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Abstract
Many settings in machine learning require the
selection of a rotation representation. However,
choosing a suitable representation from the many
available options is challenging. This paper acts
as a survey and guide through rotation represen-
tations. We walk through their properties that
harm or benefit deep learning with gradient-based
optimization. By consolidating insights from
rotation-based learning, we provide a comprehen-
sive overview of learning functions with rotation
representations. We provide guidance on select-
ing representations based on whether rotations
are in the model’s input or output and whether the
data primarily comprises small angles.

The project code is available at:
github.com/martius-lab/hitchhiking-rotations

1. Introduction
For centuries, researchers explored methods to describe
the rotation of Cartesian coordinate systems in three-
dimensional Euclidean space. Euler (1765) demonstrated
the necessity of at least three parameters for parameteriz-
ing 3D rotations through rotation matrices R ∈ SO(3) as
exemplified by Euler angles. Subsequent discoveries led
to the description of rotation through exponential coordi-
nates and quaternions, which found widespread adoption
in many fields such as control theory, robotics, and com-
puter animations. The choice of a rotation representation for
a specific application depends on its properties, including
human-interpretability, computational costs, and dimension-
ality. In recent years, the representation’s impact on learning
functions from data has become another significant factor.
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Figure 1. Overview on learning with rotations. A neural network
learns a function from a feature space A to a rotation representation
space R or vice versa. When learning with rotations, the properties
of f : R → SO(3) and g : SO(3) → R affect training.

In machine learning, we want to choose the representation
of our data that yields the best test accuracy. However,
recent works (Zhou et al., 2019; Brégier, 2021; Levinson
et al., 2020) suggest that rotation representations with four
or less dimensions do not facilitate sample-efficient learning.
To further complicate matters, empirical findings by Pepe
et al. (2022) suggest that geometric algebra representations
may rival the high-dimensional representations proposed by
Zhou et al. (2019); Levinson et al. (2020). Despite many
recent works discussing the role of rotations in machine
learning, we did not encounter a work that provides a com-
prehensive overview on the question:

What representation of SO(3) is suitable for
neural network regression with gradient-based

optimization?

Besides considering the case in which rotations are in the
models’ output as discussed in Zhou et al. (2019); Brégier
(2021); Levinson et al. (2020), we also detail how one may
learn functions from rotations being in the input. We dis-
cuss common rotation representations, using tricks such as
wrapping angle coordinates into sinusoidal transformations,
problems arising from double-cover, and how the choice
of metric affects training. We find that high-dimensional
representations should be the preferred default choice from
a theoretical as well as empirical perspective. As it turns out,
many aspects of a rotation representation influence training
while also vice versa, the setup of machine learning problem
influences the choice of rotation representation.
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Table 1. Overview of selected rotation representations with some of their properties. Due to singularities arising from angle coordinates and
double cover (explained below), rotation representations with three and four dimensions have a discontinuous map g(R) : SO(3) → R.

2D/3D Representation Notation Dim Domain g(R) cont. Uses Angles Double cover

SO(2)
Angle α 1 R1 - yes no
Sine and cosine of the angle [cos(α), sin(α)] 2 R2 + no no

SO(3)

Euler parameters Euler 3 R3 - yes yes
Exponential coordinates / Bi-Vectors Exp 3 R3 - no yes
Unit-quaternions / Rotors Quat 4 S3 - no yes
Axis-angle Axis-angle 4 R4 - yes yes
R6+Gram-Schmidt orthonormalization R6+GSO 6 R3×2 + no no
R9+singular value decomposition R9+SVD 9 R3×3 + no no

1.1. Problem setting

In this work, we consider gradient-based supervised neu-
ral network regression. That is, given a data set D =
{x(i), y(i)}Ni=1 of N inputs x ∈ X and outputs y ∈ Y ,
find the parameters θ of the neural network h : X → Y

y = h(x; θ) (1)

that minimize the loss function

L(D, θ) =
∑

x,y∈D
d(y, h(x, θ)) (2)

using the parameter gradient ∇θL. The loss measures the
average distances d of predictions to target values. For
simplicity, we assume that there exists a deterministic target
function y = h∗(x) that generated the data.

Representing rotations To work with rotations, they have
to be suitably represented. In analogy to Zhou et al. (2019),
we say a vector r ∈ R ⊆ Rd is a rotation representa-
tion, if there exist two functions f : R → SO(N) and
g : SO(N) → R such that f(g(R)) = R that is f is a
left inverse of g. Note that depending on the choice of the
representation the topology and dimensionality d of R may
vary. Table 1 lits common representations that differ in their
dimensionality and topology.

Learning scenarios To analyze the consequences of dif-
ferent representations on learning, we consider the cases
where rotations occur in the input (R ⊆ X ) and where they
occur in the output (R ⊆ Y) of our regression problem. As
depicted in Figure 1, we denote the features of an entity
of interest by features a ∈ A. This could be, for instance,
a camera image, a point cloud, or adhesive forces acting
between two molecules. For simplicity, we ignore possible
other components and consider the two pure cases of:

i) feature prediction where a = h(r)
with X = R and Y = A,

ii) rotation estimation where r = h(a)
with X = A and Y = R,

Figure 2. Left: Representations for SO(2): angle and sin/cos with
respective g functions. Right: Euler angles representation for
SO(3). In Euler angles a frame can be visualized as three consecu-
tive SO(2) rotations along the surface of a torus.

In feature prediction, we are interested in learning a func-
tion from r (and other object variables) to a particular object
property a, for example, rendering an object from a particu-
lar direction or predicting dynamics. In rotation estimation,
a map from a high-dimensional representation a to r is
learned, for example, pose estimation from images.

2. Representations of rotation
In this section, we describe common rotation representations
as detailed in Table 1 and examine their properties. An
overview is provided in Table 1.

SO(2) representations Rotation angles seem to be the
most natural representation. A 2D rotation is fully de-
scribed by a single angle α. However, because the angle is
a 1D quantity, there is a jump in the function g, as shown
on the left in Figure 2. If the rotation is represented by
(cos(α), sin(α)), such a discontinuity does not arise.

Euler angles In 3D we need at least three angles α, β, γ ∈
[−π, π) (Euler angles) to describe a rotation. Rotation ma-
trices can be composed through a sequence of elementary ro-
tations R(α, β, γ) = R3(γ)R2(β)R1(α) := f(r) by these
angles. Discontinuities arise when bounding the range of
angles (see above). In addition, for Euler angles, the same
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point in SO(3) can be described by different representation
vectors. For example, in Figure 2 the points r1 = [0, π/2, 0]
and r2 = [−π/2, π/2,−π/2] perform the same rotation.

Due to these and other reasons, studies on learning with ro-
tations, including Huynh (2009); Zhou et al. (2019); Brégier
(2021); Pepe et al. (2022), uniformly discourage the use of
Euler angles in learning with 3D rotations.

Exponential coordinates Each rotation in 3D can also
be expressed by a rotation axis ω ∈ R3 and an angle. One
possible representation is thus to use the length of the vector
∥w∥ to encode the angle. The identity rotation corresponds
to the origin of R3 (zero vector) and spheres of radius 2nπ
with n ∈ N+. This representation is called exponential
coordinates because ω can be written as a 3 × 3 skew-
symmetric matrix. The matrix exponential of that yields
the desired rotation matrix. Alternative names are “rotation
vectors”, “Rodrigues parameters”, or “angular velocity”.
Figure 3 shows the concept. It also illustrates that the same
rotation can be expressed by two vectors (inside the sphere
of radius 2π) as f(ω) = f

(
(∥ω∥− 2π) ω

∥ω∥
)

(double cover).

Axis angle and Quaternions Instead of tying the length
of the axis vector to the rotation, we can separately repre-
sent them as r = (ω̃, α) ∈ R4 with ∥ω̃∥ = 1, logically
denoted as axis angle. Figure 3 illustrates the same double
cover property as exponential coordinates. We can trans-
form exponential coordinates to axis angles and then the
axis angle vector to SO(3) via Rodrigues’ rotation formula
f(r) := I+ sin(α)[ω̃]× + (1− cos(α))[ω̃]×)

2 whereas the
map from SO(3) to exponential coordinates is given by the
matrix exponential g(R) := exp(R).

Similar representations are quaternions, which extend the
concept of complex numbers to higher dimensions. For
the purpose of rotations, we consider unit quaternions that
relate to the axis angle representation (ω̃, α) as r = q =
(w, x, y, z) ∈ S3, i.e. ∥q∥ = 1 and w = cos(α/2) and
(x, y, z) = sin(α/2)ω̃ (Grassia, 1998). Unit quaternions
double cover SO(3) such that f(q) = f(−q).

R6 + Gram-Schmidt orthonormalization (GSO) A rep-
resentation that is closer to the actual rotation matrix is
r = (ν1, ν2) ∈ R3×2. A rotation matrix can be obtained by
using Gram-Schmidt orthonormalization (GSO) to “com-
plete” a Cartesian frame (Zhou et al., 2019). As the columns
of a rotation matrix are unit length and orthogonal to each
other, this method yields a rotation matrix R = f(r) =
GSO(ν1, ν2) whereas g(R) := diag(1, 1, 0)R. The simple
idea of GSO is to first normalize ν1, subtract from ν2 its
component that is colinear with ν1 to obtain ν⊥2 , then after
normalizing ν⊥2 , we obtain ν3 as the cross product of ν1 and
ν⊥2 . GSO straightforwardly extends to SO(n) (Macdonald,
2010, p. 120).

Exponential coordinates

Axis-angle vectors

Figure 3. Exponential coordinates (Exp) and axis-angle represen-
tation and their double cover property. Top: Exp. coord.: rotation
around ω by angle ∥ω∥. The vector ω1 = α1ω̃1 ∈ R3 describes
the same rotation as ω2 = (∥ω1∥ − 2π)ω1/∥ω1∥. Bottom: Axis-
angles explicitly represent axis and angle: ω̃ ∈ S2, α ∈ R. The
vector [ω̃, α] describes the same rotation as [−ω̃,−α].

R9 + singular value decomposition (SVD) Rotations can
be directly parameterized by a 3× 3 matrix which is then
projected to SO(3) using the singular value decomposition
(SVD). Given r = M ∈ R3×3 SVD decomposes the matrix
into M = UΣV T where U, V ∈ R3×3 are rotations or
reflections and Σ = diag(σ1, σ2, σ3) is a diagonal matrix
with the singular values σi denoting scaling parameters.
Now, the projection is achieved by

f(r) := SVD+(M) = U diag(1, 1,det(UV T ))V T , (3)

where det(UV T ) ensures that det(SVD+(M)) = 1 (Levin-
son et al., 2020). As we shall see later, this operation finds
the rotation matrix with the least-squares distance to M .
The function from SO(3) to R is simply g(R) := R.

3. Measuring distances between rotations
Supervised regression requires us to measure distances in
Y (Equation (2)). A proper distance metric d(y1, y2) is
nonnegative, only zero if y1 = y2 (identity), symmet-
ric, and satisfies the triangular inequality: d(y1, y2) ≤
d(y1, y3) + d(y3, y1), yet, when employed as a loss func-
tion in machine learning some of these properties can be
lifted. When it comes to the estimation of rotation, we need
to measure the distances either in SO(3) or in R. In the
following discussion, we give a brief overview and geomet-
ric understanding of the frequently encountered metrics in
rotation learning. A comprehensive overview of the mathe-
matical properties of those metrics is given in Huynh (2009);
Hartley et al. (2013); Alvarez-Tunon et al. (2023).

Metrics on Euclidean vector representations We start
with general measures (metric and non-metric) that are
used to evaluate the similarity between vectors. The Eu-
clidean distance measures the length of the difference vec-
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Figure 4. Geometric illustration of distance metrics d(a, b) be-
tween vectors a and b. Cosine distance (dcd) and angular distance
(dang) ignore the vectors’ lengths.

tor d2(a, b) = ∥a − b∥2, where the L2 norm of a reads
∥a∥2 := ∥a∥ =

√
a · a. Using cos(ϕ) = a·b

∥a∥∥b∥ , we can
define the cosine distance and angular distances as:

dcd(a, b) = 1− cos(ϕ), and dang = arccos(cos(ϕ)). (4)

The angular distance (∈ [0, π]) measures the geodesic dis-
tance on a sphere Sn, the cosine distance (∈ [0, 2]) measures
a projection distance of the two (normalized) vectors (Fig-
ure 4). Note that cosine distance and angular distance are
pseudo-metrics as they violate identity (ignoring the length
of the vectors), and cosine distance does not satisfy the trian-
gular inequality, which does not cause problems in practice.
Both metrics yield the same ordering of vectors, i.e., for
any set of vectors v1, . . . , vM , the ordering from closest to
furthest from vector u would be the same for both measures.

Metrics that pick distances In Sec. 2, we encounter the
problem of double cover, i.e. the same rotation in SO(3)
is expressed by two different points in the representation
space (Figure 2). For the case of quaternions, we have
f(q) = f(−q) such that d2(q,−q) ̸= 0 even though the
corresponding rotation matrices are identical. An attempt
to circumvent this problem is to pick the shortest metric
between the quaternions and their negative complement:

dq,I = min(∥q1 − q2∥, ∥q1 + q2∥), or (5)
dq,II = 1− |q1 · q2|. (6)

For Euler angles α, β, γ ∈ R, Huynh (2009) proposed

de(r1, r2) =
√
d(α1, α2)2 + d(β1, β2)2 + d(γ1, γ2)2

(7)
with d(a, b) = min(|a − b|, 2π − |a − b|) and β ∈
[−π/2, π/2] to avoid that two sets of Euler angles repre-
sent the same element of SO(3). Note that (5), (6), and (7)
are pseudo-metrics on R but act as metrics on SO(3).

Metrics on rotation matrices The distance between ro-
tation matrices is typically measured using the Frobenius
norm, also called Schurnorm. The matrix Frobenius norm
of a square matrix R = [v1, v2, . . . , vn] ∈ Rn×n reads

∥R∥F =

√√√√ n∑
i

n∑
j

R2
i,j =

√√√√ n∑
i

∥vi∥2 = ∥vec(R)∥. (8)

Recall that the columns of a rotation matrix vi are the basis
vectors of the rotated coordinate frame. By inserting the
difference between two rotations into the Frobenius norm
(8) one obtains the Chordal distance as

dc(R1, R2) = ∥R1 −R2∥F =

√√√√ n∑
i

∥v1,i − v2,i∥2, (9)

which is an often used metric due to its numerical stabil-
ity and computational efficiency. For R1, R2 ∈ SO(3) we
have dc(R1, R2) ∈ [0, 2

√
2]. Due to advantageous convex-

ity properties, the squared Chordal distance dc(R1, R2)
2

is often used in practice (Hartley et al., 2013). In
turn, the mean squared error between two set of rota-
tions {R1,1, ..., R1,N} and {R2,1, ..., R2,N} reads MSE =∑N

i=1 dc(R1,i, R2,i)
2/N =

∑N
i=1 ∥vec(R1,i −R2,i)∥2/N .

The geodesic distance can be obtained using multiplication
R1R

⊤
2 (which would be I if R1 = R2) as

dϕ(R1, R2) = arccos
tr(R1R

T
2 )− 1

2
. (10)

Figure 18 in the appendix shows the loss function gradients
of several of the discussed functions in R2. Depending
on which loss is used the gradients are oriented differently
relatively to the unit circle S1.

4. Rotation representations affect learnability
We analyze now how rotation representations affect the
properties of the function h∗(x) which we want to learn
with Equation (1). For that, consider the true mapping
h̃ from the feature space A to SO(3) or vice versa. An
interesting observation is depicted in Figure 5: the target
function h∗ is actually the composition of the functions:

(i) For rotation estimation, h∗ = g ◦ h̃;
(ii) For feature prediction, h∗ = h̃ ◦ f .

Pose 
estimation

Feature 
prediction

Figure 5. The target function h∗(x) is the composition between
h̃(x) and the functions g(R) / f(r).

With this realization, it is evident that for rotation estimation
(i) discontinuities in g or double representations can trans-
late to h∗. For successful gradient-based learning, however,
we want h∗ to exhibit some notion of continuity, as those
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Figure 6. Chordal distance between randomly sampled R1, R2 ∈
SO(3) and L2 norm between corresponding rotation representa-
tions r1 = g(R1), r2 = g(R2). The full width of R is marked
by red lines. Ideally, the ratios between the distances, aka the
Lipschitz constant of g(R), is close to the black lines whose slope
amounts to the ratio between the minimum width of R and SO(3).

functions are easier to learn (Xu & Cao, 2004; 2005; Llanas
et al., 2008). The pre-images connectivity constraint on
f , guarantees that there always exists a smooth function
that allows to properly interpolate between training repre-
sentations (Brégier, 2021). For feature prediction (ii), f
is continuous for all representations and does not pose a
problem with regards to continuity. Albeit, we observe a
problem from disconnectedness, which we discuss below.

4.1. Why does rotation estimation need
high-dimensional rotation parameterization?

To quantify the continuity of a function, we use the con-
cept of Lipschitz continuity that bounds the maximal slope
to a constant L (which would also lead to continuity and
require that infinitesimal changes in the function’s input
result in infinitesimal changes in its output). The mapping
function g(R) is Lipschitz continuous if there exist L ≥ 0
such that for any R1, R2 ∈ SO(3) and r1 = g(R1), r2 =
g(R2), r1, r2 ∈ R,

∥r1 − r2∥2
∥R1 −R2∥F

≤ L. (11)

Discontinuity of g for low-dimensional representations.
SO(3) is not homeomorphic to any subset of 4D Euclidean
space; thus, for rotation representations with four or fewer
dimensions g(R) must be discontinuous (therefore, not Lips-
chitz continuous) (Stuelpnagel, 1964; Levinson et al., 2020).
Figure 6 illustrates these discontinuities by randomly sam-
pling R1, R2 ∈ SO(3) and then mapping these representa-
tions to r1 = g(R1) and r2 = g(R2). For low-dimensional
representations, small distances in SO(3) can lead to close
to maximum distances in ∥r1 − r2∥.

a1

a1

a2

a2

aq2

q2

q1

q1

R1
R2

Large change
due to singularity

Figure 7. Rotation estimation suffers from double cover: We as-
sume that a small change in the feature space A corresponds to a
small change in SO(3) (green arrows). For some rotation repre-
sentations R such as quaternions, small distances in SO(3) are
sometimes mapped to large distances in R (red arrows) yielding a
discontinuous function h (right).

Double Cover A rotation representation doubly covers
SO(3) if every element of SO(3) is represented by two dif-
ferent elements of R. Examples among the representations
are unit-quaternions where f(q) = f(−q), exponential co-
ordinates where f(ω) = f((∥ω∥−2π) ω

∥ω∥ ), and axis-angle
vectors where [ω̃, ϕ] = [−ω̃,−ϕ]. Double cover leads to a
discontinuity in g(R), and as a result, measuring the short-
est distance between two representation vectors does not
necessarily correspond to the shortest distance in SO(3).
How does this affect gradient-based machine learning?

We can resort to Lipschitz continuity to understand the prob-
lems arising from discontinuities. Assume we have two
feature vectors a1, a2 ∈ A that are mapped by h̃(x) to the
nearby elements R1, R2 ∈ SO(3). The discontinuities in
g(R) imply that the distance between two representation
vectors r1 = g(R1), r2 = g(R2) ∈ Rd can still be large
and ∥r2−r1∥

∥R2−R1∥ −−−−−−−−→
∥R2−R1∥→0

∞. Because of it, there must be

points in feature space where h∗(x) = g ◦ h̃ has Lipschitz
constant L = ∥r2−r1∥

∥a2−a1∥ that blows up as a2 − a1 approaches
zero. Naturally, this will cause the loss function’s gradient
∇θL to also blow up. Figure 7 demonstrates this issue for
the case of rotation estimation with quaternions yielding
discontinuities that almost span across the full width of R.

There seem to be two options: try to fix discontinuities or
avoid them in the first place. In the following, we briefly
analyze different fixes proposed in the literature, and provide
a recommendation for gradient-based learning.

Attempting to fix discontinuities via sin-cos angle coor-
dinates: For any representation that contains angles, we
can represent them as [cos(·), sin(·)] to avoid the discontin-
uous jump at the boundaries of the interval [−π, π). While
the above trick is useful for learning with representations
of SO(2) and SO(2) × SO(2) (spherical coordinates), it
does not remove discontinuities in SO(3) representations
that arise from double cover. For example, axis-angle still
suffer from double cover f(ω, α) = f(−ω,−α) even if
α ∈ SO(2) is replaced by cos(α), sin(α).
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Attempting to fix discontinuities via distance-picking
or computing distances in SO(3): Distance-picking and
measuring distances in SO(3) are common strategies found
in literature related to rotation estimation. In distance pick-
ing, we choose the minimum distance between elements
in R taking double cover into account e.g. Equations (5)
and (6). Alternatively, we can directly compute distances
in SO(3), e.g. via dc(f(r1), f(r2)), such that the gradients
∇ydc(f(y), f(r2)) point in directions in R that increase the
metric in SO(3). However, from the previous discussion
and the additional argument provided in Appendix D.4, we
conclude the following key insight:

Changing the loss does not fix discontinuities: due
to double cover, the target function maps similar fea-
tures to vastly different rotation representations (one-
to-many map). The subsequent issues arising in learn-
ing the target function are not fixed using distance
picking or computing distances in SO(3).

This observation is supported by experiments in Alvarez-
Tunon et al. (2023) on visual odometry (estimate camera
pose from images) and our experiments in Section 5.

Attempting to fix discontinuities via half-space map:
Another idea would be to constrain the representation in
R to one half such that double-cover is not present (except
at the separation hyper-plane). For instance, for quater-
nions where f(q) = f(−q), we simply flip all vectors with
negative scalar dimension as shown in Figure 8. Also, the
axis-angle representation and exponential coordinates allow
splitting the space in two halves as shown in Figure 3.

Again, the apparent fix has problems for vectors close to
the separating hyperplane. Consider the case of quaternions
as depicted in Figure 7. Two vectors close to the boundary
are far in R but close in SO(3), such that the Lipschitz-
constant of g can grow unbounded. Empirical evidence in
Section 5 and in Saxena et al. (2009) on learning an object’s
orientation from images supports this. Albeit, for small
rotations where ∥I− f(q)∥F ≤

√
2 with the identity matrix

I amounting to zero rotation as shown in Figure 8 (left), a
half-space map is a valid fix as no discontinuities are seen
during training (Brégier, 2021). This case is particularly
relevant in dynamics simulation, where changes in rotations
remain small between timesteps.

Circumventing discontinuities by using 6D or 9D repre-
sentations: The obvious solution to the above problems is
to use high-dimensional representations that have a continu-
ous mapping g (Section 2). While Brégier (2021) provides
a detailed analysis of such representations, we limit the dis-
cussion to the questions: Why do these representations work
well and why does R9+SVD outperform R6+GSO?

Small rotations

Figure 8. Half-space maps work for “small” rotation estimation
(left) and data-augmentation for feature prediction (right). Left:
As long as the rotation vectors are within the green cone, there are
no discontinuities and the distances behave as expected. Right: To
avoid underrepresented input regions, data-augmentation (orange)
for vectors close to the half-space boundary can be used.

linear 
springs 

Figure 9. Illustration of R9+SVD. Left: SVD yields the closest
Cartesian frame R=[v1, v2, v3] to the matrix M=[m1,m2,m3].
Think of springs that try to pull vi towards mi. Right: Singularities
arise when det(M)=0: several R minimize the potential energy.

R9+SVD is smooth For the R9+SVD representation of
rotation, f(r) := SVD+(M) is smooth if det(M) ̸= 0 with
r := M , as it solves the “orthogonal Procrustes problem”
using the Frobenius norm (8):

SVD+(M) := argmin
R∈SO(3)

∥R−M∥F, (12)

:= argmin
R∈SO(3)

3∑
i=1

∥vi −mi∥2, (13)

where M = [m1,m2,m3] and R = [v1, v2, v3]. This
method projects M onto the nearest rotation matrix in SO(3)
which we visualize in Figure 9 as spring forces pulling R
towards minimum potential energy (13). The potential en-
ergy in the springs amounts to the force ∥vi − mi∥ times
the distance ∥vi −mi∥. Levinson et al. (2020) analyzed the
gradient ∇ML in the context of singularities. Their experi-
ments showed that training with data being close to points
with det(M) = 0, see Figure 9 right, increases the gradient
magnitude, but does not notably impede training.

R6+GSO and the Procrustes problem As initially
pointed out by Brégier (2021), the R6+GSO representa-
tion r := M = [ν1, ν2] ∈ R3×2 can be seen as a degenerate
case of the Procrustes problem such that

GSO(M) := lim
ϵ→0+

argmin
R∈SO(3)

∥diag(1, ϵ, 0)R−M∥F. (14)

Thus, ν1 has by far the strongest influence on determining
R, whereas ν2 merely determines the rotation around ν1. In
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principle, there are six different ways on how to perform the
Gram Schmidt orthonormalization (around the axis e1-e2,
e1-e3, e2-e1, e2-e3, e3-e1, e3-e2) which all place impor-
tance on different columns of the rotation matrix. R6+GSO
can be reduced to a 5D representation, which in practice
seems to perform worse (Zhou et al., 2019).

Comparing R6+GSO and R9+SVD Studies by Zhou
et al. (2019); Levinson et al. (2020); Brégier (2021), and
our experiments confirm that R9+SVD often outperforms
R6+GSO in rotation estimation. Why is that?

Levinson et al. (2020) attributes better performance of
R9+SVD to the fact that Gaussian noise on M results in
twice the error in expectation in R for R6+GSO compared
to R9+SVD. R6+GSO predicts the first column of the ro-
tation matrix by normalizing ν1. In turn noise on ν1 will
directly affect the estimation of R, whereas for R9+SVD
the effect of noise in m1 also depends on m2 and m3. If we
interpret the individual representation vectors as the output
of different networks, then the SVD layer can be seen as
an ensemble model architecture where all three “networks”
equally contribute to the prediction whereas R6+GSO al-
most fully resorts to the first “network”. It is a common
strategy to deploy ensemble models rather than a single net-
work as they often show increased robustness to input noise
and an unlucky initialization of network weights.

Brégier (2021) defined the loss function L = vT1 f(r)v2 with
vi being vectors pointing in uniform random direction and
r denoting either quaternions, R6+GSO, or R9+SVD. For
random representation vectors r ∼ N (0, 1)n, this loss func-
tion has a smaller absolute error to its linear approximation
using R9+SVD compared to using R6+GSO or quaternions.
Inspired by Brégier (2021), (Dinh et al., 2017), (Gilmer
et al., 2022), and Lyle et al. (2023), we take a closer look at
the gradients of the loss function

L(R, r) = ∥vec(R), f(r)∥, (15)

with the target rotation R := I and f(r) denoting either an
R6+GSO or R9+SVD layer. Assume a network predicts r
such that its parameters θ could be updated via the gradient
∇θr ◦ ∇rL. Then, we are interested in how ∇rL varies
when using either R6+GSO or R9+SVD. To illustrate this,
we plot in Figure 10 the path of the representation vectors of
R6+GSO and R9+SVD when optimizing (15) via gradient-
descent with momentum. Due to the way GSO and SVD
construct f(r), we observed instabilities in the optimization
for ν1 ≈ e3, ν1||ν2, det(M) = 0, and M = −R.

Moreover, the speed of convergence is notably affected by
large ratios between the length of the representation vectors
which particularly seems to affect R6+GSO. We compute
the ratios between the length of the gradients of (15) wrt.
ν1, ν2 or m1,m2,m3. As illustrated in Figure 11 for 20000

Iteration 0 Iteration 40 Iteration 150

Predicted frames 
align with target frame

Figure 10. Illustration of how the representation vectors of
R6+GSO r := [ν1, ν2] and R9+SVD r := [m1,m2,m3] move
through R3 during optimization. To find an r that minimizes the
loss (15) to a target rotation R := [v1, v2, v3], we perform 150
iterations of gradient-descent with momentum and plot the path of
the representation vectors. R6+GSO can only minimize the loss,
if ν1 aligns with v1 while ν2 resides on the v1-v2-plane.

0 2
Loss L(R, r)

10 1

100

101

102
1L / 2L

0 2
Loss L(R, r)

m1L / m2L

0 2
Loss L(R, r)

m1L / m3L

0 2
Loss L(R, r)

GSO SVD SVD SVD
m2L / m3L

Figure 11. Density plot of the ratios between loss function gradi-
ents of R6+GSO and R9+SVD. The gradients of the loss (15) are
computed for 20000 randomly initialized r.

uniform randomly initialized r ∈ [−2, 2], the gradient ra-
tios remain notably closer to one for R9+SVD compared
to R6+GSO. Further, in R9+SVD, the distributions of gra-
dient ratios are similar. We conclude that in the hypercube
with a side-length of four in which we sampled r, when
using R6+GSO compared to R9+SVD considerably more
instances of r exhibit gradients that impede training.

Another argument why SVD performs better than GSO
evolves around the higher-dimensionality of the former.
In various fields such as position encodings (Dufter et al.,
2022), Koopman operator theory (Brunton et al., 2022), and
neural ODEs (Zhang et al., 2020), it has been observed that
higher dimensional representations may benefit learning.
This is particularly the case if the function we discern from
data resides in a three-dimensional manifold such as SO(3).

For rotation estimation: use R9+SVD or R6+GSO.
If the regression targets are only small rotations, using
quaternions with a halfspace-map is a good option.

What about directly predicting the entries of R? We
find that this is worse than using Procruste-based methods.
We hypothesize that this is due to the properties of ∇rL.
When directly predicting rotation matrices with the Chordal
distance, the network’s predictions must exactly fit the en-
tries of the rotation matrix to reduce the loss. Whereas in
R9+SVD, the relative arrangement of the representation
vectors to each other determines R.
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4.2. What to be aware of for feature prediction?

Feature prediction does not immediately suffer from double
cover and a discontinuous g because only the forward func-
tion f is part of the learning problem (ii) and f is typically
well-behaved. However, there are still problems due to the
topological mismatch between SO(3) and low-dimensional
representations. First, it is reasonable to employ a halfspace-
map to avoid having less samples in each of the halfspaces
that would need to be learned separately.

Figure 12. For SO(2), the function ϕ = f(cos(ϕ), sin(ϕ)) is con-
tinuous, rendering feature prediction feasible. However, some con-
nected sets in SO(2) are not connected in R (red). Data augmen-
tation (orange) mitigates the effect of disconnected pre-images.

Fixing low-dim representations using data augmenta-
tion: Low-dim representations and the halfspace map in-
troduce a boundary into the space (while SO(N) has no
boundary). In Figure 12, we illustrate this for SO(2) for
clarity. Due to the broken cyclic boundary conditions, we
have less samples at the boundary to generalize in these
regions. A simple trick is to use data-augmentation to create
data beyond the boundary as shown in Figure 8 and 12.

High-dimensional representations: Again, they work
out of the box and perform better in practice, as we show
in Section 5. More input dimensions allow for a simpler
functional form for h. A relation can be drawn to position
encodings used in transformers (Dufter et al., 2022). A
sin/cos representation (including higher frequencies) works
better than using a scalar.

For feature prediction: use R9+SVD or R6+GSO.
If under memory constraints, quaternions with a
halfspace-map and data-augmentation are viable.

5. Experiments
In this section, we empirically assess the earlier discussion
and support the recommendations with various experiments
on rotation estimation and feature prediction.

Experiment 1 (rotation estimation): Rotation from point
clouds The task is to predict from two point clouds
P1, P2 ∈ RN , with N = 3000, the rotation R such that

Point cloud 2
network

Point cloud 1
Rotation
representation

0.1 0.2 0.3 0.4 0.5
Error - Geodesic

ℝ9+SVD-Chordal
ℝ6+GSO-Chordal

Quat + -Chordal
Exp-Chordal

Euler-Chordal

Figure 13. Point cloud alignment experiment. The best test data
results from each representation are shown in which R9+SVD
performs best. See Figure 23 for additional results.

network network

Cube image Cube renderingRotation
representation

Rotation
representation

ℝ9

Quat

5 ⋅ 10− 4 10− 3 2 ⋅ 10− 3 4 ⋅ 10− 3

MSE

ℝ9

ℝ6
ℝ6

Quat a+

Quat +

QuatRF

Exp

Euler

Figure 14. Experiment 2. Left: Rotation estimation from cube
image where R9+SVD performs best. See Figure 24 for additional
results. Right: Network trained with pixel-MSE loss renders a
cube from a given rotation. While quaternion augmentation slightly
reduces the error, R9+SVD shows superior performance.

RP2 = P1 (Zhou et al., 2019). We follow the model and
dataset generation pipeline as Levinson et al. (2020). Point
clouds are extracted from a set of 726 airplane CAD models
and undergo uniformly sampled rotations in SO(3) to elim-
inate any potential rotation bias in the dataset. For testing,
100 pairs are left out. Figure 13 shows that R9+SVD is best
followed by R6+GSO. Figure 23 shows that for quaternions
deploying a half-space map notably improves performance
whereas distance picking reduces it.

Experiment 2.1 (rotation estimation): Cube rotation
from images In this experiment, we predict the orienta-
tion of a colorful cube represented as a rendered image. The
experimental setup is explained in Appendix E.2. The re-
sults in Figure 14 (left) paint the the same picture as before
showing that R9+SVD and R6+GSO perform notably better
than low-dimensional representations.

Experiment 2.2 (feature prediction): Cube rotation to
images Now, we look at the inverse problem to Experi-
ment 2.1 predicting the cube’s image from an representation
of its orientation. The experiment is further described in
Appendix E.2. The results in Figure 14 (right) show that
R9+SVD performed notably better than R6+GSO while
quaternions benefit from deploying a half-space map.
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ℝ9+SVD ℝ6+GSO Quat + Euler

91

92

93

94

95
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e
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Figure 15. 6D-pose estimation from images on YCB-Video dataset.
The metrics are averaged across the 21 objects. Euler angle per-
form worst while the other representations perform similarly.

Experiment 3 (rotation estimation): 6D object pose es-
timation from RGB-D images In this experiment, we
re-train the network of Wang et al. (2019) using different
rotation representations. Simply put, the network predicts
a translation and rotation representation which is used to
transform an object’s point cloud such that it aligns with the
ground truth point cloud. This model has become a common
baseline for object pose estimation from a single RGB-D
camera image. Figure 15 shows the average accuracy across
all objects for three seeds. Euler angles perform notably
worse than R9+SVD and R6+GSO whereas quaternions per-
form similarly. We hypothesise, that quaternions perform
well due to the data set mostly containing small angles. For
details, see Appendix E.3.

Experiment 4 (feature prediction): SO(3) as input to
Fourier series In this experiment, we analyze how func-
tion complexity affects feature prediction. The target func-
tion is chosen as

h∗(x) =

nb∑
i=1

(
Ak cos

(
kπt(R)

L

)
+Bk sin

(
kπt(R)

L

))
(16)

with period L = 2, fourier parameters Ak, Bk, and t :
SO(3) → R being a 2-layer MLP with ReLu activations.
Both the parameters of t(vec(R)) and the Fourier param-
eters are randomly initialized. If we increase nb, then the
complexity of (16) increases in expectation. As further de-
tailed in Sec. E.4, we approximate each randomly generated
target function with an MLP which has a rotation represen-
tation as input. Figure 16 shows the training results from
nb = 1 up to nb = 5 for 100 target functions each. We
keep the number of points fixed to 800, 200, and 1000 for
the train, the validation, and the test data set, respectively.
As we increase nb, the target function becomes on average
more wiggly and the model MSEs increase. Augmentation
of quaternions (augmentation threshold b=0.1) has a notable
effect for nb = 1 to nb = 3. Albeit, for larger nb, the
error arising from having no data points beyond the domain
boundaries seem to be of minor importance.

1 2 3 4 5
Number of fourier basis functions nb

10−3

10−2

10−1

M
SE

Euler Exp QuatRF Quat + Quata+ ℝ6 ℝ9

Figure 16. Feature prediction of a Fourier series that has 3D rota-
tions as input. For increasing nb, the distribution over test errors
of 100 randomly sampled target functions is shown. Augmenting
quaternions (Quata+) notably improves prediction accuracy.

6. Conclusion
In this work, we examine recent works on learning with
rotations and consider the case of rotation representations
in the input (feature prediction) or in the output (rotation es-
timation) of a regression task. We find it useful to consider
the Lipschitz continuity of the function g mapping from
SO(N) to the representation space R. We show how this
mapping enters the learning problem and see why rotation
representations with three or four parameters impede learn-
ing by inevitably introducing discontinuities into the target
function, if the rotation is in the model’s output. We show
that these discontinuities cannot be resolved by distance-
picking, measuring distances in SO(3), or half-space maps.
In contrast, R9+SVD and R6+GSO stand out as superior
choices when learning with rotations. In cases involving
small angles, unit-quaternions properly mapped to a half
space can be practical for rotation estimation.

When rotations appear in the inputs of the regression task,
discontinuities do not hinder learning. Nevertheless, high-
dimensional representations are superior in practice. When
memory is constrained such that low-dimensional represen-
tations are preferred, the double cover property needs to be
taken care of using half-space maps. Further, data augmen-
tation reduces the impact of non-cyclic boundaries, such
that viable performance improvements can be achieved.

Numerous extensions to the discussed topics are being pro-
posed. Notably, Peretroukhin et al. (2020) represents ro-
tations through a symmetric matrix that defines an antipo-
dally symmetric distribution over quaternions effectively
mitigating the problems arising due to double cover. This
approach outperformed R6+GSO on various benchmarks.
Chen et al. (2022) notably improved prediction performance
of R6+GSO, R9+SVD, and (Peretroukhin et al., 2020) lay-
ers whose predictions are fed into an L2 loss by adjusting
the gradients during the backward pass which marginally
increases computation times.
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A. Notation
Vectors are denoted as a = [a1, a2, a3] ∈ R3×1. The identity matrix of size three is denoted as I. We denote the n
dimensional unit sphere as Sn = {x ∈ Rn+1 : ∥x∥ = 1}. Given a vector a ∈ Rd, diag(a) ∈ Rd×d denotes a diagonal
matrix with the entries of a on its diagonal. Given a vector a = [a1, a2, a3] ∈ R3, a× a = [a]× · a where

[a]× =

 0 −a3 a2
a3 0 −a1
−a2 a1 0

 . (17)

Given a matrix M ∈ Rm×n, the operation vec(M) rearranges the elements of M as a vector such that vec(M) ∈ Rmn×1.
Given a scalar ϕ ∈ R, its absolute value is denoted as |ϕ| ≥ 0.

B. Matrix representation of SO(3)
SO(3) denotes the special orthogonal group. This name comes from the fact that all rotation matrices are special
(det(M) = 1) and orthogonal. In three dimensions, every rotation is described by a rotation matrix M ∈ SO(3) being a
real-valued matrix of the form

M =

 | | |
m1 m2 m3

| | |

 ∈ R3×3 (18)

whose three column-vectors m1,m2,m3 span a Cartesian frame such that

∥mi∥ = 1 for i = 1, 2, 3, m3 = m1 ×m2. (19)

As illustrated in Fig. 17, rotations are commonly represented by a vector a ∈ R3 transformed by matrix M to produce
b = Ma ∈ R3. Alternatively, we gain geometric intuition on the rotation matrix itself if we imagine the vector a to be
described wrt. to a frame {A}, writing Aa = [a1, a2, a3], and the vector Ba being obtained as

Ba = M Aa = m1a1 +m2a2 +m3a3 (20)

where {B} denotes a frame rotated relative to {A}. In turn, we can think of the rotation matrix in terms of its columns
m1 := BeA

1 ,m2 := BeA
2 ,m3 := BeA

3 being the unit vectors ei of {A} expressed relative to a rotated frame {B}. Simply put,
the columns of a rotation matrix span a Cartesian frame relative to another Cartesian frame.

Vector rotation
Frame rotation

Rotation matrix

Figure 17. A rotation matrix M ∈ SO(3) rotates a vector a ∈ R3 to Ma ∈ R3. Alternatively, the multiplication of a frame‘s unit vectors
with M shows that the columns of the rotation matrix denote the frame’s unit vectors after rotation.

C. Intuition on some terminology from linear algebra
“Orthogonal” refers to MMT = MTM = I such that the columns of the matrix are orthogonal to each other and have unit
length.

The dot product between two vectors a · b = ∥a∥∥b∥ cos(θ) (θ is the angle between a and b) is zero if the vectors are
orthogonal, one if they are colinear unit vectors pointing in the same direction, and -1 if they are colinear unit vectors
pointing in opposite directions. If a and b are unit vectors, then the inner product corresponds to cos(θ).

The determinant of a 3D matrix measures the signed volume of the parallelepiped spanned by the column vectors of the
matrix.
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Figure 18. Given a fixed target vector z = [1, 0] ∈ S1, the negative gradients −∇yd(y, z) are plotted for different y = [y1, y2] ∈ R2.
For the Euclidean distance with input normalization and cosine distance, the gradient ∇yd(y, z) is zero when y is antipodal to z. For the
Euclidean distance the gradients point from z to y. For the angular distance, the gradients are tangential to the unit-circle. When training a
model y = h(a, θ), we use ∇yd(y, z) to adjust θ such that y is close to the target vector z.

Kinematics
of a human
skeleton

Figure 19. Left: Illustration of a human skeleton as contained in the CMU MoCap database (LLC., 2024). The database contains marker
position of human skeletons and the corresponding rotations between the lines. Right: Distribution of the distances between the identity
rotation and the rotations in the CMU MoCap database (LLC., 2024). This data base is used in the rotation estimation experiments of
Zhou et al. (2019); Levinson et al. (2020); Brégier (2021); Pepe et al. (2022). In SO(3), two rotations are maximally π away from each
other when using the Geodesic distance. In this data set, most rotations are close to the identity rotation such that the singularities inherent
in low-dimensional rotation representations may not significantly affect rotation estimation.

“Special” refers to det(M) = 1. If det(M) = 1, then the column vectors of M form a right-hand coordinate system.
Orthogonal matrices with determinant of one are called proper rotations, whereas orthogonal matrices with determinant
of negative one are called improper rotations. Improper rotations combine rotation with reflection, the product between
two improper rotations is a proper rotation. We encounter improper rotations in the description of rotations via geometric
algebra where rotations are described by means of two reflections.

D. Additional aspects on learning with rotations
D.1. Why learn with rotation representations that have three or four parameters?

Computational efficiency A representation with 3 instead of 9 parameters may significantly reduce memory consumption.
When advocating for low-dimensional rotation representations, it is tempting to resort to the “curse of dimensionality” which
relates to the volume of the space between data points growing exponentially with increasing data dimensionality. However,
SO(3) rotations reside on a three-dimensional manifold in R9 such that it is unclear if the curse of dimensionality aggravates
learning for higher-dimensional rotation representations.

Forward dynamics If a network predicts the forward dynamics of a multi-body system, small errors in the prediction of
the body’s rotation over time may accumulate. In turn, the predicted state eventually does not remain in the proximity of the
three-dimensional manifold in R9 on which the training data has been collected. Mäkinen (2008) provides comprehensive
theoretical analysis on finite changes in rotations.
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D.2. How do we augment quaternions for feature prediction?

The following code performs data augmentation of a data set containing unit-quaternions to improve learning with rotations
in the model’s output:

x_quat = x_rot.as_quat(canoncial=True)
epsilon = 0.1
condition = x_quat[:, -1] < epsilon
x_quat = np.r_[-1 * x_quat[condition,:], x_quat]
y_features = np.r_[y_features[condition,:], y_features]

Assume that each row of the array x_quat∈ Rm×4 denotes a unit-quaternion. Here, we follow the convention in SciPy
that the last dimension of the quaternion is its scalar part. To every quaternion a feature is being associated which is stored
in the array y_features∈ Rm×n. As shown below, we first ensure that all quaternions lie on the half unit sphere such
that qw ≥ 0 e.g. by using ScipPy’s rotation library x_rot.as_quat(canoncial=True). Then we check which
quaternions have a scalar part qw <epsilon and store the indices of these quaternions in an array. These quaternions are
then mapped to the other half-sphere by multiplication with −1 and concatenated to the data set. y_features is also
augmented using the same indices.

Batch-wise augmentation of quaternions In the experiment implementation, instead of following the above approach for
augmenting quaternions, we augment solely the rotations in the current batch via the PyTorch code:

x_quat[torch.logical_and(torch.rand(x_quat.size(0)) < 0.5,
x_quat[:, 3] < 0.1)] *= -1

Before running the above augmentation, we ensured that x_quat is a torch array of size m× 4 that only contains canonical
quaternions where m denotes the batch size. As this approach only operates on the current batch it is more memory-efficient
but computationally more costly. Further, with batch-wise augmentation a quaternion q and its complement −q cannot
simultaneously occur in the augmented batch if q appears only once in the data.

D.3. Are rotors underrated?

Pepe et al. (2022) contends that using bi-vectors (3D) and rotors (4D) for rotation estimation might rival rotation represen-
tations employing the Gram-Schmidt orthonormalization (6D). However, bi-vectors / rotors are in fact computationally
equivalent to exponential coordinates / quaternions as shown in a detailed code comparison by Bosch (2020a). While a
geometric algebra perspective on rotations (including rotors and bi-vectors) may be more intuitive than using quaternions, as
exemplified by Macdonald (2010, p. 87-91) and Bosch (2020b), we remain cautious about expecting significant performance
differences for rotation estimation.

Additionally, while Table 2 in (Pepe et al., 2022) suggests that networks can learn the map from rotors to bi-vectors,
these representations are not exempt from the singularities in g(R) causing h(x) to become discontinuous during rotation
estimation. Further, Pepe et al. (2022) observed that rotors obtained using the Caley-transform performed differently than
rotors obtained using the matrix-exponential. We hypothesize that one of these maps performs a half-space map while the
other does not.

We advocate for further analysis that considers the proximity of representation vectors to singularities, measures all errors
in SO(3) rather than in rotor space, and tries using a half-space map for quaternions and exponential coordinates. One
experiment found in Zhou et al. (2019); Levinson et al. (2020); Brégier (2021); Pepe et al. (2022) is “Inverse Kinematics with
CMU MoCap data” (see Sec. E.5), for which we analysed how far the rotations are from the unit rotation. We hypothesized
that for some joints the anatomy of human kinematics does not support large angle ranges and in turn the data set contains
mostly small rotations (recall that a rotation R ∈ SO(3) is small if ∥I−R∥F ≤

√
2). Indeed, as shown in Figure 19, this

data set contains significantly more small rotations that are close to the unit rotation which reduce the effect of singularities
on learning with rotation representations with three or four dimensions.
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Figure 20. Chordal distances ∥R1 −R2∥F between randomly sampled R1, R2 ∈ SO(3) and distance ∥r1 − r2∥ between corresponding
rotation representations r1 = g(R1), r2 = g(R2). The full width of R is marked by red lines. Ideally, the ratios between the distances,
aka the Lipschitz constant of g(R), is close to the black lines whose slope amounts to the ratio between the minimum width of R and
SO(3). For Euler angles how much a distance in SO(3) is altered to a distance in R strongly depends on where R1, R2 lie in SO(3). In
comparison, for unit-quaternions, distances in SO(3) of a certain magnitude of any R1, R2 correspond to similar distances in R.

D.4. How does distance picking and computing distances in SO(3) affect rotation estimation?

The term distance picking relates to using metrics such as (5) and (6) for rotation estimation. As pointed out by (Huynh,
2009), these functions are pseudo-metrics in R but metrics in SO(3). How do the prediction of a neural network h(x, θ) look
like that is trained using such a metric? At the beginning of training the network’s parameter are randomly initialized and
the output of the network points in different direction of R. Then during training the networks parameters are being updated
to move the network’s output close to the rotation representation or their negative complement that is closest according
to e.g. (5). Now for simplicity’s sake, assume that the training data consists of two features a1, a2 which reside close to
each other such that a1 = a2 + ϵ. Yet, due to an unlucky initialization q ≈ h(a1, θ) and −q ≈ h(a2, θ). In this case, the
optimizer deploying (5) adjusts the network’s parameters to move q̂1 = h(a1, θ) close to q and q̂2 = h(a2, θ) close to −q.
In turn, the network’s ability to interpolate between features that map to similar rotations is severely hindered while the
network’s gradients may vary significantly in magnitude.

D.5. Additional aspects on learning with rotations

Besides the continuity of g(a), numerous other aspects affect learning with rotations. In particular, the distribution of the
training data and observability of the object should be analyzed prior to training.

If only a small part of the rotation space is present within the training dataset, one cannot generalize to the full rotation space.
This problem has been commonly experienced by researchers training models on the YCB-Video dataset where most objects
are biased toward standing upright. Similarly, the CMU MoCap database (LLC., 2024) contains mostly small angle ranges.

The second aspect is, the observability of the task at hand. If objects are (partially)-occluded or symmetrical, the learning
problem may be ill-posed as pointed out by (Saxena et al., 2009).

D.6. How does the ratio between distances induced by g(r) look like for axis-angles and exponential coordinates?

Figure 20 shows also the ratio between the Chordal distance ∥R1 −R2∥F of randomly sampled rotation matrices R1, R2 ∈
SO(3) relative to the corresponding distance in R both for exponential coordinates and axis-angles. For Euler angles the
ratio between the distances strongly depends on where the rotation matrices are in SO(3). For exponential coordinates
and modified Rodrigues parameters this distance ratio looks similar to unit-quaternions yet is clearly not as neatly aligned.
Modified Rodrigues parameters [ω̃, ᾱ] are obtained by taking the angle α in the axis angle representation and transforming it
to ᾱ = tan(α/4). Modified Rodrigues parameters are bijectively mapped to quaternions via stereographic projection as
succinctly illustrated in (Terzakis et al., 2018).
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Figure 21. Experiment 2.2: Timing comparison of R6+GSO and R9+SVD to SO(3) mapping for different batch sizes [1, 32, 256, 1024]
on a Nvidia RTX3060.

D.7. How does R9+SVD and R6+GSO compare in terms of computation times?

We previously, concluded that for most applications, one should use the continuous rotation representation. In the following,
we analyze the additional computational cost required for training and inference when using the R6 +GSO and R9 +SV D
rotation representation. We timed the forward pass for 100 samples of the GSO and SVD mapping operations within
Experiment 2.1. We followed the best practices and took into account the asynchronies execution on the GPU, and warm-
started the accelerator by inferencing 100 samples before timing the mapping functions. All numbers are reported using an
Nvidia RTX3060.

The results can be seen in Figure 21. The SVD is computationally more expensive than the GSO. The GPU-based R9+SV D
takes around 0.5ms for a batch size of 1. However, there exist multiple CPU-optimized SVD implementations that can
decrease the inference time for small batch size (0.002ms https://github.com/ericjang/svd3), or one can
resign to using Jax for better efficiency. When looking at a batch size of 1024, the SVD only takes 2ms. Specifically crucial
for deploying neural networks is the increase in latency for small batch sizes (e.g. running an object pose estimator on a
robot), which is nearly neglectable when using a CPU-based SVD implementation. Another critical aspect is the reduced
throughput during training which, when using high-capacity neural network architectures like CNNs, Transformers, or
Diffusion Models, is neglectable as well (e.g. 200ms ResNet152 vs 2ms SVD). However, specifically when training very
small networks (e.g. 2-layer MLP), it can be beneficial to directly optimize on R9 (without SVD) and without GSO leading
to only a minor performance decrease (see Figure 24).

In summary,we conclude that for most applications, the overhead in terms of compute when using R9 + SV D compared to
R6 +GSO is small. We highlight the clear trade-off between performance, increased latency, and throughput that one has
to take into consideration.

E. Further experiment details
The project code is available at: github.com/martius-lab/hitchhiking-rotations

E.1. Details of Experiment 1 (Rotation estimation): Rotation from point clouds

The dataset creation consists of first sampling 3000 points from the 726 airplane CAD models provided by the ModelNet
dataset and secondly rotating them with rotations uniformly sampled from SO(3), using "SciPy" (Virtanen et al., 2020). The
726 pairs of rotated point clouds and their rotations are split into 626 training and 100 testing samples. To get the different
rotation representations, the rotations are transformed into Euler angles (xyz-intrinsic rotations), canonical quaternions
(mapped to have positive scalar), and exponential coordinates. For R9+SVD and R6+GSO the matrix form is used, and the
representation is captured by a mapping function as explained below.

The architecture of the model used for learning follows exactly the architecture described in Levinson et al. (2020) and Zhou
et al. (2019). First, point clouds are embedded with a simplified PointNet (4 MLP layers 64, 128, 256, 1024) followed by a
global max-pooling. This is then regressed via two LeakyReLu-activated MLP(512) layers with dropout followed by an
MLP(d) which outputs the d-dimensional vector of the corresponding representation.
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Figure 22. Experiment 2.2: Cube Rendering Examples.

During training, we minimize either the mean absolute error (MAE) or mean squared error (MSE). For quaternions, we also
experiment with distance picking (-dp) as training loss. The R9+SVD and GSO representation are trained by projecting the
predicted vector Rd to R9 and minimizing the chosen loss there. We incorporate early stopping in our training process with
a patience of 10 epochs and a maximum of 100 epochs to ensure a fair and effective training of diverse representations.

E.2. Details of Experiment 2: Cube image to / from rotation

We create a dataset of differently rotated cubes at the same positions with respect to a fixed camera. The dataset is generated
once and kept fixed across training seeds. The training, validation, and test dataset consists of 2048 image/rotation pairs.
The rotations, used to render the images are sampled uniformly distributed for both datasets. The images are rendered using
the MuJoCo simulator (Todorov et al., 2012) at a resolution of 64× 64. In all experiments, we use the Adam optimizer and
train for up to 1000 epochs. We early stop the training if no improvement is achieved over 10 validation epochs. We report
all metrics across 10 random seeds, for the best-performing validation model on the test dataset. All hyperparameters are
constant across the same experiment. For the orientation prediction task, we use a learning rate of 0.001 and a batch size
of 32. The network is given by a 3-layer MLP, with input size 64 ∗ 64 ∗ 3, hidden dimension [256, 256], ReLU activation
functions, and the output size is determined by the dimension of the rotation representation.

Within the main paper (Experiment 2.1, Figure 14), we use the geodesic distance as a training objective and report the
Chordal distance. In Figure 24, we report the geodesic distance as well as the Chrodal distance and compare different
rotation representations and training objectives.

When training on the Chordal or geodesic distance, we at first map the predicted representation to R9. The MAE and MSE
are directly computed between the predicted rotation representation and the target rotation, without mapping to R9. All
metrics for R9 can be optimized with and without SVD. For R6, only the MAE and MSE loss can be optimized without
applying GSO. For quaternions, we additionally train on the cosine distance (CD) and use MSE distance picking (MSE-DP).

Generally, we found that the continuous representations strongly outperform quaternion, exponential coordinate, and Euler
angle representations. One of the key findings is, that by applying an output mapping to the rotation representation and
using a metric defined on R9 (e.g, the Chordal or geodesic distance), one cannot overcome the limitations intrinsic to the
output representation of the network.

For the quaternion representation, we observe that first mapping to R9 and using the geodesic distance and the Chordal
distance leads to an overall better performance compared to cosine distance (CD) and applying distance picking on the
MSE (MSE-DP). One would hypothesize when evaluating the Chordal distance, one should optimize for the Chordal
distance during training. However, for R9, R6 optimizing for the geodesic distance leads to better performance. We would
recommend the reader experimentally try out both objective functions.

For the feature prediction/image generation task, we use a learning rate of 0.01 and a batch size of 128. The network is given
by a Convolutional Neural Network (CNN), consisting of one LinearLayer and 4 blocks of ConvTranspose2d, BatchNorm2d
and ReLU activation function. The loss function and evaluation metric is given by the pixel-wise MSE.

E.3. Details of Experiment 3 (Rotation estimation): 6D object pose estimation from RGB-D images

We use the implementation provided of Wang et al. (2019) and test the performance of the network on the YCB-Video
Dataset consisting of 21 different objects and follow the evaluation of Xiang et al. (2018), reporting the Area under the
Curve of the ADD-S (AUC) and the percentage of objects with an ADD-S smaller than 2 cm (<2 cm). We only consider
the initial pose estimation without refinement. Therefore, we adapt the per-pixel method while solely altering the network
output between different rotation representations. We use a total of 3 seeds because of the high training cost. Table 2 reports
the mean and standard deviation.
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Table 2. Experiment 3: Per-object 6D pose estimation results, measured by Area under the Curve of the ADD-S (AUC) and percentage of
predictions with a ADD-S lower the 2 cm (<2 cm) on the YCB-Video dataset. The averages are provided in the last row. The asterisk ’*’
indicates objects with symmetry.

Euler R6+GSO R9+SVD Quat per-pixel

<2cm AUC <2cm AUC <2cm AUC <2cm AUC

Master chef can 100.0 ±0.0 95.0 ±0.2 100.0 ±0.0 94.9 ±0.39 100.0 ±0.0 95.1 ±0.04 100.0 ±0.0 95.3 ±0.14
Cracker box 99.2 ±0.46 92.1 ±0.41 98.2 ±1.75 93.3 ±0.2 99.0 ±0.29 92.4 ±0.12 99.4 ±0.3 92.8 ±0.31
Sugar box 99.8 ±0.16 95.2 ±0.09 100.0 ±0.0 95.4 ±0.15 100.0 ±0.04 95.4 ±0.26 100.0 ±0.0 95.4 ±0.28
Tomato soup can 96.9 ±0.0 93.6 ±0.23 96.9 ±0.0 93.8 ±0.13 96.9 ±0.0 93.7 ±0.04 96.9 ±0.0 93.9 ±0.12
Mustard bottle 100.0 ±0.0 95.6 ±0.71 99.8 ±0.26 95.6 ±0.52 100.0 ±0.0 95.8 ±0.17 100.0 ±0.0 96.0 ±0.2
Tuna can 100.0 ±0.0 95.4 ±0.45 100.0 ±0.0 95.7 ±0.08 100.0 ±0.0 95.9 ±0.26 100.0 ±0.0 95.2 ±0.41
Pudding box 100.0 ±0.0 94.1 ±0.06 100.0 ±0.0 93.7 ±0.32 99.8 ±0.22 93.7 ±0.68 99.8 ±0.22 94.1 ±0.55
Gelatin box 100.0 ±0.0 96.7 ±0.26 100.0 ±0.0 97.2 ±0.33 100.0 ±0.0 97.0 ±0.25 100.0 ±0.0 97.0 ±0.2
Potted meat can 92.5 ±0.12 89.7 ±0.09 92.9 ±0.12 89.6 ±0.46 93.0 ±0.16 89.8 ±0.11 92.8 ±0.18 89.9 ±0.47
Banana 88.2 ±7.13 90.0 ±1.39 93.2 ±2.2 92.2 ±0.82 93.9 ±1.63 92.3 ±0.41 91.5 ±2.48 91.2 ±0.91
Pitcher 100.0 ±0.0 93.3 ±0.2 99.4 ±0.83 93.3 ±0.46 99.9 ±0.08 93.5 ±0.53 100.0 ±0.0 93.6 ±0.57
Bleach 98.4 ±2.18 94.1 ±0.97 99.9 ±0.08 94.4 ±0.23 100.0 ±0.0 94.8 ±0.07 99.8 ±0.16 94.4 ±0.05
Bowl* 57.9 ±1.72 84.8 ±1.22 69.1 ±18.48 85.3 ±0.7 70.4 ±11.26 85.5 ±0.38 71.1 ±10.77 86.4 ±0.27
Mug 99.7 ±0.37 94.7 ±0.17 100.0 ±0.0 94.7 ±0.66 100.0 ±0.0 95.2 ±0.18 100.0 ±0.0 95.4 ±0.22
Power drill 95.0 ±3.39 92.2 ±1.15 96.8 ±3.61 92.9 ±1.11 96.2 ±1.52 91.8 ±0.47 96.5 ±1.33 92.6 ±0.2
Wood block* 94.2 ±6.19 87.8 ±1.41 98.5 ±0.78 87.4 ±1.16 95.5 ±1.79 87.5 ±0.71 94.4 ±3.45 87.7 ±1.24
Scissors 98.7 ±1.14 94.4 ±0.98 96.5 ±3.42 92.8 ±2.07 97.6 ±2.31 92.2 ±2.01 98.5 ±0.69 92.5 ±1.67
Marker 90.4 ±3.79 93.4 ±0.52 99.1 ±0.33 94.5 ±0.09 99.7 ±0.26 94.7 ±0.34 98.4 ±1.46 94.7 ±0.43
Clamp* 77.2 ±0.13 72.6 ±0.53 76.5 ±0.63 72.2 ±0.43 77.1 ±0.75 71.7 ±0.63 77.9 ±0.07 71.3 ±0.21
Large clamp* 69.7 ±0.84 69.0 ±0.17 71.1 ±0.78 72.2 ±1.68 70.7 ±0.37 73.6 ±0.2 72.8 ±0.85 72.6 ±1.76
Foam brick* 100.0 ±0.0 92.2 ±0.17 100.0 ±0.0 93.6 ±0.54 100.0 ±0.0 92.9 ±0.25 100.0 ±0.0 92.9 ±0.65
All objects 93.3 ±0.15 90.8 ±0.07 94.7 ±0.08 91.2 ±0.04 94.6 ±0.24 91.1 ±0.16 94.7 ±0.63 91.2 ±0.20

E.4. Details of Experiment 4 (Feature prediction): SO(3) as input to Fourier series

The network is given by a 3-layer MLP with input size being determined by the rotation representation, hidden dimension
[256, 256], ReLU activation functions, and the output size of one. The networks were trained for 400 Epochs using Adam
(standard settings in PyTorch with a starting learning rate of 0.001). At each iteration a batch of 64 data points was drawn
from 800 train data points and validated on 200 validation points. After training, the best model with respect to the validation
loss was used to compute a test loss on 1000 data points. For train, validation, and test loss we used the RMSE.

E.5. Experiment 5 (Rotation estimation): Inverse Kinematics with CMU MoCap data

The works of Zhou et al. (2019); Levinson et al. (2020); Brégier (2021); Pepe et al. (2022) do rotation estimation for an
Inverse Kinematics problem. In this setup, the model estimates joint rotations from the joint positions of a human pose as
shown in Figure 19. These rotations are to be estimated relative to a canonical “t-pose”, defined as a skeleton in a standing
position with arms stretched. We refrained from reproducing this experiment as the dataset mostly contains angles close to
the unit rotation as shown in Figure 19. This corresponds to the “small-angle” case as discussed in Section 4.1.

This plot was generated using 10,000 samples from the CMU MoCap database (LLC., 2024). The sampling process involved
filtering out videos with 100 frames (static poses), randomly selecting 760 videos, and subsampling them to 30 frames each.
From this collection of human poses, we uniformly sampled 10,000 poses. The joint rotations for each frame were then
extracted relative to parent joints and expressed in relation to the “t-pose” joint rotations.
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Figure 23. Experiment 1: Point clouds to rotation. Each box shows the test errors (Geodesic distance or Chordal distance) of ten networks
trained on a specific rotation representation and loss function. For quaternions, the cosine distance ’-CD’ as in (4) and distance picking
metric ’-MSE-DP’ as in (5) have also been used. "Quat-RF" refers to using quaternions which have been randomly multiplied by either -1
or 1. We only show "Quat-RF-MSE-DP" as using "Quat-RF" with CD, MAE, and MSE yielded errors four to seven times larger as the
shown results. R6 and R9 refers to directly using the first two and three column vectors of the rotation matrix, respectively. Notably,
resorting to the MAE can improve results for low-dimensional representations, as observed in the instances of quaternions, Euler angles,
and exponential coordinates.
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Figure 24. Experiment 2.1: Cube image to rotation. Each box shows the test errors (Geodesic distance or Chordal distance) of ten
networks trained on a specific rotation representation and loss function. For quaternions, the cosine distance ’-CD’ as in (4) and
distance picking metric ’-MSE-DP’ as in (5) have also been used. The observed relative performance aligns with previous experiments
illustrated in Figure 23. "Quat-RF" refers to using quaternions which have been randomly multiplied by either -1 or 1. We only show
"Quat-RF-MSE-DP" as using "Quat-RF" with CD, MAE, and MSE yielded errors four to six times larger as the shown results. R6 and R9

refers to directly using the first two and three column vectors of the rotation matrix, respectively.
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