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Abstract
One of the strongest approaches for optimal classical plan-
ning is A∗ search with heuristics based on abstractions of the
planning task. Abstraction heuristics are well studied in plan-
ning formalisms without conditional effects such as SAS+.
However, conditional effects are crucial to model many plan-5

ning tasks compactly. In this paper, we focus on factored
tasks which allow a specific form of conditional effect, where
effects on variable x can only depend on the value of x.
We generalize projections, domain abstractions, Cartesian ab-
stractions and the counterexample-guided abstraction refine-10

ment method to this formalism. While merge-and-shrink al-
ready covers factored task in theory, we provide an imple-
mentation that does so. In our experiments, we compare these
abstraction-based heuristics to other heuristics supporting
conditional effects, as well as symbolic search. On our new15

benchmark set of factored tasks, pattern database heuristics
solve the most problems, followed by symbolic approaches
on par with domain abstractions. The more general Cartesian
and merge-and-shrink abstractions fall behind.

Introduction20

In classical planning, we aim to find (short) paths in large,
deterministic transition systems. In general, this means that
we search for a sequence of actions leading from the ini-
tial state of the problem to a state which satisfies some goal
condition. Interesting classical planning problems have too25

many states to find solutions using blind search. Heuris-
tic search has proven a very successful method for solving
classical planning problems (e.g., Bonet and Geffner 2001;
Hoffmann and Nebel 2001; Helmert and Domshlak 2009;
Richter and Westphal 2010; Helmert et al. 2014; Domshlak,30

Hoffmann, and Katz 2015). A heuristic is a function that es-
timates the cost from a given state to the closest goal state.
The guidance of a good heuristic helps the search to focus
on states that are likely part of a shortest solution.

One family of heuristics are abstraction heuristics (Seipp35

and Helmert 2018). An abstraction is an equivalence relation
between states. The states of the original problem within the
same equivalence class are mapped to a single abstract state.
Each transition in the original problem induces a transition
between the corresponding abstract states in the abstrac-40

tion. Since the abstract problem generally has fewer states
but preserves transitions between concrete states, it is easier
to solve than the original problem. Moreover, the cost of a

shortest path between two concrete states is lower-bounded
by the cost of a shortest path between the corresponding 45

abstract states. Abstraction heuristics can therefore use the
abstract goal distance as an admissible estimate of the goal
distance in the original problem. The most common abstrac-
tion classes in planning are pattern database (PDB) heuris-
tics (Culberson and Schaeffer 1998), domain abstractions 50

(Hernádvölgyi and Holte 2000), merge-and-shrink (M&S)
abstractions (Dräger, Finkbeiner, and Podelski 2006), and
Cartesian abstractions (Seipp and Helmert 2013). These
methods differ in the way they map states to abstract states
and can be ordered by increasing generality: PDBs, domain 55

abstractions, Cartesian abstractions, and M&S abstractions
(Seipp and Helmert 2018).

Compact representations of planning problems often re-
quire conditional effects. Unfortunately, many common
heuristics including abstraction heuristics do not support 60

conditional effects. We aim to fill this gap and study fac-
tored tasks, a class of planning tasks that augments SAS+

tasks with limited forms of disjunctive preconditions, con-
ditional effects, and angelic nondeterminism. While the the-
ory on M&S already covers factored tasks, we show how 65

the other abstraction classes mentioned above can be ex-
tended to this formalism. Furthermore, we implement these
abstraction heuristics for the subset of factored tasks that can
be modeled in finite-domain representation (Helmert 2009).
We also provide a set of benchmark problems consisting of 70

the well-known permutation puzzles Pancakes, Burnt Pan-
cakes, Rubik’s Cube, and TopSpin as well as the recently
introduced domain for finding algorithms for Matrix Multi-
plication (Speck et al. 2023).

In our experiments, we compare our abstraction heuris- 75

tics with previous approaches for solving planning problems
with conditional effects, such as hmax (Bonet and Geffner
2001), LM-cut with context splitting (Röger, Pommeren-
ing, and Helmert 2014) and symbolic search (Edelkamp,
Kissmann, and Torralba 2015; Torralba, Linares López, and 80

Borrajo 2016). The most problems are solved with PDBs,
followed by domain abstractions on par with symbolic ap-
proaches. The more general Cartesian and M&S abstractions
fall behind in terms of coverage. Most likely, this is because
computing meaningful abstractions for our benchmarks re- 85

quires more resources than we provide, rendering the sim-
pler PDB and domain abstractions preferable.



Factored Tasks
We consider classical planning with a factored task repre-
sentation (Helmert et al. 2014; Torralba and Sievers 2019;90

Sievers and Helmert 2021). Earlier papers introduce factored
tasks with an automata-based representation. Here we give
an equivalent definition that is closer in spirit to planning
task representations like STRIPS and SAS+.

Factored tasks extend the SAS+ formalism (Bäckström95

and Nebel 1995) with conditional effects, disjunctive pre-
conditions and goal conditions, and angelic nondetermin-
ism. However, all three features are restricted in such a way
that the structure of tasks can be understood by considering
one variable at a time: for example, each conditional effect100

on a variable only depends on this variable.
A variable space is a tuple V = ⟨V1, . . . , Vn⟩ of variables

with a finite domain. We write dom(Vi) for the domain of Vi,
which can be an arbitrary finite set of values. A state of V is
a tuple ⟨d1, . . . , dn⟩ with di ∈ dom(Vi) for all 1 ≤ i ≤ n.105

It follows that the set of all states is the Cartesian product
dom(V1)× · · · × dom(Vn). We denote this set by JVK.

A factored state set for V is a tuple D = ⟨D1, . . . , Dn⟩ of
subsets Di ⊆ dom(Vi). It serves as a compact representation
of the (non-factored) state set JDK = D1 × · · · × Dn ⊆110

JVK. State sets represented by factored state sets are called
Cartesian sets (Seipp and Helmert 2018).

A factored state relation for V is a tuple R =
⟨R1, . . . , Rn⟩ of relations Ri ⊆ dom(Vi) × dom(Vi). It
serves as a compact representation of the (non-factored) re-115

lation JRK ⊆ JVK× JVK with ⟨s, s′⟩ ∈ JRK iff ⟨si, s′i⟩ ∈ Ri

for all 1 ≤ i ≤ n. Factored state relations are a natural gen-
eralization of factored state sets in the sense that we can de-
termine membership in the relation by conducting separate
tests for each variable. A factored operator o is defined by a120

factored state relation trans(o) and its operator cost cost(o).
A factored task is a 4-tuple Π = ⟨V,O, I, G⟩, where V is

a variable space,O is a finite set of factored operators, and I
and G are factored state sets representing the initial and goal
states.125

The semantics of tasks are defined via transition systems.
A transition system is a 5-tuple T = ⟨S,O, T, SI, SG⟩,
where S is a finite set of states, O is a finite set of opera-
tor labels1 with associated cost, T ⊆ S × O × S is a finite
set of labeled transitions, and SI, SG ⊆ S are the initial and130

goal states.
The factored task Π = ⟨V,O, I, G⟩ represents the tran-

sition system JΠK = ⟨JVK,O, JOK, JIK, JGK⟩, where JOK =
{⟨s, o, s′⟩ | o ∈ O, ⟨s, s′⟩ ∈ Jtrans(o)K}. The objective of
classical planning is to find a path from an initial to a goal135

state in JΠK. The multiple initial states and nondeterminism
of operators (a single state can have multiple successors via
the same operator) are interpreted angelically, i.e., the plan-
ning algorithm may choose which initial state/successors to
use (Torralba and Sievers 2019).140

1We call these operator labels instead of operators to empha-
size that within a transition system, they only serve as opaque la-
bels rather than objects with internal structure like the operators of
a factored task.

Note that factored tasks may have an empty set of initial
states or goal states. If so, they are trivially unsolvable be-
cause there cannot exist a path from an initial to a goal state
in these cases. We say a factored task with n variables is
trivially unsolvable if Ii = ∅ or Gi = ∅ for some 1 ≤ i ≤ n. 145

A trivial operator is an operator with Ri = ∅ for some
1 ≤ i ≤ n which therefore induces no transitions in the
represented transition system (Sievers and Helmert 2021).

We remark that we need neither multiple initial states nor
(angelically) nondeterministic operators for this paper, but 150

they can be supported at no additional difficulty and allow
us to treat some things more generally and more uniformly.
In particular, they make regression very simple for factored
tasks: by swapping the initial and goal states and replacing
each transition relation trans(o)i by its inverse trans(o)−1

i , 155

we obtain a new factored task whose transition system is the
inverse of the original transition system.

Comparison to SAS+ Factored tasks generalize SAS+

tasks. SAS+ tasks can be understood as factored tasks
⟨⟨V1, . . . , Vn⟩,O, I, G⟩ with the following restrictions: 160

• There is a single initial state: |Ii| = 1 for all 1 ≤ i ≤ n.
• Variables either have a single goal value or no goal con-

dition: |Gi| = 1 or Gi = dom(Vi) for all 1 ≤ i ≤ n.
• For all o ∈ O and all 1 ≤ i ≤ n, the relation Ri =

trans(o)i has one of the following forms: 165

– Ri = {⟨d, d⟩ | d ∈ dom(Vi)}: the operator has no
precondition or effect on Vi

– Ri = {⟨d, d⟩} for exactly one d ∈ dom(Vi): the oper-
ator has a precondition and no effect on Vi

– Ri = {⟨d, d′⟩} for exactly one pair d, d′ ∈ dom(Vi): 170

the operator has a precondition and an effect on Vi

– Ri = {⟨d, d′⟩ | d ∈ dom(Vi)} for exactly one
d′ ∈ dom(Vi): the operator has an effect and no pre-
condition on Vi

For tasks that can be compactly expressed in SAS+, fac- 175

tored task representations are somewhat more verbose for
aspects such as variables not appearing in a precondition or
effect. This is not a concern for this paper, but we note that
practical implementations sometimes special-case these as-
pects to reduce verbosity (Sievers 2018). 180

Conversely, factored tasks allow representing some as-
pects compactly that cannot be directly represented in
SAS+. For example, if dom(Vi) = {1, 2, 3, 4, 5} an operator
can use the relation Ri = {⟨2, 3⟩, ⟨3, 2⟩, ⟨4, 4⟩} to express
the disjunctive precondition (Vi = 2)∨ (Vi = 3)∨ (Vi = 4) 185

and the conditional effects (Vi = 2) � (Vi := 3) and
(Vi = 3)�(Vi := 2). Expressing the same transition seman-
tics in SAS+ requires either exponential-size compilation or
introducing auxiliary state variables and operators split into
multiple stages, which can negatively affect planning algo- 190

rithms (Nebel 2000).
The same is true for the angelic nondeterminism sup-

ported by factored tasks. For example, we can easily ex-
press an operator with the meaning “For each of the vari-
ables V1, . . . , Vk, choose either 1 or 2 as the new value”, 195

but this would require 2k operators or an operator split into
multiple stages using auxiliary states in SAS+.



Abstractions
Most current planning algorithms use heuristic search algo-
rithms to perform a progression search through the transition200

system JΠK. Two such heuristic search algorithms are A∗

(Hart, Nilsson, and Raphael 1968) and IDA∗ (Korf 1985),
which use a heuristic function to estimate the cost to reach
the goal from each search node. They guarantee an optimal
(minimum-cost) solution if the heuristic is admissible, i.e.,205

never overestimates the cost to the goal.
Abstractions are a common source of admissible heuris-

tics in the planning literature. The four most widely stud-
ied classes of abstractions are projections used for pattern
database (PDB) heuristics (Edelkamp 2001), domain ab-210

stractions (Hernádvölgyi and Holte 2000), Cartesian ab-
stractions (Seipp and Helmert 2018), and merge-and-shrink
(M&S) abstractions (Sievers and Helmert 2021). In this sec-
tion we introduce the general concept of abstraction and
these specific classes. In the following section, we extend215

heuristics using these classes of abstractions from SAS+ to
factored tasks.

Let T = ⟨S,O, T, SI, SG⟩ be a transition system. An ab-
straction∼ is an equivalence relation over S with the mean-
ing that the distinction between states in the same equiva-220

lence class is ignored. We write s∼ for the equivalence class
to which state s ∈ S belongs and define S∼ = {s∼ | s ∈ S}
for sets of states S.

The abstraction ∼ induces the abstract transition system
T ∼ = ⟨S∼,O, T∼, S∼

I , S∼
G ⟩ where T∼ = {⟨s∼, o, t∼⟩ |225

⟨s, o, t⟩ ∈ T}. The abstraction heuristic h∼ maps state s to
the minimum path cost from s∼ to any t∼ ∈ S∼

G in T ∼. By
construction, every path in T corresponds to a path in T ∼.
Consequently, the minimum path cost from s∼ to t∼ in T ∼

is a lower bound on the minimum path cost from s to t in230

T . Together with the definition of the abstract goal states, it
follows that abstraction heuristics are admissible.

Abstraction heuristics for planning exploit that the set of
states S is represented by a variable space, i.e., S = JVK for
some V = ⟨V1, . . . , Vn⟩.235

Pattern Databases PDBs are based on projections onto a
subset of the variables P ⊆ {V1, . . . , Vn} called the pattern.
Two states s and t are equivalent in the abstraction iff si = ti
for all Vi ∈ P . Sievers, Ortlieb, and Helmert (2012) explain
how to compute PDBs efficiently for SAS+ tasks and how240

to support efficient heuristic computation via table lookup.

Domain Abstractions In a projection, each state variable
is either represented faithfully (for variables in the pattern)
or not at all (for variables outside the pattern). Domain ab-
stractions generalize this idea by defining an equivalence245

relation ∼i ⊆ dom(Vi) × dom(Vi) for each state variable
Vi. Two states s and t are equivalent under such a domain
abstraction if they are equivalent in each of these relations:
s ∼ t if si ∼ ti for all state variables Vi.

Projections can be expressed as domain abstractions by250

using the identity relation {⟨d, d⟩ | d ∈ dom(Vi)} as the
equivalence relation for variables in the pattern (all values
of the variable are distinguished) and the universal relation
dom(Vi)×dom(Vi) for variables outside the pattern (all val-
ues are considered equivalent).255

Kreft et al. (2023) describe a state-of-the-art implementa-
tion of domain abstraction heuristics for SAS+ tasks based
on the counterexample-guided abstraction refinement prin-
ciple (CEGAR).

Cartesian Abstractions An abstraction∼ is called Carte- 260

sian if all equivalence classes under ∼ are Cartesian sets.
Domain abstractions (and therefore also projections) are a
special case of Cartesian abstractions: if we consider a do-
main abstraction with equivalence relations ∼i for the indi-
vidual variables, then all equivalence classes are of the form 265

D1 × · · · ×Dn, where Di is an equivalence class of ∼i.
Cartesian abstractions strictly generalize domain abstrac-

tions because they do not require a global decision on how to
partition variable domains into equivalence classes. The de-
cision which values of state variables are grouped together 270

is made individually at the level of each abstract state.
Seipp and Helmert (2018) describe an efficient implemen-

tation of Cartesian abstractions for SAS+ tasks based on the
CEGAR principle.

Merge-and-Shrink Abstractions The most general class 275

of abstractions we consider are merge-and-shrink (M&S)
abstractions (Sievers and Helmert 2021). To generate an
M&S abstraction, we begin with a pool of abstract transi-
tion systems that represent all projections to a single state
variable. This pool of transition systems is repeatedly trans- 280

formed by replacing two transition systems with their prod-
uct (merging) and reducing the size of a transition system by
applying a local abstraction (shrinking) until only a single
abstract transition system remains, which then defines the
abstraction heuristic.2 285

M&S can represent arbitrary abstractions, which makes
this approach even more general than Cartesian abstrac-
tions. However, not all abstractions can be represented com-
pactly in the merge-and-shrink framework, and in this regard
the precise relationship to Cartesian abstractions is an open 290

question. M&S abstractions are known to properly general-
ize pattern database heuristics for SAS+ tasks, also in the
sense that the computation is similarly compact and effi-
cient (Helmert, Haslum, and Hoffmann 2007; Sievers and
Helmert 2021), and it is easy to extend this result to do- 295

main abstractions. The existing theory of M&S abstractions
covers the full generality of factored tasks (Helmert et al.
2014; Sievers and Helmert 2021), but the implementations
described in the literature are limited to SAS+.

Abstraction Heuristics for Factored Tasks 300

We now describe how the four classes of abstractions can
be extended from SAS+ tasks to factored tasks. The main
contributions are the extensions for domain abstractions
and counterexample-guided Cartesian abstraction refine-
ment (Cartesian CEGAR) because the PDB case is straight- 305

forward and the M&S case is already covered in the litera-
ture.

2The full algorithm also applies further transformations called
label reduction and pruning, which are not important for this dis-
cussion (Sievers and Helmert 2021).



Pattern Databases The efficient implementation of pat-
tern databases for SAS+ tasks Π is based on the idea of
syntactic projection: remove all state variables that are not310

part of the pattern from the compact task representation, then
use the resulting task to produce the abstract transition sys-
tem. For SAS+ tasks, this approach is conservative (every
transition of JΠK has a corresponding transition in the ab-
stract transition system) and induced (every transition in the315

abstract transition system has a corresponding transition in
JΠK) and hence results in exactly the transition system JΠK∼.

For more general classes of planning tasks, this is not nec-
essarily the case. Consider the pattern {V2, V3} and an op-
erator with the unconditional effect (V2 := 1) and the con-320

ditional effect (V1 = 0) � (V3 := 1). If we naively define
the syntactic projection to receive the unconditional effects
(V2 := 1) and (V3 := 1), the resulting abstract transition
system misses transitions that should be present: in Π the
operator can sometimes change V2 without changing V3, but325

in the projected task it cannot. There are ways to avoid this
problem, but they all have a price such as accepting non-
induced abstractions (reducing heuristic quality) or making
it NP-hard to test if an induced transition exists.

For factored tasks, this problem does not arise because de-330

pendencies between different state variables as in the prob-
lematic conditional effect do not exist. For factored tasks,
syntactic projection is conservative and leads to an induced
abstraction with one caveat: if the problem is trivially un-
solvable or has trivial operators, projecting away the respon-335

sible variables may lead to solvable abstractions or non-
induced transitions of the operator. Hence, we need to check
that the sets of original initial and goal states are nonempty
and discard all operators o, for which Jtrans(o)K = ∅. This is
easy to do in linear time in the size of the task representation.340

We do not prove this result formally because it follows from
the general relationship between PDBs and M&S (Sievers
and Helmert 2021).

Domain Abstractions Like PDBs, domain abstractions
can be implemented for SAS+ as syntactic domain abstrac-345

tions. We assign a value between 1 and the number of equiv-
alence classes to each equivalence class in ∼i. Then, we re-
place all variable values with the number representing their
corresponding equivalence class wherever they occur in the
task representation. Again, this approach is conservative and350

leads to an induced abstraction, resulting exactly in JΠK∼.
Extending it to general conditional effects comes with the
same problems as PDBs.

For domain abstractions of factored tasks, we can again
point out the relationship to M&S and use the more general355

result to show that they are conservative and induced. Start-
ing with the set of transition systems of atomic projections,
we can first shrink all these factors according to the equiv-
alence relations in each variable domain. From Sievers and
Helmert (2021) we know that shrinking is an induced and360

conservative transformation. Now we can merge the factors
same as in the PDB case, to end up with a transition system
that is induced and conservative. Moreover, it is isomorphic
to the transition system obtained through syntactic domain
abstraction. Note that the caveat we mention for PDBs does365

not apply here: If a factored state set or relation is empty
in the original problem, then it is also empty in the syntac-
tic domain abstraction where variable values are simply re-
placed by their abstract values.

Another notable difference to the case of PDBs is the fol- 370

lowing observation: abstract transition systems may be non-
deterministic even if the original transition system is deter-
ministic. Consider for example a factored task with a sin-
gle variable V1 with dom(V1) = {x, y, z} and an operator
o = ⟨{⟨x, y⟩, ⟨y, z⟩}⟩. There is at most one outgoing tran- 375

sition labeled with o in every state of the induced transition
system. Now let x ∼1 y and x ̸∼1 z in the domain abstrac-
tion and let 1 denote the equivalence class of x and y and 2
denote the equivalence class of z. We end up with the rela-
tion R∼

1 = {⟨1, 1⟩, ⟨1, 2⟩} which means there are two out- 380

going transitions labeled with o in the abstract state repre-
senting V1 = 1. This observation is one of the justifications
for considering angelic nondeterminism in our factored task
representation.

Cartesian Abstractions In the literature, Cartesian ab- 385

stractions are usually discussed together with the algo-
rithm used to compute them: Cartesian CEGAR (Seipp
and Helmert 2018). Cartesian CEGAR imposes a hierarchi-
cal structure on the Cartesian sets representing the abstract
states. This structure plays an important role regarding the 390

efficiency of the algorithm and the heuristic lookup after its
termination. It remains an open question whether and how
we can deal with Cartesian abstractions that does not follow
such a hierarchy.

Because Cartesian abstractions generalize domain ab- 395

stractions and projections, extending the Cartesian CEGAR
algorithm to more expressive classes of planning tasks leads
to similar problems and other problems besides. However,
the algorithm can be efficiently extended to factored tasks.

Consider the transition system T = ⟨S,O, T, SI, SG⟩, an 400

operator label o ∈ O and a state set S ⊆ S. We define:

• the progression of S through operator o:
progr(S, o) = {s′ | s ∈ S, ⟨s, o, s′⟩ ∈ T}

• the regression of S through operator o:
regr(S, o) = {s | s′ ∈ S, ⟨s, o, s′⟩ ∈ T} 405

• the set of states in which o is applicable:
applicable(o) = {s | ⟨s, o, s′⟩ ∈ T}

Our main observation is that the Cartesian CEGAR al-
gorithm can be extended to any transition system with the
following properties: 410

(P1) SI and SG are Cartesian sets.
(P2) For every Cartesian set S and every operator label o,

progr(S, o) and regr(S, o) are Cartesian sets.
(P3) For every o ∈ O, applicable(o) is a Cartesian set.

Moreover, the algorithm can be made as efficient as in the 415

SAS+ case if all Cartesian sets are represented as factored
state sets and progr(S, o) and regr(S, o) have efficient im-
plementations for such representations.

Factored tasks satisfy all these properties. Let Π =
⟨⟨V1, . . . , Vn⟩,O, I, G⟩ be a factored task. Property (P1) is 420

obvious because I and G are factored state sets.



Algorithm 1: Abstract trace verification. Try to con-
vert the given abstract solution into a solution for the
planning task. If this fails, return a flaw of the form
⟨A,B1, B2⟩: a Cartesian set A that must be split to
separate B1 ⊆ A from B2 ⊆ A.

1 function FINDFLAW(⟨A0, o1, A1, . . . , on, An⟩)
2 Poss← A0 ∩ SI
3 for i = 1 to n do
4 { invariants: Poss ̸= ∅, Poss ⊆ Ai−1 }
5 if Poss ∩ applicable(oi) = ∅ then
6 { flaw found: violated precondition }
7 return ⟨Ai−1,Poss, Ai−1 ∩ applicable(oi)⟩
8 if progr(Poss, oi) ∩Ai = ∅ then
9 { flaw found: cannot get to next abstract state }

10 return ⟨Ai−1,Poss, Ai−1 ∩ regr(Ai, oi)⟩
11 Poss← progr(Poss, oi) ∩Ai

12 if Poss ∩ SG = ∅ then
13 { flaw found: goal not reached }
14 return ⟨An,Poss, An ∩ SG⟩
15 return “no flaw”

For property (P2), consider S = D1×· · ·×Dn and opera-
tor o with trans(o) = ⟨R1, . . . , Rn⟩. Because factored tasks
consider each state variable separately, we get

progr(S, o) = D′
1 × · · · ×D′

n,where

D′
i = {d′ ∈ dom(Vi) | d ∈ Di, ⟨d, d′⟩ ∈ Ri}.

Regression is analogous. Intuitively, Cartesian sets can be
progressed/regressed through operators of factored tasks by
progressing/regressing each state variable separately.

Property (P3) can be seen analogously, but also follows425

from (P2) in general because applicable(o) = regr(S, o) for
all operators o, and the set of all states S is Cartesian.3

We now show how to extend Cartesian CEGAR using the
three properties. As a reminder, Cartesian CEGAR is an iter-
ative algorithm that maintains an abstract transition system430

T represented as an explicit digraph. Each iteration of the al-
gorithm finds an optimal solution (minimum-cost path from
an initial state to a goal state) for T and checks whether this
solution works in the real planning task. If not, the algorithm
determines a flaw (a reason why the solution does not work)435

and addresses it by splitting one abstract state into two ab-
stract states.

Checking the solution and finding a flaw is the respon-
sibility of the function FINDFLAW, which forms the heart
of the Cartesian CEGAR approach. We focus our discus-440

sion on this function; all other components of the approach
are straightforward to adapt. Algorithm 1 shows FIND-
FLAW for the factored task setting. The original version
for SAS+ tasks is Algorithm 2 in the paper of Seipp and
Helmert (2018).445

For simplicity, the algorithm is written as if it operated
directly on Cartesian sets. In the implementation, these are

3Of course this makes (P3) a redundant property. We find it
useful to state nevertheless because we use it in the following.

represented as factored state sets, which efficiently support
the necessary operations such as set intersection and com-
parison to the empty set. Note that the algorithm uses proper- 450

ties P1–P3, as it uses all of SI, SG, progr, regr and applicable
and requires the sets it operates on to be Cartesian. Note also
that apart from the properties P1–P3, the algorithm is com-
pletely agnostic to the task representation.

The input to the algorithm is the found abstract solution, 455

represented as a trace, i.e., the abstract states (= Cartesian
sets) A0, . . . , An that form the path interleaved with the op-
erator labels o1, . . . , on that label the used transitions be-
tween these abstract states. The case n = 0 is allowed, in
which case the trace is simply ⟨A0⟩, which must then be 460

both an abstract initial state and an abstract goal state.
FINDFLAW verifies the trace step by step. At any point,

Poss is a Cartesian set representing the concrete states that
the part of the trace that was verified so far can lead to. (In
the original algorithm by Seipp and Helmert, this is always 465

a single state because SAS+ tasks have a single initial state
and deterministic operators.) Poss is always nonempty: if at
any stage it would become empty, this signifies a flaw, and
the algorithm returns.

There are three kinds of flaws that can arise: 1) violated 470

preconditions, 2) the real solution leading to a different ab-
stract state than the abstract trace does, and 3) not ending
in a goal state. The conditions for detecting these flaws are
very similar to the original algorithm, and we refer to Seipp
and Helmert (2018) for a detailed discussion. 475

Whenever a flaw is found, the algorithm identifies three
Cartesian sets A, B1 and B2. The set A is an abstract state
in the current abstraction that must be split to repair the flaw.
The set B1 ⊆ A consists of the states of the planning task
that the verified part of the trace leads to; the set B2 ⊆ A 480

consists of the states that would have needed to be reached
in order to continue with the verification of the trace.

The sets B1 and B2 are always nonempty and disjoint.
To repair the flaw, Cartesian CEGAR selects a variable for
which the values allowed in B1 and B2 are disjoint (such a 485

variable must exist because B1 and B2 are disjoint) and uses
it to partition A into two new Cartesian sets A1 and A2 with
B1 ⊆ A1 and B2 ⊆ A2. The algorithm removes A from
the abstract transition system and replaces it with A1 and
A2, adding the necessary transitions and marking the new 490

abstract states as initial and goal states as needed. This con-
cludes the iteration of the CEGAR loop and our discussion
of Cartesian CEGAR.

Merge-and-Shrink For M&S, the existing theory already
covers factored tasks and therefore does not need to be ex- 495

tended (Helmert et al. 2014; Sievers and Helmert 2021).
However, the existing implementations described in the lit-
erature require SAS+. We extended the implementation to
support the kinds of conditional effects supported in factored
tasks, but this does not require new theory. 500

Experiments
Given the success of abstraction-based planning algorithms
for SAS+ tasks, it is natural to ask whether these ap-
proaches also work well for factored tasks. To evaluate



this, we implement the necessary extensions in the Scorpion505

planner (Seipp, Keller, and Helmert 2020), an extension of
Fast Downward (Helmert 2006). The task representation ex-
pected as input to these systems does not support multiple
initial states, disjunctive preconditions and goal conditions,
nor angelic nondeterminism. While it would be interesting to510

consider these generalizations as well, here we focus solely
on factored conditional effects. By considering only this
addition we can easily compare our algorithms to existing
planners that support conditional effects but not necessarily
the other features of factored tasks.515

We use Downward Lab (Seipp et al. 2017) for running
our experiments with a time limit of 30 minutes and a mem-
ory limit of 8 GiB. In the following, we describe the tasks
we use for our evaluation, give an overview of the compared
planner configurations, and evaluate their performance. Our520

code, benchmarks, and data will be published online (Refer-
ence omitted for anonymity).

Benchmarks
For our analysis, we implemented problem generators that
create finite-domain representations (Helmert 2009) of the525

following domains: Pancakes (e.g., Dweighter 1975) and
its variation Burnt Pancakes (e.g., Gates and Papadimitriou
1979), Rubik’s Cube (e.g., Korf 1997), and TopSpin (e.g.,
Holte et al. 2006). For each of them, we generate 100
problems of varying difficulty. Furthermore, we use the 11530

benchmarks introduced by Speck et al. (2023) for finding
algorithms for Matrix Multiplication.

Permutation problems such as the ones in the list above
can be modeled naturally as factored tasks. Consider, for ex-
ample, the Pancakes domain where a stack of pancakes must535

be ordered by size by inserting a spatula into the stack and
flipping all pancakes above that point. There are n!

(n−k)! pos-
sible situations for the top k pancakes. Hence, modeled as a
SAS+ task with one variable for every pancake, a problem
with n pancakes requires

∑n
k=1

n!
(n−k)! operators. In finite-540

domain representation, we only require n operators, one for
every k with conditional effects for changing the position of
every pancake depending on its current position.

Besides the possibility to model these kinds of problems
compactly as factored tasks, the selected domains are in-545

teresting for our analysis because abstraction heuristics are
considered the state of the art for solving some of these
and similar problems (e.g., Korf 1997; Hernádvölgyi and
Holte 2000; Korf and Felner 2002). While the state-of-the-
art methods are domain-specific, it is interesting to see how550

our domain-independent approaches perform on these kinds
of problems.

Heuristics
We use the following heuristics.

Blind Heuristic Our baseline is blind search (BLIND).555

hmax Heuristic A common admissible heuristic that sup-
ports conditional effects is the hmax heuristic (Bonet and
Geffner 2001) which we denote by HMAX in our evaluation.

Pattern Database Heuristics For PDBs, the crucial deci-
sions are how to choose the patterns and how to combine 560

their individual heuristic values. For the generation of pat-
tern collections we use the following two approaches:

PDB-SYS This configuration systematically generates all
interesting patterns up to a certain size (Pommerening,
Röger, and Helmert 2013). For our benchmarks, this 565

strategy is feasible for patterns of size up to 3.
PDB-CEGAR Rovner, Sievers, and Helmert (2019) pro-

pose generating patterns using the CEGAR algorithm.
We adapt it to work for factored tasks but use their recom-
mended settings: The time limit for generating patterns 570

is 100 seconds, each induced abstractions may contain at
most 1M states while the entire collection is limited to
10M states, and blacklisting triggers after 75 seconds or
if no new patterns are found for 20 seconds.

We combine the abstract goal distances of each pattern by 575

taking the maximum. We also tested combining them with
saturated cost partitioning (SCP; Seipp, Keller, and Helmert
2020), a state of the art approach for combining abstraction
heuristics in SAS+, but taking the maximum performed sig-
nificantly better on our benchmarks, so we only report re- 580

sults for the maximum below.

Domain Abstraction Heuristic Using CEGAR was also
suggested for generating domain abstractions (Kreft et al.
2023). Extending it to factored tasks is not as straightfor-
ward as for PDBs because, as we mention above, domain ab- 585

stractions may become nondeterministic even if the original
problem is deterministic (which is the case for our bench-
marks). This introduces a type of flaw that cannot occur in
the SAS+ case or the PDB case, but we have handled it
above for Cartesian CEGAR: Applying the abstract plan to 590

the original problem may diverge from the abstract trace. In-
corporating this in the algorithm is easy enough, by storing
not only the abstract plan but also the sequence of abstract
states and returning a flaw as soon as the concrete state does
no longer correspond to the abstract state when executing 595

the abstract plan in the concrete problem. We consider two
configurations of domain abstractions:

DOM-SINGLE This strategy computes a single domain ab-
straction with at most 1M states using the recommended
refinement strategy of picking flaws randomly. 600

DOM-MULTI In this configuration, we compute a collec-
tion of domain abstractions such that individual abstrac-
tions have at most 10K states while the entire collection
may have up to 1M states. To get diverse abstractions, we
initialize each run by choosing an arbitrary goal variable 605

and represent it with the identity relation in the initial
abstraction. The refinement strategy is again picking one
random flaw in every iteration. Blacklisting is activated
from the start. During search we maximize over all indi-
vidual estimates. 610

Cartesian Abstraction Heuristic By CARTESIAN we de-
note the Cartesian CEGAR algorithm adapted to factored
tasks in this paper. We limit neither the number of states
nor transitions. The abstraction refinement loop terminates
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Pancakes (100) 39 39 35 53 52 52 59 49 51 44 43
Burnt Pancakes (100) 35 38 30 49 49 49 53 44 47 40 40
Rubik’s Cube (100) 36 42 35 56 50 59 66 51 58 47 46
TopSpin (100) 24 31 22 50 51 49 59 45 49 44 32
Matrix Multiplication (11) 7 7 7 7 7 7 7 7 7 7 7
Total (411) 141 157 129 215 209 216 243 196 212 182 168

out of memory 270 1 – 78 52 23 107 215 90 100 240
out of time – 253 282 118 150 172 61 – 109 129 3

Table 1: Number of solved tasks per domain and summary of reasons for failure.

once the refinement finds a valid plan, 900 seconds passed,615

or less than 500 MiB of free memory remain. We also con-
sidered computing collections of Cartesian abstractions, one
for each goal fact (Seipp and Helmert 2014), but both tak-
ing their maximum or computing an SCP performed signif-
icantly worse than just using a single Cartesian abstraction,620

so we do not report these numbers.

Merge-and-Shrink Heuristic The last abstraction-based
configuration we consider is merge-and-shrink (M&S). It
uses bisimulation as its shrink strategy (Nissim, Hoffmann,
and Helmert 2011), strongly connected components as the625

merge strategy (Sievers, Wehrle, and Helmert 2016), and ex-
act label reduction (Sievers and Helmert 2021). We limit the
abstraction size to at most 50K states.

Planners

We run an A∗ search for each of the heuristics above. In630

addition, we evaluate:

A∗ with Context-Splitting LM-Cut By LM-CUT we de-
note an A∗ search using the landmark-cut heuristic extended
with context-splitting to support conditional effects (Röger,
Pommerening, and Helmert 2014). We use the implementa-635

tion from Metis (Sievers and Katz 2018) which also supports
partial order reduction based on strong stubborn sets (Wehrle
and Helmert 2014) and structural symmetry pruning based
on orbit space search (Shleyfman et al. 2015; Domshlak,
Katz, and Shleyfman 2015). Since our experiments showed640

that both of these pruning methods fail to prune the state
spaces of our benchmarks, we only report results for plain
LM-Cut with context splitting.

Symbolic Search Finally, we evaluate two planners based
on symbolic search. First, we consider SYMBA∗, winner of645

the optimal track of IPC 2014 (Torralba, Linares López, and
Borrajo 2016). Second, we run symbolic bidirectional blind
search (SYMBB) (Edelkamp, Kissmann, and Torralba 2015)
using the implementation from SymK (Speck 2022).

Coverage Evaluation 650

Table 1 shows how many problems of each domain are
solved by the approaches above and the reasons for failure.
In all domains, PDB-CEGAR solves the most problems.
Summarizing coverage over all domains, PDB-CEGAR
solves many more tasks (243 tasks) than its closest con- 655

tenders PDB-SYS, SYMBA∗, DOM-MULTI and SYMBB,
which all solve similarly many problems (209–216 tasks).
DOM-SINGLE, CARTESIAN and M&S fall further behind,
but still solve more problems than HMAX, BLIND and LM-
CUT. Looking at individual domains yields a similar rank- 660

ing between the tested planners. As expected, exhausting the
time limit is the main reason for failure for planners that per-
form costly calculations during the search, such as HMAX
and LM-CUT. For the blind heuristic and single-abstraction
heuristics (except for CARTESIAN), usually memory is the 665

limiting factor. For the remaining approaches, the reasons
for failure are mixed.

We now analyze our extensions of the abstraction heuris-
tics. Their number of solved tasks is inversely proportional
to the generality of the underlying abstraction class. This 670

is a surprising result, as it seems reasonable to assume that
the more general classes can represent more specific infor-
mation when needed, resulting in more accurate heuristics.
Indeed, CARTESIAN excels in terms of heuristic quality: its
heuristic is often perfect when given enough time to refine 675

the abstraction. Within our resource limits, however, this is
only the case for the simpler problems and starting from a
certain difficulty level in every domain, the resulting heuris-
tics become less accurate, resulting in expanding many more
states than the less general PDB and domain abstraction 680

heuristics. The more general M&S heuristics, however, per-
form significantly worse in terms of expansions, both for
simple and hard problems.

Runtime Evaluation
One major advantage of the CEGAR-based approaches is 685

their inherent mechanism to terminate once a plan is found
within the CEGAR loop. Because of its capability to re-
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Figure 1: Runtimes in seconds split by domain: HMAX on the x-axis and our abstraction heuristics on the y-axis.

fine the abstraction very locally where needed, CARTESIAN
benefits more from this compared to PDB-CEGAR, DOM-
SINGLE and DOM-MULTI. In particular, the more restrictive690

abstraction classes generate larger abstractions faster. Since
we limit their maximal abstraction size, they often terminate
due to this limit before finding a solution.

Figure 1 compares the overall running times of our ab-
straction heuristics to HMAX. We use HMAX as the refer-695

ence algorithm because its running time scales quite con-
sistently with the difficulty level of the underlying planning
task. We can see that there are many tasks where HMAX
and CARTESIAN find solutions immediately. While DOM-
SINGLE finds solutions quickly for some tasks, eventually it700

takes longer to compute the abstraction than it takes HMAX
to find a solution. However, DOM-SINGLE can make up for
this precomputation time with heuristic quality and has a
somewhat constant solving time between 10 and 100 sec-
onds, depending on the domain. This effect is more pro-705

nounced in the cases of DOM-MULTI and PDB-CEGAR,
where precomputation times are clearly visible as horizon-
tal lines for the different domains. The plots reveal that the
task difficulty has limited influence on the search time of
the planner once precomputations are completed. M&S also710

has a precomputation phase which only starts to pay off for
problems where HMAX needs 10 or more seconds to solve
them. Compared to the other methods, however, M&S re-
quires more and more time as problems get harder.

In contrast, PDB-SYS consistently solves tasks faster715

than HMAX starting from 0.1 seconds. While PDB-SYS also
requires precomputations, this does not show as clearly as

for the other methods. This is most likely because the num-
ber of interesting patterns up to a certain size depends mostly
on the number of variables in the problem, which gradually 720

increases with the difficulty level for most of our benchmark
domains. The only exception here is Rubik’s Cube for which
we use a constant-size cube with random walks of vary-
ing length to generate the tasks. When the number of vari-
ables becomes too large, precomputing all interesting pat- 725

terns runs out of time or memory which is the reason why
PDB-SYS does not outperform PDB-CEGAR coverage-
wise, even though it has a clear speed advantage.

Conclusions and Future Work

We extend the theory on common abstraction heuristics for 730

classical planning. In particular, we study factored tasks, a
generalization of SAS+ featuring limited forms of disjunc-
tive preconditions, conditional effects, and angelic nonde-
terminism. We compare implementations of our abstraction
heuristics against other planning approaches supporting con- 735

ditional effects on a newly created benchmark set. Our ex-
periments reveal that PDBs are most successful in terms of
overall coverage, while Cartesian CEGAR provides very ac-
curate heuristics given enough resources for the precompu-
tation. Since our benchmarks only feature the extension of 740

conditional effects, it would be interesting to evaluate these
heuristics on problems which also include disjunctive pre-
conditions and angelic nondeterminism.
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