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Abstract

Graph Contrastive Learning (GCL), learning the node representations by aug-
menting graphs, has attracted considerable attentions. Despite the proliferation of
various graph augmentation strategies, some fundamental questions still remain
unclear: what information is essentially encoded into the learned representations
by GCL? Are there some general graph augmentation rules behind different aug-
mentations? If so, what are they and what insights can they bring? In this paper,
we answer these questions by establishing the connection between GCL and graph
spectrum. By an experimental investigation in spectral domain, we firstly find
the General grAph augMEntation (GAME) rule for GCL, i.e., the difference of
the high-frequency parts between two augmented graphs should be larger than
that of low-frequency parts. This rule reveals the fundamental principle to revisit
the current graph augmentations and design new effective graph augmentations.
Then we theoretically prove that GCL is able to learn the invariance information
by contrastive invariance theorem, together with our GAME rule, for the first
time, we uncover that the learned representations by GCL essentially encode the
low-frequency information, which explains why GCL works. Guided by this
rule, we propose a spectral graph contrastive learning module (SpCo1), which is
a general and GCL-friendly plug-in. We combine it with different existing GCL
models, and extensive experiments well demonstrate that it can further improve the
performances of a wide variety of different GCL methods.

1 Introduction

Graph Neural Networks (GNNs) learn the node representations in a graph mainly by message
passing. GNNs have attracted significant interest and found many applications [11, 23, 14]. Training
the high quality GNNs heavily relies on task-specific labels, while it is well known that manually
annotating nodes in graphs is costly and time-consuming [10]. Therefore, Graph Contrastive Learning
(GCL) is developed as a typical technique for self-supervised learning without the explicit usage of
labels [28, 9, 36].

The traditional GCL framework (Fig. 1 (a)) mainly includes three components: graph augmentation,
graph representation learning by an encoder, and contrastive loss. In essence, GCL aims to maximize
agreement between augmentations to learn invariant representations [36]. Typical GCL methods have
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Figure 1: (a) The general framework of GCL. (b) The illustration of our findings in the empirical
study (Section 3). If two contrasted graphs have a larger margin between high-frequency part than
low-frequency part, they will boost the GCL. We call such two graphs as optimal contrastive pair.

sought to elaborately design different graph augmentation strategies. For example, the heuristic based
methods including node or edge dropping [32], feature masking [33], and diffusion [9]; and the learn-
ing based methods including InfoMin [26, 30], disentanglement [13], and adversarial training [31].
Although various graph augmentation strategies are proposed, the fundamental augmentation mech-
anism is not well understood. What information should we preserve or discard in an augmented
graph? Are there some general rules across different graph augmentation strategies? How to use
those general rules to validate and improve the current GCL methods? This paper explores those
questions.

Essentially, an augmented graph is obtained by changing some components in the original graph and
thus strength of frequencies [20] in graph spectrum. This natural and intuitive connection between
graph augmentation and graph spectrum inspires us to explore the effectiveness of augmentations
from the spectral domain. We start with an empirical study (Section 3) to understand the importance
of low-frequency and high-frequency information in GCL. Our findings indicate that both the lowest-
frequency information and the high-frequency information are important in GCL. Retaining more
high-frequency information is particularly helpful to improve the performance of GCL. However, as
shown in Fig. 1 (b), the way of handling high-frequency information in two contrasted graphs V1 and
V2 should be different, which can be finally summarized as a general graph augmentation (GAME)
rule: the difference of amplitudes of high frequencies in two contrasted graphs should be larger than
that of low frequencies.

To explain the GAME rule, we need to understand what information is encoded into the learned
representations by GCL. We propose the contrastive invariance (Theorem 1), which, for the first
time, theoretically proves that GCL can learn the invariance information from two contrasted graphs.
Meanwhile, as can be seen in Fig. 1 (b), because the difference of amplitudes of lowest-frequency in-
formation is much smaller than that of high-frequency information, the lowest-frequency information
will be the approximately invariant pattern between the two graphs V1 and V2. Therefore, with such
two augmentations V1 and V2, we can conclude that the information learned by GCL is mainly the
low-frequency information, whose usefulness has been well demonstrated [6]. This not only explains
why GCL works, but also provides a clear and concise demonstration of which augmentation strategy
is better, as verified by the experiments in Section 4.

Based on our findings and theoretical analysis, we define two augmentations satisfying the GAME
rule are called an optimal contrastive pair. Then, we propose a novel spectral graph contrastive
learning (SpCo), a general GCL framework, which can boost existing GCL methods with optimal
contrastive pairs. Specifically, to ensure that the learned augmented graph is an optimal contrastive
pair with the original adjacency matrix, we need to make the amplitude of its high frequency ascend
while keeping the low frequency the same as the original structure. We model this process as an
optimization objective based on matrix perturbation theory, which can be solved by Sinkhorn’s
Iteration [24] and finally obtain the augmented structure used for the following target GCL model.

Our contributions are summarized as follows. Firstly, we answer the question “what information is
learned by GCL and whether there exists a general augmentation rule”. To the best of our knowledge,
this is the first attempt to fundamentally explore the augmentation strategies for GCL from spectral
domain. We not only reveal the general graph augmentation rule behind different augmentation
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strategies, but also explain why GCL works by proposing the contrastive invariance theorem. Our
work provides deeper understanding on the nature of GCL. Secondly, we answer the question “how to
utilize the augmentation rule for GCL”. We show that the augmentation rule provides a novel insight
to estimate the current augmentation strategies. We propose a novel concept optimal contrastive pair
and theoretically derive a general framework SpCo, which is able to improve the performance of
existing GCL methods. Last, we choose three typical GCL methods as target methods, and plug SpCo
into them. We validate the effectiveness of SpCo on five datasets. We consistently gain improvements
compared with those target methods.

2 Preliminaries

Let G = (V, ξ) represent an undirected attributed graph, where V is the set of N nodes and ξ ⊆ V×V
is the set of edges. All edges formulate an adjacency matrix A ∈ {0, 1}N×N , where Aij ∈ {0, 1}
denotes the relation between nodes i and j in V . The node degree matrix D = diag(d1, . . . .dn),
where di =

∑
j∈V Aij is the degree of node i ∈ V . Graph G is often associated with a node feature

matrix X = [x1, x2, . . . , xN ] ∈ RN×d, where xi is a d dimensional feature vector of node i ∈ V . Let
L = D −A be the unnormalized graph Laplacian of G. If we set symmetric normalized adjacency
matrix as Â = D− 1

2AD− 1
2 , then L̂ = In − Â = D− 1

2 (D−A)D− 1
2 is the symmetric normalized

graph Laplacian.

Since L̂ is symmetric normalized, its eigen-decomposition is UΛU⊤, where Λ = diag(λ1, . . . , λN )

and U = [u⊤
1 , . . . ,u⊤

N ] ∈ RN×N are the eigenvalues and eigenvectors of L̂, respectively. Without
loss of generality, assume 0 ≤ λ1 ≤ · · · ≤ λN < 2 (where we approximate λN ≈ 2 [11]).
Denote by FL = {λ1, . . . , λ⌊N/2⌋} the amplitudes of low-frequency components and by FH =
{λ⌊N/2⌋+1, . . . , λN} the amplitudes of high-frequency components. The graph spectrum is defined
as these amplitudes of different frequency components, denoted as ϕ(λ), indicating which parts of
frequency are enhanced or weakened [20]. Additionally, we rewrite L̂ = λ1 · u1u

⊤
1 + · · ·+ λN ·

uNu⊤
N , where we define term uiu

⊤
i ∈ RN×N as the eigenspace related to λi, denoted as Si.

Graph Contrastive Learning (GCL) [28, 9, 33] aims to learn discriminative embeddings without
supervision, whose pipeline is shown in Fig. 1(a). We summarize the representative GCL in Ap-
pendix E. Specifically, two augmentations are randomly extracted from A in a predefined way and are
encoded by GCN [11] to obtain the node embeddings under these two augmentations. Then, for one
target node, its embedding in one augmentation is learned to be close to the embeddings of its positive
samples in the other augmentation and be far away from those of its negative samples. Models built
in this way are capable of discriminating similar nodes from dissimilar ones. For example, some
graph contrastive methods [36, 32, 35] use classical InfoNCE loss [19] as the optimization objective:

L(hV1

i ,hV2

i ) = log
exp(θ(hV1

i ,hV2

i )/τ)

exp(θ(hV1

i ,hV2

i )/τ) +
∑
k ̸=i

exp(θ(hV1

i ,hV2

k )/τ)
, (1)

where hV1

i and hV2

i are the embeddings of node i under augmentations V1 and V2, respectively, θ is
the similarity metric, such as cosine similarity, and τ is a temperature parameter. The total loss is
LInfoNCE =

∑
i

1
2

(
L(hV1

i ,hV2

i ) + L(hV2

i ,hV1

i )
)

.

3 Impact of Graph Augmentation: An Experimental Investigation

Figure 2: The case study model.

In this section, we aim to explore what information should
be considered in two contrasted augmentations from the
perspective of graph spectrum. Specifically, we design
a simple GCL framework shown in Fig. 2. Two input
augmentations are adjacency matrix A and generated V .
Then, we utilize a shared GCN with one layer as the en-
coder to encode A and V and get their nodes embeddings
as HA and HV .We train the GCN by utilizing InfoNCE
loss as in Eq. (1). More experimental settings can be found
in appendix B.1.
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Figure 3: The generation of V .

Generating augmentation V We construct the aug-
mented graph by extracting information with different
frequencies from the original graph, so that we can ana-
lyze the effect of different information. This process is
shown in Fig. 3. Specifically, we divide the eigenvalues
of L into FL and FH parts, and conduct augmentations
in these two parts, respectively. Taking the augmentation
in FL for example, we keep the high-frequency part as
uN/2u

⊤
N/2 + · · ·+ uNu⊤

N . Then, we gradually add the
eigenspaces in FL back with rates [20%, 40%, 60%, 80%], starting from the lowest frequency. There-
fore, V augmenting 20% in FL is u1u

⊤
1 + · · ·+u0.2∗N/2u

⊤
0.2∗N/2+uN/2u

⊤
N/2+ · · ·+uNu⊤

N .
Similarly, V augmenting 20% in FH is u1u

⊤
1 + · · ·+ uN/2u

⊤
N/2 + u(N+1)/2u

⊤
(N+1)/2 + · · ·+

u0.7Nu⊤
0.7N . Please note that we set graph spectrum of V , ϕV (λ) = 1,∀λ ∈ [0, 2] above, in that

we just want to test the effect of different uiu
⊤
i and avoid the influence from eigenvalues λ [18].

(a) Cora (b) Citeseer (c) BlogCatalog (d) Flickr

Figure 4: The results of case study on four datasets. The x-axis means different addition rate
of different frequency interval, and y-axis means the performance on ACC. The performance of
augmentations in FL are plotted on the left y-axis, and in FH are plotted on the right y-axis.

Figure 5: The spectrum
of A and V .

Results and analyses We conduct the node classification on four datasets:
Cora, Citeseer [11], BlogCatalog, and Flickr [16]. The accuracy (ACC)
is shown in Fig. 4. In appendix B.2, we also report the results when both
high and low frequency components are added back in the high-to-low
frequency order. Results. For each dataset, in generated V , (1) when the
lowest part of frequencies are kept, the best performance is achieved; (2)
when more frequencies in FH are involved, the performance generally
rises. Analyses. From the graph spectra of A and V shown in Fig. 5,
we can see that in generated V , (1) when the lowest part of frequencies
are kept, the difference of amplitude, i.e., the graph spectrum, in FL
between A and V becomes smaller; (2) when more frequencies in FH
are involved, the margin of graph spectrum in FH between A and V
becomes larger. Combining results and observations, we propose the following general Graph
AugMEntation rule, called GAME rule1:

The General Graph Augmentation Rule

Given two random augmentations V1 and V2, their graph spectra are ϕV1
(λ) and ϕV2

(λ).
Then, ∀ λm ∈ [1,2] and λn ∈ [0,1], V1 and V2 are an effective pair of graph augmentations if
the following condition is satisfied:

|ϕV1(λm)− ϕV2(λm)| > |ϕV1(λn)− ϕV2(λn)|.
We define such pair of augmentations as optimal contrastive pair.

1Although this rule is derived from contrasting A and V , the selection of certain views does not curb the
generality of GAME rule. Considering that most of augmentations are obtained from the raw adjacency matrix
A, it is a natural setting that one view is fixed as A and the other is an augmented one.
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4 Analysis of The General Graph Augmentation Rule

In this section, we aim to verify the correctness of GAME rule that whether two contrasted aug-
mentations satisfying GAME rule can perform better in downstream tasks from experimental and
theoretical analysis.

Experimental analysis We substitute existing augmentations proposed by MVGRL [9], GCA [36]
and GraphCL [32] for augmentation V in the case. Specifically, MVGRL proposes PPR matrix,
heat diffusion matrix and pair-wise distance matrix. GCA mainly randomly drops edges based on
Degree, Eigenvector and PageRank. GraphCL adopts random node dropping, edge perturbation and
subgraph sampling. The nine augmentations almost cover the mainstream augmentations in GCL.
To accurately depict the change of the amplitude after these augmentations for some λi, we turn to
matrix perturbation theory 1 [25]:

∆λi = λ′
i − λi = u⊤

i ∆Aui − λiu
⊤
i ∆Dui +O(||∆A||), (2)

where λ′
i is the eigenvalue after change, ∆A = A′ −A represent the modification of edges after

augmentation, and ∆D is the respective change in degree matrix. With Eq. (2), we calculate the
eigenvalues on Cora after each augmentation, and plot their graph spectra in Fig. 6. Simultaneously,
we use the GCL framework in Section 3 to separately contrast adjacency matrix A and these
augmentations, and results are shown in Table 1. As shown in Fig. 6, PPR matrix, Heat diffusion
matrix and Distance matrix better accord with GAME rule, where they have small difference with A
in FL, and have a large difference in FH. Therefore, they outperform other augmentations in Table 1.

Figure 6: The graph spectra of laplacian, adjacency matrix and nine existing augmentations.

Table 1: Performance of different existing augmentations to verify the GAME rule.

Methods GraphCL GCA MVGRL
Type Subgraph Node dropping Edge perturbation Degree PageRank Eigenvector PPR Heat Distance

Results 34.9±3.5 29.8±2.3 37.7±4.4 40.2±4.1 38.5±5.0 42.1±4.9 58.0±1.6 49.9±4.2 46.1±7.5

We also test the GAME rule in another circumstance, where we contrast among three cases: A and
A2 (two-hop of A), A and A, and A2 and A2. The results are given in Appendix C.

Theoretical analysis We have the following theorem to depict the learning process of the GCL.

Theorem 1. (Contrastive Invariance) Given adjacency matrix A and the generated augmentation
V , the amplitudes of i-th frequency of A and V are λi and γi, respectively. With the optimization of
InfoNCE loss LInfoNCE , the following upper bound is established:

LInfoNCE ≤ 1+N
2

∑
i

θi

[
2− (λi − γi)

2
]
,

where θi is an adaptive weight of the ith term.

1Here, we do not use eigenvalue decomposition to obtain λ′ of A′, because the obtained λ′ are unordered
compared with previous λ of A. That is to say, for certain λi of A, we cannot figure out which eigenvalue of
A′ matches to it after decomposition, so we cannot calculate the change ∆λi for λi in this case.
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The proof is given in the Appendix A.1, where we simplify GCN without the activation function.
Theorem 1 indicates an upper bound of GCL loss, implying that maximizing the contrastive loss equals
to maximize the upper bound. So, larger θi will be assigned to the smaller (λi − γi)

2, or λi ≈ γi.
Meanwhile, if λi ≈ γi, these two contrasted augmentations are regarded to share the invariance at ith
frequency. Therefore, with contrastive learning, the encoder will emphasize the invariance between
two contrasted augmentations from spectrum domain. To our best knowledge, theorem 1, for the first
time, theoretically proves that GCL can capture the invariance between two augmentations. Please
recall that GAME rule suggests that the difference between two augmentations in FL is smaller. Thus,
under the guidance of GAME rule, GCL attempts to capture the common low-frequency information
of two augmentations. Thus, GAME rule points out a general augmentation strategy to manipulate
encoder to capture low-frequency information, which achieves a better performance.

5 Spectral Graph Contrastive Learning

Figure 7: Combine SpCo with existing GCL.

Based on the GAME Rule, we mainly aim to
learn a general and GCL-friendly transformation
∆A from adjacency matrix A to a new augmen-
tation A_ (or ∆A = A_ − A), where A and
A_ are required to be an optimal contrastive pair.
Then, they are fed into existing GCL method Φ,
i.e. augmenting with the same strategies of Φ to
generate V1 and V2 and training with the corre-
sponding contrastive loss, shown in Fig. 7. The
whole pipeline is our proposed spectral graph
contrastive learning (SpCo), which can boost
existing GCL methods.

Firstly, we separate ∆A = ∆A+ −∆A−, where ∆A+ and ∆A− indicate which edge is added and
deleted, respectively. Next, we indicate how to learn ∆A+, while the calculation of ∆A− is similar.
Based on our theoretical derivation in Appendix. A.2, the following optimization objective of ∆A+

should be maximized:

J = < C, ∆A+ >2︸ ︷︷ ︸
Matching Term

+ ϵH(∆A+)︸ ︷︷ ︸
Entropy Reg.

+< f ,∆A+1n − a > + < g,∆⊤
A+1n − b >︸ ︷︷ ︸

Lagrange Constraint Conditions

, (3)

This objective consists of three components: (1) Matching Term. ∀ P ,Q ∈ RN×N , < P ,Q >=∑
ij PijQij . To maximize < C, ∆A+ >2, ∆A+ should learn to "match" or be similar to C. In A.2,

we define C = Ug(λ)U⊤, where U and g(λ) are eigenvector matrix and some function about
eigenvalues of A. According to GAME rule, we set ϕ∆(λ) = |ϕA(λ) − ϕA_(λ)|, and we need
ϕ∆(λm) > ϕ∆(λn), ∀ λm ∈ [1,2] and λn ∈ [0,1]. Therefore, we stipulate that ϕ∆(λ) should be a
monotone increasing function. Since C will guide ∆A+ to capture the change of difference between
graph spectra (ϕ∆(λ)), we naturally set g(λ) of C also a monotone increasing function. Furthermore,
we notice that the graph spectrum of Laplacian L does meet our need about g(λ) (shown in Fig. 6), so
we simply set C = ΘL, where Θ is a parameter updating in training. (2) Entropy Regularization.
Here, H(P ) = −

∑
i,j Pi,j(log(Pi,j)− 1) [21], and ϵ is the weight of this term. This term aims to

increase the uncertainty of the learnt ∆A+, which encourages more edges (entries in ∆A+) to join
in optimization. (3) Lagrange Constraint Conditions. f ∈ RN×1 and g ∈ RN×1 are Lagrange
multipliers, and a ∈ RN×1 and b ∈ RN×1 are distributions1. This term restrains the row and column
sums of ∆A+ within some limitation.

Next, we expound how to solve eq. (3). The partial of J with respect to ∆A+ is as following:

∂J / ∂(∆A+)ij = 2 < C, ∆A+ > Cij − ϵ log(∆A+)ij + fi + gj (4a)

= mij + 2C2
ij(∆A+)ij − ϵ log(∆A+)ij + fi + gj , (4b)

where we separate 2C2
ij(∆A+)ij from 2 < C, ∆A+ > Cij , and set the rest part as mij . The next

theorem points out when J can get the maximal value in the domain of definition (∆A+)ij ∈ (0, 1):

1We define a and b are both node degree distribution in this paper.
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Theorem 2. Given (∆A+)ij ∈ (0, 1), J exists the maximal value, iff
(1) C2

ij < −fi+gj+mij

2 , and fi + gj +mij < 0, or
(2) ϵ

2 < C2
ij <

ϵ
2 exp(−

fi+gj+mij+ϵ
2 ), and fi + gj +mij + ϵ < 0.

We provide the proof in the Appendix A.3. Normally, we should let eq. (4b) equal to zero and get
the analytical solution of (∆A+)ij . However, eq. (4b) is a transcendental equation because of the
coexistence of linear term and logarithm. Thus, we require eq. (4a) to equal to 0. As the training goes
on, ∆A+ does not change sharply. So, we firstly rewrite eq. (4a) as follows:

∂J / ∂(∆A+)ij ≈ 2 < C, ∆′
A+ > Cij − ϵ log(∆A+)ij + fi + gj . (5)

Compared with eq. (4a), eq. (5) only replaces ∆A+ with ∆′
A+ in the first term, where ∆′

A+ is
obtained from the last training epoch, and frozen at the current epoch. In this case, the matrix form of
solution of current epoch is:

∆A+ = diag(u) exp
(
2 < C,∆′

A+ > C / ϵ
)
diag(v) = U+K+V+, (6)

where U+ = diag(ui) = diag
(
exp

(
fi

ϵ

))
and V+ = diag(vj) = diag

(
exp

(gj

ϵ

))
. To further

calculate U+ and V+, we restrain the row and column sums of ∆A+ according to Lagrange
Constraint Conditions: u ∗ (K+v) = a and v ∗

(
K⊤

+u
)
= b. We solve this matrix scaling problem

[17] by Sinkhorn’s Iteration [24], which is shown in Algorithm 1 [4]. There exists a upper bound of
the difference between ∆A+ and ∆′

A+:

Theorem 3. After Sinkhorn’s Iteration, the bound between ∆A+ and ∆′
A+ is:∣∣α(∆A+)ij − (∆A+)′ij

∣∣ ≤ α
ϵ2(1−γ){d(r

(0),a) + d(c(0), b)}+ α(1 +
|mij |

ϵ ),
where α = ϵ

2C2
ij

. ∀(x, x′) ∈ (Rn
+)

2, d(x, x′) is the Hilbert’s projective metric [3] on Rn
+. γ is

κ(K+), and κ is contraction ratio [7]. r(0) and c(0) are the row and column sum vectors of K+.

The proof is given in Appendix A.4. The calculation of ∆A− is similar as ∆A+ shown as follows:

∆A− = diag(u′) exp
(
−2 < C,∆′

A− > C / ϵ
)
diag(v′) = U−K−V−, (7)

where diag(u′), diag(v′) and ∆′
A− have the similar meanings as in eq. (6).

Finally, we get the solution ∆A = ∆A+ −∆A−, utilizing eq. (6) and eq. (7). With learnt transfor-
mation ∆A, we can obtain the new augmentation A_ as:

A_ = A+ η · S ∗∆A, (8)

where ’*’ means element-wise product, and η is the combination coefficient. To make ∆A sparse, we
use scope matrix S to limit our focus, e.g. one-hop neighbors for each node. The whole algorithm is
given in Algorithm 2.

Algorithm 1: Sinkhorn’s Iteration
Input :Matrix K, distribution

a ∈ RN×1 and b ∈ RN×1

Params :Iteration number Iter
Output :∆A+ (or ∆A−)

1 Initialize
u = [1/N, 1/N, . . . , 1/N ]1×N ;

2 K = diags(1./a)K;
3 for i = 1 to Iter do
4 u = 1./K

(
b/K⊤u

)
;

5 end
6 v = b/K⊤u;
7 ∆A+/∆A− = diag(u)Kdiag(v);
8 return ∆A+/∆A−;

Algorithm 2: The proposed SpCo
Input :Φ, augmentation AugΦ, A, L, X
Params :Total epochs T , update epochs Ω, S, η,

Θ, ϵ, a and b

1 for i = 1 to T do
2 C = ΘL;
3 Calculate K+ / K− in eq. (6), (7);
4 Get ∆A+ / ∆A− through Algorithm 1;
5 A_ = A+ η(∆A+ −∆A−)S with eq. (8);
6 Update Θ;
7 for j = 1 to Ω do
8 V1,V2 = AugΦ(A),AugΦ(A_);
9 Train Φ(V1,V2,X) ;

10 end
11 end
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6 Experiments

In this section, we mainly evaluate the performance of proposed SpCo on five datasets: Cora,
Citeseer, Pubmed [11], BlogCatalog and Flickr [16]. Details of datasets are in Appendix D.2. We
select two categories of baselines: semi-supervised GNN models {GCN [11], GAT [27]} and six
representative graph contrastive learning methods {DGI [28], MVGRL [9], GRACE [35], GCA [36],
GraphCL [32], CCA-SSG [33]}. These GCL methods can be divided into three categories based on
their contrastive losses: BCE loss (DGI, MVGRL), InfoNCE loss (GRACE, GCA, GraphCL) and
CCA loss (CCA-SSG). To verify the applicability of our SpCo, we select one baseline from each
category (DGI, GRACE and CCA-SSG) to integrate with SpCo. The detailed descriptions of DGI,
GRACE and CCA-SSG are given in Appendix D.6. Experimental implementation details are given
in Appendix D.1.

Table 2: Quantitative results (%±σ) on node classification.
Datasets Metrics GCN GAT DGI DGI+SpCo MVGRL GRACE GRACE+SpCo GCA GraphCL CCA-SSG CCA+SpCo

Cora
Ma-F1 79.6±0.7 81.3±0.3 80.4±0.7 81.1±0.5 81.5±0.5 79.2±1.0 80.3±0.8 79.9±1.1 80.7±0.9 82.9±0.8 83.6±0.4

Mi-F1 80.7±0.6 82.3±0.2 82.0±0.5 82.8±0.7 82.8±0.4 80.0±1.0 81.2±0.9 81.1±1.0 82.3±0.9 83.6±0.9 84.3±0.4

Citeseer
Ma-F1 68.1±0.5 67.5±0.2 67.7±0.9 68.3±0.5 66.8±0.7 65.1±1.2 65.1±0.8 62.8±1.3 67.8±1.0 67.9±1.0 68.5±1.0

Mi-F1 70.9±0.5 72.0±0.9 71.7±0.8 72.4±0.5 72.5±0.5 68.7±1.1 69.4±1.0 65.9±1.0 71.9±0.9 73.1±0.7 73.6±1.1

BlogCatalog
Ma-F1 71.2±1.2 67.6±2.2 68.2±1.3 71.5±0.8 80.3±3.6 67.7±1.2 68.2±0.4 71.7±0.4 63.9±2.1 72.0±0.5 72.8±0.3

Mi-F1 72.1±1.3 68.3±2.2 68.8±1.4 72.3±0.9 80.9±3.6 68.5±1.3 69.4±1.3 72.7±0.5 64.6±2.1 73.0±0.5 73.7±0.3

Flickr
Ma-F1 48.9±1.6 35.0±0.8 31.2±1.6 33.7±0.7 31.2±2.9 35.7±1.3 36.3±1.4 41.2±0.5 32.1±1.1 37.0±1.1 38.7±0.6

Mi-F1 50.2±1.2 37.1±0.3 33.0±1.6 35.2±0.7 33.4±3.0 37.3±1.0 38.1±1.3 42.2±0.6 34.5±0.9 39.3±0.9 40.4±0.4

PubMed
Ma-F1 78.5±0.3 77.4±0.2 76.8±0.9 77.6±0.6 79.8±0.4 80.0±0.7 80.3±0.3 80.8±0.6 77.0±0.4 80.7±0.6 81.3±0.3

Mi-F1 78.9±0.3 77.8±0.2 76.7±0.9 77.4±0.5 79.7±0.3 79.9±0.7 80.7±0.2 81.4±0.6 76.8±0.5 81.0±0.6 81.5±0.4

6.1 Node classification

To more comprehensively evaluate our model, we use two common evaluation metrics, including
Macro-F1 and Micro-F1. The results are reported in Table 2, where the training set contains 20
nodes per class. As can be seen, the proposed SpCo can generally improve the performances of the
corresponding original models on all datasets, which verifies that our SpCo is widely applicable and
effective. We also choose 5 and 10 labeled nodes per class as training set respectively, which are
reported in Appendix D.4.1.

(a) DGI: Citeseer (b) GRACE: Citeseer (c) CCA-SSG: Citeseer

Figure 8: The visualisation of graph spectrum on Citeseer.

6.2 Visualisation of graph spectrum

In this section, we test if the learnt view A_ and A meet the GAME rule. We plot the graph spectrum
of A_, A, V1 and V2 in one figure for each method on Citeseer, which are shown in Fig. 8. Here,
we discard the impact of self-loop operation. For DGI, it does not use topological augmentation. 2

Therefore, we only plot A_ and A for it. For GRACE, the augmentation strength of V1 is set to 0.
Thus, the plot of V1 is same with A. From the figures, we can see that the difference between A_

2Although in DGI, the authors summary a vector to depict the global view, this summary vector does not
reflect any graph structure, thus we think DGI does not have special augmentation strategies on topology.
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and A is smaller in FL than in FH, which proves that they are optimal contrastive pair. Meanwhile,
they can drive V1 and V2 also to obey the GAME rule, and thus boost the final results. More results
on Cora are given in Appendix D.4.2.

6.3 Hyper-parameter sensitivity

In this subsection, we systematically investigate the sensitivity of two parameters: matrix C and ϵ.
We conduct node classification on Cora and BlogCatalog datasets and report the Micro-F1 values.
More experiments of hyper-parameters are given in Appendix D.4.3.

(a) Cora (b) BlogCatalog
Figure 9: The comparison between three candidates for C.

Analysis of C. The matrix C di-
rectly affects the final structures of
the ∆A+ and ∆A−. Therefore, we
give three kinds of C: I + L, L and
I + L + L2, and corresponding re-
sults are shown in Fig. 9. From the
figures, we can see that L is the best
choice compared with two candidates.
So, we use θL as C. Other well-
designed C can also replace L here.

Analysis of ϵ. The ϵ in eq. (3) controls the strength of entropy regularization, and in eq. (6) also
controls the smoothness of exponential. We vary the value of it and plot the results on BlogCatalog
in Fig. 10. From the results, we know that ϵ is a sensitive parameter for SpCo. If ϵ is too small, the
effect of entropy term will diminish. And if ϵ is too large, the entropy term will interfere the molding
of new structure. More results on Cora are given in Appendix D.4.3.

(a) DGI: BlogCatalog (b) GRACE: BlogCatalog (c) CCA-SSG: BlogCatalog

Figure 10: Analysis of the hyper-parameter ϵ on BlogCatalog.

7 Conclusion

In this paper, we fundamentally explore the topological augmentation of GCL from spectral domain.
We propose contrastive invariance theorem, and discover a general augmentation (GAME) rule,
which deepen our understanding of the essence of GCL. Then, we propose a general augmentation
plug-in based on GAME rule, SpCo, to boost existing GCL methods. Extensive experiments verify
the effectiveness of SpCo.

Limitations and broader impact. On potential limitation is that this work mainly focuses on the
homophily graph, rather than the heterophily graphs [1], where high-frequency information is more
useful. Despite the great development of GCL, some theoretical foundations are still lacking. Our
work points out the great potential of graph spectrum in GCL, and may open a new path to understand
and design GCL. Other than that, we do not foresee any direct negative impacts on the society.
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