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MCDCD: Multi-Source Unsupervised Domain
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Abstract—For gait analysis, especially for the detection
of subtle gait abnormalities, the collected datasets involve
high variability across subjects due to inherent biometric
traits and movement behaviors, leading to limited detec-
tion accuracy and poor generalizability. To address this,
we propose a novel deep multi-source Unsupervised Do-
main Adaptation (UDA) approach, namely Maximum Cross-
Domain Classifier Discrepancy (MCDCD), which aims to
improve the classification performance on the test subject
(target domain) by leveraging the information from multiple
labelled training subjects (source domains). Specifically,
the proposed model consists of a feature extractor and
a domain-specific category classifier per source domain.
The former feature extractor learns to generate discrimi-
native gait features. For the latter classifiers, we minimize
the cross-entropy loss to accurately classify source sam-
ples, and simultaneously maximize a novel cross-domain
discrepancy loss between any two category classifiers to
minimize domain shift between multiple sources and the
target domain. To validate the proposed MCDCD for de-
tecting gait abnormalities on novel subjects, we collected
both high-quality Motion capture (Mocap) and noisy Elec-
tromyography (EMG) data from eighteen subjects with both
normal and imitated abnormal gaits. Experiment results
using both data modalities demonstrate that the proposed
approach can achieve superior performance in abnormal
gait classification compared to baseline deep models and
state-of-the-art UDA methods.

Index Terms—Gait abnormality detection, multi-source
unsupervised domain adaptation, cross-domain, mocap,
EMG.

I. INTRODUCTION

HUMAN gait abnormalities, mainly originating from the
disorders of neurological or musculoskeletal systems, are

prevalent among all population groups [1]. Among abnormal
gait patterns, some commonly observed ones involving only
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subtle changes of the lower limb include the outward (supina-
tion) and inward (pronation) rotation of the ankle joint, as well
as the outward (out-toeing) and inward (in-toeing) of the foot
forward direction [2], [3]. Accurate detection of subtle gait
changes, however, is challenging, and these changes are usu-
ally associated with disease manifestations and poor quality of
life [4]. Hence, from a healthcare perspective, the early detection
of subtle gait abnormality plays an essential role in numerous
scenarios, ranging from elderly fall risk prediction, post-surgery
functional assessment to rehabilitation [5].

Recent advances in deep learning technologies have enabled
automatic extraction of discriminative features from a large
amount of data [6]. Within this procedure, the inherent chal-
lenges are the lack of large-scale training datasets and, more im-
portantly, subject-specific differences existing in both raw data
and extracted features. Especially for the detection of abnormal
gait patterns, the subtle changes indicating abnormalities could
be less obvious than, if not interleaved by, the subject-specific
patterns [7]. Hence, the classification model trained from small-
scale datasets tends to either overfit on the training set or have
the poor generalization capability to novel subjects, which limits
its application in practice. This can be formulated as a problem
in transfer learning [8], and without loss of generality, a subject
with multiple collected gait samples can be regarded as a domain,
and then the subject-specific differences can be regarded as the
domain shift across domains (subjects). In order to increase the
classification performance of the model on a novel subject (target
domain), our objective is to mitigate the domain discrepancy
between multiple sources and the unlabelled target domain.

To address aforementioned challenges, in this paper we pro-
pose a novel Maximum Cross-Domain Classifier Discrepancy
(MCDCD) network to solve the challenging gait abnormality
detection through multi-source Unsupervised Domain Adap-
tation (UDA) [9], [10]. The architecture of MCDCD consists
of a feature extractor and domain-specific category classifiers
corresponding to multiple sources as illustrated in Fig. 1. With a
three-step adversarial training strategy, the feature extractor aims
to generate common latent gait representations across domains
and the domain-specific category classifiers aim to correctly
classify the source samples. In the first step, the classification
loss on source samples is minimized to update parameters of the
feature extractor and category classifiers, and the triplet loss
is incorporated to cluster samples within the same category
yet from different sources more tightly. Following the idea
as proposed in [10] and [11], the discrepancy loss on target
samples is then maximized to update parameters of the category
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Fig. 1. An overview of the proposed framework for abnormal gait recognition. Here we demonstrate an example with two source domains (i.e., i-th
and j-th domains). Our MCDCD network consists of a feature extractor and the domain-specific category classifiers. The feature extractor F maps
the gait cycle data from all domains into discriminate feature vectors, and the category classifiers Ci&Cj aim to accurately classify the samples
from i-th and j-th domains, respectively. The main idea of the proposed MCDCD network is to diminish the domain shift between multiple sources
and the target domain by maximizing the cross-domain discrepancy loss, and meanwhile, to align the distributions of multiple sources by clustering
the intra-class samples with the triplet loss.

classifiers, which aims to detect the unlabelled target samples
that are far away from the support of the source domains. Instead
of the discrepancy between a pair of classifiers for each source
domain [10], [11], one of our contributions is to calculate the
cross-domain discrepancy, thus enabling the alignment across
multi-source distributions with a more compact architecture. In
the final step, this cross-domain discrepancy loss is additionally
minimized to update parameters of the feature extractor for
generating target features that are close to the support of the
source domains. By repeating these three steps, the parameters
of the feature extractor and domain-specific category classifiers
are gradually converged in an adversarial manner. In the test
phase, the predicted label of a novel target sample is the ensemble
output of all category classifiers.

To evaluate the proposed MCDCD, an abnormal gait dataset
was constructed, in which five walking patterns (i.e., normal,
supination, pronation, in-toeing, out-toeing) of eighteen sub-
jects were simultaneously captured by Motion capture (Mocap)
system and wearable Electromyography (EMG) sensors. Raw
Mocap and EMG data were firstly segmented into gait cycles,
followed by several preprocessing steps. Extensive experiments
were conducted to demonstrate the superiority of the proposed
MCDCD compared to various baselines and state-of-the-art
UDA approaches.

In summary, the main contributions of this paper include:
� Leverage multi-source unsupervised domain adaptation

to overcome the individual differences in the challenging
abnormal gait detection.

� Propose a novel cross-domain discrepancy loss to facilitate
the domain adaptation across multiple sources.

� Integrate the triplet loss into the multi-source UDA to clus-
ter the intra-class samples, thus improving the recognition
performance.

II. RELATED WORKS

A. Gait Analysis for Abnormality Detection

1) Gait Analysis Systems and Sensing Modalities: Most ex-
isting gait analysis systems capture the kinematic data of human

walking styles by applying various sensing tools [12]. For clini-
cal purposes, multi-camera Mocap systems are the gold standard
solutions by accurately detecting 3D positions of reflective
markers attached to the anatomical landmarks [5]. Because of the
high cost and complicated settings, the Mocap system is usually
limited to highly structured environments, such as laboratories or
hospitals. To overcome this problem, rgb and/or depth cameras
have been utilized to estimate 2D/3D skeletons directly from
recorded images for gait analysis [13], [14], however, it is still
challenging to apply such methods in clinical scenarios due to the
unsatisfactory estimation of subtle lower limb movements [15].
Another line of gait analysis research by wearable sensors, such
as inertial sensors, is enabled by attaching sensors to different
body parts [16]–[19]; however, it typically requires sophisticated
subject-dependent calibration before data collection.

Apart from kinematic data, surface EMG data, which mea-
sures the continuous contraction and relaxation of muscles from
electrode-skin interfaces, provides a kinetics clue of human
gait [20]. Although EMG signals have been widely applied for
hand gesture [21] and gait phase recognition [22], [23], less
attention has been paid on EMG-based abnormal gait recogni-
tion [24]. Besides, the force plates and pressure insoles have been
used to perform gait analysis by measuring the ground reaction
forces exerted to lower limbs [25]; however, they are difficult to
infer the lower limb kinematics.

2) Conventional and Deep Gait Representation: In order to
perform abnormal gait detection from the kinematic data, most
conventional methods took advantage of features and gait mod-
els with obvious clinical clues [13], [14], [26]. In [13], the quan-
titative gait features {step length, gait cycle time, gait symmetric
measure} were extracted. In addition, joint angle representation,
which involves angles between any two body segments and/or
angles with respect to the human body coordinate system, has
been widely applied for abnormal gait recognition [14], [26].
They can provide an invariant and informative characteriza-
tion of subtle gait changes. As raw EMG signals are com-
monly affected by several sources of noise, previous works ex-
plored various time-domain and frequency-domain features and
selected those with high noise tolerance for different recognition
tasks [21], [22], [24].
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Although conventional methods can perform successfully
in a specific clinical scenario, manually selecting the relevant
features may lead to insufficient gait representation. With re-
cent progress in Deep Neural Networks (DNN), automatically
extracting deep representations has gained increasing popularity
in the field of gait analysis. Recurrent Neural Networks (RNN) is
advantageous in modeling sequential data with varied lengths.
Among different RNN variations, Long Short-Term Memory
(LSTM) is most popular for learning effective gait features [27].
Through the use of LSTM, Kidzinski et al. [28] performed
gait event detection with joint angles and positions, and Luo
et al. [23] took the raw EMG as input to achieve gait sub-phase
recognition. Guo et al. [14] investigated the use of Bidirectional
LSTM (BiLSTM) for recognizing abnormal gait patterns based
on joint angle sequence input. In addition to RNN models, it has
been well explored that Convolutional Neural Networks (CNN),
especially for 1D-CNN that performs the convolution along the
temporal axis, can achieve promising performance in processing
biosignals [6]. In [29], the context-related gait features were di-
rectly translated from the raw inertial data with a deep CNN. Hu
et al. [30] adopted the graph CNN (GCNN) to detect the freezing
of gait, where GCNN can extract informative spatiotemporal
information from joint trajectories. Besides, some recent works
explored the combination of LSTM and CNN for improving
the abnormal gait classification performance [31]. Despite the
successful application of DNN models on gait analysis, simply
training these models on human motion data would probably
limit its generalization performance on a novel subject.

To resolve the generalization issue, conventional meth-
ods tend to engineer subject-invariant features as mentioned
above [13], [14], [26], which however is limited by its insuffi-
cient representation. Horst et al. [32] successfully developed an
explainable deep learning framework to explore the uniqueness
of individual gait patterns in clinical biomechanics. Recently, Gu
et al. [7] proposed a disentangled representation learning frame-
work based on a multi-encoder autoencoder network to perform
abnormal gait recognition, extracting the subject-invariant gait
patterns through a cross-subject reconstruction training strategy.
Nevertheless, the generalization capability of [7] would proba-
bly not hold without seeing any sample in the target subject;
this issue can be potentially resolved by unsupervised domain
adaptation introduced below.

B. Unsupervised Domain Adaptation

One of the inherent challenges of deep learning is that the
performance of the learned model tends to significantly degrade
while testing on novel domains/subjects with the existence of
domain shift. Domain Adaptation (DA) aims to diminish the
domain shift between the training (source) and test (target)
domains by matching their representations [33]. Among these,
unsupervised domain adaptation tackles a more challenging
scenario where all available target samples are unlabelled [34].
Most of the previous methods focus on solving the UDA with a
single source domain, and they have achieved promising results
in different computer vision tasks. However, training data are in
practice collected from multiple sources/subjects, especially in

healthcare tasks. Recently, studies on multi-source UDA have
gained increasing popularity [9]–[11], [35].

1) Single-Source UDA: The most common way for UDA is
to eliminate the domain shift between source and target domains
through the metric learning mechanisms. Some works achieved
UDA by minimizing the Kullback-Leibler divergence, H diver-
gence [33], as well as Maximum Mean Discrepancy (MMD)
measuring the divergence in high-dimensional space [36], [37].
Another popular category is adversarial-based approaches. Do-
main Adversarial Neural Network (DANN) [38] introduced a
domain classifier to discriminate the latent feature from source
to target, where the feature extractor was trained to generate
the latent features that can be correctly classified by category
classifier yet can simultaneously deceive the domain classifier.
The adversarial training can be easily realized by a gradient
reversal layer. In addition, Saito et al. proposed the Maximum
Classifier Discrepancy (MCD) for UDA, aligning the distribu-
tions of source and target by considering task-specific decision
boundaries between classes [11]. The MCD consists of a feature
extractor and a pair of category classifiers. During the training,
the discrepancy between two classifier outputs is maximized
to detect the target samples excluded by the support of the
source, while the feature extractor is optimized by minimizing
the discrepancy for generating target features that are close to
the support. Other commonly used frameworks are based on the
Generative Adversarial Networks (GANs), which are able to
generate fake data from target domains as augmented low-level
representations [39], [40].

2) Multi-Source Unsupervised Domain Adaptation (MS-
UDA): Increasing attention has been posed on MS-UDA to
achieve the alignment between multiple source domains and a
single target domain [9], [33]. Earlier study [33] provided a the-
oretical investigation on such attempt by introducing theH�H-
distance between the weighted combination of source domains
and target domain. Directly extended from single-source UDA,
one line of research performed the UDA between each source do-
main and the target domain respectively and subsequently chose
the model with the best performance. It may also involve simply
performing UDA between the data combined from all source do-
mains and that from the target domain. However, these methods
ignore the semantic relationship between source domains and
cannot leverage these sources effectively. More advanced, Zhao
et al. [35] proposed a Multi-source Domain Adversarial Network
(MDAN) based on adversarial training strategy, which is the
extension of the popular DANN to multiple source domains.
Deep CockTail Network (DCTN) [41] incorporated a multi-way
adversarial training and multi-source category classifier to battle
the domain and category shifts among multiple sources. More re-
cently, Peng et al. [10] proposed a Moment Matching for Multi-
Source Domain Adaptation (M3SDA) approach by extending
the popular MCD to a multi-source version and introduced
the moment matching distance to transfer knowledge learned
from multiple sources to the target domain. Although MS-UDA
approaches have achieved promising results in computer vision,
their capability and feasibility have not been well explored in
handling the significant inter-subject heterogeneity existing in
biosignals.
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III. METHODOLOGY

A. Problem Statement

Considering that we have N labelled source domains (train-
ing subjects) DS = {D1,D2, . . . ,DN} and an unlabelled target
domain (test subject) DT , the main objective is to mitigate the
domain shift between unlabelled target samples XT collected
from DT and those samples XS = {X1, . . . ,XN} collected
from multiple source domains DS , thus improving the accu-
racy of the final prediction. YS = {Y1, . . . ,YN} indicates the
corresponding ground truth labels of XS .

B. Maximum Cross-Domain Classifier Discrepancy

The overall framework of the proposed MCDCD is presented
in Fig. 1. The feature extractorFmaps the samples from bothDS

and DT into latent feature vectors, which are the input into the
classifier. Different from previous methods like MCD [11] and
M 3 SDA [10], using a pair of classifiers for each source domain,
only one classifier Ci is constructed for i-th source domain
in our network, where i = 1, . . . , N and N is the number of
source domains (training subjects). It is noted that the proposed
framework is flexible in choosing different networks as F and
C. Based on the proposed model, we follow a three-step training
procedure as proposed in [10], [11], which can not only classify
source samples correctly and align the target domain with respect
to multiple source domains simultaneously, but also reduce the
training memory compared to those using paired classifiers.
The overall training scheme is to repeat these three steps until
convergence.

1) Step A - Minimize Classification Loss on Source: In the
first step, the feature extractor F and domain-specific category
classifiers {C1, . . . ,CN} are trained simultaneously with re-
spect to the source samples {(XS ,YS)}. Accordingly, F can
generate the discriminative features related to the task, and
each classifier can classify the source samples correctly. The
minimization objective is as follows:

min
F,{Ci}

1

N2

N∑
i=1

N∑
j=1

[LCi
(Xj ,Yj) + Ltrip(Xi,Xj)] (1)

whereLtrip(Xi,Xj) is the triplet loss between the samples from
i-th and j-th domains. LCi

(Xj ,Yj) is the classification loss of
Ci with respect to source samples from j-th domain and in this
paper we choose the cross-entropy loss as follows:

LCi
(Xj ,Yj) = −E(xj ,yj)∼(Xj ,Yj)

K∑
k=1

1[k=yj ] log pj(y|xj)

(2)
where K is the number of classes to be recognized. In specific,
we calculate the cross-domain classification loss, which is aimed
at training each domain-specific category classifier to correctly
classify the samples from not only its own domain but also other
sources.

The triplet loss has been proven to be beneficial for training
the samples with small differences [42]. As shown in Fig. 2(a),
it minimizes the distance between the anchor and the positive
sample and simultaneously maximizes the distance from the

Fig. 2. Illustration of the cross-domain discrepancy loss and the triplet
loss. (a) Triplet loss is aimed at clustering the intra-class samples across
domains. (b) Cross-domain discrepancy loss calculates the discrepancy
between the probabilistic outputs of two domain-specific category clas-
sifier with the input of a target sample xt.

anchor to the negative sample. Especially for abnormal gait
recognition, the subtle gait abnormality could be less obvious
than the subject differences. Therefore, the triplet loss Ltrip is
adopted to cluster the gait features with the same label more
tightly, which can be formulated as follows:

Ltrip(Xi,Xj) =

K∑
k=1

E(xi,xj)∼(Xi,Xj)[||F(xk
i )− F(xk

j )||

− ||F(xk
i )− F(x�k

i )||+ γ] (3)

where the superscript (k, �k) indicates the class index of a
sample x, and γ is the margin constraint. Through the use
of the triplet loss, intra-class samples from different source
domains will have smaller distance (≤γ) than those inter-class
samples, which could help to learn subject-invariant features and
to facilitate the alignment across multiple domains.

2) Step B - Maximize Discrepancy Loss on Target: In this
step, we aim to only train the domain-specific category classi-
fiers {Ci} with the unlabelled target samples while fixing the
parameters of the feature extractor F. Previous works calculated
the discrepancy between the paired classifier outputs for each
source domain, and they found that the maximization of the
discrepancy can help to detect the target samples excluded by
the source boundaries [10], [11]. Differently, we introduce the
calculation of the cross-domain discrepancy ddis indicating the
discrepancy between the outputs of any two domain-specific
category classifiers; this strategy can be viewed as another con-
tribution of this paper. Moreover, the cross-domain discrepancy
enables a better alignment across multiple sources.

Fig. 2(b) demonstrates an example for calculating the dis-
crepancy between i-th and j-th source domains. Given domain-
specific category classifiers Ci and Cj for i-th and j-th source
domains and a target sample xt, the classifiers’ probabilis-
tic outputs are pi(ŷ|xt) and pj(ŷ|xt), respectively. Then the
discrepancy loss can be defined as the absolute value of the
difference between two outputs:

ddis(pi, pj) =
1

K

K∑
k=1

|pki (ŷ|xt)− pkj (ŷ|xt)|

Ldis(XT ) = Ext∼XT

⎡
⎣ 1

N2

N∑
i=1

N∑
j=1

ddis(pi, pj)

⎤
⎦ (4)
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Previous studies have proven that the overall performance
drops significantly without adding the classification loss in this
step [10], [11]. Inspired by this, the optimization objective can
be written as follows:

min
{Ci}

1

N

N∑
i=1

LCi
(Xi,Yi)− Ldis(XT ) (5)

where the maximization of discrepancy is converted to a min-
imization problem by taking its negative value. Notably, to
accelerate the training process, we calculate the classification
loss of the classifiers with samples from their own domains.

3) Step C - Minimize Discrepancy Loss on Target: The last
step aims to train the feature extractor F to minimize the
discrepancy while the parameters of domain-specific category
classifiers are fixed. In order to balance the tradeoff between the
convergence speed of feature extractor and category classifiers
in an adversarial manner, we repeated this step with niter times
with the same minibatch data. The objective function is:

min
F

Ldis(Xt) (6)

Notably, the adversarial training of feature extractor and cate-
gory classifiers is performed with alternative updates of these
three steps.

C. Ensemble Output

In the test phase, the parameters of the feature extractor F and
domain-specific category classifiers {Ci} are fixed. As there
are N category classifiers, the final prediction on the target
samples are derived through an ensemble strategy, which takes
the weighted average of the probabilistic outputs:

p(y|Xt) =

N∑
i=1

ωipi(y|Xt),

N∑
i=1

ωi = 1 (7)

where pi is the probability provided by classifier Ci and ωi =
pi(y|Xi)/

∑N
j=1 pi(y|Xj) is the weight. Then the overall accu-

racy of MCDCD can be derived from p(y|Xt).

D. Theoretical Insights

1) Single-Source MCD: Our approach is expanded from
MCD [11], which was proposed to perform adversarial train-
ing for single-source unsupervised domain adaptation. Differ-
ent from those approaches based on additional domain classi-
fiers [34], MCD utilized two category classifiers expected to
achieve similar predictions on the target domain.

Based on the bounding condition theorem proposed by Ben-
David et al. [33], the target error εT of a classifier h can be upper
bounded by the sum of three terms. They are the source error εS
of h, the distance in the symmetric difference hypothesis space
H between two classifiers dHΔH(DS ,DT ), and the combined
error of the ideal joint classifier on two domains λ:

εT (h) ≤ εS(h) +
1

2
dHΔH(DS ,DT ) + λ (8)

The focus is to constrain dHΔH(DS ,DT ), which is the upper
bound of two classifiers belonging to the hypothesis space H. It

is defined in [11] as below,

dHΔH(DS ,DT ) = 2 sup
(h,h′)∈H2

∣∣∣∣ E
x∼S

I[h(x) �= h′(x)]

− E
x∼T

I[h(x) �= h′(x)]
∣∣∣∣

(9)

As the source domain is trained with labelled data, the term
Ex∼S I[h(x) �= h′(x)] is is assumed to be very low, and then
Eq. (9) can be approximated as 2 sup E

x∼T
I[h(x) �= h′(x)],

which means the disagreement of two classifiers on the target
domain. As such, the objective is to train two classifiers which
achieve agreement in the target domain, whereas Ex∼S I[h(x) �=
h′(x)] and Ex∼T I[h(x) �= h′(x)] is as close as possible. In
practice, MCD [11] applied a feature generator G and paired
classifiers C1, C2 to minimize the supremum. G & C1 can
be viewed as h, whereas G & C2 as h′. To minimize the
supermum can be considered as the min-max optimization,
minG maxC1,C2 Ex∼T I[G ◦ C1(x) �= G ◦ C2(x)]. Such min-
max optimization is realized by the iterative adversarial training
strategy.

2) MCDCD: For multi-source UDA, there are N la-
belled source domains DS = {D1,D2, . . . ,DN}. For each i ∈
{1, . . . , N}, let Si be the labelled sample set from source Di.
According to [33], the dHΔH bound for multi-source UDA
without considering the constant term can be formulated as
below,

εT (h) ≤
N∑
i=1

αi(εi(h) +
1

2
dHΔH(Di,DT )) + λα (10)

N∑
i=1

dHΔH(Di,DT )

= 2

N∑
i=1

sup
(hi,h′

i)∈H2

∣∣∣∣ E
x∼Si

I[hi(x) �= h′
i(x)]

− E
x∼T

I[hi(x) �= h′
i(x)]

∣∣∣∣

≤
∑

(i,j)∈N2

sup
(hi,hj)∈H2

∣∣∣∣ E
x∼Si

I[hi(x) �= hj(x)]

− E
x∼T

I[hi(x) �= hj(x)]

∣∣∣∣ (11)

hi can be viewed as the domain specific category clas-
sifier for source domain Di. Similarly, Ex∼Si

I[hi(x) �=
hj(x)] can be minimized by supervised cross-domain loss
between paired source domains Di and Dj . In the imple-
mentation, it is realized by Eq. (1). Therefore, the objec-
tive can be approximated as to minimize the supremum of∑

(i,j)∈N2 |Ex∼T I[hi(x) �= hj(x)]|. Overall, to minimize such
supremum is equivalent to the min-max optimization realized by
an iterative adversarial training between the feature extractor F
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Fig. 3. Illustration and visualization of the five categories of gait pat-
terns in the self-collected gait dataset, including the normal walking style
and four abnormal patterns (i.e., in-toeing, out-toeing, supination, and
pronation).

and category classifiers {Ci} for the loss Ldis, similar to the
single-source version.

IV. ABNORMAL GAIT DATASET AND DATA PROCESSING

A. Data Collection

Eighteen healthy subjects (two females and sixteen males)
without any known lower limb disabilities or recent injuries were
recruited, with informed consent given before participating in
the experiment. This gait experiment was approved by Imperial
College Research Ethics Committee under Reference ICREC-
18IC4915.

As illustrated in Fig. 3, each subject was asked to walk
naturally and imitate four abnormal gait patterns (in-toeing, out-
toeing, supination, and pronation) with the normal speed [14],
where the commercial corrective insoles were used to help the
imitation of supination and pronation more naturally. The partic-
ipants walked at a natural speed and no additional requirements
on the gait speed were imposed on the participants. During the
data collection, we simultaneously collected both Mocap (Vicon
Motion System Ltd., Oxford, U.K.) and EMG (Delsys Trigno
Avanti wireless EMG system, Delsys Incorporated, USA) data.
Fig. 4 shows the displacement of 16 reflective markers on
the anatomical landmarks of the lower limb and eight EMG
sensors for measuring the muscle activities. The Mocap and
EMG systems were well-synchronized through Vicon Locklab,
where the sampling rates are 120Hz and 1200Hz, respectively.

Every subject repeated eight trials per gait pattern, and
in each trial they walked back and forth along the diago-
nal line of a 3m× 3m area. Note that the EMG data of
subjects 6 & 17 were not collected due to personal rea-
sons. In total, we collected NMocap = 720 = 18(subjects)×
5(patterns)× 8(trials) and NEMG = 640 in our abnormal
gait dataset.

B. Mocap Data Processing

The Mocap system captures the high-quality 3D positions
p(t) = [x, y, z]T of the attached markers at each frame t. This
is also known as the 3D skeleton representation [43]. For a

Fig. 4. Demonstration of sensor displacement. 8 EMG sensors were
attached on the central position of muscles {Tibialis Anterior, Peroneus
Longus, Gastrocnemius, and Rectus Femoris}. 16 markers were at-
tached to the anatomical landmarks for being captured by the Mocap
system.

walking sample, the Mocap data can be defined as xmocap =
[pT

1 , . . . ,p
T
J ]

T ∈ R3J×M , where J is the number of markers
and M is the number of frames.

1) Joint Angles: Joint angles have been widely used for
representing gait movement [14], [26] due to its invariance
to rotation and translation of the raw data. Following [14], a
human body coordinate system was first built based on {LASI,
RASI} joints and the instantiate velocity vector, which can
further determine the Sagittal, Coronal, and Transverse planes
of body. Accordingly, 30 joint angles were calculated, including
the angles between any two links and the angles between the
link to the normal vector of each plane. The final joint angle
representation can be expressed as xangle ∈ R30×M .

2) Joint Trajectories: In addition to the angle representation,
joint trajectories captured from Mocap system can also be used
as the gait representation [7]. However, raw trajectories are not
invariant to the rotation and translation in 3D space, which means
that several preprocessing steps are needed before feeding them
into deep models. We first rotated the human body coordinate
system to a identity matrix and moved the center to the zero point,
thus removing the rotation and translation variances. Thus, the
normalized joint trajectory representation is xtrj ∈ R48×M .

C. EMG Data Processing

The raw EMG data representing a walking sample can be
denoted as xraw ∈ RK×M , where M is the total frames of the
EMG sequences and K indicates the channels of EMG sensors
(K = 8 in this paper). The detrending step was performed to
remove the motion artifacts from the raw EMG data.

1) Envelope of EMG Data: As raw EMG signals are typically
contaminated with various kinds of noise, the smooth envelope
xenv was also extracted to filter the noise out from the raw data.
It is achieved by using the root mean square (RMS) filter with a
time window of 20ms. The EMG envelope sequences have the
same dimensions as the raw data.

2) Time-Domain and Frequency-Domain Features: Except
for the sequence representation of the EMG data, in the past
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Fig. 5. Illustration of the gait cycle and abnormal gait data within a
cycle. (a) A gait cycle that can be determined by two consecutive events
of the same foot. In this paper, we detected right toe-off events from
Mocap data and segmented both Mocap and EMG data; (b) Exemplar
trajectories of four joints (RANK, RHEEL, LANK, LHEEL) within a gait
cycle across various patterns&subjects captured from Mocap system;
(c) EMG envelopes of eight channels within a gait cycle in terms of all
patterns&subjects.

decades, both time-domain and frequency-domain features were
widely used for EMG-based motion analysis, which have been
proven to be robust to noise [21], [44]. To this end, we fol-
lowed [21], [44] to calculate twenty time&frequency domain
meta-features xmeta ∈ R20×1, which are presented in Table S-A
in the supplementary materials.

D. Gait Cycle Representation

The human walking data can be represented by the repetitive
movements - gait cycle. A gait cycle indicates the data between
two successive gait events (e.g., toe-off or heel-strike), which
can be further divided into two phases based on the foot contact
with the ground as shown in Fig. 5(a): stance phase and swing
phase. In this paper, we segment all gait data (xangle,xtrj ,xraw,
and xenv) into gait cycle segments by detecting the right toe-off
events from the Mocap data. Figs. 5(b) and (c) demonstrate the
examples of xtrj and xenv within a cycle. Noted that those
cycles containing turn-around or gait initiation/stop events were
excluded. Recall that the gait data are temporal sequences (varied
M across samples), we then used interpolation and resampling
to reshape the length of the gait data into M ′ = 128, which help
to the capability of different models for extracting latent features.
Hence, the final gait representations are xangle ∈ R30×128,
xtrj ∈ R48×128, (xraw, xenv) ∈ R8×128. Subsequently, the z-
score normalization was then performed per channel of Mocap
and EMG data. Further details on gait cycles per pattern/subject
in the dataset are available from the supplementary materials.

V. EXPERIMENTS

A. Implementation Details

1) Experimental Settings: The experiments were performed
on a desktop with Intel(R) Core(TM) i7-7700 K CPU4.2 GHz
and an NVIDIA Titan 1080ti GPU. The proposed MCDCD

method and the compared methods were implemented by Py-
Torch. In specific, we adopted the adaptive momentum (Adam)
for optimizing the model parameters, where the initial learning
rate lr = 0.001 and β = {0.9, 0.999}.

2) Network Architecture: In this paper, we compared both
CNN and RNN as the feature extractor for generating discrim-
inative gait features. The input of the feature extractor F is the
final gait representations as mentioned in Section IV-D.

For RNN, we evaluated BiLSTM and BiLSTM with attention
layers (BiLSTM_attn). Specifically, an architecture with two
BiLSTM layers was used. We set the number of hidden units
Nh = {512256} and the dropout rate between two BiLSTM
layers rdp = 0.2.

For CNN, we adopted 1D-CNN as the feature extractor F to
perform the convolution operation along the temporal axis. The
architecture of F consists of two convolution (conv) layers and
is presented as (input, output, kernel, stride, padding). The two
conv layers are: conv1 - (din, 64, 8, 1, 0) and conv2 - (64, 128, 8,
1, 0), where din is the dimension of the gait data as introduced in
Section IV-D. Following each conv layer, there are two standard
layers (i.e., batch normalization layer and the ReLU layer).

The final output of the feature extractor was then reshaped into
a 1D latent feature vector as the input into the category classifier.
We simply utilized two fully connected (fc) layers - (fc1, bn, relu,
fc2) as the classifier, where we set fc1 (vin, 128) and fc2 (128, 5)
and the dropout rate of between two fc layers rdp = 0.2. For the
comparison methods (DANN [38] and MDAN [35]), the similar
network with two fc layers was used as the domain classifier and
fc2 was set to (128, 2).

3) Evaluation Protocol and Metrics: To provide valuable in-
sight into the generalization capability of the models applied
to a novel subject, the leave-one-subject-out (LOSO) cross-
validation protocol was adopted. GivenN subjects in the dataset,
we held one subject out as the test subject in each run and
repeated the recognition experimentsN runs. The gait data from
the remaining N − 1 subjects form the source domains, and
those from the held-out one as the target domain. Especially for
the test subject (target domain), we took turns to use 50% data
to perform UDA training and the other 50% as the final test set.
In terms of the baseline methods without the use of DA, we also
split one training subject out as the validation set.

In terms of metrics, we used the recognition accuracy
Acc=(TP+TN)/(TP+TN+FP+FN)×100%, to provide an over-
all evaluation on the recognition performance, where TP, TN,
FP and FN are the numbers of true positive, true negative,
false positive, and false negative, respectively. Moreover, for the
performance on each gait pattern, we also calculated Precision
prec=TP/(TP+FP), Recall rec=TP/(TP+FN), and F1 score.
The final reported results are the averaged value over five times
of the LOSO cross-validation experiments, where in each time
the random seed and split were used.

B. Comparison Results on Feature Extraction Methods

First, we conducted the comparison of various deep feature
extraction methods in terms of different gait data representa-
tions for abnormal gait recognition. The results are listed in
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TABLE I
COMPARISON OF FEATURE EXTRACTION METHODS

Table I. In specific, we evaluated the performance of 1D-CNN,
BiLSTM, and BiLSTM_attn as the feature extractor to learn
the discriminative feature from either Mocap or EMG data.
To ensure a fair comparison, the same category classifier was
adopted by directly taking the latent feature vector as the input.
Besides, two baseline methods using hand-crafted features for
gait abnormality detection were also compared, where the his-
togram of joint angles was extracted from Mocap data [14] and
time-&frequency- domain meta-features was calculated from
raw EMG data [21], [22]. Following our previous work, the
Support Vector Machine (SVM) was chosen for classification.

As shown in Table I, deep feature extractors all outperform the
conventional baseline methods, demonstrating the superiority
of the deep models as the feature extractor. In addition, we
can also observe that 1D-CNN outperforms the BiLSTM and
BiLSTM_attn. For Mocap data, two gait data representations
(i.e., joint angles and joint trajectory) are compared, where the
recognition results of using joint trajectories are better than those
of using joint angles (1D-CNN: trajectory - 91.96%; angles -
88.96%). Although joint angle representation is invariant to the
translational and rotational variations of the human body [14],
compared to the normalized joint trajectory representation, it
may fail to capture those subtle changes and lead to less discrim-
inative descriptions. On the other hand, the EMG envelope rep-
resentation achieves better recognition performance compared
to the noisy raw EMG data. Accordingly, in the following, we
only report the results using the joint trajectory representation
and the envelope of EMG.

C. Comparison Results on State-of-The-Art Approaches

Next, to demonstrate the effectiveness of the proposed
MCDCD for recognizing abnormal gait patterns on a novel
subject, a detailed comparison with respect to several baselines,
state-of-the-art UDA approaches, and a domain generalization
method was conducted. To ensure a fair comparison, all the
compared methods based on UDA were implemented with the
same network architecture.

� Baseline methods: The architecture of the baseline meth-
ods consists of a feature extractor and a category classifier.
Here, three baselines were compared by using 1D-CNN,

BiLSTM, and BiLSTM_attn (BiLSTM with the atten-
tion layer) as the feature extractor. For other compared
methods, we chose 1D-CNN as F.

� DANN - Domain Adversarial Neural Network [38]: A
single-source UDA method. In addition to the basic net-
work structure, DANN contains another domain classifier
to discriminate whether a sample belongs to the source
domain or target domain.

� MCD - Maximum Classifier Discrepancy [11]: A single-
source UDA method. The architecture of MCD consists
of a feature classifier and two category classifiers, which
is aimed at maximizing the discrepancy between two
classifier outputs of the target samples that are far from
the support of the source.

� MDAN - Multi-source Domain Adversarial Network [35]:
An extended version of DANN to the multi-source sce-
nario, which includes N domain classifiers (N is the
number of source domains - training subjects).

� MS-MCD - Multi-Source Maximum Classifier Discrep-
ancy: The multi-source version of the standard MCD [11],
where the paired category classifiers are adopted for each
source domain. Noted that MS-MCD can also be regarded
as an ablated model of our proposed MCDCD that without
Ltrip and with paired category classifiers.

� M 3 SDA - Moment Matching for Multi-Source Domain
Adaptation [10]. In addition to MS-MCD, they introduced
the moment matching loss to better leverage multi-source
information.

� Disentangle [7]. On top of UDA methods, a state-of-the-
art method for generalizable abnormal gait recognition,
which disentangles the subject-specific feature from ab-
normal pattern-specific gait features, was also compared.
It applied a multi-encoder autoencoder architecture and
fulfilled the disentanglement by cross-subject reconstruc-
tion. This method was evaluated on the same abnormal
gait dataset. As its proposed cross-modal transfer, which
utilizes Mocap data to learn clean representations, is out
of the scope of this paper, we only compared the results
using the single-modal network.

Following previous works [10], [41], two evaluation standards
were used for single-source UDA methods (i.e., DANN and
MCD): 1) single best, reporting the single best source transfer
result on the test set; 2) source combine, combining multiple
sources into a single domain. In addition to the comparison with
state-of-the-art methods, we also evaluated the performance of
an ablated version (without the use of triplet loss) of the proposed
approach, referred to MCDCD (w/o Ltrip).

1) Evaluation of niter: Notably, there is a hyperparameter
niter in the proposed MCDCD as well as the MS-UDA methods
extended from MCD (i.e., MS-MCD and M 3 SDA), which
indicates the repeat times of minimizing the discrepancy loss
on target samples. As shown in Fig. 6, we first evaluated niter ∈
{1, 2, 3, 4, 5, 6} of MS-MCD, M 3 SDA, and our MCDCD so
as to choose the optimal one for the comparison experiments.
For both Mocap and EMG data, our MCDCD and its ablated
network achieve the best recognition rates whenniter = 2, while
MS-MCD and M 3 SDA perform best at niter = 3 or 4. This
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TABLE II
COMPARISON RESULTS ON ABNORMAL GAIT RECOGNITION USING MOCAP & EMG DATA

• (U)DA - (Unsupervised) Domain Adaptation; SS - Single Source; MS - Multi-Source; DG - Domain Generalization; • Elements in bold and underline indicate the best and
second best in each column, respectively. • For SS-UDA methods (DANN and MCD), † indicates the results using single best standard, and # is the one with source combine
standard.

Fig. 6. Evaluation of the hyperparameter niter = {1, 2, 3, 4, 5, 6} for
the proposed MCDCD and the state-of-the-art UDA methods.

observation emphasizes that the proposed cross-domain classi-
fier discrepancy loss can not only improve the performance in
abnormal gait recognition but also facilitate faster convergence
speed (smaller niter) of the domain adaptation across multiple
sources.

2) Results on Mocap Data: As shown in Table II, in terms
of the high-quality Mocap data, all the methods achieved
satisfactory results in subtle gait abnormality detection. For
single-source UDA methods (i.e., DANN & MCD), it can be
seen that results with source combine(#) standard outperform
those with single best(†). Moreover, due to the existence of
individual differences, it can be found that the performance by
the single-source UDA methods is similar to baseline methods,
which reveals the limitation of taking multiple subjects as one
source domain. On the other hand, we can also observe that

all multi-source UDA methods (MDAN, MS-MCD, & M 3

SDA) outperform the baselines and single-source counterparts,
where the improvement of Acc is around 3%. Our proposed
MCDCD achieves the best result on abnormal gait recognition
(Acc = 97.61%), which outperform the second best methods
(MS-MCD, M 3 SDA [10], and Disentangle [7]) by 1.7%�2.2%.
Besides, prec, rec, and F1 by MCDCD for each gait cat-
egory all reach either the best or the second best among all
the methods. Actually, the major improvement come from the
better classification of {Normal, Supination, Pronation}, where
these three patterns are difficult to discriminate. As can be
seen from the confusion matrices in Fig. 7, the accuracy of
these three classes increases from around 93% (MS-MCD &
M 3 SDA) to 97%. Without the use of triplet loss, the overall
recognition accuracy is decreased, which mainly originates from
the degraded performance of Supination class (see Fig. 7(c)).
Meanwhile, taking a comparison of MS-MCD and MCDCD
(w/o Ltrip), it also illustrates the effectiveness of the proposed
cross-domain discrepancy strategy.

Fig. 9(a) visualizes the Mocap feature distribution of the
proposed MCDCD during the training procedure through the use
of t-distributed Stochastic Neighbor Embedding (t-SNE). For
better visualization, we only demonstrate the features from four
source domains (training subjects). Before the training (see top
row), the feature distributions across subjects are entangled with
each other, especially for the gait patterns {Normal, Supination,
Pronation}. As shown in the bottom row, after the training
with the proposed MCDCD, the domain shift between any two
source domains can be eliminated. More importantly, with the
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Fig. 7. Confusion matrices of different MS-UDA methods on Mocap
data.

help of triplet loss, the intra-class features are clustered and
the inter-class features are separated for both source and target
domains.

3) Results on EMG Data: As EMG data is always contami-
nated by various noise factors, the recognition accuracies using
EMG data are significantly degraded compared to those using
Mocap data. For single-source UDA methods, the performance
on both single best and source combine standards achieves
similar recognition results. However, a similar conclusion can
be drawn that the multi-source UDA methods outperform the
baseline networks and those with single-source UDA. The best
result is still achieved by our MCDCD (Acc = 51.32%). As
demonstrated by the results in Table II and confusion matrices as
in Fig. 8, the Normal gait pattern is the most difficult to discrim-
inate. Meanwhile, similar to the Mocap data, the Supination and
Pronation patterns are entangled with the Normal gait pattern,
leading to unsatisfactory classification rates. From the t-SNE
plot of the EMG data in Fig. 9(b), there exist large discrepancies
among the feature distribution of different source domains,
which significantly increase the difficulty for diminishing these
shifts as well as clustering intra-class features. After training
with MCDCD (see bottom row of Fig. 9(b)), the distributions of
source domains and the target domain are aligned, however, the
inter-class samples are still entangled with each other, while. As
a result, the abnormal gait recognition solely using EMG data is
still challenging.

D. ANOVA of Recognition Results

In order to highlight the effectiveness of the proposed
MCDCD, we performed the statistical analysis of the recogni-
tion results between each compared state-of-the-art method and

Fig. 8. Confusion matrices of different MS-UDA methods on EMG
data.

Fig. 9. t-SNE visualization of the (a)-Mocap or (b)-EMG feature distri-
bution. Top row is the features before unsupervised domain adaptation;
Bottom row shows the feature distribution after training by MCDCD.
Features of the source and target domains are displayed within the same
range.

our proposed MCDCD. As shown in Fig. 10, we use the marker
* and ** to indicate 0.005 ≤ p < 0.05 and p < 0.005, where
p-values derived from one-way ANOVA. It can be observed that
In terms of both Mocap and EMG data, it can be observed that
there exist statistically significant differences for both Mocap
and EMG data.
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Fig. 10. ANOVA results between each method and the proposed
MCDCD. (a) Mocap data; (b) EMG data. The marker * and ** indicating
0.005 ≤ p < 0.05 and p < 0.005, respectively.

Fig. 11. Comparison results on the case using a small number of
training subject (source domains) to train the model.

E. Results on Small Number of Training Subjects

One of the inherent challenges in healthcare applications is
the lack of large-scale ground truth data. Hence, it is critical that
the computational model can generalize to new subjects when
trained on a small-size dataset. For our abnormal gait dataset,
there exist 18 subjects and we used data from 17 subjects for
training in each run. To validate the robustness of the proposed
method, we additionally conducted the comparison experiments
on a more challenging case with a smaller number of the training
subjects (source domains) as shown in Fig. 11. As can be
seen from the top row (Mocap data), with a small number of
training subjects, there is clear evidence that the multi-source
UDA methods outperform the single-source ones, where the
baseline networks are inferior to the UDA methods. For EMG
data as presented in the bottom row, the recognition accuracies
of various methods slightly drop with a small number of source
domains. Nevertheless, the proposed MCDCD still achieves the
best performance, which reveals its effectiveness and robustness
in more challenging cases.

F. Fine-Tuned Results on EMG Data

Although the proposed MCDCD method achieves superior
performance in abnormal gait recognition compared to other

Fig. 12. Comparison results on four abnormal classes recognition
using EMG data. (a) Original best result by MCDCD (corresponding to
51.32% for 5 classes in Table II & Fig. 8(d)); (b) Improved result on EMG
data by exploiting the Normal gait pattern of the target/test subject as an
additional source domain.

UDA approaches, the results using EMG data are still not satis-
factory. This is an inherent challenge for EMG data, as even for
the same anatomical localization, the recorded EMG waveform
would shape totally differently across subjects. To demonstrate
the potential improvement of the proposed MCDCD for EMG-
based abnormal gait recognition, we conduct the experiment
by taking out the Normal data of the target domain DT as a
new source domain DN+1, where the remaining four abnormal
patterns {In-toeing, Out-toeing, Supination, Pronation} are still
regarded as the target domain. In this manner, we compared
this fine-tuned result with the original best (MCDCD - 51.32%
for 5 abnormal classes; 63.00% for 4 abnormal classes as
in Fig. 12(a)). It can be observed from Fig. 12(b) that the
recognition accuracy increases to 76.29%, which exceeds the
original best by around 13%. This observation implies that the
pre-collection of the Normal EMG data could be beneficial for
detecting the abnormal gait of the same subject afterwards.

VI. CONCLUSION

To address the inherent challenges of individual differences in
gait analysis, we proposed a novel framework, namely MCDCD,
in the context of multi-source unsupervised domain adaptation,
which improves the abnormal gait recognition performance on
a novel subject (target domain). The proposed network is com-
posed of a single feature extractor and domain-specific category
classifiers. The core idea is to diminish the domain shift between
source domains (training subjects) and the target subject by
leveraging the information from multiple sources. We conducted
extensive comparison experiments on with our abnormal gait
dataset. Experiment results have demonstrated the effectiveness
of MCDCD in recognizing gait abnormality on a novel subject,
especially illustrating the contribution of the unsupervised do-
main adaptation with the cross-domain classifier discrepancy
and the triplet loss.

Future work will target on the cross-modal transfer learning
to extract the discriminative features from the noisy modality
by leveraging the information from high-quality Mocap data.
Beyond the multi-source domain adaptation, there is also a
pressing need for proposing novel frameworks to address the
multi-target unsupervised domain adaptation, which aims to
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enhance the generalization capability of deep models in terms
of multiple novel subjects.
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