
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2026

SPARSE POLICY SPACE RESPONSE ORACLES

Anonymous authors
Paper under double-blind review

ABSTRACT

In multi-agent non-transitive games, the Policy Space Response Oracles (PSRO)
framework approximates Nash Equilibrium by iteratively expanding policy pop-
ulations. However, the framework suffers from severe policy redundancy in the
processes of policy generation and policy population construction, thereby leading
to a substantial increase in computational complexity. To address these limita-
tions, this paper proposes Sparse PSRO, a novel framework that overcomes policy
redundancy through two key innovations: (1) Sparsity Metric, which quantifies
the dissimilarity between candidate strategies and existing populations via convex
combination residual constraints, guiding the algorithm to explore underrepre-
sented payoff regions while suppressing redundant policy generation; (2) Policy
Space Sparsification, which constructs the Policy Hull backbone via intensive early
exploration and admits only geometrically distinct strategies through threshold
control, effectively reducing the number of policies and lowering computational
complexity. Theoretical analysis proves that Sparse PSRO maintains a finite policy
population with guaranteed separation distances, preventing exponential population
growth while ensuring convergence to the Nash Equilibrium. Experiments across
diverse environments (including RGoS, AlphaStar888, Blotto, and Kuhn Poker)
demonstrate that Sparse PSRO significantly outperforms six baseline methods in
terms of exploitability and policy population size, thus validating its effectiveness
in efficiently approximating Nash Equilibrium with reduced computational costs.

1 INTRODUCTION

In the field of multi-agent reinforcement learning, two-player zero-sum games have become a core
focus of theoretical and applied research due to their analytical tractability and symmetry. The
Nash Equilibrium (NE) (Nash Jr, 1950), a central solution concept in game theory, ensures optimal
performance in worst-case scenarios. Traditional equilibrium computation methods aim to identify
these solutions, such as by enumerating all equilibria (e.g., the work of Avis et al. (2010) for bimatrix
games) or finding a single sample equilibrium (e.g., the Lemke-Howson algorithm for bimatrix games
or linear programming for zero-sum matrix games (Von Stengel, 2002)).

However, in complex real-world environments characterized by strong non-transitivity (Czarnecki
et al., 2020), as exemplified by strategic games like StarCraft (Vinyals et al., 2019) and poker, tradi-
tional game-theoretic algorithms frequently fail to converge to Nash Equilibrium due to inadequate
exploration of the exponential policy space (Lanctot et al., 2017). This fundamental challenge stems
from the cyclical dominance patterns inherent in non-transitive systems (illustrated by the canonical
Rock-Paper-Scissors paradigm) (Candogan et al., 2011; Balduzzi et al., 2018). Such non-transitivity
is a pervasive phenomenon across a wide range of games (Sanjaya et al., 2022; Li et al., 2023). The
Policy Space Response Oracle (PSRO) (Lanctot et al., 2017) framework, which approximates NE by
iteratively expanding policy populations, has emerged as the mainstream approach for handling non-
transitive games (Bighashdel et al., 2024). Its core logic relies on a cycle of “meta-game solving-best
response generation-population update”, leveraging policy diversity to drive algorithmic convergence.
Nevertheless, traditional PSRO faces critical challenges in practice: policy redundancy during both
policy generation and policy population construction processes leads to low exploration efficiency
(Liu et al., 2022b), and the accumulation of redundant policies sharply increases computational costs,
thereby limiting its practical applicability in complex games.

Existing studies have proposed various improvements to address PSRO’s limitations. In terms of
reducing policy redundancy during policy generation, some works enhance policy diversity through

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2026

diversity regularization, such as using determinantal point processes (DPP) (Perez-Nieves et al., 2021)
to quantify the geometric diversity of policy distributions or integrating multi-dimensional metrics
via the Unified Diversity Measure (UDM)(Liu et al., 2022b). However, these methods ignore the
essential disparities in policy payoff patterns and fail to establish a direct theoretical link between
diversity and equilibrium quality. To address these issues, Policy Space Diversity PSRO (PSD-PSRO)
(Yao et al., 2023) proposes the concept of Population Exploitability (PE) to measure the strength of
a population. It optimizes the geometric coverage of policy distributions via KL divergence. Yet
PSD-PSRO adopts an approximation based on minimum KL divergence for policy generation, which
may not fully guarantee Policy Hull expansion. In terms of reducing policy redundancy during
policy population construction, the extent of exploration in existing studies remains notably limited.
Additionally, there are studies that improve computational efficiency through distributed training,
such as parallelized PSRO (McAleer et al., 2020). However, these methods overlook the issue of
policy redundancy, thereby limiting the efficiency of policy space expansion.

To address these challenges, we propose Sparse PSRO, a novel framework that enables efficient NE
calculation through two components: (1) Sparsity Metric: which employs a convex combination
residual metric to quantify policy dissimilarity, thus eliminating policy redundancy during the policy
generation process. (2) Policy Space Sparsification: which applies threshold-controlled updates
to admit only geometrically distinct strategies, thus addressing policy redundancy during policy
population construction. Furthermore, we provide theoretical proofs that Sparse PSRO maintains a
finite policy population with guaranteed separation distances and converges to NE. Empirically, we
compare Sparse PSRO against multiple baselines across four tasks, including RGoS, AlphaStar888,
Blotto, and Kuhn Poker. The results demonstrate that Sparse PSRO significantly outperforms
baselines in terms of exploitability and policy population size, validating its effectiveness. Our
primary contributions are as follows:

• We pinpoint that addressing policy redundancy during both policy generation and policy popula-
tion construction is critical for enhancing PSRO’s computational efficiency when approximating
NE in two-player symmetric zero-sum games.

• Accordingly, we propose Sparse PSRO, which employs Sparse Metric and Policy Space Sparsi-
fication to address the policy redundancy issue, thus enabling efficient NE calculation.

• Theoretical analysis proves that Sparse PSRO maintains a finite policy population with guar-
anteed separation distances and convergence to Nash Equilibrium. Furthermore, extensive
experiments demonstrate that Sparse PSRO outperforms six baseline methods in exploitability
and policy population size.

2 RELATED WORK

As mentioned above, we pinpoint that PSRO suffers from policy redundancy during both policy
generation and policy population construction. Accordingly, we divide existing works into two major
categories: policy generation (focusing on diversifying strategy creation) and policy population
construction (optimizing population management).

Policy Generation: Policy generation research aims to produce diverse and high-quality strategies
through structured optimization and regularization. From the perspectives of game theory, many
studies aim to improve policy diversity by expanding the Gamescape (Balduzzi et al., 2019)(the
convex hull of policy payoff vectors). PSRO-rN (Balduzzi et al., 2019) introduces rectified Nash
response, which selectively expands the Gamescape by amplifying policy advantages. Theoretical
proofs show it strictly enhances policy response capabilities. BD&RD-PSRO (Liu et al., 2021),
integrating behavioral and response diversity, provides a multi-dimensional evaluation framework.
DPP-PSRO (Perez-Nieves et al., 2021) selects policies by maximizing expected cardinality to avoid
generating redundant policies. PSD-PSRO (Yao et al., 2023) further proposes the concept of Policy
Hull and optimizes the geometric coverage of policy distributions via KL divergence. Pipeline
PSRO (McAleer et al., 2020) accelerates convergence through hierarchical pipeline parallel training,
demonstrating significant advantages in large-scale games. Notably, there is an intrinsic link between
efficiency optimization and diversity enhancement—algorithms with fast convergence often require
precise policy selection mechanisms, providing important insights for subsequent sparsity research.

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2026

Policy Population Construction: To control population growth, threshold-based admission mech-
anisms were developed. A notable complementary approach is the threshold-controlled strategy
addition introduced in A-PSRO (Hu et al., 2023), which admits new strategies into the population
only when their payoff improvement exceeds a predefined threshold. This sparsification not only
reduces computational requirements but also enhances learning efficiency, making the algorithm
more advantageous in handling large-scale data.

Notably, existing works fail to simultaneously address policy redundancy in both policy generation and
policy population construction. To address this issue, we propose Sparse PSRO, which unifies sparsity-
aware generation (alleviating the policy redundancy during policy generation) with geometrically
controlled population construction (addressing the policy redundancy during policy population
construction) to address both dimensions simultaneously. These mechanisms collectively enable
efficient Nash Equilibrium calculation in two-player zero-sum games.

3 PRELIMINARIES

3.1 SYMMETRIC ZERO-SUM GAMES, NE, AND EXPLOITABILITY

Symmetric zero-sum games can be rigorously formalized as G = {S,U}. In this game structure,
both players share the policy space S, and the payoff matrix U satisfies the property U = −U⊤,
indicating that the payoff obtained by one party is exactly equal to the loss suffered by the other.
Regarding the types of strategies, a pure strategy π ∈ S corresponds to a deterministic action choice
made by the player, while a mixed strategy πi ∈ ∆(S) is a probability distribution, which can be
represented as a weighted combination of pure strategies.. For two players i ∈ {1, 2}, its payoff is
precisely measured by the function u(π1, π2) = π1 · U · π⊤

2 .

Nash Equilibrium, as a core solution concept in game theory, holds crucial significance. When
the strategy profile (π∗

1 , π
∗
2) satisfies ∀Pi, u(π

∗
1 , π

∗
2) ≥ u(π1, π

∗
2) and u(π∗

1 , π
∗
2) ≥ u(π∗

1 , π2) for any
player i, the strategy profile reaches the Nash Equilibrium state. In this state, neither player can
increase their payoff by unilaterally adjusting their own strategy. The Best Response (BR) of player i
to the opponent’s strategy π−i is denoted by:

BR(π−i) = argmax
π′
i

u(π′
i, π−i) (1)

In Nash Equilibrium, each player’s strategy constitutes a best response to that of the other.

To accurately quantify the deviation of a strategy profile from the Nash Equilibrium, Lanctot et al.
(2017) introduces the important concept of Exploitability. Its mathematical definition is as follows:

E(π) = 1

2

∑
i∈{1,2}

(
max
π′
i

u(π′
i, π−i)− u(πi, π−i)

)
(2)

When E(π) = 0, it clearly indicates that the strategy profile π has reached the Nash Equilibrium state.

To quantify the equilibrium approximation quality of policy populations (sets of strategies accu-
mulated over iterations, denoted Πt

i = {π1
i , . . . , π

t
i} for player i at iteration t), two key concepts

form the theoretical foundation. The Policy Hull (Yao et al., 2023) is defined as the set of all mixed
policies formed by convex combinations of policies in the population:

H(Πi) = {
∑
j

βjπ
j
i | βj ≥ 0,

∑
j

βj = 1} (3)

The volume of the Policy Hull intuitively reflects the richness of the policy space.

Population Exploitability (PE) (Yao et al., 2023) measures the deviation of the joint policy popula-
tion Π = Πi ×Π−i from a global NE:

PE(Π) =
1

2

∑
i∈{1,2}

max
Π′

i⊆Ωi

Pi (Π
′
i,Π−i) (4)

where Pi denotes relative population performance, and Ωi is the full policy space of player i. The
summary of notations is available in Appendix A.

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2026

3.2 POLICY SPACE RESPONSE ORACLE FRAMEWORK

When solving the problem of approximate Nash Equilibrium in non-transitive games, the Policy
Space Response Oracle has become the current mainstream framework choice. The core operation
mechanism of this framework lies in continuously iteratively expanding the policy population to
steadily approach the Nash Equilibrium. PSRO consists of the following three related key steps:

Meta-game Construction: For each player i, PSRO maintains a policy population Πt
i =

{π1
i , . . . , π

t
i}, which forms the basis of the policy space for the meta-game. In the meta-game,

the payoff matrix MΠi,Π−i
records in detail the payoffs generated by the interactions between

different policies, where M [j, k] = u(πj
i , π

k
−i).

Meta-policy Solving: By solving the meta-game, the Nash Equilibrium σi ∈ ∆(Πt
i) is obtained.

This result represents the optimal mixed policy under the current policy population and precisely
characterizes the player’s probabilistic choice tendency at the policy level.

Best Response Generation: In response to the −i’s meta-policy σt
−i at iteration t, the player

generates a new policy πt+1
i ∈ BR(σt

−i) and incorporates it into the policy population, thereby
achieving the gradual expansion of the policy space.

Although the PSRO framework uses the cycle of “solving meta-equilibrium-generating best response-
updating the population” and leverages the diversity of policies to drive the algorithm towards the
Nash Equilibrium, traditional PSRO methods are extremely prone to the problem of policy redundancy
in practical applications (Liu et al., 2021). This leads to a sharp increase in computational costs,
which limits its effective application in large-scale game scenarios to a certain extent.

4 SPARSE PSRO

We begin by introducing a sparsity metric for policy diversity, which eliminates policy redundancy
during the policy generation process. We then delve into the process of achieving Policy Space
Sparsification, which enables the removal of policy redundancy during policy population construction.
Subsequently, we provide theoretical validation that Sprse PSRO maintains a finite policy population
with guaranteed separation distances and convergence to the Nash Equilibrium. Finally, we summarize
the overall learning procedure of Sparse PSRO.

4.1 POLICY GENERATION

In multi-agent game scenarios, the computational complexity of solving Nash Equilibria grows
exponentially with the dimensionality of the policy space. According to Carathéodory’s theorem
(Althöfer, 1994), any Nash Equilibrium solution in a finite game can be expressed as a convex
combination of a finite set of pure strategies. Formally, each player i’s mixed strategy NE can be
represented as follows:

σi =

m∑
k=1

αkπ
k, αk ≥ 0,

m∑
k=1

αk = 1 (5)

where πk denotes the k-th pure strategy, m denotes the number of pure strategies, and αk represents
the mixing probability for the corresponding pure strategy. This property highlights that Nash
Equilibrium solutions are inherently convex combinations of existing pure strategies.

For a candidate strategy πi, Sparse PSRO defines the sparsity metric as its convex combination
residual relative to the t-th iteration policy population Πt

i:

sparsity(πi,Π
t
i) = min

1⊤c=1
c≥0

∥πi −Πt
i
⊤
c∥22 (6)

where c = [c1, c2, . . . , cm]⊤ is a vector of convex combination coefficients. This formula quantifies
the global difference between the new strategy and existing strategies by minimizing the Euclidean
distance between the new strategy and the convex combination of existing strategies.

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2026

Policy Hull is the convex combination of policies in the population. Theoretically, expanding the
Policy Hull has been proven to reduce population exploitability, thereby accelerating the algorithm’s
convergence to the Nash Equilibrium (Yao et al., 2023). Specifically, if newly generated policies can
significantly enlarge the Policy Hull, the algorithm can more efficiently cover potential equilibrium
policies and improve convergence efficiency. A larger residual indicates that the new strategy is more
likely to lie outside the current Policy Hull, thereby effectively promoting Policy Hull expansion to
reduce Population Exploitability.

Building on this foundation, Sparse PSRO incorporates the policy sparsity as a regularization term
into the best-response objective function, forming an improved optimization formulation:

πt+1
i = argmax

πi

[
u(πi, σ

t
−i) + λ · sparsity(πi,Π

t
i)
]

(7)

where σt
−i denotes the opponent’s meta-policy at iteration t, and λ > 0 controls the weight of the

sparsity metric in the best-response optimization process. By explicitly constraining the convex
combination residual of the new strategy relative to the existing policy population, this formulation
drives the algorithm to enable more diverse policies. Strategies with large convex combination
residuals are more likely to cover regions that remain unexplored by the current Policy Hull.

4.2 POLICY SPACE SPARSIFICATION

To address the policy redundancy in policy population construction, Sparse PSRO employs a threshold-
controlled strategy addition rule that controls the Policy Space Sparsification of the policy population
Πi, the policy population is updated as:

Πt+1
i =

{
Πt

i, if sparsity(πi,Π
t
i) ≤ µ

Πt
i ∪ {πi}, otherwise

(8)

where µ > 0 is a predefined threshold. This rule ensures that only strategies sufficiently distant from
the existing Policy Hull are added, preventing redundant inclusion of similar strategies.

This mechanism allows Sparse PSRO to quickly build the policy space’s foundational structure
and maintain diversity through Threshold-Controlled additions, mitigating training instability from
excessively low-quality strategies and ensuring stable convergence. The threshold-controlled strategy
addition mechanism not only ensures computational efficiency but also provides theoretical guarantees
for population finiteness, formally stated as follows:
Theorem 4.1. Assume the policy space S is a compact subset of a finite-dimensional normed vector
space, and let µ > 0 be the sparsity threshold in Eq. 8. For any initial policy population Π1

i , the
policy population Πt

i maintained by Sparse PSRO remains finite for all t ≥ 1.

The proof is provided in Appendix B.1. Theorem 4.1 guarantees that the policy population remains
tractable, avoiding exponential growth while preserving sufficient diversity for equilibrium approxi-
mation. The finite policy population ensures that the meta-game payoff matrix MΠi,Π−i remains of
bounded size, lowering the computational complexity of meta-game solving across iterations.

4.3 OVERALL LEARNING PROCEDURE

The Sparse PSRO algorithm integrates Sparsity Metric and Policy Space Sparsification into the
PSRO framework, enabling efficient policy exploration while maintaining computational tractability.
The algorithm alternates between solving the meta-game for current policies, generating new best
responses with sparsity regularization, and updating the policy population under threshold control.

Unlike traditional PSRO, which may accumulate redundant strategies and suffer from exponential
population growth, Sparse PSRO’s policy space sparsification ensures that only geometrically distinct
strategies are retained. This not only reduces computational costs but also guarantees that the Policy
Hull expands efficiently, thereby maintaining convergence stability.

We provide the pseudo-code of Sparse PSRO in Algorithm 1. UNIFORM denotes random sampling
according to the uniform distribution. Sparse PSRO calculates the payoff matrix and initializes meta-

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2026

Algorithm 1 Sparse PSRO
Input Initial policy populations Π1

i ,Π
1
−i

1: Compute payoff matrix MΠ1
i ,Π

1
−i

2: Initialize meta policies σ1
i ∼ UNIFORM(Π1

i) ▷ Initialize meta-policies with uniform
distribution

3: for t = 1, 2, . . . do
4: for player i ∈ {1, 2} do
5: Initialize πi = πt

i ▷ Load current policy as optimization starting point
6: Sample K policies {πk

i }Kk=1 from Policy Hull Πt
i ▷ Sample policies from Policy Hull

7: for many episodes do
8: Sample π−i ∼ σt

−i ▷ Sample opponent policy from meta-policy distribution
9: Update πi over Eq. 7 ▷ Apply sparsity-regularized best-response optimization

10: end for
11: πt+1

i = πi

12: if sparsity(πi,Π
t
i) > µ then ▷ Threshold-controlled policy admission

13: Πt+1
i = Πt

i ∪ {πi} ▷ Admit only geometrically distinct policies to population
14: end if
15: end for
16: Compute missing entries in MΠt

i,Π
t
−i

17: Compute meta-strategies (σt+1
i , σt+1

−i) from MΠt
i,Π

t
−i

18: end for
Output current meta-strategy for each player.

policies via uniform sampling during the initialization phase (Lines 1-3), then updates the player’s
policy through sparsity-regularized best-response in the policy generation phase (Lines 6-10). The
core sparsification mechanism adds the new policy to the population only when its sparsity exceeds
the threshold µ during the policy population construction phase (Lines 12-13), while the meta-game
update phase fills in missing entries of the payoff matrix and computes new meta-strategies for the
next iteration (Lines 16-17).

As the core parameter for policy selection, the rationality of the threshold µ directly determines
whether the framework can retain strategies critical to Policy Hull expansion, thereby influencing the
final convergence effect. To lay the necessary foundation for subsequently proving the convergence of
Sparse PSRO, it is first necessary to clarify the key setting conditions of the threshold µ, as specified
in the following assumption:

Assumption 4.2. The threshold µ is sufficiently small to retain strategies critical for expanding
Policy Hull, ensuring that strategies with the potential to expand the Policy Hull are not eliminated.

Based on the aforementioned assumption regarding the threshold µ, we can further verify the
convergence of Sparse PSRO to the global Nash Equilibrium from a theoretical perspective, as well
as the relationship between Policy Hull expansion and the reduction of Population Exploitability. The
specific conclusions are proven in the following theorem:

Theorem 4.3. Sparse PSRO converges to a global NE of the full game. As long as the Population
Exploitability of the joint policy population remains positive, adding the optimal strategy generated
by Sparse-PSRO’s update rule strictly expands the Policy Hull and reduces Population Exploitability.

The proof of Theorem 4.3 is in Appendix B.2.

4.4 DISCUSSION

Sparse PSRO imposes structured constraints on the strategy update process through an approximate
linear representation framework, ensuring new strategies are geometrically distinct from the existing
policy population. This design fundamentally differentiates it from PSD-PSRO (Yao et al., 2023),
which relies on KL divergence to measure probabilistic distribution differences without explicit
exploitation of policy structural information. We emphasize the difference between them below.

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2026

PSD-PSRO has a critical theoretical inconsistency. Although its theoretical framework relies on the
expansion of the Policy Hull to reduce Population Exploitability, its actual implementation adopts
an approximate approach (minimum KL divergence from the strategy to the population’s vertex
strategies), resulting in a disconnect between theoretical guarantees and engineering implementation.
In contrast, Sparse PSRO achieves an effect equivalent to Policy Hull expansion by employing a
constrained sparsity metric while maintaining intrinsic consistency with the representation of Nash
Equilibrium, thereby resolving this contradiction between theory and implementation.

The proposed sparsity metric measures the distance between a newly generated policy and existing
strategies from a global policy population perspective. This method overcomes the locality limitation
of the pairwise comparisons in the KL divergence and more accurately identifies strategies that can
significantly expand the Policy Hull.

5 EXPERIMENT

In this section, we design experiments to answer the following questions: (1) Can Sparse PSRO
achieve efficient Nash Equilibrium approximation by reducing policy redundancy while maintaining
low exploitability? (See Sec. 5.1) (2) Which component contributes most to its performance gains:
Sparsity Metric or Policy Space Sparsification? (See Sec. 5.2)

For question (1), we compare our method against state-of-the-art PSRO variants covering key research
directions such as diversity regularization, computational efficiency, and theoretical convergence
enhancement. These methods include PSRO (Lanctot et al., 2017), Pipeline PSRO (McAleer et al.,
2020), PSROrN (Balduzzi et al., 2019), DPP-PSRO (Perez-Nieves et al., 2021), BD&RD-PSRO
(Liu et al., 2021), and PSD-PSRO (Yao et al., 2023). These methods form a multi-dimensional
benchmarking system to ensure comprehensive and targeted comparisons. We use two metrics to
quantify performance: exploitability (Eq. (2)) and population exploitability (Eq. (4)), which measure
how much a policy population deviates from the NE. Additionally, we monitor policy population size
to assess computational efficiency, as redundant policies directly impact training costs.

For question (2), we conduct ablation studies to evaluate the effectiveness of each key component in
Sparse PSRO. To validate the necessity of core innovative modules, we design two ablation variants:

• Sparse PSRO without Sparsity Metric(Sparsification-PSRO): Removes the convex combination
residual constraint, retaining only the best-response optimization objective to isolate the effect
of sparsity regularization.

• Sparse PSRO without Policy Space Sparsification(Sparsity-PSRO): Replaces Policy Space
Sparsification with a continuous dense exploration mode to verify the role of the threshold-
controlled strategy addition rule in exploration-exploitation balance.

Experiments are conducted across typical Real-World games (Czarnecki et al., 2020): Random Game
of Skills (RGoS), AlphaStar, Blotto, and Kuhn Poker. Ablation variant algorithms and additional
experimental details are provided in Appendices C and D.

5.1 COMPARATIVE RESULTS

In terms of exploitability, as shown in Fig. 1, Sparse PSRO achieves the lowest exploitability in all
environments, indicating a closer approximation to the Nash Equilibrium. In complex games like
AlphaStar888, it maintains lower exploitability throughout iterations, outperforming baseline methods
such as PSD-PSRO and BD&RD-PSRO. In classic non-transitive games (e.g., Kuhn Poker and Blotto),
Sparse PSRO also exhibits faster convergence to low exploitability, validating its scalability.

In terms of population exploitability, the results in Fig. 2 further confirm this advantage: Sparse
PSRO’s PE declines more rapidly and stabilizes at a lower level compared to alternatives. This
suggests that the policy population’s policy hull expands more effectively, enabling the population to
cover equilibrium strategies with higher efficiency.

In terms of computational efficiency, Sparse PSRO’s policy population size remains significantly
smaller than most baselines. As shown in Tab. 1, which presents policy population sizes across
environments, our Sparse-PSRO maintains a compact population in all tested scenarios. For instance,

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2026

0 100 200
Iterations

10 2

10 1

100
Ex

pl
oi

ta
bi

lit
y

Random Game of Skill

0 100 200
Iterations

10 2

10 1

100

Ex
pl

oi
ta

bi
lit

y

AlphaStar888

0 100 200
Iterations

10 1

100

Ex
pl

oi
ta

bi
lit

y

Blotto

0 100 200
Iterations

10 2

10 1

Ex
pl

oi
ta

bi
lit

y

Kuhn Poker

PSRO Pipeline PSRO PSRO-rN DPP-PSRO BD&RD-PSRO PSD-PSRO Sparse-PSRO(ours)

Figure 1: Comparison of exploitability across environments

0 100 200
Iterations

10 3

10 2

10 1

100

Po
pu

la
tio

n
Ex

pl
oi

ta
bi

lit
y

Random Game of Skill

0 100 200
Iterations

10 3

10 2

10 1

100

Po
pu

la
tio

n
Ex

pl
oi

ta
bi

lit
y

AlphaStar888

0 100 200
Iterations

10 3

10 2

10 1

Po
pu

la
tio

n
Ex

pl
oi

ta
bi

lit
y

Blotto

0 100 200
Iterations

10 4

10 3

10 2

10 1

100

Po
pu

la
tio

n
Ex

pl
oi

ta
bi

lit
y

Kuhn Poker

PSRO Pipeline PSRO PSRO-rN DPP-PSRO BD&RD-PSRO PSD-PSRO Sparse-PSRO(ours)

Figure 2: Comparison of population exploitability across environments

in Blotto and Kuhn Poker, it avoids the exponential growth seen in Pipeline PSRO and PSROrN ,
reducing the complexity of meta-game solving while preserving policy diversity. This balance
between exploration quality and computational cost is a key advantage of the proposed framework.

Table 1: Policy population sizes across environments
Algorithm Random Game of Skills AlphaStar888 Blotto Kuhn Poker

PSRO 42 51 67 66
Pipeline PSRO 82 101 131 134
PSROrN 82 111 187 179
DPP-PSRO 80 95 118 122
BD&RD-PSRO 77 91 117 119
PSD-PSRO 80 99 135 134
Sparsity-PSRO (ours) 86 104 133 132
Sparsification-PSRO (ours) 69 70 91 73
Sparse-PSRO (ours) 69 70 90 73

5.2 ABLATION RESULTS

As shown in Fig. 3, Sparse PSRO consistently achieves the lowest exploitability in all environments.
In contrast, the ablation variants exhibit marked performance degradation: Sparsification-PSRO and
Sparsity-PSRO both show higher exploitability values, with gaps widening over iterations. This
indicates that omitting either component impairs the algorithm’s ability to approximate the Nash
Equilibrium. Specifically, when the Sparsity Metric is removed, the resulting policies lack geometric
diversity, leading to insufficient coverage of the policy space. When Policy Space Sparsification is
removed, redundant strategies accumulate, thereby diluting the effectiveness of the policy population.

Fig. 4 further validates this pattern by showing that Sparse-PSRO maintains the lowest PE across all
environments, reflecting more efficient expansion of the policy hull. The ablation variants, however,

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2026

0 100 200
Iterations

10 2

10 1

100
Ex

pl
oi

ta
bi

lit
y

Random Game of Skill

0 100 200
Iterations

10 2

10 1

100

Ex
pl

oi
ta

bi
lit

y

AlphaStar888

0 100 200
Iterations

10 1

100

Ex
pl

oi
ta

bi
lit

y

Blotto

0 100 200
Iterations

10 2

10 1

Ex
pl

oi
ta

bi
lit

y

Kuhn Poker

PSRO PSD-PSRO Sparsification-PSRO Sparsity-PSRO Sparse-PSRO(ours)

Figure 3: Ablation study on exploitability across environments

0 100 200
Iterations

10 3

10 2

10 1

100

Po
pu

la
tio

n
Ex

pl
oi

ta
bi

lit
y

Random Game of Skill

0 100 200
Iterations

10 3

10 2

10 1

100

Po
pu

la
tio

n
Ex

pl
oi

ta
bi

lit
y

AlphaStar888

0 100 200
Iterations

10 3

10 2

10 1

Po
pu

la
tio

n
Ex

pl
oi

ta
bi

lit
y

Blotto

0 100 200
Iterations

10 4

10 3

10 2

10 1

100

Po
pu

la
tio

n
Ex

pl
oi

ta
bi

lit
y

Kuhn Poker

PSRO PSD-PSRO Sparsification-PSRO Sparsity-PSRO Sparse-PSRO(ours)

Figure 4: Ablation study on population exploitability across environments

exhibit slower PE decline and stabilize at higher values, confirming that the synergy between the two
components is essential for reducing the population’s vulnerability to exploitation.

The policy population size data in Tab. 1 further validates the role of Policy Space Sparsification.
Sparsity-PSRO has a significantly larger population size compared to Sparse PSRO, approaching
the size of baseline methods like PSD-PSRO. In contrast, Sparsification-PSRO maintains a compact
population but fails to match Sparse PSRO’s exploitability performance. This result demonstrates
that the Sparsity Metric is critical for ensuring policy quality despite size constraints.

Together, these results confirm that the Sparsity Metric and Policy Space Sparsification act synergisti-
cally: the former guarantees the geometric distinctiveness of new policies via convex combination
residual constraints, while the latter controls population size through thresholding. Their combination
enables Sparse PSRO to balance exploration depth and computational efficiency, outperforming
ablation variants in both equilibrium approximation and computational efficiency.

6 CONCLUSION

This paper presents Sparse PSRO to address policy redundancy in the processes of policy generation
and policy population construction. Specifically, Sparse PSRO employs two innovations: Sparsity
Metric for dissimilarity quantification and Policy Space Sparsification for geometrically distinct strat-
egy admission. Theoretical analysis confirms finite policy population maintenance with guaranteed
separation distances and the convergence to the Nash Equilibrium. Experimental validation across
diverse environments further validates its superior performance in exploitability reduction and policy
population compression.

Limitation and Future Work. Our current limitation is that the distance parameter in Policy Space
Sparsification requires manual tuning. Future work will focus on developing adaptive thresholding
mechanisms based on Policy Hull curvature analysis. In addition, we consider extending the convex
combination residual metric to asymmetric game settings. We leave them as our future works.

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2026

REFERENCES

Ingo Althöfer. On sparse approximations to randomized strategies and convex combinations. Linear
Algebra and its Applications, 199:339–355, 1994.

Martin Anthony and Peter L. Bartlett. Neural network learning: Theoretical foundations. Ai Magazine,
22(2):99–100, 1999.

David Avis, Gabriel D Rosenberg, Rahul Savani, and Bernhard Von Stengel. Enumeration of nash
equilibria for two-player games. Economic theory, 42(1):9–37, 2010.

David Balduzzi, Sebastien Racaniere, James Martens, Jakob Foerster, Karl Tuyls, and Thore Graepel.
The mechanics of n-player differentiable games. In International Conference on Machine Learning,
pp. 354–363. PMLR, 2018.

David Balduzzi, Marta Garnelo, Yoram Bachrach, Wojciech Czarnecki, Julien Perolat, Max Jader-
berg, and Thore Graepel. Open-ended learning in symmetric zero-sum games. In International
Conference on Machine Learning, pp. 434–443. PMLR, 2019.

Ariyan Bighashdel, Yongzhao Wang, Stephen McAleer, Rahul Savani, and Frans A Oliehoek. Policy
space response oracles: a survey. In Proceedings of the Thirty-Third International Joint Conference
on Artificial Intelligence, pp. 7951–7961, 2024.

Ozan Candogan, Ishai Menache, Asuman Ozdaglar, and Pablo A Parrilo. Flows and decompositions
of games: Harmonic and potential games. Mathematics of Operations Research, 36(3):474–503,
2011.

Xingguo Chen, Guang Yang, Shangdong Yang, Huihui Wang, Shaokang Dong, and Yang Gao. Online
attentive kernel-based temporal difference learning. Knowledge-Based Systems, 278:110902, 2023.

Wojciech Marian Czarnecki, Gauthier Gidel, Brendan Tracey, Karl Tuyls, Shayegan Omidshafiei,
David Balduzzi, and Max Jaderberg. Real world games look like spinning tops. In Advances in
neural information processing systems, pp. 17443–17454, 2020.

Yaakov Engel, Shie Mannor, and Ron Meir. The kernel recursive least-squares algorithm. IEEE
Transactions on signal processing, 52(8):2275–2285, 2004.

Xidong Feng, Oliver Slumbers, Ziyu Wan, Bo Liu, Stephen McAleer, Ying Wen, Jun Wang, and
Yaodong Yang. Neural auto-curricula in two-player zero-sum games. Advances in Neural Informa-
tion Processing Systems, 34:3504–3517, 2021.

Yudong Hu, Haoran Li, Congying Han, Tiande Guo, Mingqiang Li, and Bonan Li. A-psro: A
unified strategy learning method with advantage function for normal-form games. arXiv preprint
arXiv:2308.12520, 2023.

Marc Lanctot, Vinicius Zambaldi, Audrūnas Gruslys, Angeliki Lazaridou, Karl Tuyls, Julien Pérolat,
David Silver, and Thore Graepel. A unified game-theoretic approach to multiagent reinforcement
learning. In Advances in neural information processing systems, pp. 4193–4206, 2017.

Yang Li, Kun Xiong, Yingping Zhang, Jiangcheng Zhu, Stephen Mcaleer, Wei Pan, Jun Wang,
Zonghong Dai, and Yaodong Yang. Jiangjun: Mastering xiangqi by tackling non-transitivity in
two-player zero-sum games. arXiv preprint arXiv:2308.04719, 2023.

Siqi Liu, Luke Marris, Daniel Hennes, Josh Merel, Nicolas Heess, and Thore Graepel. Neupl: Neural
population learning. arXiv preprint arXiv:2202.07415, 2022a.

Xiangyu Liu, Hangtian Jia, Ying Wen, Yujing Hu, Yingfeng Chen, Changjie Fan, Zhipeng Hu, and
Yaodong Yang. Towards unifying behavioral and response diversity for open-ended learning in
zero-sum games. In Advances in neural information processing systems, pp. 941–952, 2021.

Zongkai Liu, Chao Yu, Yaodong Yang, Peng Sun, and Zifan Wu. A unified diversity measure for
multiagent reinforcement learning. In Advances in neural information processing systems, pp.
10339–10352, 2022b.

10

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2026

Stephen McAleer, John Lanier, Roy Fox, and Pierre Baldi. Pipeline psro: a scalable approach for
finding approximate nash equilibria in large games. In Advances in neural information processing
systems, pp. 20238–20248, 2020.

John F Nash Jr. Equilibrium points in n-person games. Proceedings of the national academy of
sciences, 36(1):48–49, 1950.

Nicolas Perez-Nieves, Yaodong Yang, Oliver Slumbers, David H Mguni, Ying Wen, and Jun Wang.
Modelling behavioural diversity for learning in open-ended games. In International conference on
machine learning, pp. 8514–8524. PMLR, 2021.

Ricky Sanjaya, Jun Wang, and Yaodong Yang. Measuring the non-transitivity in chess. Algorithms,
15(5):152, 2022.

Max Olan Smith, Thomas Anthony, and Michael P Wellman. Iterative empirical game solving via
single policy best response. arXiv preprint arXiv:2106.01901, 2021.

Oriol Vinyals, Igor Babuschkin, Wojciech M Czarnecki, Michaël Mathieu, Andrew Dudzik, Junyoung
Chung, David H Choi, Richard Powell, Timo Ewalds, Petko Georgiev, et al. Grandmaster level in
starcraft ii using multi-agent reinforcement learning. nature, 575(7782):350–354, 2019.

Bernhard Von Stengel. Computing equilibria for two-person games. Handbook of game theory with
economic applications, 3:1723–1759, 2002.

Xin Xu, Dewen Hu, and Xicheng Lu. Kernel-based least squares policy iteration for reinforcement
learning. IEEE transactions on neural networks, 18(4):973–992, 2007.

Jian Yao, Weiming Liu, Haobo Fu, Yaodong Yang, Stephen McAleer, Qiang Fu, and Wei Yang.
Policy space diversity for non-transitive games. In Advances in neural information processing
systems, pp. 67771–67793, 2023.

Zhi-Hua Zhou, Jianxin Wu, and Wei Tang. Ensembling neural networks: many could be better than
all. Artificial intelligence, 137(1-2):239–263, 2002.

A NOTATION

Notations are provided in Tab. 2.

Table 2: Notations
Notation Definition
G Symmetric zero-sum game with policy space S and payoff matrix U
S Set of pure strategies (deterministic actions)
U Payoff matrix satisfying U = −U⊤ (symmetric zero-sum)
π Individual pure strategy (π ∈ S)
πi Mixed strategy (probabilistic distribution over S, πi ∈ ∆(S))
u Mixed-strategy payoff: u(π1, π2) = π1Uπ⊤

2
(π∗

1 , π
∗
2) Nash Equilibrium strategy profile

E(π) Exploitability: deviation from Nash Equilibrium
Πt

i Policy population at iteration t: {π1
i , . . . , π

t
i}

M Meta-game payoff matrix for policy interactions
σi Meta-game Nash Equilibrium (mixed strategy over Πt

i, σi ∈ ∆(Πt
i))

πt+1
i New best-response strategy against σt

−i
H(Πi) Policy Hull: convex hull of Πi

sparsity(·, ·) Sparsity Metric: minimal squared distance to policy convex combinations
c Convex combination combination coefficients for sparsity
λ Hyperparameter for exploration-exploitation balance
µ Distance threshold in periodic update (add if ≥ µ to H(Πi))

11

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2026

B THEORETICAL ANALYSIS

B.1 PROOF OF THEOREM 4.1

Proof. 1. In multi-agent games, mixed strategies are probability distributions over a finite set of pure
strategies, forming a simplex ∆(S) ⊂ R|S|, which is compact (closed and bounded) in Euclidean
space. Let S = ∆(S) denote this compact policy space.

2. By the threshold condition, a strategy is added to Πt
i only if sparsity(πi,Π

t
i) > µ. This means

each newly added strategy πi lies outside the closed ball of radius
√
µ around the linear span of Πt

i,
ensuring geometric separation from existing strategies.

3. For any compact set S , the ϵ-packing number P (S, ϵ), the maximum number of points in S where
each pair is separated by at least ϵ, is finite for all ϵ > 0 (Anthony & Bartlett, 1999). Here, ϵ =

√
µ,

as each new strategy πi must satisfy ∥πi − Πt
i
⊤
c∥2 >

√
µ. Consequently, for any two policies

πk
i , π

m
i ∈ Πt

i: ∥πk
i − πm

i ∥2 >
√
µ, ensuring a minimum separation distance in the policy vector

space.

4. First, Π1
i is finite by definition. Second, suppose Πt

i is finite. When generating πt+1
i , it is added to

Πt
i only if it is

√
µ-separated from the span of Πt

i. Since S is compact, the packing number P (S,√µ)

is finite, bounding the number of such separable strategies. Thus, Πt+1
i remains finite. By induction,

Πt
i is finite for all t, and the policy population never grows exponentially.

B.2 PROOF OF THEOREM 4.3

Proof. 1. By Theorem 3.1, the sparsification rule ensures any two strategies in Πt
i have a minimum

separation of
√
µ. Since the policy space is a compact subset of a finite-dimensional normed vector

space, the size of Πt
i is bounded by the finite packing number, guaranteeing Πt

i remains finite for all t.

2. Suppose PE(Πt) > 0. There exists a best response π∗
i = BR(σt

−i) not in H(Πt
i) (otherwise

PE(Πt) = 0, contradicting the assumption). Since π∗
i /∈ H(Πt

i), its sparsity sparsity(π∗
i ,Π

t
i) > 0,

and its utility u(π∗
i , σ

t
−i) exceeds that of any strategy in H(Πt

i). For any strategy πi ∈ H(Πt
i), its

sparsity sparsity(πi,Π
t
i) = 0, so its optimization objective value is u(πi, σ

t
−i). In contrast, π∗

i ’s
objective value is u(π∗

i , σ
t
−i) + λ · (> 0), which is strictly larger than that of πi. Since πt+1

i is
the optimal solution of this objective, it cannot lie in H(Πt

i), so H(Πt
i) ⊊ H(Πt+1

i) (PH is strictly
expanded).

3. Since the game is a symmetric zero-sum game, player −i follows the same update logic as
player i: if PE(Πt) > 0, its best response π∗

−i /∈ H(Πt
−i), and the regularization-constrained optimal

strategy πt+1
−i also lies outside H(Πt

−i), leading to H(Πt
−i) ⊊ H(Πt+1

−i). According to the theoretical
property of Policy Hull, expanding PH reduces population exploitability; thus, PE(Πt) > PE(Πt+1).
Since PH expands strictly for both players, PE decreases monotonically:

PE(Π1) > PE(Π2) > · · · > PE(Πt) ≥ 0

4. By monotonicity and boundedness (PE ≥ 0), PE converges to a limit PE∗ ≥ 0. Assume for con-
tradiction that PE∗ > 0; then the global NE σ∗ is not in H(Πt

i)×H(Πt
−i) for any t. By Assumption

4.2, the threshold µ is sufficiently small to retain strategies critical for PH expansion, ensuring no key
strategies for covering σ∗ are erroneously discarded. Given the finite policy population and strict PH
expansion, σ∗ must eventually lie in H(Πt

i)×H(Πt
−i), contradicting PE∗ > 0.

Thus, PE∗ = 0, and the policy population contains a global NE.

C ALGORITHM FOR TWO ABLATION VARIANTS

C.1 SPARSIFICATION-PSRO

Pseudo-code of Sparsification-PSRO is given in Algorithm 2. Sparsification-PSRO removes the
convex combination residual constraint, retaining only the best-response optimization objective to
isolate the effect of sparsity regularization.

12

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2026

Algorithm 2 Sparsification-PSRO
Input Initial policy populations Π1

i ,Π
1
−i

1: Compute payoff matrix MΠ1
i ,Π

1
−i

2: Initialize meta policies σ1
i ∼ UNIFORM(Π1

i)
3: for t = 1, 2, . . . do
4: for player i ∈ {1, 2} do
5: Initialize πi = πt

i

6: Sample K policies {πk
i }Kk=1 from Policy Hull Πt

i
7: for many episodes do
8: Sample π−i ∼ σt

−i ▷ Sample opponent policy from meta-policy distribution
9: Update πi over BR(σt

−i) ▷ Update policy via standard best-response optimization
10: end for
11: πt+1

i = πi

12: if sparsity(πi,Π
t
i) > µ then ▷ Threshold-controlled policy admission

13: Πt+1
i = Πt

i ∪ {πi} ▷ Admit only geometrically distinct policies to population
14: end if
15: end for
16: Compute missing entries in MΠt

i,Π
t
−i

17: Compute meta-strategies (σt+1
i , σt+1

−i) from MΠt
i,Π

t
−i

18: end for
Output current meta-strategy for each player.

C.2 SPARSITY-PSRO

Algorithm 3 Sparsity-PSRO
Input Initial policy populations Π1

i ,Π
1
−i

1: Compute payoff matrix MΠ1
i ,Π

1
−i

2: Initialize meta policies σ1
i ∼ UNIFORM(Π1

i)
3: for t = 1, 2, . . . do
4: for player i ∈ {1, 2} do
5: Initialize πi = πt

i

6: Sample K policies {πk
i }Kk=1 from Policy Hull Πt

i
7: for many episodes do
8: Sample π−i ∼ σt

−i ▷ Sample opponent policy from meta-policy distribution
9: Update πi over Eq. 7 ▷ Apply sparsity-regularized best-response optimization

10: end for
11: πt+1

i = πi

12: Πt+1
i = Πt

i ∪ {πi} ▷ Expand policy population without screening
13: end for
14: Compute missing entries in MΠt

i,Π
t
−i

15: Compute meta-strategies (σt+1
i , σt+1

−i) from MΠt
i,Π

t
−i

16: end for
Output current meta-strategy for each player.

Pseudo-code of Sparsity-PSRO is given in Algorithm 3. Sparsity-PSRO replaces the threshold-
controlled phase with a continuous dense exploration mode to verify the role of the strategy addition
rule in exploration-exploitation balance.

D EXPERIMENT DETAILS

D.1 EXPERIMENTAL ENVIRONMENTS

The detailed description of each experimental environment is as follows:

13

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2026

• Random Game of Skills (RGoS): A synthetic environment with configurable strategy
interactions, enabling controlled validation of exploration dynamics.

• AlphaStar: A high-complexity StarCraft II meta-game, challenging the algorithm in real-
world, high-dimensional policy spaces.

• Blotto: A continuous-space resource allocation game, demanding efficient exploration-
exploitation balance.

• Kuhn Poker: An incomplete-information card game, evaluating robustness under uncertainty
and partial observability.

More experimental results are presented in Fig. 5 and Fig. 6, where Sparse PSRO exhibits consistent
superiority across all extended environments.

D.2 EXPERIMENTAL SETUP

All experiments follow a unified evaluation framework to ensure result comparability and conclusion
reliability. All experimental results are based on the mean ± standard deviation of 10 independent
runs with random seeds to ensure statistical reliability. Error bars in the figures uniformly represent
one standard deviation from the mean. Experiments are run on a personal computer with a 16-core
CPU and 16GB of memory. Each single experimental run for each environment takes 4–6 hours to
complete. Through systematic hyperparameter tuning, this study determined that the sparsity weight
λ = 0.1 and the distance threshold µ = 0.02. Relevant code and configuration files will be publicly
released alongside the paper to ensure reproducibility.

14

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2026

0 100 200
Iterations

10 1

100

Ex
pl

oi
ta

bi
lit

y

5,3-Blotto

0 100 200
Iterations

10 1

100

Ex
pl

oi
ta

bi
lit

y

5,4-Blotto

0 100 200
Iterations

10 2

10 1

Ex
pl

oi
ta

bi
lit

y

5,5-Blotto

0 100 200
Iterations

10 1

100

Ex
pl

oi
ta

bi
lit

y

10,3-Blotto

0 100 200
Iterations

10 1

100

Ex
pl

oi
ta

bi
lit

y

10,4-Blotto

0 100 200
Iterations

10 3

10 2

10 1

100

Ex
pl

oi
ta

bi
lit

y

3-move parity game 2

0 100 200
Iterations

10 1

100
Ex

pl
oi

ta
bi

lit
y

connect_four

0 100 200
Iterations

10 1

100

Ex
pl

oi
ta

bi
lit

y

go(board_size=3,komi=6.5)

0 100 200
Iterations

10 1

100

Ex
pl

oi
ta

bi
lit

y

go(board_size=4,komi=6.5)

0 100 200
Iterations

10 1

100

Ex
pl

oi
ta

bi
lit

y

hex(board_size=3)

0 100 200
Iterations

10 3

10 2

10 1

100

Ex
pl

oi
ta

bi
lit

y

misere(game=tic_tac_toe())

0 100 200
Iterations

10 3

10 2

10 1

100

Ex
pl

oi
ta

bi
lit

y
quoridor(board_size=3)

0 100 200
Iterations

10 2

10 1

100

Ex
pl

oi
ta

bi
lit

y

quoridor(board_size=4)

0 100 200
Iterations

10 1

100

Ex
pl

oi
ta

bi
lit

y

RPS

0 100 200
Iterations

10 2

10 1

100

Ex
pl

oi
ta

bi
lit

y

tic_tac_toe

0 100 200
Iterations

10 3

10 2

10 1

100

Ex
pl

oi
ta

bi
lit

y

Triangular game

PSRO Pipeline PSRO PSRO-rN DPP-PSRO BD&RD-PSRO PSD-PSRO Sparse-PSRO(ours)

Figure 5: Comparison of exploitability across more environments

15

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2026

0 100 200
Iterations

10 4

10 3

10 2

10 1

100

Po
pu

la
tio

n
Ex

pl
oi

ta
bi

lit
y

5,3-Blotto

0 100 200
Iterations

10 3

10 2

10 1

Po
pu

la
tio

n
Ex

pl
oi

ta
bi

lit
y

5,4-Blotto

0 100 200
Iterations

10 3

10 2

10 1

Po
pu

la
tio

n
Ex

pl
oi

ta
bi

lit
y

5,5-Blotto

0 100 200
Iterations

10 3

10 2

10 1

100

Po
pu

la
tio

n
Ex

pl
oi

ta
bi

lit
y

10,3-Blotto

0 100 200
Iterations

10 3

10 2

10 1

Po
pu

la
tio

n
Ex

pl
oi

ta
bi

lit
y

10,4-Blotto

0 100 200
Iterations

10 4

10 3

10 2

10 1

100

Po
pu

la
tio

n
Ex

pl
oi

ta
bi

lit
y

3-move parity game 2

0 100 200
Iterations

10 3

10 2

10 1

100

Po
pu

la
tio

n
Ex

pl
oi

ta
bi

lit
y

connect_four

0 100 200
Iterations

10 3

10 2

10 1

100

Po
pu

la
tio

n
Ex

pl
oi

ta
bi

lit
y

go(board_size=3,komi=6.5)

0 100 200
Iterations

10 3

10 2

10 1

100

Po
pu

la
tio

n
Ex

pl
oi

ta
bi

lit
y

go(board_size=4,komi=6.5)

0 100 200
Iterations

10 3

10 2

10 1

100

Po
pu

la
tio

n
Ex

pl
oi

ta
bi

lit
y

hex(board_size=3)

0 100 200
Iterations

10 4

10 3

10 2

10 1

100

Po
pu

la
tio

n
Ex

pl
oi

ta
bi

lit
y

misere(game=tic_tac_toe())

0 100 200
Iterations

10 3

10 2

10 1

100

Po
pu

la
tio

n
Ex

pl
oi

ta
bi

lit
y

quoridor(board_size=3)

0 100 200
Iterations

10 3

10 2

10 1

100

Po
pu

la
tio

n
Ex

pl
oi

ta
bi

lit
y

quoridor(board_size=4)

0 100 200
Iterations

10 5

10 4

10 3

10 2

10 1

100

Po
pu

la
tio

n
Ex

pl
oi

ta
bi

lit
y

RPS

0 100 200
Iterations

10 3

10 2

10 1

100

Po
pu

la
tio

n
Ex

pl
oi

ta
bi

lit
y

tic_tac_toe

0 100 200
Iterations

10 4

10 3

10 2

10 1

100

Po
pu

la
tio

n
Ex

pl
oi

ta
bi

lit
y

Triangular game

PSRO Pipeline PSRO PSRO-rN DPP-PSRO BD&RD-PSRO PSD-PSRO Sparse-PSRO(ours)

Figure 6: Comparison of population exploitability across more environments

16

	Introduction
	Related Work
	Preliminaries
	Symmetric Zero-Sum Games, NE, and Exploitability
	Policy Space Response Oracle Framework

	Sparse PSRO
	Policy generation
	Policy Space Sparsification
	Overall learning procedure
	Discussion

	Experiment
	Comparative Results
	Ablation Results

	Conclusion
	Notation
	Theoretical Analysis
	Proof of Theorem 4.1
	Proof of Theorem 4.3

	Algorithm for two ablation variants
	Sparsification-PSRO
	Sparsity-PSRO

	Experiment Details
	Experimental Environments
	Experimental Setup

