
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2025

MOIN: MIXTURE OF INTROVERT EXPERTS TO
UPCYCLE AN LLM

Anonymous authors
Paper under double-blind review

ABSTRACT

The goal of this paper is to improve (upcycle) an existing large language model
without the prohibitive requirements of continued pre-training of the full-model.
The idea is to split the pre-training data into semantically relevant groups and train
an expert on each subset. An expert takes the form of a lightweight adapter added
on the top of a frozen base model. During inference, an incoming query is first
routed to the most relevant expert which is then loaded onto the base model for the
forward pass. Unlike typical Mixture of Experts (MoE) models, the experts in our
method do not work with other experts for a single query. Hence, we dub them “in-
trovert” experts. Freezing the base model and keeping the experts as lightweight
adapters allows extreme parallelism during training and inference. Training of
all experts can be done in parallel without any communication channels between
them. Similarly, the inference can also be heavily parallelized by distributing
experts on different GPUs and routing each request to the GPU containing its rel-
evant expert. We implement a proof-of-concept version of this method and show
the validity of our approach.

1 INTRODUCTION

As language models continue to grow in size, it is important to consider whether all parameters are
necessary for every request. For instance, the same parameters might not be ideal for answering
questions about SQL compared to those about car seats. Approaches like fine-tuning, early exit,
and mixture of experts (MoE) have been proposed to address this issue, each with its own trade-
offs. Fine-tuning requires meticulous data curation and optimization, while early exit and MoE add
complexity to the model’s forward pass, posing engineering challenges. Most relevant to our work
is the Mixture of Experts (MoE) approach, popularized by the Mixtral 8x7B model (Jiang et al.,
2024). Existing experts operate at the token level and not sequence level, thus lacking specialization
in specific domains 1 (Jiang et al., 2024). Additionally, since routing varies by token, all experts
must reside in GPU memory during both training and inference, making it difficult to scale to a large
number of experts. To address these limitations, we focus on the concept of query-level or sequence-
level experts, where each query is routed to a single expert. This design minimizes communication
between experts, which can be distributed across different GPU nodes. We term these “introvert”
experts due to their reduced interaction with one another.

Implementing sequence-level experts offers several practical advantages. It creates a modular ar-
chitecture where a single generalist base model is complemented by multiple small experts that
specialize in niche topics. While fine-tuning shares a similar motivation, the number of experts
is often constrained by the need for curated datasets. In contrast, because the experts operate on
independent domains, they can be trained in parallel, enhancing flexibility in resource utilization.
Moreover, these experts can be retrained as data evolves, allowing for the easy integration of new
experts as fresh data becomes available. This capability positions LLMs as continual learners with
minimal risk of forgetting prior knowledge.

We present an intuitive and straightforward proof-of-concept for creating such experts. Given the
high cost of pre-training, we focus on model upcycling, transforming an existing dense model into
a variant of mixture of experts by introducing new parameters and additional training. We begin

1https://mixtral-moe-vis-d726c4a10ef5.herokuapp.com

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2025

with a partially trained dense model, freeze its parameters, and train new experts on top of it. We
believe any LLM adapter module can serve as an expert; however, we utilize the popular LoRA
adapter (Hu et al., 2022) in our experiments. To train an expert, we cluster pre-training data points
into semantically relevant groups. During inference, a query is routed to its most relevant cluster,
and the corresponding adapter is employed in the forward pass. We utilize a dataset containing 500
billion tokens and experiment with 500 and 5, 000 expert LoRA adapters.

The main advantage of our method is that the training time resource requirements are greatly reduced
compared to dense model training. The resource savings happen on two fronts: First, GPU memory
needed to train each expert is reduced since the base model is frozen and only LoRA weights are
trained (≈ 10% of the model weights). Second, there’s no need to have a fast network channel
between two expert training runs since the experts are independent of each other. In extreme, all
experts can be trained in the time it takes to train the expert with the largest training data subset.
Then, we can use many affordable GPUs instead of a few expensive ones. It is also possible to
train the experts on GPUs of different architectures and speeds based on availability and price. Full-
model training speed is dictated by the speed of the slowest GPU and is thus less efficient than our
approach.

Given the large number of adapters generated by our method, efficiently serving them can be a prob-
lem. However, there are open source libraries like LoRAX 2 based on Punica kernels (Chen et al.,
2024) that reduce the amortized cost of running multiple adapters in a single batch. A downside
of our approach is the linear increase in the storage memory with increase in the number of top-
ics. However, this can be mitigated when the framework is scaled to simultaneously serve a large
number of users. Further, it is possible to cache the most frequently routed adapters on the GPU
memory, thereby eliminating the latency of moving them from CPU memory to GPU memory. It is
also worth noting that the bandwidth between CPU memory and GPU memory is improving each
day with newer GH200 chips supporting speeds of up to 900 GB/s 3. This makes the CPU memory
to GPU memory latency hit significantly less.

To summarize, our contributions are as follows. First, we propose framework called mixture of
introverts for efficiently training and serving sequence level experts. Second, as a proof-of-concept,
we apply our idea to the task of upcycling an LLM and show that our model is comparable in
perplexity to a baseline model that is trained on 500B more tokens than our method.

2 RELATED WORKS

Mixture of Experts. Instead of activating all parameters for all inputs, conditional computing aims
to activate only a subset of the parameters for each input (Jacobs et al., 1991; Bengio et al., 2013;
Bengio, 2013). The goal is to increase the capacity of a model without increasing the compute of the
model (Cho & Bengio, 2014). However, the idea didn’t become widely known until the introduction
of Mixture-of-Experts layer (Shazeer et al., 2017). This layer was used in training the Mixtral 8x7B
model (Jiang et al., 2024) that further popularized this approach. Other variations of the MoE layer
include (Lample et al., 2019; He, 2024; Rajbhandari et al., 2022; Dai et al., 2024). However, since
the MoE creates experts in the MLP block of the transformer architecture, experts are created token-
wise. When the model size increases and all experts cannot reside on a single GPU, complicated
multi-GPU setups involving scatter and gather operations are needed at each MoE layer. Hence,
this paper explores sequence-wise conditional computation / experts. This has the advantage of only
needing to load weights relevant to a given query in the GPU while rest of the weights can reside in
CPU RAM or even hard disk, significantly simplifying the architecture design and implementation.

The goal of this paper is to create topic-wise experts. Conversely, it is possible to identify parts of a
dense model that only activate for certain topics. Essentially, discover instead of train experts. This
was studied in (Dai et al., 2021).

LoRAs for efficient distributed training of LLMs. Recent works (Huh et al., 2024b; Lialin et al.,
2024; Zhao et al., 2024) have shown the potential for a branch-train-merge distributed algorithm
where low rank adapter parameters are branched, trained and then merged back into the base model

2https://github.com/predibase/lorax
3https://resources.nvidia.com/en-us-data-center-overview-mc/en-us-data-center-overview/grace-hopper-

superchip-datasheet-partner

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2025

Topic 1 Topic 2

Topic 3Topic 4

Base
LLM

Topic 1 Expert 1

Base
LLM

Topic 2 Expert 2

Base
LLM

Topic 3 Expert 3

Base
LLM

Topic 4 Expert 4

K-Means

Pre-training Data

Base
LLM

Expert 2

b. Expert Training c. Test Time Expert Routing

d. Inference With Routed Expert

Request

a. Topic-Wise
Clustering

Request Result

LM
Loss

LM
Loss

LM
Loss

LM
Loss

Cluster
Center 1

Cluster
Center 3

Cluster
Center 2

Cluster
Center 4

Nearest
Neighbor

Emb
LM

Figure 1: Training and Inference with Topic-wise Experts. Expert training involves two steps: (a)
clustering the training data into semantically related subsets and (b) parallelly training a topic-wise
expert model on each data subset. (c) At inference, the entire query is routed to the most appropriate
expert using a simple nearest-neighbor search. (d) The expert is then loaded alongside the base
model and the request is forwarded through the model.

weights. This reduces the number of parameters being trained which frees up GPU memory for a
higher batch size resulting in better hardware utilization (Lialin et al., 2024). Another recent work
(Zhao et al., 2024) uses low rank gradient projections to design a better optimizer. Similar to these
works, our motivation is to reduce the cost of training a model, but we focus on upcycling where
a pre-trained LLM is available. This allows us to completely parallelize the training without any
communication between experts.

LoRA based multi-task learning. LoRA adapters have seen growing applications in the are of
multi-task learning, owing to their lightweight nature. PEER (Parameter Efficient Expert Retrieval)
(He, 2024) introduced LoRA based expert layer for augmenting/replacing feed forward layers.
PaLoRA (Dimitriadis et al., 2024) uses task-specific low rank adapters for multi-objective opti-
mization problems. LoRA the Explorer introduced in (Huh et al., 2024a) trained a neural network
from scratch using averaged gradients from parallel LoRAs.

Continual learning. Since state of available information and human knowledge is dynamic, it is
necessary to keep the LLMs up to date with these changes. This was investigated in (Jang et al.,
2022). Hence, the aim of continual learning is to adapt the model to updated data without forgetting
the previous knowledge (catastrophic forgetting) (Kirkpatrick et al., 2017). Since LLMs are sup-
posed to operate across various domains, there is a need to improve specialized knowledge on new
tasks without reducing significant performance on previously learned domains and tasks. On this
end, (Ke et al., 2023) introduced DAS (Continual DA-pre-training of LMs with Soft-masking). (Jang
et al., 2021) introduced continual knowledge learning, a method for updating temporal knowledge
in LLMs, reducing forgetting while acquiring new information.

3 METHOD

Our key idea is to improve a (partially) pre-trained LLM by training topic-wise expert models atop
it and dynamically routing the queries to the appropriate expert during inference. See Figure 1 for
an illustration of the steps involved in our method.

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2025

3.1 TOPIC MODELING

In order to train the topic-wise experts, we need a dataset with topic annotations. For broad coverage
of topics, we focus on using large-scale datasets typically used in LLM pre-training. Since these are
usually web-scale text datasets without any topic annotations, we need to perform topic modeling
before training the expert models.

Here, we consider two approaches for topic modeling. In both approaches, all documents in the
training dataset are converted to embeddings using a pretrained sentence embedding model. In the
first method, we employ UMAP (McInnes et al., 2018) to reduce the dimensionality of the document
embedding and then perform clustering in the lower dimension space using HDBSCAN (McInnes
et al., 2017). Topic-wise embeddings are then obtained by analysing the document belonging to
each cluster. The topic embeddings are needed to route the queries to corresponding topics during
inference. We employ this topic modeling approach in our model termed MoIN-500 where we split
the dataset into 500 topics. We find that it is difficult to scale this approach to thousands of topics
with limited resources. Thus, we consider a simpler alternative. In the second approach, we perform
a simple K-means clustering directly in the document embedding space to generate cluster index for
each training document and ‘k’ cluster centers as topic embeddings.

3.2 TRAINING OF TOPIC-WISE EXPERT MODELS

Given a set of topics, we train an expert model for each topic atop our base pretrained model.
Since the number of models scales linearly with the number of topics, we need the number of train-
able parameters in the expert models to be relatively small compared to the base model. Recently,
parameter-efficient approaches (Hu et al., 2022; Koohpayegani et al.; Liu et al., 2024) have been
very popular for model fine-tuning. Here, we consider them for the upcycling task. Specifically, we
use LoRA (Hu et al., 2022) architecture for the experts. In LoRA, the base model is frozen and a
few additional parameters are introduced for each linear layer in the network. The output of a linear
layer is modified to be y = Wx +Wb(Wax) where W ∈ Rk×d is the original weight matrix, x is
the input vector, d is the dimensionality of input, k is the dimensionality of output, and Wb ∈ Rk×r

and Wa ∈ Rr×d are the trainable parameters. Wb and Wa are designed to be low rank matrices,
i.e., r ≪ min(d, k), thus reducing the number of newly added parameters. For every topic in the
training dataset, we train an expert LoRA adapter using the documents assigned to the topic. Unlike
typical LoRA fine-tuning on task-specific loss, the LoRA models here are trained using the stan-
dard autoreggressive language modeling loss (Radford, 2018) on subsets of the pretraining data. For
each expert training run, only the weights of the expert are trained while the base model weights
remain frozen. The key advantage over a standard pretraining is that all the experts can be trained
independently, allowing for a great flexibility in the resources used for training.

3.3 MODEL INFERENCE

Once all experts have been trained, our setup consists of a large number of experts that must be
served efficiently during inference. For each inference request, we need to find a topic-wise expert
that can best serve it, and use the corresponding adapter during the forward pass through the model.
We perform this ‘query routing’ in the following two steps: first, we embed the query using the same
embedding model used to cluster the training dataset. Second, we perform nearest neighbor search
over the topic embeddings using the query embedding. Since this routing step is an overhead specific
to our method, the router model should be small enough to keep the inference latency feasible. To
achieve this, we use a small document embedding model with just 20M parameters. Given the
small size, it may be possible to host it without GPUs or to perform routing entirely on the client
side. However, while the small size of the model helps reduce router latency it can also reduce the
quality of the topic clustering. Router latency vs. clustering accuracy is an inherent trade-off in this
method. In our current implementation, we choose faster inference over a more complex but better
topic modeling.

4 EXPERIMENTS

Implementation details: For topic modeling, we use a small language model
all-MiniLM-L6-v2 with 20M parameters as the embedding model. We use two variants

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2025

of our method - a large scale experiment termed MoIN-5k with K-means based topic modeling and
a smaller scale one termed MoIN-500 with HDBSCAN based modeling. In K-Means clustering to
generate the topics, the number of clusters k is set to 5000. Since some of the cluster sizes were
extremely small, we retained only 4697 of the 5000 clusters and trained a LoRA for each of those
4697 topics. In MoIN-500 , the number of clusters is set to 500. Of them, we retain 387 experts and
discard the rest since their training data is limited.

For LoRA training, we use the open-sourced TinyLlama (Zhang et al., 2024) model as the base
network. TinyLlama uses the same architecture and tokenizer as Llama-2 (Touvron et al., 2023)
but with a smaller parameter count of 1.1B. The model is trained for 3T tokens in total and
additional intermediate checkpoints are open-sourced. To facilitate easier comparison with suitable
baselines, we use the intermediate checkpoint of TinyLlama trained for two trillion tokens as the
base model. The LoRA training follows the recipe from LitGPT (AI, 2023) and uses the official
code from TinyLlama 4. We use a single rank of 128 (token dim d is 2048) for all the LoRAs and
optimize them for one epoch on their corresponding topic data subsets. Following LitGPT, we use
AdamW (Loshchilov & Hutter, 2019) optimizer and set β1 = 0.9 and β2 = 0.95. The learning
rate is controlled using a cosine scheduler with a maximum lr of 4 × 10−4 and a minimum lr of
4 × 10−5. An effective batch size of 576 is used in optimizing all LoRAs. MoIN-5k is trained for
500B tokens in total while MoIN-500 is trained on just 50B tokens. Due to resource constraints, we
limit the experiments to train just two sets of experts. These experiments serve as proof-of-concept
of our approach. To perform the LoRA training, we use either Nvidia RTX-6000 or RTX-3090
GPUs with 48GB and 24GB memory respectively. This is an advantage of our method compared
to other pretraining methods that we can use a mixture of different types of GPUs (whatever is
available in our GPU cluster) since the LoRA training jobs are independent of each other.

Datasets: TinyLlama (Zhang et al., 2024) uses SlimPajama (Soboleva et al., 2023) and Star-
Coder (Li et al., 2023) datasets for model pretraining. Even though we employ LoRA, our goal
is to have a model that generalizes well on any downstream application. Thus we use the pretraining
datasets for our LoRA/expert training. We use only the SlimPajama dataset for our LoRA training.
It is a deduplicated and cleaned version of RedPajama dataset and contains 627B tokens. Following
TinyLlama, we exclude the GitHub subset from the dataset. To enable comparison with TinyLlama
models, we use approximately 500B tokens for training and the rest of the dataset for validation.
Additionally, we perform a smaller scale experiment with a training set of just 50B tokens sampled
randomly from the dataset.

Evaluation: We conduct downstream evaluation using the lm-eval-harness Gao et al. (2024)
code and use six benchmark datasets for commonsense reasoning. The datasets include Hel-
laSwag (Zellers et al., 2019), PIQA (Bisk et al., 2020), WinoGrande (Sakaguchi et al., 2021),
OpenBookQA (Mihaylov et al., 2018), AI2 ARC easy and challenge (Clark et al., 2018) and
BoolQ (Clark et al., 2019). We perform zero-shot evaluation on all downstream tasks.

Baselines: We primarily compare with different intermediate training checkpoints of the TinyLlama
model. The TinyLlama model trained for 2T tokens (denoted as TinyLlama-2T in tables) is used
as the frozen base model on top of which we train the LoRAs. Since we use nearly 500B tokens
for training, our main comparison point is the TinyLlama model trained with equivalent number
of tokens, that is, the 2.5T checkpoint. We also provide comparison with the final checkpoint of
TinyLlama trained for 3T tokens.

4.1 RESULTS

Pretraining: Table 1 reports the perplexity of the baselines and MoIN-5k on the SlimPajama vali-
dation set. For evaluating MoIN-5k model, we first determine the topic for each document using our
K-means based topic model and use the corresponding LoRA for perplexity calculation. MoIN-5k
not only outperforms the equivalent TinyLlama-2.5T but also achieves comparable performance to
TinyLlama-3T which is trained with 500B more tokens. Figure 2 depicts the perplexity for each
LoRA model. Most of the models perform well with a perplexity lower than 10. For the underper-

4https://github.com/jzhang38/TinyLlama

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2025

Table 1: Model perplexity on SlimPajama dataset. We calculate the perplexity of the baseline
and our LoRA based models on the validation set of SlimPajama dataset. As expected, higher
amounts of training results in lower perplexity for the baseline methods. MoIN-5k trained on 2.5T
tokens outperforms the corresponding baseline and is comparable to the model trained on 3T tokens.

Model Perplexity Training Tokens

TinyLlama-2T 9.209 2.0T
TinyLlama-2.5T 8.260 2.5T
TinyLlama-3T 8.137 3.0T
MoIN-5k 8.167 2.5T

Table 2: Model performance on downstream tasks. We perform zero-shot evaluation on
seven benchmark datasets. MoIN-5k performs comparably to TinyLlama-2.5T and marginally
outperforms it on average. Surprisingly, we observe that the baseline trained on 2.5T performs
better than the one trained on 3T tokens on most datasets.

Model Train Tokens HellaSwag OBQA WinoGrande ARC C ARC E BoolQ PIQA Avg

TinyLlama-2T 2.0T 54.63 21.4 56.83 28.07 54.67 63.21 70.67 49.93
TinyLlama-2.5T + 0.5T 58.96 24.2 58.72 31.91 56.77 63.21 73.06 52.40
TinyLlama-3T + 1.0T 59.20 21.8 59.12 30.12 55.34 57.83 73.29 50.96
MoIN-500 + 0.05T 56.07 24.8 58.48 28.84 54.80 62.78 72.03 51.12
MoIN-5k + 0.5T 58.13 25.4 58.48 31.57 58.37 63.00 72.25 52.45
MoIN-4697 + 0.5T 58.14 25.2 58.64 31.91 58.42 62.84 71.87 52.43

forming ones, it is possible to improve them by training them more and with additional data. Since
all the LoRAs are trained and used independently, the performance of one will not affect the others.

Downstream tasks: Similar to perplexity evaluation, we first determine the topic for each document
using our K-means based topic model and use the corresponding LoRA for calculating metrics for
MoIN-5k . In MoIN-5k , if the LoRA model is absent for a given topic, just the base model is used.
However, in MoIN-4697 , the query is always routed to one of the trained 4697 LoRA models and
the baseline alone is not used for any of the queries. The performance of MoIN-5k is comparable to
that of TinyLlama-2.5T on nearly all the downstream tasks with MoIN-5k being marginally better
on average. Surprisingly, TinyLlama-2.5T is better than TinyLlama-3T on five of the seven tasks.

For any given dataset, not all the LoRAs necessarily participate in the evaluation process. This is
particularly true for datasets with very few total queries or for those focussed on a narrow set of
topics. Table 3 shows the number of unique LoRAs used in the evaluation for each downstream
task. We observe that usually only about 10% of the LoRAs are used for a single task.

Table 3: Number of unique LoRAs used in downstream tasks. For evaluation on downstream
tasks, each input query is routed to one of the LoRAs and the accuracy of the corresponding output
is calculated. For a given dataset, not all the LoRAs necessarily participate. This is particularly true
for datasets with very few total queries. We observe that usually only about 10% of the LoRAs are
used for the given task.

HellaSwag OBQA WinoGrande ARC C ARC E BoolQ PIQA

Queries 40145 2000 2534 4687 9496 6540 3676
Unique Loras 1877 403 562 459 583 1235 692

Topic modeling: We explore two methods for topic modeling - one with 500 topics and the other
with 5000 topics. For the smaller variant, we use HDBSCAN to cluster the topics and generate topic
embedding by utilizing the documents belonging to each cluster. For the larger variant, we use a
simple K-means clustering of all documents and use the cluster centroid as the topic embedding.
For both methods, a nearest neighbour search is performed using the query and topic embeddings to

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2025

Figure 2: LoRA-wise perplexity. Sorted per-
plexity values of all our trained LoRAs. Un-
derperforming models can be easily identified
and further trained for more iterations or with
more data if available without affecting the per-
formance of the well-performing ones.

Figure 3: Number of training documents per
topic. We report the number of documents
in the training set of each topic. While there
are some outliers with extremely high or low
amounts of training data, most topics contain
more than 5000 documents.

Table 4: Text representations of most frequent topics. In topic-modeling, we cluster the input
documents into a number of topics. Here, we provide topic-wise keywords chosen using class based
TF-IDF scores for the 15 most frequent topics in the training data. Topics are sorted by their size in
descending order. Each cluster seems to be focused on a specific subject and there is diversity in the
subject area across clusters.

Topic Rank Topic Keywords

1 art, museum, artist, artists
2 orchestra, piano, music, symphony
3 news, media, journalism, journalists
4 sports, soccer, football, sport
5 community, foundation, charity, volunteer
6 food, foods, nutrition, hunger
7 stock, shares, market, company
8 marketing, content, brand, digital
9 tax, income, taxes, irs

10 students, university, student, college
11 fashion, dress, shirt, wear
12 nuclear, radiation, reactor, weapons
13 music, musical, jazz, musicians
14 venezuela, maduro, venezuelan, brazil
15 sustainability, sustainable, environmental, green

determine the LoRA to be used at inference. While we provide results with both these approaches
in Table 2, note that they are not directly comparable since the number of training tokens are not
the same. Tables 4 and 5 present qualitative results on topic modeling. In Table 4, we show the
text representations of the ten topics with highest amount of training data. The topic-wise keywords
are obtained using class based TF-IDF values of the terms in the topic training data. Highly related
keywords within each topic and diverse keywords across topics suggest that the topic modeling is
good.

Figure 3 shows the number of training documents per topic for MoIN-5k . We observe that the
amount of training tokens is fairly uniform across topics. The topics with very little training data
are discarded. It is possible to adapt the number of trainable parameters in the expert (e.g., rank of
LoRA) based on the amount of training data for the corresponding topic.

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2025

In Table 5, we show sample queries from downstream datasets and the keywords of the topic cor-
responding to the LoRA selected for the input prompt. We observe that the selected topic is highly
relevant to the input for the majority of queries. This demonstrates the effectiveness of our topic
modeling and routing mechanisms. The last two rows show examples where the routing mechanism
failed and an irrelevant LoRA was chosen.

Table 5: Topic routing for sample queries. We provide sample queries from downstream datasets
and the keywords of the topic corresponding to the LoRA selected for the input prompt. We observe
that the selected topic is highly related to the input for a majority of the queries. The last two rows
show examples where the routing mechanism failed and an irrelevant LoRA was chosen.

Query Prompt Chosen topic
keywords

A construction group wants to put a shopping center in town, but
the only place available is a small nature park with a trail. Deer
and other wildlife frequent the park...

playground, parks, pic-
nic, park, recreation

A pot of pasta is boiling on the stove, and the lid on top of the pot
is shaking as the water boils more rapidly. A person goes to the
stove and removes the pot, releasing steam into the air above, and
so the steam is boiling...

pasta, spaghetti, sauce,
lasagna, parmesan

Personal Care and Style: How to make jewelry cleaner. Select
a mild cleaning agent for your homemade jewelry cleaner recipe.
Dish soap with grease-cutting properties can be used, but skip dish
soap with harsh anti-bacterial properties as this can strip the finish
off jewelry surfaces...

grout, stains, stain,
vinegar, bleach

Neils cat was terrified of thunderstorms but Kyles wasnt bothered
by them. Kyle found their cat hiding under the bed after the loud
crackle of thunder...

kelsie, cat, yonan, cats,
wittle

Question: Ethanol is a type of alcohol made from plants. Sugar-
cane and corn, which are both used in foods such as cereals and
breads, are used to make ethanol. Burning ethanol provides a clean
source of energy because the products of ethanol are water and...

ethanol, biodiesel, bio-
fuels, biofuel, biomass

Hank was eating cereal and spilt milk on his hot pants and decided
to get his pleated pants. He needed to change into new leggings
because the pleated pants are clean

kaid, kusac, heyes, li-
jou, rhyaz

Question: The instructions below outline the procedure for a
demonstration. Materials: four 100 g metal blocks, each of a dif-
ferent metal four polystyrene foam cups, each containing 150 g of
10°C water Procedure: 1. Place the four cups of...

facetentailment,
facetid, studentanswer,
wa 30b f5, wa 30b f1

5 FUTURE WORKS

The idea of using adapters as experts during pre-training can unlock many new features. While we
could only explore this idea in the context of upcycling a model, following are few exciting future
directions worth exploring.

Dynamic parameter count allocation per topic. Number of training tokens per topic can differ and
it may be beneficial to have larger adapters for bigger topics. Hence, LoRA adapters with adaptive
rank can be explored to both reduce the total model size and prevent under/overfitting.

Adapter augmented generation. Our method shares similarities with retrieval augmented gener-
ation (RAG). While RAG retrieves most relevant raw text for a given query, our method retrieves
the most relevant adapter. Adapters can be used to memorize and compress the information from
several relevant documents. This can make the system more tolerant to errors in retrieval as the
adapter stores much more information than raw text.

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2025

Continual/Incremental learning. Having adapters specialize in different topics makes LLMs mod-
ular. This implies that when the underlying data changes, only the adapter corresponding to the
changed data needs to be updated. Our framework allows for easier modification of existing experts
and integration of new experts without affecting the performance of the rest of the model.

Quantizing the base model. Since upcycling involves training the model on a significant amount
of data, it should be possible to aggressively quantize the base model similar to QLoRA idea. The
experts can recover the lost information during upcycling.

Better adapters. Unlike original LoRA adapters which were designed for small-scale fine-tuning,
the adapters in our setting ingest much more data. Hence, it is possible to re-visit the adapter archi-
tecture to provide better performance/paramter ratio. For instance, inserting an activation function
between the two LoRA linear layers may increase its modeling capabilities.

Creating new experts on the fly. For queries that fall nicely into one of the topics, our simple
routing scheme should work well. However, there may be queries on the boundary of multiple
clusters or require access to multiple adapters at the same time. This can be addressed with a
parameter server that merges existing adapters based on the complexity of the query.

Per token adapters. It is efficient to train the adapters independently in parallel, but once trained,
we can explore other costly but better inference strategies where we have per token experts instead
of per query. Arrow routing may be useful here (Ostapenko et al., 2024). We can use our technique
to bootstrap a library of LoRAs.

Expert aware pre-training. Since we’re constrained by resources, we could only explore the idea
of upcycling an existing model. While less demanding to explore, it could be sub-optimal in that
the model has not learnt to offload topic specific information into experts. Hence, expert aware pre-
training should be explored where the base model and the experts are trained jointly from scratch.

6 CONCLUSION

In this paper, we introduced the mixture-of-introvert experts framework to upcycle a pretrained
LLM. The training data is split into semantically related clusters and an expert is trained on each
cluster. Queries at test-time are routed to appropriate expert with a simple nearest neighbor search.
All the experts can be trained independently. Our approach offers great flexibility in training and
provides a way to improve an LLM with limited resources. We provide proof-of-concept exper-
imental results by upcycling a 1B parameter model with 5000 experts on 500B tokens and show
comparable or better performance than full-model continued pretraining.

7 LIMITATIONS AND BROADER IMPACT

Our approach utilizes large LoRA models, which results in a significant number of parameters com-
pared to standard pretraining methods. Hence, our method is particularly well-suited for applications
where multiple instances of the LLM are deployed across several GPUs to serve numerous users,
such as in ChatGPT. Moreover, we believe that the size of LoRA models could be substantially re-
duced; however, we did not explore different ranks for LoRA due to resource constraints. While our
method effectively lowers the cost of pretraining LLMs, potentially democratizing the development
of novel models, it also raises concerns. Specifically, it may enable less sophisticated adversaries to
create their own models, which could lead to negative societal impacts.

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2025

REFERENCES

Lightning AI. Lit-gpt, 2023. URL https://github.com/Lightning-AI/lit-gpt.

Yoshua Bengio. Deep learning of representations: Looking forward. In International conference on
statistical language and speech processing, pp. 1–37. Springer, 2013.

Yoshua Bengio, Nicholas Léonard, and Aaron Courville. Estimating or propagating gradients
through stochastic neurons for conditional computation. arXiv preprint arXiv:1308.3432, 2013.

Yonatan Bisk, Rowan Zellers, Jianfeng Gao, Yejin Choi, et al. Piqa: Reasoning about physical com-
monsense in natural language. In Proceedings of the AAAI conference on artificial intelligence,
volume 34, pp. 7432–7439, 2020.

Lequn Chen, Zihao Ye, Yongji Wu, Danyang Zhuo, Luis Ceze, and Arvind Krishnamurthy. Punica:
Multi-tenant lora serving. Proceedings of Machine Learning and Systems, 6:1–13, 2024.

Kyunghyun Cho and Yoshua Bengio. Exponentially increasing the capacity-to-computation ratio
for conditional computation in deep learning. arXiv preprint arXiv:1406.7362, 2014.

Christopher Clark, Kenton Lee, Ming-Wei Chang, Tom Kwiatkowski, Michael Collins, and Kristina
Toutanova. Boolq: Exploring the surprising difficulty of natural yes/no questions. arXiv preprint
arXiv:1905.10044, 2019.

Peter Clark, Isaac Cowhey, Oren Etzioni, Tushar Khot, Ashish Sabharwal, Carissa Schoenick, and
Oyvind Tafjord. Think you have solved question answering? try arc, the ai2 reasoning challenge.
arXiv preprint arXiv:1803.05457, 2018.

Damai Dai, Li Dong, Yaru Hao, Zhifang Sui, Baobao Chang, and Furu Wei. Knowledge neurons in
pretrained transformers. arXiv preprint arXiv:2104.08696, 2021.

Damai Dai, Chengqi Deng, Chenggang Zhao, R.x. Xu, Huazuo Gao, Deli Chen, Jiashi Li, Wangding
Zeng, Xingkai Yu, Y. Wu, Zhenda Xie, Y.k. Li, Panpan Huang, Fuli Luo, Chong Ruan, Zhifang
Sui, and Wenfeng Liang. DeepSeekMoE: Towards ultimate expert specialization in mixture-of-
experts language models. In Lun-Wei Ku, Andre Martins, and Vivek Srikumar (eds.), Proceedings
of the 62nd Annual Meeting of the Association for Computational Linguistics (Volume 1: Long
Papers), pp. 1280–1297, Bangkok, Thailand, August 2024. Association for Computational Lin-
guistics. doi: 10.18653/v1/2024.acl-long.70. URL https://aclanthology.org/2024.
acl-long.70.

Nikolaos Dimitriadis, Pascal Frossard, and Francois Fleuret. Pareto low-rank adapters: Efficient
multi-task learning with preferences. arXiv preprint arXiv:2407.08056, 2024.

Leo Gao, Jonathan Tow, Baber Abbasi, Stella Biderman, Sid Black, Anthony DiPofi, Charles Fos-
ter, Laurence Golding, Jeffrey Hsu, Alain Le Noac’h, Haonan Li, Kyle McDonell, Niklas Muen-
nighoff, Chris Ociepa, Jason Phang, Laria Reynolds, Hailey Schoelkopf, Aviya Skowron, Lin-
tang Sutawika, Eric Tang, Anish Thite, Ben Wang, Kevin Wang, and Andy Zou. A framework
for few-shot language model evaluation, 07 2024. URL https://zenodo.org/records/
12608602.

Xu Owen He. Mixture of a million experts. arXiv preprint arXiv:2407.04153, 2024.

Edward J Hu, yelong shen, Phillip Wallis, Zeyuan Allen-Zhu, Yuanzhi Li, Shean Wang, Lu Wang,
and Weizhu Chen. LoRA: Low-rank adaptation of large language models. In International Con-
ference on Learning Representations, 2022. URL https://openreview.net/forum?
id=nZeVKeeFYf9.

Minyoung Huh, Brian Cheung, Jeremy Bernstein, Phillip Isola, and Pulkit Agrawal. Training neural
networks from scratch with parallel low-rank adapters. arXiv preprint arXiv:2402.16828, 2024a.

Minyoung Huh, Brian Cheung, Jeremy Bernstein, Phillip Isola, and Pulkit Agrawal. Training neural
networks from scratch with parallel low-rank adapters. arXiv preprint arXiv:2402.16828, 2024b.

10

https://github.com/Lightning-AI/lit-gpt
https://aclanthology.org/2024.acl-long.70
https://aclanthology.org/2024.acl-long.70
https://zenodo.org/records/12608602
https://zenodo.org/records/12608602
https://openreview.net/forum?id=nZeVKeeFYf9
https://openreview.net/forum?id=nZeVKeeFYf9

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2025

Robert A Jacobs, Michael I Jordan, Steven J Nowlan, and Geoffrey E Hinton. Adaptive mixtures of
local experts. Neural computation, 3(1):79–87, 1991.

Joel Jang, Seonghyeon Ye, Sohee Yang, Joongbo Shin, Janghoon Han, Gyeonghun Kim, Stan-
ley Jungkyu Choi, and Minjoon Seo. Towards continual knowledge learning of language models.
arXiv preprint arXiv:2110.03215, 2021.

Joel Jang, Seonghyeon Ye, Changho Lee, Sohee Yang, Joongbo Shin, Janghoon Han, Gyeonghun
Kim, and Minjoon Seo. Temporalwiki: A lifelong benchmark for training and evaluating ever-
evolving language models. arXiv preprint arXiv:2204.14211, 2022.

Albert Q Jiang, Alexandre Sablayrolles, Antoine Roux, Arthur Mensch, Blanche Savary, Chris Bam-
ford, Devendra Singh Chaplot, Diego de las Casas, Emma Bou Hanna, Florian Bressand, et al.
Mixtral of experts. arXiv preprint arXiv:2401.04088, 2024.

Zixuan Ke, Yijia Shao, Haowei Lin, Tatsuya Konishi, Gyuhak Kim, and Bing Liu. Continual pre-
training of language models. arXiv preprint arXiv:2302.03241, 2023.

James Kirkpatrick, Razvan Pascanu, Neil Rabinowitz, Joel Veness, Guillaume Desjardins, Andrei A
Rusu, Kieran Milan, John Quan, Tiago Ramalho, Agnieszka Grabska-Barwinska, et al. Overcom-
ing catastrophic forgetting in neural networks. Proceedings of the national academy of sciences,
114(13):3521–3526, 2017.

Soroush Abbasi Koohpayegani, KL Navaneet, Parsa Nooralinejad, Soheil Kolouri, and Hamed Pir-
siavash. Nola: Compressing lora using linear combination of random basis. In The Twelfth
International Conference on Learning Representations.

Guillaume Lample, Alexandre Sablayrolles, Marc’Aurelio Ranzato, Ludovic Denoyer, and Hervé
Jégou. Large memory layers with product keys. Advances in Neural Information Processing
Systems, 32, 2019.

R Li, LB Allal, Y Zi, N Muennighoff, D Kocetkov, C Mou, M Marone, C Akiki, J Li, J Chim, et al.
Starcoder: May the source be with you! Transactions on machine learning research, 2023.

Vladislav Lialin, Sherin Muckatira, Namrata Shivagunde, and Anna Rumshisky. ReloRA: High-
rank training through low-rank updates. In The Twelfth International Conference on Learning
Representations, 2024. URL https://openreview.net/forum?id=DLJznSp6X3.

Shih-Yang Liu, Chien-Yi Wang, Hongxu Yin, Pavlo Molchanov, Yu-Chiang Frank Wang, Kwang-
Ting Cheng, and Min-Hung Chen. DoRA: Weight-decomposed low-rank adaptation. In Ruslan
Salakhutdinov, Zico Kolter, Katherine Heller, Adrian Weller, Nuria Oliver, Jonathan Scarlett, and
Felix Berkenkamp (eds.), Proceedings of the 41st International Conference on Machine Learning,
volume 235 of Proceedings of Machine Learning Research, pp. 32100–32121. PMLR, 21–27 Jul
2024. URL https://proceedings.mlr.press/v235/liu24bn.html.

Ilya Loshchilov and Frank Hutter. Decoupled weight decay regularization. ICLR, 2019.

Leland McInnes, John Healy, Steve Astels, et al. hdbscan: Hierarchical density based clustering. J.
Open Source Softw., 2(11):205, 2017.

Leland McInnes, John Healy, and James Melville. Umap: Uniform manifold approximation and
projection for dimension reduction. arXiv preprint arXiv:1802.03426, 2018.

Todor Mihaylov, Peter Clark, Tushar Khot, and Ashish Sabharwal. Can a suit of armor conduct
electricity? a new dataset for open book question answering. arXiv preprint arXiv:1809.02789,
2018.

Oleksiy Ostapenko, Zhan Su, Edoardo Ponti, Laurent Charlin, Nicolas Le Roux, Lucas Caccia, and
Alessandro Sordoni. Towards modular LLMs by building and reusing a library of LoRAs. In
Ruslan Salakhutdinov, Zico Kolter, Katherine Heller, Adrian Weller, Nuria Oliver, Jonathan Scar-
lett, and Felix Berkenkamp (eds.), Proceedings of the 41st International Conference on Machine
Learning, volume 235 of Proceedings of Machine Learning Research, pp. 38885–38904. PMLR,
21–27 Jul 2024.

11

https://openreview.net/forum?id=DLJznSp6X3
https://proceedings.mlr.press/v235/liu24bn.html

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2025

Alec Radford. Improving language understanding by generative pre-training. 2018.

Samyam Rajbhandari, Conglong Li, Zhewei Yao, Minjia Zhang, Reza Yazdani Aminabadi, Am-
mar Ahmad Awan, Jeff Rasley, and Yuxiong He. Deepspeed-moe: Advancing mixture-of-experts
inference and training to power next-generation ai scale. In International conference on machine
learning, pp. 18332–18346. PMLR, 2022.

Keisuke Sakaguchi, Ronan Le Bras, Chandra Bhagavatula, and Yejin Choi. Winogrande: An adver-
sarial winograd schema challenge at scale. Communications of the ACM, 64(9):99–106, 2021.

Noam Shazeer, *Azalia Mirhoseini, *Krzysztof Maziarz, Andy Davis, Quoc Le, Geoffrey Hin-
ton, and Jeff Dean. Outrageously large neural networks: The sparsely-gated mixture-of-
experts layer. In International Conference on Learning Representations, 2017. URL https:
//openreview.net/forum?id=B1ckMDqlg.

Daria Soboleva, Faisal Al-Khateeb, Robert Myers, Jacob R Steeves, Joel
Hestness, and Nolan Dey. SlimPajama: A 627B token cleaned and
deduplicated version of RedPajama. https://cerebras.ai/blog/
slimpajama-a-627b-token-cleaned-and-deduplicated-version-of-redpajama,
2023. URL https://huggingface.co/datasets/cerebras/SlimPajama-627B.

Hugo Touvron, Louis Martin, Kevin Stone, Peter Albert, Amjad Almahairi, Yasmine Babaei, Niko-
lay Bashlykov, Soumya Batra, Prajjwal Bhargava, Shruti Bhosale, et al. Llama 2: Open founda-
tion and fine-tuned chat models. arXiv preprint arXiv:2307.09288, 2023.

Rowan Zellers, Ari Holtzman, Yonatan Bisk, Ali Farhadi, and Yejin Choi. Hellaswag: Can a ma-
chine really finish your sentence? arXiv preprint arXiv:1905.07830, 2019.

Peiyuan Zhang, Guangtao Zeng, Tianduo Wang, and Wei Lu. Tinyllama: An open-source small
language model, 2024.

Jiawei Zhao, Zhenyu Zhang, Beidi Chen, Zhangyang Wang, Anima Anandkumar, and Yuandong
Tian. GaLore: Memory-efficient LLM training by gradient low-rank projection. In Ruslan
Salakhutdinov, Zico Kolter, Katherine Heller, Adrian Weller, Nuria Oliver, Jonathan Scarlett, and
Felix Berkenkamp (eds.), Proceedings of the 41st International Conference on Machine Learn-
ing, volume 235 of Proceedings of Machine Learning Research, pp. 61121–61143. PMLR, 21–27
Jul 2024. URL https://proceedings.mlr.press/v235/zhao24s.html.

12

https://openreview.net/forum?id=B1ckMDqlg
https://openreview.net/forum?id=B1ckMDqlg
https://cerebras.ai/blog/slimpajama-a-627b-token-cleaned-and-deduplicated-version-of-redpajama
https://cerebras.ai/blog/slimpajama-a-627b-token-cleaned-and-deduplicated-version-of-redpajama
https://huggingface.co/datasets/cerebras/SlimPajama-627B
https://proceedings.mlr.press/v235/zhao24s.html

	Introduction
	Related Works
	Method
	Topic modeling
	Training of topic-wise expert models
	Model inference

	Experiments
	Results

	Future Works
	Conclusion
	Limitations and broader impact

