (15)

2. Py is self-adjoint by

(Pt g) o) = / /X N Wd:c /X F(@ yy(e y)da'dy = (f, Peg) o).

™ (y
(16)
3. Py is the orthogonal projection onto the closed subspace
Ly (m) == {g € L*(7) | 9(x,y) = g(y) ae} (17)
whose orthogonal complement is
ker P, = {f € L*(n) | Ex[f|Y] =0ae.} (18)
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3 MAIN RESULTS

Theorem 3.1 (Contraction of Sinkhorn flow). The Sinkhorn mirror flow [I1} [I2]is contracting (or
expanding) with rate A € R in the metric

n £
<7'Tt ;t>L2(X><Y) (19)

for all states m; at which the conditional expectation operator Py, defined in satisﬁes the coer-
civity property

(€, Pr,O) 12y = 2ME ) r2(x xv) (20)
Proof. Let& € LY(X x Y). The Gateaux derivative (first variation) of F at 7 in the direction ¢ is

A D A

where ¢Y (y) = Jx € + &(x,y)dx is the “marginal.” Similarly, the second variation is, given also 1 €
LY (X xY),

& wn" )
m)[&m =/ — (22)
(m)[&:n] L)
and in particular we have the positive-semidefiniteness
Y ()2
2P(m)E, €] = /Y (iy((yy)))dy > 0, with equality iff €Y = 0 a.e. (23)

Next, we consider the mirror map . Let us define first the tangent space

T,TH(M,-):{aELl(XxY)|aX(;c):Oforu—a.e.x}:{aeLl|// a=0}. (24
XxXY

Then
// <10g —+ 1) adA, a € T;II(p,-) (25)
XxXY
and
)a, b = // —dA a,be T 1(y,-) (26)
xxy T
which is strictly positive definite since 7 > 0 a.e. Now, let dm; € T II(1, ) be a perturbation. Since
d
ht = (5@(7’(}) and %ht = —(SF(TFt) (27)
then ém; induces a corresponding 5h; € L' byas
o d omy
Shy = 62p(m)0m, ] = 4 and  -6hy = =62 F(m,)[0m;, ] = — - (28)
e dt }

which is well-defined since 77} > 0 a.e. Note then that the Hessian operators of o, F' are expressible
as

8
Hfom, = 2t HFsm, = P, HP o, (29)
Tt
It follows from 28] and the definition [[4]of P, that
Oy 1 oy d
Prohiy=Pr,—=— [ § Jylde = —= = ——08hy. 30
0Ny oo s m (@, y)dx Y pralll (30)
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The metric in the hypothesis is

M, = (Hf)? 31)
which is valid since H? = (H*¥)*. The norm of the perturbation in this metric evolves as
d1 d1l d
ai ||57Tt||?\4f = @5 H(Sht”iz = <6h,t7 aéhﬂ = —(52F(7Tt)[(5ﬂ't,6ht] (32)
orY [om\" om (om\"
=—(—~,| — = —(Pr,—, | — 33
EE () domy =2 (2] (3)
< —2A[l6m 2, (34)
by hypothesis, using the change of variable £ = dm; /7. O
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