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Abstract

Fill-in-the-Middle (FIM) has become integral to code language models, enabling
generation of missing code given both left and right contexts. However, the current
FIM training paradigm, which reorders original training sequences and then
performs regular next-token prediction (NTP), often leads to models struggling to
generate content that aligns smoothly with the surrounding context. Crucially, while
existing works rely on rule-based post-processing to circumvent this weakness,
such methods are not practically usable in open-domain code completion tasks as
they depend on restrictive, dataset-specific assumptions (e.g., generating the same
number of lines as in the ground truth). Moreover, model performance on FIM tasks
deteriorates significantly without these unrealistic assumptions.
We hypothesize that NTP alone is insufficient for models to learn effective planning
conditioned on the distant right context, a critical factor for successful code infilling.
To overcome this, we propose Horizon-Length Prediction (HLP), a novel training
objective that teaches models to predict the number of remaining middle tokens (i.e.,
horizon length) at each step. HLP advances FIM with lookahead planning, enabling
models to inherently learn infilling boundaries for arbitrary left and right contexts
without relying on dataset-specific post-processing. Our evaluation across different
models and sizes shows that HLP significantly improves FIM performance by up
to 24% relatively on diverse benchmarks, across file-level and repository-level,
and without resorting to unrealistic post-processing methods. Furthermore, the
enhanced planning capability gained through HLP boosts model performance on
code reasoning. Importantly, HLP only incurs negligible training overhead and no
additional inference cost, ensuring its practicality for real-world scenarios.

1 Introduction

Large Language Models (LLMs) trained on massive source code data have demonstrated significant
progress in coding-related tasks (Lozhkov et al., 2024; Guo et al., 2024; DeepSeek-AI et al., 2024;
Hui et al., 2024). While natural language generation predominantly follows a Left-to-Right (L2R)
approach, Fill-in-the-Middle (FIM), or infilling, is ubiquitous in code completion scenarios. This
prevalence stems from the iterative nature of coding, which involves frequent edits and insertions
rather than a single left-to-right pass (Bavarian et al., 2022; Fried et al., 2023). In an infilling task,
the model is asked to generate the missing code in the middle, conditioned on both the preceding (left)
and the succeeding (right) contexts.

The common practice to achieve FIM capability with uni-directional auto-regressive models is
to reorder the original sequence of prefix-middle-suffix into either prefix-suffix-middle (PSM) or
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suffix-prefix-middle (SPM). This reordering allows the middle part to be predicted while conditioned
on both left and right contexts as past tokens (Bavarian et al., 2022; Fried et al., 2023). Typically. an
<end_of_insertion> (i.e., <eoi>) token is appended to the end to indicate the generation boundary.
At training time, the prefix, middle, and suffix are determined by a random split, and the reordered
sequence is fed to the model for standard next-token prediction (NTP).

A key challenge in FIM is to seamlessly connect the generated middle to the given suffix considering
both fluency and semantics, a difficult task for models to learn in practice. As pointed out by the
previous work (Bavarian et al., 2022), though model is trained to generate <eoi> when middle ends
and connects to suffix, it often fails to do so at the right place during test time, resulting in generation
that does not connect well to suffix. We hypothesize that this challenge stems from the fundamental
difference in prediction horizon compared to standard NTP. In NTP, the model only needs to consider
a horizon of one token at a time. In contrast, FIM requires the model to plan for a much longer horizon,
i.e., the entire length of the missing middle section. This extended horizon is crucial because the model
must generate a sequence that not only follows the left context but also smoothly transitions to the right
context, which may be many tokens away. Standard NTP training does not adequately prepare models
for this long-horizon planning task. Consequently, models often struggle to maintain coherence over
the longer sequences required in FIM, particularly when approaching the transition to the right context.
Without effective long-horizon planning, generation frequently falters towards the end of the infill,
failing to create a smooth connection with the given suffix.

# SAFIM block_completion_004202
# Problem: Helping the Nature
t = int(input())
for _ in range(t):

n = int(input())
A = list(map(int, input().split()))
res, r = 0, 0
for i in range(n - 1):

x = A[i + 1] - A[i]
if x > 0:

r += x
else:

r += abs(x)
res += abs(x)

res += abs(r - A[n - 1])
print(res)

res += abs(x)
res += abs(r - A[n - 1])
print(res)

prefix

suffix

middle

Figure 1: An example that illustrates how post-
processing truncates redundant parts at the end of
generation. middle is generated by the model, which
introduces syntax error and breaks correctness if di-
rectly connected to suffix. After truncating the part
with strike-through through post-processing, middle
successfully connects to suffix without any errors.

Most existing FIM benchmarks circumvent the
above challenge to some extent by devising
rule-based post-processing to truncate redun-
dant parts at the end of the generation (Gong
et al., 2024; Zhang et al., 2023; Ding et al., 2023;
Wu et al., 2024), as shown in Figure 1. We argue
that these post-processing techniques lack prac-
ticality as they rely on restrictive and dataset-
specific assumptions, such as the exact number
of lines of the expected completion (Zhang et al.,
2023; Wu et al., 2024) or a specific structure to
be met (Ding et al., 2023; Gong et al., 2024).
Essentially, we need to develop better models
that are capable of spontaneously terminating
generation at the correct point with respect to
arbitrary left and right contexts.

To this end, we propose Horizon-Length Pre-
diction (HLP) to improve code infilling by
teaching models to plan ahead on the number
of tokens to be generated (i.e., horizon length).
Specifically, given the hidden state of the cur-
rent token, we introduce an auxiliary training
objective to predict the number of future tokens
required to complete middle, in addition to stan-
dard next-token prediction (NTP). Unlike rule-based post-processing, HLP is generalizable as it does
not require any task-specific knowledge.

Through comprehensive evaluation we demonstrate that HLP achieves up to 24% improvements
relatively on diverse FIM benchmarks at both file-level and repository-level, with no access to task-
specific post-processing. Moreover, with an emphasis on planning, training with HLP also helps
achieve superior model performance on code reasoning. Besides, HLP is also extremely efficient as its
training overhead is negligible and it doesn’t have any inference cost.

Our key contributions are as follows:

• We highlight that post-processing methods adopted by current benchmarks overestimate existing
code LLMs’ FIM performance, and empirically quantify the gap. We further draw attention to
models’ long-horizon planning capability as the key to successful code infilling.

• We propose Horizon-Length Prediction (HLP), a novel training task that advances fill-in-the-
middle capability by teaching LLMs to plan ahead over arbitrarily long horizons. HLP complements
the standard next-token prediction by training LLMs to predict the remaining number of future
tokens required to complete middle (i.e., horizon length).
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• Our evaluation shows that HLP not only improves code infilling by up to 24% across various
benchmarks without using any rule-based and/or dataset-specific post-processing, but also enhances
performance on code reasoning. HLP is also super efficient as it only incurs negligible training
overhead while not adding any inference overhead.

2 Post-processing for Fill-in-the-Middle

SAFIM Avg
Algo Algov2 Control API

DS-1.3B
w/ post 43.9 49.2 55.6 62.9 52.9
w/o post 39.8 42.4 52.4 56.1 47.7
rel. diff -9.3% -13.8% -5.8% -10.8% -9.9%

DS-6.7B
w/ post 54.9 58.9 68.1 71.0 63.2
w/o post 53.4 56.7 66.6 69.0 61.4
rel. diff -2.7% -3.7% -2.2% -2.8% -2.8%

SC2-3B
w/ post 48.1 53.5 60.1 68.4 57.5
w/o post 45.4 49.7 57.1 61.3 53.4
rel. diff -5.6% -7.1% -5.0% -10.4% -7.2%

SC2-7B
w/ post 50.4 55.8 62.3 70.3 59.7
w/o post 48.4 53.1 60.4 63.9 56.5
rel. diff -4.0% -4.8% -3.0% -9.1% -5.4%

Table 1: Effect of post-processing techniques for different
code LLMs on SAFIM, where "w/ post" refers to using post-
processing, "w/o post" refers to not using post-processing,
and "rel. diff" refers to the relative performance difference
between the two. We follow the same settings used in §4.1.

Most existing FIM works rely on post-
processing to truncate code comple-
tions generated by LLMs for infilling
tasks (Gong et al., 2024; Zhang et al.,
2023; Ding et al., 2023; Wu et al.,
2024). While such post-processing
can enhance the FIM performance,
we argue that they are are designed
based on dataset-specific prior knowl-
edge, and thus fundamentally limited
and impractical for real-world scenar-
ios (§2.1). Through evaluation, we
show that FIM performance of existing
code models drops significantly with-
out post-processing, suggesting that
post-processing conceals models’ in-
ability to determine the end of inser-
tion (§2.2). Furthermore, we show that
plausible generation of middle with-
out careful planning can easily lead to
the failure in connecting to suffix at
the end, which can not be mitigated
even with post-processing (§2.3). We
believe that post-processing leads to
an overestimation of infilling capabil-
ity of existing code LLMs and more
generalizable techniques are in need to
advance LLMs’ FIM performance.

2.1 Post-processing Requires Task-specific Knowledge

Post-processing methods adopted by recent FIM benchmarks typically assume a certain completion
type and perform rule-based truncation accordingly. Table 2 summarizes the post-processing criteria of
four popular FIM benchmarks, highlighting the specific rule used for each dataset. These criteria do
not transfer across datasets, nor are they generalizable to FIM in the real-world scenario where both left
and right contexts can be arbitrary. Given the complexity of programming languages, it is infeasible to
devise any rule-based post-processing for general code infilling in open-domain scenarios. A more
practical and effective solution is to let the model itself learn to decide when to stop.

Post-processing Criteria

RepoEval

Truncate generation to the same number of lines as in ground truth.(Zhang et al., 2023)
CrossCodeLongEval
(Wu et al., 2024)

CrossCodeEval Truncate generation at the first complete statement.(Ding et al., 2023)

SAFIM Stop when the target program structure in ground truth is generated.(Gong et al., 2024)

Table 2: Post-processing criteria used in existing FIM benchmarks. Text in bold denotes restrictive
dataset-specific knowledge they employ in evaluation.
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2.2 Post-processing Conceals LLMs’ Inability of Connecting to Suffix

To further demonstrate to what extent post-processing conceals LLMs’ inability of connecting to suffix,
we conduct a comprehensive experiment on SAFIM. We compare FIM performance of four different
code LLMs, with or without post-processing. As shown in Table 1, after removing post-processing, we
see pass@1 drops by up to 13.8% across all models, revealing that post-processing seriously obfuscates
LLMs’ inherent inability to connect seamlessly to suffix during infilling.

2.3 Fill-in-the-Middle Requires Planning Capability of LLMs

We argue that FIM requires planning from LLMs for deeper reasons beyond simply predicting the
<eoi> token. Figure 2 provides an illustrative example that highlights the importance of planning
ahead in FIM tasks. Compared with the ground truth (i.e., middle in Reference), the model generation
(i.e., middle in Answer) does not correctly connect to suffix. To elaborate, since the beginning of suffix
is a function call (Recognizer()) that can only be accessed through a specific object (speech), the
model generation has to end with speech. to properly connect to suffix, but it fails to do so in Answer.

Interestingly, the model has demonstrated its knowledge of how to call the function by generating
speech.Recognizer() in Answer. However, without careful planning, it prematurely writes this
call before other necessary code (the assignment statement of self.voice). This example illustrates
that the real challenge lies in planning the entire generation, rather than understanding individual
components. Furthermore, this case demonstrates that post-processing, despite taking advantage of
task-specific prior knowledge, cannot adequately address such planning failures. Truncating the code
after speech. in Answer would result in loss of other necessary code for correctness. This observation
underscores the irreplaceable importance of planning ahead in code infilling.

# Support for voice interactions
class SpeechMixin(object):

def __init__(self, audio_threshold = 1000):
self.voice = win32com.client.Dispatch("SAPI.SpVoice")
self.recognizer = speech.Recognizer()
self.recognizer.energy_threshold = audio_threshold
…

Reference # Support for voice interactions
class SpeechMixin(object):

def __init__(self, audio_threshold = 1000):
self.recognizer = speech.Recognizer()
self.voice = win32com.client.Dispatch("SAPI.SpVoice")Recognizer()
self.recognizer.energy_threshold = audio_threshold
…

Answer
prefix

suffix

middle

Figure 2: An example showing that FIM requires planning capabilities. middle in Reference refers to
the ground truth and middle in Answer refers to the code generated by LLMs, given prefix and suffix.
Compared with the ground truth, LLM fails to connect to suffix due to lack of planning capability.

3 Horizon-Length Prediction

Given a document D={xt}Tt=1 that contains T tokens x1, x2,···, xT , existing FIM training scheme
can be divided into three steps: (1) Split the document D into three parts: prefix-middle-suffix2, (2)
Construct a new FIM-style document D′ by reordering the three parts as prefix-suffix-middle, and (3)
Conduct next-token prediction (NTP) training on the document D′.

Specifically, we define the three parts in document D as prefix=x1···P , middle=xP+1···P+M , and
suffix=xP+M+1···T . Then, the new document D′ will be formatted as follows:

D′=<PRE> prefix <SUF> suffix <MID> middle <EOI>
=<PRE> x1···P <SUF> xP+M+1···T <MID> xP+1···P+M <EOI>
∆
=y1···T−M+3 xP+1···P+M <EOI>,

(1)

where the last step re-indexes the leading tokens up until <MID> to y1···T−M+3 to focus on the FIM
part, as LLMs are expected to start infilling after <MID> token and to end generation with <EOI> token
to connect to suffix accurately.

2We opt to use PSM setting in this work given our base models (DeepSeek-Coder (Guo et al., 2024) and
StarCoder2 (Lozhkov et al., 2024)) were both pre-trained with PSM setting. However, we expect that our method
is generalizable to SPM setting as well.
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Transformer

X1

hlp_head
(Horizon-Length Prediction)

<PRE>   ···   <SUF>   ···   <MID> <EOI>X2 X3 X4 X5

lm_head
(Next-Token Prediction)

X3 0.6

hidden_state

Middle TokensPrefix & Suffix Tokens EOI Token

··· ··· ··· ······ ···

Figure 3: Overview of Horizon-Length Prediction (HLP). In this example, we set the length of middle
to five tokens. Following the flow of arrows, we illustrate how the second token of middle (i.e., "T2") is
processed through both next-token prediction objective and horizon-length prediction objective.

Next-token prediction (NTP) training is conducted on the document D′, whose goal is to minimize the
following cross-entropy loss (where Pθ refers to LLMs being trained):

LNTP =−
T−M+2∑

t=1

logPθ(yt+1|y1···t)

−
M−1∑
t=1

logPθ(xP+t+1|y1···T−M+3,xP+1···P+t)

−logPθ(<EOI>|y1···T−M+3,xP+1···P+M ).

(2)

While NTP has provided LLMs with necessary supervision signals to learn Fill-in-the-Middle (i.e.,
starting generation to match prefix and stopping itq to connect to suffix), it is shown in our analysis (§2)
that LLMs trained with NTP alone do not learn this task well in practice. This is likely due to models
trained with NTP learns to predict with a horizon length of only one (i.e., next token), and thus infilling
which typically requires planning over a much longer horizon length could not be learned effectively.

Horizon-Length Prediction (HLP). To mitigate this issue, we propose adding an auxiliary training
objective, namely horizon-length prediction (HLP), to improve the planning capabilities of LLMs over
long horizons. Specifically, given the hidden state of current token, the model is tasked by HLP to
predict the number of future tokens required to complete middle, as shown in Figure 3.

In detail, the FIM-style document D′ defined in Eq. (1) contains three different parts, including prefix,
suffix, and middle, and HLP is applied to middle part as it is the major focus of FIM tasks. Recall that

SAFIM Average
Algorithmic Algorithmicv2 Control API

DS-1.3B 39.8 42.4 52.4 56.1 47.7
+ HLP 41.3 46.1 53.4 59.0 50.0

DS-6.7B 53.4 56.7 66.6 69.0 61.4
+ HLP 53.5 57.4 66.9 69.7 61.9

SC2-3B 45.4 49.7 57.1 61.3 53.4
+ HLP 47.2 52.1 58.7 64.5 55.6

SC2-7B 48.4 53.1 60.4 63.9 56.5
+ HLP 49.4 54.5 61.8 65.8 57.9

Table 3: Pass@1 results of training w/o and w/ HLP for different code LLMs on SAFIM (Gong et al.,
2024) computed with greedy decoding.
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middle has M tokens, ranging from xP+1 to xP+M . At each position t∈ [1,M ] in middle, HLP aims
to predict the number of future tokens required to complete the middle, which is M−t. Considering
that the context window size of LLMs can be infinite in theory and so is M−t, instead of formatting
HLP as a classification task with a fixed set of discrete values as labels, we make it a regression problem
by taking the normalized count of future tokens as the target:

yt=
M−t

M
∈(0,1]. (3)

As such, the target is always within the (0,1] interval regardless of the model’s context window size.

HLP is implemented as a linear layer on top of the transformer (i.e., hlp_head in Figure 3) with weight
whlp, whose input is the hidden state ht from the last layer. The output w⊤

hlpht is converted to a value
between 0 and 1 through a sigmoid layer σ to represent the final prediction. We use L1 loss for HLP:

LHLP =

M∑
t=1

|σ(w⊤
hlpht)−yt|. (4)

The full training objective is a weighted sum of NTP loss and HLP loss:

L=LNTP +λ·LHLP , (5)

where λ is the tunable weight. In experiments, we set λ= 0.1, which achieves good results across
benchmarks empirically. We leave the overhead analysis in Appendix A.1.

CrossCodeEval / CrossCodeLongEval Average
Line Chunk Function

EM ES EM ES EM ES EM ES

DS-1.3B 15.23 49.64 22.48 56.40 4.58 33.96 14.10 46.67
+ HLP 18.99 55.47 24.32 58.77 5.12 35.25 16.14 49.83

DS-6.7B 26.23 62.07 28.90 62.37 7.50 41.42 20.88 55.29
+ HLP 27.35 63.54 30.08 63.18 7.22 40.99 21.55 55.90

SC2-3B 24.17 59.89 22.20 52.69 6.80 38.13 17.72 50.24
+ HLP 25.67 62.62 30.66 62.01 7.18 39.42 21.17 54.68

SC2-7B 26.00 61.68 27.14 56.52 7.66 39.54 20.27 52.58
+ HLP 27.58 63.84 32.86 64.07 8.44 41.03 22.96 56.31

RepoEval Average
Line API Function

EM ES EM ES EM ES EM ES

DS-1.3B 24.50 50.42 18.81 58.15 3.96 29.73 15.76 46.10
+ HLP 27.25 53.45 21.81 59.79 5.93 31.92 18.33 48.39

DS-6.7B 26.62 52.59 22.69 61.94 7.47 36.24 18.93 50.26
+ HLP 30.31 55.97 25.12 63.06 7.69 37.22 21.04 52.08

SC2-3B 21.88 46.74 18.81 56.66 4.40 29.99 15.03 44.46
+ HLP 26.56 50.56 23.06 61.02 7.25 33.79 18.96 48.46

SC2-7B 27.94 51.60 21.56 58.98 6.81 32.80 18.77 47.79
+ HLP 34.19 57.29 27.31 63.04 8.35 35.40 23.28 51.91

Table 4: Exact Match (EM) and Edit Similarity (ES) results of training w/o and w/ HLP for different
code LLMs on CrossCodeEval, CrossCodeLongEval, and RepoEval using greedy decoding, following
the experimental setting of existing work (Wu et al., 2024).

6



4 Experiments

We conduct continual pre-training on a set of code LLMs of different model families and sizes to
validate the effectiveness of HLP. Specifically, DeepSeek-Coder-Base 1.3B/6.7B (Guo et al., 2024) and
StarCoder2 3B/7B (Lozhkov et al., 2024) are involved in our experiments. More settings are detailed in
Appendix A.2. Specifically, we conduct two continual pre-training experiments for each model:

• NTP: existing pre-training scheme with next-token prediction (NTP) objective only.
• NTP + HLP: our newly proposed pre-training scheme that incorporates horizon-length prediction

(HLP) objective with next-token prediction (NTP) objective.

Throughout this section, we determine the end of generation solely based on <eoi> predicted by the
model during evaluation, without any rule-based post-processing, unless otherwise specified in §4.4.

4.1 Syntax-Aware and Multilingual Code Fill-in-the-Middle

We use SAFIM (Gong et al., 2024), a syntax-aware and multilingual code Fill-in-the-Middle benchmark,
to evaluate the effectiveness of HLP, which is further detailed in Appendix A.3. We report pass@1
as the evaluation metric. As shown in Table 3, compared with NTP only, adding HLP achieves up
to 5% improvements on average across all the studied code LLMs. Specifically, HLP consistently
improves LLMs’ performance on completions of various program structures. Furthermore, since
SAFIM is a multilingual benchmark, our evaluation also shows that incorporating HLP can improve
FIM performance across different languages.

4.2 Repository-Level Cross-File Code Fill-in-the-Middle

Code Fix Code Reasoning
Defects4J CRUXEval-I CRUXEval-O

DS-1.3B 33 42.0 31.0
+ HLP 39 44.7 31.8

DS-6.7B 58 52.1 39.2
+ HLP 59 52.4 39.6

SC2-3B 39 42.8 32.1
+ HLP 41 43.9 32.6

SC2-7B 41 44.4 35.9
+ HLP 47 45.5 36.1

Table 5: Code fixing and reasoning performance of
models trained w/o and w/ HLP for different code LLMs
on Defects4J and CRUXEval. On Defects4J. We report
the number of plausible patches under greedy decoding.
On CRUXEval, we follow the original setting to do sam-
pling with T =0.2 and n=10 and to extract accurate
input/output values from raw generation.

In addition to single-file FIM evaluation
with SAFIM, we also evaluate the effective-
ness of HLP on repository-level code Fill-in-
the-Middle in cross-file scenarios via Cross-
CodeEval (Ding et al., 2023), CrossCode-
LongEval (Wu et al., 2024), and RepoEval
(Zhang et al., 2023), which are detailed in
Appendix A.4. We follow existing work (Wu
et al., 2024) to evaluate the model’s FIM per-
formance on these benchmarks and use Ex-
act Match (EM) and Edit Similarity (ES) as
our evaluation metrics. As shown in Table
4, adding HLP provides consistent improve-
ments for all models across different bench-
marks and completion tasks. Specifically,
HLP achieves up to 24% improvements on
EM and 9% improvements on ES relatively,
showing its significant effectiveness.

4.3 Code Fixing via Fill-in-the-Middle

We use Defects4J (Just et al., 2014) to eval-
uate the performance of HLP on code fixing,
which is detailed in Appendix A.5. Specifically, for each bug, models are prompted to generate the
correct code hunk (i.e., patch) given the left and right contexts of the buggy code hunk, and the whole
test suite of the project will be executed to evaluate the correctness of the generated patch. Patches that
can successfully pass the test suite are referred to as plausible patches and we report the number of
plausible patches in our evaluation. As shown in the "Code Fix" section of Table 5, adding HLP during
training results in relatively up to 18% more bugs fixed by the model.

4.4 Code Reasoning via Fill-in-the-Middle

Lastly, we examine whether HLP improves model performance on code reasoning beyond ordinary
completion use cases. The motivation is that HLP aims to teach the model to plan ahead, and planning
is a subset of reasoning that requires an action sequence over a long time horizon (Kang et al., 2024).
Towards this end, we consider CRUXEval (Gu et al., 2024), which is detailed in Appendix A.6.
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Different from previous subsections where post-processing is not used, we follow the same pipeline as
in the original CRUXEval paper to extract accurate input/output values from generation because we are
focusing on evaluating the reasoning capability of LLMs, and we leave further discussion in Appendix
A.6. As shown in the "Code Reasoning" section of Table 5, HLP demonstrates up to 6% improvements
on both CRUXEval-I and CRUXEval-O tasks for all the code LLMs consistently, which shows that
HLP also improves code reasoning capabilities of LLMs.

5 Next-Token Prediction Alone Cannot Yield Horizon Awareness

Training ↑ Test ↑
DS-1.3B 0.455 0.440

+ HLP 0.919 0.915
DS-6.7B 0.525 0.519

+ HLP 0.919 0.913
SC2-3B 0.364 0.356

+ HLP 0.927 0.932
SC2-7B 0.418 0.410

+ HLP 0.929 0.932

Table 6: Probing results of mod-
els trained w/o and w/ HLP. We
report the coefficient of determi-
nation (R2) of prediction, which
is the higher the better.

We argue that NTP alone does not grant code LLMs the awareness
of prediction horizon. Specifically, we show that hidden states of
baseline models trained with NTP only do not carry information
about the number of future tokens (i.e., horizon length). Conse-
quently, including HLP in training is essential for models to be
knowledgeable of prediction horizon.

We design a probing task by fitting linear regression models over
hidden states of code LLMs trained with or without HLP respec-
tively, while freezing all parameters of the underlying transformers.
More details are included in Appendix A.7. We plot the predicted
percentage of remaining tokens versus the normalized token posi-
tion in Figure 4, and report the coefficient of determination (R2)
in Table 6. As shown, the regression model does not fit well with
hidden states from the baseline model, indicating that those hidden
states do not contain information about horizon length. In contrast,
with HLP, the hidden states perform much better. The result demon-
strates that horizon awareness does not naturally exist in language
models trained with NTP, and can only be obtained through targeted
training tasks such as HLP.
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Figure 4: Predicted percentage of remaining future tokens (as defined in Eq. (3)) from models trained
w/o and w/ HLP at different token positions, where the concrete position of each token is normalized to
the corresponding percentage over the whole sequence.

6 Conclusion

Fill-in-the-Middle is ubiquitous in code completion, and therefore, has become an important considera-
tion in the development of code language models. The current FIM training paradigm splits and reorders
original training sequences (prefix-middle-suffix) into FIM-style sequences (prefix-suffix-middle/PSM
or suffix-prefix-middle/SPM), and performs standard next-token prediction. However, this approach
frequently results in models struggling to generate content that smoothly aligns with the right context.
While existing FIM benchmarks frequently rely on different post-processing methods to circumvent
this problem, we emphasize that such methods typically require dataset-specific assumptions, which
are impractical in real-world scenarios. To address this limitation and enhance the infilling capability
of code language models, we propose Horizon-Length Prediction (HLP). HLP teaches models to
predict the portion of remaining tokens at every step. Experiments across different model families
and sizes show that HLP improves infilling performance on diverse FIM benchmarks, across file-level
and repository-level, and without using any dataset-specific post-processing. Moreover, the enhanced
planning capability acquired through HLP training also boosts models’ performance on code reasoning
tasks, suggesting that HLP may broadly improve language models’ reasoning capabilities. Besides,
HLP is also efficient as it does not cause any inference overhead and the training overhead is negligible
as well. Our work marks a significant advancement in developing more effective code language models
for real-world applications.
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A Appendix

A.1 Overhead Analysis of HLP

While HLP introduces the additional hlp_head during training, the number of added parameters is <
0.01% of the base model, which incurs almost zero training overhead. Furthermore, the additional
head can be discarded during inference, leading to no inference overhead.
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A.2 Experiment Settings

Training. We use AdamW (Loshchilov & Hutter, 2019) as the optimizer with β1=0.9 and β2=0.95.
We use a cosine learning rate scheduler with a peak learning rate equal to that at pre-training end. All
models are trained for 200K steps with a warm-up period over the first 3,000 steps. The global batch
size is 512.

Dataset. We use a subset of the-stack-v2-train-smol (Lozhkov et al., 2024) for continual pre-
training which includes Python, Java, C++, and C#. In line with existing works (Guo et al., 2024;
Lozhkov et al., 2024), FIM rate is set to 0.5. We employ Best-fit Packing (Ding et al., 2024) to group
multiple files into each training sequence while masking out cross-file attention. The prefix-middle-
suffix split is applied to each file independently rather than the whole training sequence.

A.3 Details of SAFIM

SAFIM focuses on syntax-aware completions of program structures, covering algorithmic block (i.e.,
Algo and Algov2), control-flow expression (i.e., Control), and API function call (i.e., API). It consists
of 17,720 examples from four different programming languages, including Python, Java, C++, and C#.
SAFIM employs execution-based evaluation and reports pass@1 as the evaluation metric.

A.4 Details of CrossCodeEval, CrossCodeLongEval, and RepoEval

CrossCodeEval (Python) and CrossCodeLongEval are two repository-level cross-file benchmarks that
leverage more than 1500 raw Python repositories to construct 12,665 examples across line, chunk,
and function completion tasks, which are used for a more rigorous evaluation. RepoEval is another
repository-level cross-file code completion benchmark consisting of 3,655 line, API, and function
completion tasks created from 32 Python repositories. Our evaluation is conducted under “Retrieval”
mode, where evaluation prompts are constructed by prepending the retrieved cross-file context to the
current file, to show the performance of repository-level cross-file code completion.

A.5 Details of Defects4J

Defects4J consists of open-source bugs found across 15 Java repositories. Following existing works
(Xia et al., 2023; Xia & Zhang, 2023), we collect 313 single-hunk bugs from Defects4J that can be
fixed by replacing or adding a continuous code hunk.

A.6 Details of CRUXEval

CRUXEval comprises 800 Python functions paired with two distinct tasks: CRUXEval-I, where LLMs
need to predict the input from the known output, and CRUXEval-O, where LLMs are required to predict
the output based on the given input. We reformat prompts of CRUXEval-I into FIM style and leave
CRUXEval-O as L2R generation, both of which are evaluated in zero-shot setting.

Different from previous subsections where post-processing is not used, we follow the same pipeline as
in the original CRUXEval paper to extract accurate input/output values from generation because we
are focusing on evaluating the reasoning capability of LLMs rather than their capability of generating
correct code. In CRUXEval-I, we only want to evaluate the correctness of the input value infilled by
LLMs in the given assertion. However, FIM-style prompts we use in the experiments does not restrict
LLMs from writing multiple assertions before starting infilling the given assertion, which is useless in
this task. So we use post-processing techniques to extract the input value infilled for the given assertion
to better evaluate the reasoning capabilities.

A.7 Details of Probing Experiment

In our probing experiments, we use different models to generate hidden states for 20K code snippets,
which gives hidden state vectors for 7.8M tokens from the middle part. We split them into the training
and the test set, ensuring no overlap at sequence level. Taking these hidden state vectors as inputs and
the true normalized remaining token counts as targets, we fit two linear regression models for each code
LLM trained with or without HLP, respectively.
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A.8 Effect of HLP on Left-to-Right Performance

While HLP have significantly improved the FIM performance of LLMs, we also study its impact on the
L2R code completion. To this end, we evaluate L2R performance on HumanEval (Chen et al., 2021)
and MBPP (Austin et al., 2021) with DeepSeek-Coder-Base 1.3B. We further employ HumanEval+
and MBPP+ from EvalPlus Liu et al. (2023) for more rigorous evaluation with better test coverage.
As shown in Table 7, with HLP applied to FIM data only (i.e., HLPFIM), the performance on L2R
tasks sometimes shows a slight degradation. We hypothesize that applying HLP to middle only causes
unbalanced training on prefix and suffix parts.

Left-to-Right Fill-in-the-Middle

HumanEval (+) MBPP (+) SAFIM

DS-1.3B 26.3 (22.0) 45.8 (36.7) 47.7
+ HLP FIM 25.5 (21.3) 45.8 (36.5) 50.0
+ HLP FIM + HLP L2R 26.2 (22.0) 45.7 (36.6) 49.6

Table 7: Effect of HLPFIM only and HLPFIM+HLPL2R for DeepSeek-Coder-Base 1.3B on L2R and
FIM tasks. On L2R tasks including HumanEval (+) and MBPP (+), we do sampling with T = 0.8
and n=200. We report pass@1 performance of all the models, where numbers outside and inside
parenthesis "()" indicate base and plus versions of EvalPlus, respectively. For FIM experiments on
SAFIM, we follow the same settings used in §4.1.

To mitigate such effect, we need to devise another HLP task that can be applied to L2R training (i.e.,
HLPL2R). However, the original design of HLP in §3 is not directly applicable to L2R data. While the
end of middle in FIM data is strictly bounded by the beginning of suffix, the end of L2R data does not
have any clear signals, as it is often possible to add additional contents (e.g., another line of code or a
new helper function) to the end of document fluently without any restrictions.

Therefore, instead of taking the entire code file as prediction horizon, we ask the model to predict the
number of future tokens required to complete current line in L2R training, which is a natural semantic
unit in code. Furthermore, to avoid conflicts between HLPFIM and HLPL2R, we use two independent
hlp_heads to let the model learn HLPFIM and HLPL2R separately. As shown in Table 7, by applying
HLPFIM and HLPL2R simultaneously, the performance degradation on L2R tasks is recovered, with the
improvement on FIM tasks largely retained. These results demonstrate the generalizable effectiveness
of HLP and shows the huge potential of applying the idea of HLP to more general training scenarios.

A.9 Related Work

Fill-in-the-Middle for Code Language Models The unprecedented success of causal language
models such as GPT-3 (Brown et al., 2020) in natural language has inspired researchers to develop
similar decoder-only models for programming languages. These models are trained on massive source
code data for applications such as code generation. While early models such as Codex (Chen et al.,
2021) and CodeGen (Nijkamp et al., 2023) only support Left-to-Right (L2R) generation, Fill-in-
the-Middle (or infilling) has attracted increased attention because right context naturally carries an
indispensable part of information for completing code in the middle (Fried et al., 2023; Bavarian et al.,
2022). Subsequently, FIM training has become a common practice widely adopted by most code
LLMs, such as StarCoder (Li et al., 2023; Lozhkov et al., 2024), DeepSeek-Coder (Guo et al., 2024;
DeepSeek-AI et al., 2024), and Code Llama (Rozière et al., 2023).

Existing models generally tackle the infilling problem by breaking a code snippet into prefix-middle-
suffix, and reordering them into prefix-suffix-middle (PSM) or suffix-prefix-middle (SPM). The trans-
formed sequences are fed to the model during training for standard next-token prediction (NTP). We
point out that the infilling task cannot be effectively learned with NTP alone, as it requires planning
capability for the model to fluently and meaningfully connect the middle completion to the suffix
through forward looking during auto-regressive decoding.

An alternative approach is to train two language models in different directions, with one generating
from left to right and the other from right to left, and have the two generations meet in the middle
(Nguyen et al., 2023). Nevertheless, the L2R model does not have access to the right context, and vice
versa, which impedes holistic planning that takes into account the context from both sides.
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Planning and Lookahead in Language Generation Standard decoder-only models are trained with
next-token prediction and used to sequentially predict one token at a time, conditioned only on past
tokens, in an auto-regressive manner. One drawback of this paradigm is that models are not aware of
future tokens during decoding. The token that maximizes the conditional probability at current step
may lead to suboptimal continuation, and consequently the model can fail to compose a fluent and
sensible generation that meets human requirements. Various decoding techniques have been proposed
to address the problem through tree search with lookahead heuristics, particularly for constrained
generation problems (Lu et al., 2022; Huang et al., 2024). While these methods are training-free, they
inevitably incur additional cost of inference complexity.

Apart from those, Gloeckle et al. (2024) proposed to predict multiple tokens from a single hidden state
during both training and inference, which was shown to achieve stronger performance on coding tasks
with no computation overhead. While multi-token prediction enhances models’ planning capability
within the n tokens predicted together (n≤ 8), we argue that with a small n, the limited horizon is
usually insufficient for planning in the case of infilling as the connection from middle to suffix only
happens towards the end of the generation. In contrast, HLP adopts a global and arbitrary long horizon
over all future tokens by counting the remaining generation budget, which more effectively helps
models to close the generation fluently with early planning.
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