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ABSTRACT

We give a concise condition for contraction of the continuous-time mirror dynam-
ics which was recently shown to be the vanishing-step-size limit of the Sinkhorn
algorithm. This condition is essentially coercivity of a conditional expectation
operator.

1 INTRODUCTION

Recently, entropy-regularized optimal transport and the closely related Schrödinger bridge problem
Léonard (2013) have found theoretically attractive and experimentally competitive applications in
generative modeling De Bortoli et al. (2021). Its increasing usage and analysis is due in large part
to the use of the Sinkhorn algorithm for entropy-regularized OT Cuturi (2013). Recent work Karimi
et al. (2024) has shown that the limit of vanishing step-sizes of Sinkhorn is a mirror-gradient flow,
and provide asymptotic convergence rates of the objective function. Here we leverage methods from
contraction analysis Wensing & Slotine (2020) to give criteria for contraction (exponential pairwise
convergence of two particular solutions) of this flow as a coercivity condition on a certain conditional
expectation operator.

2 BACKGROUND

2.1 SCHRÖDINGER BRIDGE PROBLEM

Recall that the Schrödinger bridge problem (in hydrodynamic form) is

inf
u,ρ

∫ 1

0

K(ut, ρt)dt where K(u, ρ) =

∫
Rd

|u(x)|2ρ(x)dx (1)

s.t. ∂tρ+∇ · ρtut = ε∆ρt, ρ0 and ρ1 given (2)
for prescribed initial and terminal densities ρ0, ρ1. (We work exclusively with hydrodynamic rather
than stochastic control forms. The control formulation illuminates that problem 1 is that of attaining
a bridge Xt between ρ0, ρ1 with Law(Xt) = ρt which is closest in the sense of K to a reference
diffusion, here the Brownian motion.) By introducing a change of variables v = u − ε∇ log ρ, it
was shown in Chen et al. (2016) that system 1, 2 is equivalent to the alternative hydrodynamic form

inf
v,ρ

∫ 1

0

[
K(vt, ρt) +

ε

4
F(ρt)

]
dt, where F(ρ) =

∫
Rd

|∇ log ρ(x)|2ρ(x)dx (3)

s.t. ∂tρ+∇ · ρv = 0, ρ0 and ρ1 given, (4)
showing that the Schrödinger bridge problem is an ε-regularization of Benamou & Brenier (2000)’s
formulation of optimal transport by the Fisher information functional F . Introducing λ as a La-
grange multiplier enforcing equation 4, it can be shown that v is of gradient form v = ∇λ where λ
solves the Hamilton-Jacobi equation

∂tλ+
1

2
||∇λ||2 = 0. (5)

Let µ ∈ P(X), ν ∈ P(Y ) be target marginals for a plan in π ∈ Π(µ, ν), whose actual marginals we
will denote by πX , πY . Recall that the entropy-regularized optimal transport problem is

OTε = inf
π∈Π(µ,ν)

[Eπ[c] + εH(π||µ⊗ ν)] . (6)
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Here, and throughout, we will denote the sets with one-sided marginal constraints as

Π(µ, ·) = {π ∈ P(X × Y ) | πX = µ}, Π(·, ν) = {π ∈ P(X × Y ) | πY = ν} (7)

for convenience. A remarkable fact is that Schrödinger bridge problem 1, 2 is equivalent to 6. An
iterative scheme for solving 6 is the Sinkhorn algorithm

dπ0 ∝ exp(−c/ε)d(µ⊗ ν) (8)
πn+1 = arg min

π∈Π(µ,·)
H(π||πn) (9)

πn+2 = arg min
π∈Π(·,ν)

H(π||πn+1) (10)

which iterates a minimizing-entropy scheme with fixed endpoints µ, ν at the odd and even steps
respectively.

2.2 SINKHORN FLOW AS MIRROR DESCENT

It has recently been shown in Karimi et al. (2024) that the Sinkhorn algorithm 8 admits a continuous-
time formulation as a mirror descent, where

∂ht

∂t
= −δF

δπ
(πt) = − log

dπY
t

dν
, F (π) = H(πY ||ν), ht ∈ L1(X × Y ) (11)

is the flow in the dual space L1(X × Y ), and

πt =
δφ∗

δh
(ht) = π̂, φ∗(h) = ⟨π̂, h⟩ −H(π̂||π0), π̂ =

π0(x, y)e
h(x,y)µ(x)∫

Rd π0(x, y′)eh(x,y
′)dy′

(12)

is the flow in the primal space P(X × Y ), noting that π̂X = µ by construction. Here, F is the
objective and φ the mirror map, and φ∗ is the Legendre transform (Fenchel conjugate) of the mirror
map φ

φ∗(h) = sup
π∈Π(µ,·)

⟨π, h⟩ − φ(π), where φ(π) = H(π||π0) + ιΠ(µ,·)(π), (13)

which is shown to have the form 12 by Lemma 3, Karimi et al. (2024).

2.3 DEFINITIONS

Definition 2.1 (Conditional expectation operator). Define

(Pπf)(y) := Eπ[f |Y = y] =
1

πY (y)

∫
X

f(x, y)π(x, y)dx, (14)

which is an orthogonal projection on L2(π), since, for all f, g ∈ L2(π),

1. Pπ is a projection by the tower property

PπPπf = Eπ[Eπ[f |Y ]|Y ] = Eπ[f |Y ] = Pπf, (15)

2. Pπ is self-adjoint by

⟨Pπf, g⟩L2(π) =

∫∫
X×Y

g(x, y)π(x, y)

πY (y)
dx

∫
X

f(x′, y)π(x′, y)dx′dy = ⟨f, Pπg⟩L2(π).

(16)

3. Pπ is the orthogonal projection onto the closed subspace

L2
Y (π) := {g ∈ L2(π) | g(x, y) = g(y) a.e.} (17)

whose orthogonal complement is

kerPπ = {f ∈ L2(π) | Eπ[f |Y ] = 0 a.e.} (18)
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3 MAIN RESULTS

Theorem 3.1 (Contraction of Sinkhorn flow). The Sinkhorn mirror flow 11, 12 is contracting (or
expanding) with rate λ ∈ R in the metric

⟨ η
πt

,
ξ

πt
⟩L2(X×Y ) (19)

for all states πt at which the conditional expectation operator Pπt
defined in 14 satisfies the coer-

civity property

⟨ξY , Pπt
ξ⟩L2(Y ) ≥ 2λ⟨ξ, ξ⟩L2(X×Y ) (20)

Proof. Let ξ ∈ L1(X × Y ). The Gateaux derivative (first variation) of F at π in the direction ξ is

δF (π)[ξ] =

∫∫
X×Y

(
log

πY (y)

ν(y)
+ 1

)
ξ(x, y)dxdy =

∫
Y

ξY (y)

(
log

πY (y)

ν(y)
+ 1

)
dy, (21)

where ξY (y) =
∫
X
ξ(x, y)dx is the “marginal.” Similarly, the second variation is, given also η ∈

L1(X × Y ),

δ2F (π)[ξ, η] =

∫
Y

ξY (y)ηY (y)

πY (y)
dy (22)

and in particular we have the positive-semidefiniteness

δ2F (π)[ξ, ξ] =

∫
Y

(ξY (y))2

πY (y)
dy ≥ 0, with equality iff ξY = 0 a.e. (23)

Next, we consider the mirror map φ. Let us define first the tangent space

TπΠ(µ, ·) = {a ∈ L1(X × Y ) | aX(x) = 0 for µ− a.e. x} = {a ∈ L1 |
∫∫

X×Y

a = 0}. (24)

Then

δφ(π)[a] =

∫∫
X×Y

(
log

dπ

dπ0
+ 1

)
adA, a ∈ TπΠ(µ, ·) (25)

and

δ2φ(π)[a, b] =

∫∫
X×Y

ab

π
dA, a, b ∈ TπΠ(µ, ·) (26)

which is strictly positive definite since π > 0 a.e. Now, let δπt ∈ TπΠ(µ, ·) be a perturbation. Since

ht = δφ(πt) and
d

dt
ht = −δF (πt) (27)

then δπt induces a corresponding δht ∈ L1 by 26 as

δht = δ2φ(πt)[δπt, ·] =
δπt

πt
and

d

dt
δht = −δ2F (πt)[δπt, ·] = −δπY

t

πY
t

(28)

which is well-defined since πY
t > 0 a.e. Note then that the Hessian operators of φ, F are expressible

as

Hφ
t δπt =

δπt

πt
, HF

t δπt = Pπt
Hφ

t δπt. (29)

It follows from 28 and the definition 14 of Pπ that

Pπtδht = Pπt

δπt

πt
=

1

πY
t

∫
X

δπt(x, y)dx =
δπY

t

πY
t

= − d

dt
δht. (30)
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The metric in the hypothesis is

Mt = (Hφ
t )

2 (31)

which is valid since Hφ = (Hφ)∗. The norm of the perturbation in this metric evolves as

d

dt

1

2
∥δπt∥2Mt

=
d

dt

1

2
∥δht∥2L2 = ⟨δht,

d

dt
δht⟩ = −δ2F (πt)[δπt, δht] (32)

= −⟨δπ
Y
t

πY
t

,

(
δπt

πt

)Y

⟩L2(Y ) = −⟨Pπt

δπt

πt
,

(
δπt

πt

)Y

⟩ (33)

≤ −2λ ∥δπt∥2M2
(34)

by hypothesis, using the change of variable ξ = δπt/πt.
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