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ABSTRACT

The advancements in disentangled representation learning significantly enhance
the accuracy of counterfactual predictions by granting precise control over in-
strumental variables (IVs), confounders, and adjustable variables. An appealing
method for achieving the independent separation of these factors is mutual infor-
mation minimization (MIM), a task that presents challenges in numerous machine
learning scenarios, especially within high-dimensional spaces. To circumvent this
challenge, a common strategy is to re-frame the MIM problem from a problem
between two high-dimensional representations to one between high-dimensional
representations and low-dimensional labels based on the different dependencies
of latent factors and known labels. In this paper, we first demonstrate the lim-
itations of this approach in separating instrumental variables and confounding
variables, as determined by the d-separation theory. Subsequently, we propose
the Self-Distilled Disentanglement framework, referred to as SD2. Grounded
in information theory, it ensures theoretically sound disentangled representations
without intricate mutual information estimator designs for high-dimensional rep-
resentations. Our comprehensive experiments, conducted on both synthetic and
real-world datasets, provide compelling evidence of the effectiveness of our ap-
proach in facilitating counterfactual inference in the presence of both observed
and unobserved confounders.

1 INTRODUCTION

Counterfactual prediction has attracted increasing attention (Alaa & van der Schaar, 2017; Li et al.,
2016; Chernozhukov et al., 2013; Glass et al., 2013) in recent years due to the rising demands
for robust and trustworthy artificial intelligence. Confounders, the common causes of treatments
and effects, induce spurious relations between different variables, consequently undermining the
distillation of causal relations from associations. Thanks to the rapid development of representation
learning, a plethora of methods (Li & Yao, 2022; Yao et al., 2018; Shalit et al., 2017) mitigate
the bias caused by the observed confounders by generating balanced representations in the latent
space. As for the bias brought by the unobserved confounders, Pearl et al. (2000); Angrist & Imbens
(1994); Hartford et al. (2017); Muandet et al. (2020); Lin et al. (2019) propose obtaining an unbiased
estimator by regressing outcomes on Instrumental variables (IVs), which are exogenous variables
related to treatment and only affect outcomes indirectly via treatment, to break the information flow
between unobserved confounders and the treatments.

There are two drawbacks to the above methods. Firstly, most of them treat all observed features
as the observed confounders to block, while only part contributes to the distribution discrepancy
of pre-treatment features. Secondly, the prerequisite for IV-based regression methods is to access
valid IVs, which have three strict conditions (Relevance, Exclusion, Unconfoundeness (Wu et al.,
2022a)) to satisfy, making it a thorny task to find.

Disentangled representation learning (Hassanpour & Greiner, 2019; Kingma & Welling, 2013), aim-
ing at decomposing the representations of different underlying factors from the observed features,
is showing promise in addressing the flaws above simultaneously. The disentangled factors provide
us with a more precise inference route to alleviate the bias brought by the observed confounders.
Additionally, one can automatically obtain the representations of the valid IVs to remove the bias
led by the unobserved confounders.
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Minimizing the mutual information (MI) between the representations of distinct underlying factors
is fundamental to obtaining disentangled representations for counterfactual prediction (Cheng et al.,
2022b). Nevertheless, estimating MI between high-dimensional representations remains a persistent
challenge (Belghazi et al., 2018; Poole et al., 2019). Hassanpour & Greiner (2019); Yuan et al.
(2022) leverage the different dependencies between underlying factors and known labels to avoid
complex MI estimation between high-dimensional representations. However, these approaches lack
a solid theoretical assurance for distinguishing IVs from confounders.

To overcome the defects of previous methods, we propose a novel algorithm for counterfactual
prediction named Self-Distilled Disentanglement (SD2) to sidestep MI estimation between high-
dimensional representations from an alternative perspective. Specifically, we provide theoretical
analysis rooted in d-separation and information theory to guarantee the disentanglement of diverse
underlying factors. Further, we give a solvable form of our method through rigorous mathematical
derivation to minimize MI directly rather than explicitly estimating it. Based on the theory put for-
ward, we design a hierarchical distillation framework to kill three birds with one stone: disentangle
three different underlying factors, mitigate the confounding bias, and grasp sufficient supervision
information for counterfactual prediction.

Our main contributions are summarized as follows:

• We justify the infeasibility of separating instrumental variables and confounders if solely
through the different dependence with known variables. Instead, we provide a theoretically
assured solution rooted in d-separation and information theory for disentanglement to avoid
mutual information estimation for high-dimensional representations.

• We provide a tractable form of our proposed solution through mathematically rigorous
derivation, which rewrites the loss function of disentanglement and fundamentally tackles
the difficulty of mutual information estimation.

• We propose a novel self-distilled disentanglement method (SD2) for counterfactual pre-
diction. By designing a hierarchical distillation framework, we disentangle IVs and con-
founders from observational data to mitigate the bias induced by the observed and unob-
served confounders at the same time.

• We conduct extensive experiments on synthetic and real-world benchmarks to verify our
theoretically grounded strategies. The results demonstrate the effectiveness of our frame-
work on counterfactual prediction compared with the state-of-the-art baselines.

2 RELATED WORK

2.1 COUNTERFACTUAL PREDICTION

The main challenge for counterfactual prediction is the existence of confounders. Researchers adopt
matching (Rosenbaum & Rubin, 1983), re-weighting (Imbens, 2004), regression (Chipman et al.,
2010), representation learning (Shalit et al., 2017) to alleviate the confounding bias under the “no
hidden confounders” assumption. To relax this unpractical assumption, a few non-parametric or
semi-parametric methods utilize special structures among the variables to resolve the bias led by the
unobserved confounders. These structures include (1) proxy variables (Veitch et al., 2019; 2020;
Louizos et al., 2017; Wu & Fukumizu, 2022); (2) multiple causes (Wang & Blei, 2019; Zhang
et al., 2019; Cheng et al., 2022a); (3) instrumental variables. 2SLS (Angrist & Imbens, 1994) is
the classical IV method in a linear setting. Singh et al. (2019); Wu et al. (2022a); Xu et al. (2020);
Hartford et al. (2017); Lin et al. (2019) adopt advanced machine learning or deep learning algorithms
for non-linear scenarios. Another commonly used causal effects estimator using IVs is the control
function estimator (CFN) (Wooldridge, 2015; Puli & Ranganath, 2020). These methods require
well-predefined IVs or assume all observed features as confounders, which inevitably impairs their
generalization to real-world practice. Yuan et al. (2022); Wu et al. (2022b) aims to generate IVs for
downstream IV-based methods rather than focusing on counterfactual prediction.
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2.2 DISENTANGLED REPRESENTATION LEARNING

Most of the current state-of-the-art disentangled representation learning methods are based on
Kingma & Welling (2013), which uses a variational approximation posterior for the inference pro-
cess of the latent variables. Typical work includes β-VAE (Higgins et al., 2017), Factor-VAE (Kim
& Mnih, 2018), CEVAE (Louizos et al., 2017) and so on. Another popular solution (Chen et al.,
2016; Zou et al., 2020) builds on the basis of Generative Adversarial Networks (Goodfellow et al.,
2014). However, these studies are more suitable for the approximate data generation problem and
fall short when it comes to estimating causal effects, largely due to the difficulty in training complex
generation models. As the explicit identification of the underlying factors in observed features helps
to alleviate confounding bias and improve inference accuracy, DRCFR (Hassanpour & Greiner,
2019) first introduces disentanglement methods into the field of counterfactual regression. DeR-
CFR (Wu et al., 2020) designs some decomposition regularizers to ensure the separation of IVs
and confounders. Despite previous efforts, existing representation methods are presented under the
unconfoundedness assumption, which hinders their widespread generalization.

Compared with previous counterfactual prediction methods, SD2 is the early pioneer of disentan-
gled representation work equipped with a rigorous theoretical derivation that removes unobserved
and observed confounding bias simultaneously. Our approach abandons well-predefined IVs but
rather decomposes them from pre-treatment variables. Besides, we only impose conditions on vari-
ables that are related to confounding bias. Compared with generative disentangled methods, rather
than generating latent variables, SD2 directly disentangles the observed features into three underly-
ing factors by introducing causal mechanisms, which is more efficient and effective.

3 PROBLEM SETUP

As shown in Figure 1(a), we have observed pre-treatment features X , treatment T , and outcome Y .
X is composed of three types of underlying factors: Instrumental variable Z that only directly in-
fluences T . Confounder C that directly influences both T and Y . Adjustable variable A that only
directly influences Y . Besides these, some Unobserved confounders U impede the counterfactual
prediction. Z,C,A,U in this paper are exogenous variables.

Identification: As stated in (Hartwig et al., 2023), suppose the generated IVs satisfy three conditions
of valid IVs, additional assumptions are necessary to identify the average causal effect (ACE) of T
on Y. Adequate assumptions encompass homogeneity in the causal impact of T on Y, uniformity in
the relationship between Z and T, and the absence of effect modification.

We aim first to disentangle Z, C, and A from X based on the theoretical analysis, then propose a
unified framework to tackle confounding bias caused by C and U simultaneously. Intuitive thought
is to minimize the mutual information between the representation of Z, C and A during training.
However, it is hard due to the notorious difficulty in estimating mutual information in high dimen-
sions, especially for latent embedding optimization (Belghazi et al., 2018; Poole et al., 2019).

To circumvent this challenge, Hassanpour & Greiner (2019); Yuan et al. (2022) attempt to disen-
tangle underlying factors according to the different dependencies between these factors and known
variables (typically low-dimensional, e.g., T and Y ). In this way, they can reduce the complexity
of the problem by re-framing it as an estimation of MI between a high-dimensional representation
and a known label instead of between two high-dimensional representations. Hassanpour & Greiner
(2019) proposes to disentangle A from X based on the following proposition.

Proposition 3.1. Adjustment variable A should be independent of treatment T .

Notice that only A is independent of T while Z and C are not, which justifies the separation of A
from X . Inspired by Hassanpour & Greiner (2019), Yuan et al. (2022) assumes Z being independent
of Y when conditioning on T . However, this would lead to a contradictory conclusion, as the open
of the collider structure Z → T ← C will enforce the reliance of Z on C once T is fixed as a
condition, which consequently results in the dependence of Z and Y through C. Based on the
d-separation (Pearl et al., 2000), we propose the following proposition.

Proposition 3.2. Instrumental variable Z and confounder C have the same dependence with treat-
ment T , outcome Y and adjustable variable A.
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Figure 1: (a) General causal structure. Causal disentangled learning aims to automatically decom-
pose Z, C, and A from observed features X . (b) A motivating Venn diagram of mutual information
between the representations of C, A, i.e., Rc, Ra and outcome Y during the training phase.

Detailed proof can be found in the Appendix A.1.1. Proposition 3.2 indicates that it is infeasible to
separate Z and C solely based on the different (in)dependent conditions with other known variables.
Fortunately, we have discovered an alternative way to separate Z and C and bypass MI estimation
between high-dimensional representations from the perspective of information theory, which will be
demonstrated in Section 4. For the simple exposition, we display our theory and framework under
the binary treatment and outcome setting, while the details of continuous setting are deferred to the
Appendix A.3.2.

4 METHODOLOGY

4.1 THEORETICAL FOUNDATION OF SELF-DISTILLED DISENTANGLEMENT

Disentangling A: We define the representations of Z, C, and A as Rz , Rc, and Ra respectively.
According to Proposition 3.1, A ⊥ T . Thus, we can decompose A from X by minimizing the
distribution discrepancy of representations of A between the treatment group (T = 1) and the control
group (T = 0). The related loss function can be defined as follows:

min La = disc({Ri
a}i:ti=0, {Ri

a}i:ti=1), (1)

where function disc(·) represents the distribution discrepancy of Ra between the treatment and
control groups while i refers to the i-th individual.

Disentangling Z: Let’s revisit the causal structure depicted in Figure 1(a). We notice that when
we utilize T as a feature to predict Y , including information from Z becomes redundant, which
motivates us to formulate the following objective function to ensure that the generated representation
of Z aligns with this observation:

min Lz = DKL[PT
Y ∥P

Rz,T
Y ], (2)

Disentangling C: Given the obtained representations of both A and Z, we can further disentangle
Ra from X . Observing the collider structures C → Y ← A and C → T ← Z in Figure 1(a),
we notice that C is independent of both A and Z. This suggests that our objective should involve
simultaneously minimizing both I(Ra;Rc) and I(Rz;Rc).

To circumvent the challenge of estimating mutual information between high-dimensional represen-
tations during training, we decompose the mutual information between Ra and Rc by leveraging the
chain rule of mutual information:

I(Ra;Rc) = I(Y ;Rc) + I(Ra;Rc | Y )− I(Rc;Y | Ra). (3)

We further inspect the term I(Ra;Rc | Y ) in equation 3. Based on the definition of mutual infor-
mation, we have,

I(Ra;Rc | Y ) = H(Ra | Y )−H(Ra | Y,Rc), (4)
where H(·) represents the function of entropy. Intuitively, this conditional mutual information mea-
sures the information contained in Ra that is related to Rc but unrelated to Y . As shown in Figure
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1(a), the only connection between C and A is that they determine Y jointly with T . If we set up two
prediction models from Ra and Rc to Y, respectively, then the mutual information between Ra and
Rc is all related to Y during the training phase. We draw the Venn diagram of mutual information
between Ra, Rc and Y as shown in Figure 1(b), according to which we have,

H(Ra | Y ) = H(Ra | Y,Rc). (5)
With equation 3, equation 4 and equation 5, we have,

I(Ra;Rc) = I(Y ;Rc)− I(Rc;Y | Ra). (6)
equation 6 transforms the mutual information between two training high-dimensional representa-
tions into the subtraction of two mutual information estimators with known labels. To further sim-
plify it, we introduce the following theory:
Theorem 4.1. Minimizing the mutual information between Ra and Rc is equivalent to:

min H(Y )−H(Y | Rc)−H(Y | Ra) +H(Y | Rc, Ra). (7)

To find a tractable solution to equation 7, inspired by Tian et al. (2021), we derive the following
Corollary:
Corollary 4.2. One of sufficient conditions of minimizing I(Ra;Rc) is minimizing the following
conditions together:

min La
c =

{
DKL[PY ∥PRa

Y ] (8a)

DKL[PRa

Y ∥P
Rc

Y ], (8b)

where PRa

Y = p(Y | Ra), PRc

Y = p(Y | Rc) represent the predicted distributions, PY = p(Y )
represents the real distribution.

Detailed proof and formal assertions of Theo.4.1 and Corol.4.2 can be found in the Appendix A.1.2
and A.1.3. Similarly, we can transform minimizing I(Rz;Rc) into following:

min Lz
c =

{
DKL[PT ∥PRz

T ] (9a)

DKL[PRz

T ∥P
Rc

T ], (9b)

where PRa

T = p(T | Ra), PRz

T = p(T | Rz) represent the predicted distributions, PT = p(T )
represents the real distribution.

4.2 SELF-DISTILLED DISENTANGLEMENT FRAMEWORK

With the theory put forward in section 4.1, we propose a self-distilled framework
to disentangle different underlying factors. To clarify further, we take the distilla-
tion unit for minimizing Lz

c to illustrate how we employ different sources of supervi-
sion information to directly minimize mutual information without explicitly estimating it.

𝑹𝒛

𝑹𝒄

𝑹𝒕

𝑸𝑻
𝒛

𝑸𝑻
𝒄

𝑸𝑻 𝑻
Forward Flow

Supervision from Labels

Supervision from Teachers

Supervision from Peers

Neural Networks

shallow

shallow

deepretain

Figure 2: Self-distillation unit for minimizing Lz
c .

As shown in Figure 2, Retain network repre-
sents the neural network for retaining the infor-
mation from both Z and C. Deep networks and
Shallow networks are named based on their rel-
ative proximity to Ra and Rc. We set up two
shallow prediction networks from Rz and Rc to
T , respectively. In addition, to ensure Rz and
Rc grasp sufficient information for predicting
T , we set up a Retain network to concatenate
Rz and Rc and store joint information of them
for input into a deep prediction network. To minimize Lz

c , we deploy distinct sources of supervision
information from:

(1) Labels; We use T directly to guide the training of deep prediction networks by minimizing the
cross-entropy (CE) loss L(QT , T ). For shallow prediction networks, we reduce DKL[PT ∥PRz

T ] and
DKL[PT ∥PRc

T ] by minimizing CE loss L(Qz
T , T ) and L(Qc

T , T ).
1

1In practice, only minimizing equation 9a and equation 9b makes convergence challenging, resulting in
unsatisfactory performance. We speculate that this is due to a lack of sufficient supervised information guid-
ing the updating direction of the prediction network for Rc. Therefore, we introduce the minimization of
DKL[PT ∥PRc

T ] (corresponding loss function L(Qc
T , T ) to expedite loss convergence.
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(2) Teachers; We regard retain and deep prediction networks as a teacher model, which can convey
the learned knowledge to help the training of shallow prediction networks. That is, minimizing
KL-divergence loss L(Qz

T , QT ) and L(Qc
T , QT ).

(3) Peers; We diminish the KL-divergence between the distributions of the outputs from the two
shallow prediction networks, i.e., L(Qc

T , Q
z
T ). DKL[PRz

T ∥P
Rc

T ] are consequently minimized.

Similarly, we can minimize Lz and La
c by establishing corresponding distillation units according to

equation 2 and Corol.4.2. Combining all the self-distillation units, we have our total Self-Distilled
Disentanglement framework, i.e., SD2.

Mitigating Confounding Bias: With disentangled confounders C, the confounding bias induced
by C can be alleviated by re-weighting the factual loss L(QY , Y ) with the context-aware importance
sampling weights ωi (Hassanpour & Greiner, 2019) for each individual i. Besides, QT , the output
of the deep prediction network for T , can be employed to regress Y , which helps to mitigate the
confounding bias caused by unobserved confounders U (Hartford et al., 2017).

The loss function of SD2 is thus devised as follows with adjustable hyper-parameters α, β, γ, δ and
model parameters W .

LSD2 =
∑
i

ωiL(QY i, Yi) + αL(QT , T )︸ ︷︷ ︸
factual loss

+βLa + γ(Lz + La
c + Lz

c)︸ ︷︷ ︸
disentanglement loss

+ δ∥W∥2︸ ︷︷ ︸
regularization loss

. (10)

5 EXPERIMENTS

5.1 BENCHMARKS

Due to the absence of counterfactual outcomes in reality, it is challenging to conduct counterfactual
prediction on real-world datasets. Previous works (Li & Yao, 2022) synthesize datasets or transform
real-world datasets. In this paper, we have conducted multiple experiments on a series of synthetic
datasets and a real-world dataset, Twins.

Simulated Datasets: Binary Scenario: The synthetic datasets are generated with the following
steps: (1) For K in Z, C, A, V , U , sample K fromN (0, Imk

), where Imk
denotes mk degree iden-

tity matrix. Concatenate Z, C, and A to constitute the observed covariates matrix X . V represents
the observed IVs, the dimension of which could be set to 0. The setting of V is mainly for the com-
parison of IV-based methods. U represents the unobserved confounders. (2) Sample T and Y with
Bernoulli distribution using Z, C, V , U and A, C, U as features, respectively. See the Appendix
A.3.1 for the specific sampling equations.

Continuous Scenario: Following the work of Hartford et al. (2017); Wu et al. (2022a), we use the
Demand datasets to evaluate the performance of SD2 on the continuous scenario with the same data
generation process described in detail in Wu et al. (2022a).

Real-World Datasets Twins: Detailed descriptions can be referred in (Wu et al., 2022a). Since only
part of the features determines the outcome, we randomly generate mv-dimension V and choose
some features M as a combination of Z, C and U to create T with the same policy in synthetic
datasets. The rest features R will include A and some noise naturally. We hide some features in M
during training to create U and treat the rest in M with R as X . During training, only X , V , T and
Y will be accessible.

5.2 COMPARISON METHODS AND METRICS

The baselines can be classified into two categories: (1) IV-based Methods: DeepIV-Log and
DeepIV-Gmm (Hartford et al., 2017), DFIV (Xu et al., 2020), OneSIV (Lin et al., 2019), CBIV
(Wu et al., 2022a). These methods need well-predefined IVs V . When there is no V , i.e., mv equals
0, we use X as V for comparison. (2) Non-IV-based Methods: DirectRep, CFR-Wass (Shalit
et al., 2017), DFL (Xu et al., 2020), DRCFR (Hassanpour & Greiner, 2019), CEVAE (Louizos et al.,
2017). The latter two also disentangle the hidden/latent factors from observed features.
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Table 1: Performance comparison of bias of ATE between SD2 and the SOTA baselines on the
synthetic datasets (mv-mz-mc-ma-mu) and Twins datasets (Twins-mv-mx-mu) in out-of-sample
setting. Bold/Underline indicates the method with the best/second-best performance.

Out-of-Sample Synthetic Twins

Method 0-4-4-2-2 2-4-4-2-2 0-4-4-2-10 0-6-2-2-2 Twins-0-16-8 Twins-4-16-8 Twins-0-16-12 Twins-0-20-8

DirectRep 0.034(0.024) 0.034(0.013) 0.060(0.015) 0.037(0.024) 0.023(0.011) 0.014(0.013) 0.023(0.016) 0.014(0.010)

CFR 0.027(0.016) 0.032(0.021) 0.031(0.024) 0.054(0.018) 0.016(0.008) 0.019(0.010) 0.025(0.019) 0.019(0.014)

DFL 6.796(0.056) 6.750(0.086) 7.398(0.051) 6.393(0.063) 0.243(0.136) 0.252(0.140) 0.240(0.141) 0.245(0.145)

DRCFR 0.053(0.016) 0.050(0.023) 0.071(0.020) 0.059(0.018) 0.020(0.019) 0.018(0.007) 0.020(0.009) 0.028(0.018)

DEVAE 0.420(0.009) 0.432(0.008) 0.372(0.005) 0.456(0.008) 0.043(0.009) 0.039(0.008) 0.038(0.008) 0.034(0.008)

DeepIV-Log 0.572(0.028) 0.567(0.016) 0.601(0.011) 0.537(0.021) 0.028(0.016) 0.026(0.019) 0.028(0.018) 0.018(0.011)

DeepIV-Gmm 0.469(0.008) 0.387(0.021) 0.517(0.009) 0.442(0.004) 0.017(0.011) 0.013(0.009) 0.017(0.011) 0.013(0.011)

DFIV 7.047(0.131) 6.856(0.093) 7.749(0.125) 6.585(0.130) 0.257(0.145) 0.255(0.148) 0.256(0.144) 0.227(0.151)

OneSIV 0.507(0.009) 0.441(0.064) 0.569(0.015) 0.484(0.014) 0.016(0.014) 0.011(0.007) 0.025(0.020) 0.013(0.010)

CBIV 0.059(0.024) 0.067(0.030) 0.049(0.023) 0.030(0.017) 0.033(0.016) 0.063(0.017) 0.057(0.039) 0.043(0.022)

Ours 0.012(0.008) 0.022(0.017) 0.029(0.018) 0.013(0.010) 0.012(0.007) 0.011(0.006) 0.012(0.006) 0.011(0.009)

(a) (b)

Figure 3: (a) Experimental results under continuous scenario on Demand-0-1. (b) Radar charts
visualizing the capability of SD2 and DRCFR. The red and blue denote the contribution of actual
and other variables to the decomposed representations.

Metrics: We use the absolute bias of Average Treatment Effect, i.e., ϵATE, to evaluate the perfor-
mance of different algorithms in the binary scenario. Formally,

ϵATE =| 1

N
[

N∑
i=1

(Y 1
i − Y 0

i )−
N∑
i=1

(Ŷ 1
i − Ŷ 0

i )] |, (11)

where Yi/Ŷi represents the factual/predicted potential outcome. For continuous scenarios, we take
Mean Squared Error (MSE) as the evaluation metric. The smaller ϵATE and MSE are, the
better the performance.

5.3 RESULTS

5.3.1 COMPARISON WITH THE SOTA METHODS

Binary Scenario: Table 1 shows the performance of SD2 on datasets with binary values. mv-mz-
mc-ma-mu represents the data generated with mv predefined IVs V , mz underlying IVs Z, mc

underlying confounders C, ma underlying adjustable variables A and mu unobserved confounders
U . During training, we can only observe Z, C and A as a whole X . Twins-mv-mx-mu denotes the
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Twins dataset with mv predefined IVs, mx observed pre-treatment covariates and mu unobserved
confounders and IVs. For data setting with mx = 16 (Twins-0-16-8, Twins-4-16-8, Twins-0-16-
12), there are 12 confounders and IVs, 4 adjustable variables and noises, while for Twins-0-20-8,
we add 4 confounders and IVs in X . We generate 10000 samples for synthetic datasets for train-
ing/validation/testing sets, respectively, For the Twins datasets, we randomly choose 5271 samples
and split the datasets with the ratio 63/27/10. We perform 10 replications and report the mean
and standard deviation of the bias of ATE estimation. The results of the out-of-sample cases are
presented in the Table 1 while we leave the results of the within-sample cases in the Appendix
A.2.1.

Taking the results in 0-4-4-2-2 as a base point for observation, we have the following findings:

• The results of almost all IV-based methods in 0-4-4-2-2 are worse than those in 2-4-4-2-2,
demonstrating the performance of IV-based methods is highly dependent on the predefined
instrumental variables.

• By comparing the results between 0-4-4-2-2 and 0-4-4-2-10, we find that when there are
more unobserved confounders in the dataset, the performance of confounder balancing
methods (such as CFR, DRCFR, and DFL) will be poorer, which indicates the necessity of
controlling the unobserved confounders.

• If there are fewer confounders in observed features, as we compare 0-4-4-2-2 with 0-2-
6-2-2, the performance of confounder balancing methods without disentanglement (such
as CFR, DFL) gets impeded, implying the significance of precise confounder control by
decomposing underlying factors.

• SD2 achieves the best performance among all data settings and is far better than the second-
best methods. It proves counterfactual prediction benefits from simultaneously controlling
the underlying confounders in observational features and unobserved confounders. The
effectiveness of our disentanglement theory and hierarchical self-distillation framework is
thus validated. The results in all Twins datasets are consistent with these findings.

Continuous Scenario: Following (Wu et al., 2022a), we use Demand-α-β to denote different data
setting in Demands datasets. Demand-0-1 represents the original Demand dataset defined in (Hart-
ford et al., 2017). The α in Demand-α-β denotes the extra information from instrumental variables
while the β indicates the information increasing from instrumental variables and underlying con-
founders together on the basis of Demand-0-1. We only present the results on Demand-0-1 with box
plots as shown in Figure 3(a), where we omit the results of CEVAE as its MSE is beyond 10000.
The detailed experimental results on all Demands datasets are provided in the Appendix A.2.2.

In general, the IV-based methods perform worse than the non-IV-based ones under the continuous
scenario. This result indicates that confounding bias from the treatment regression stage is a crit-
ical problem in IV-based methods, which also underscores the necessity of decomposing C from
observed variables X and thereby correcting for confounding bias caused by C, coinciding with
the findings under the binary scenario. We notice that DRCFR, which performs well on discrete
datasets, suffers significantly on the Demand-0-1, reflecting the limitations of their disentanglement
theory under the continuous scenario. Among all the baselines, SD2 achieves the best and most
stable performance on all Demands Datasets, demonstrating the generalizability of our algorithm on
various types of datasets.

5.3.2 DISENTANGLEMENT VISUALIZATION

Similar to (Hassanpour & Greiner, 2019), we use the first(second) slice to denote the weight matrix
that connects the variables in X belonging (not belonging) to the actual variables. The polygons’
radii in Figure 3(b) quantify the average weights of the first slice (in red) and the second slice (in
blue). We plot the radar charts to visualize the contribution of actual variables to the representations
of each factor on SD2 and another typical causal disentangled learning work DRCFR, a baseline that
ensures the disentanglement of A by proposing Prop. 3.1, yet does not provide disentangling solu-
tions for Z and C. As shown in each sub-figure in Figure 3(b), each vertex on the polygon represents
the results of a synthetic dataset mv-mz-mc-ma-mu. Compared with DRCFR, our method realizes
much better identification performance of all three underlying factors in all datasets, indicating that
our approach can achieve successful disentanglement performance.
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Table 2: Performance comparison of bias of ATE between SD2 and a method which replaces the
disentanglement modules in SD2 with one of the SOTA mutual information estimators CLUB.

Method 0-4-4-2-2 2-4-4-2-2 0-4-4-2-10 0-6-2-2-2 Twins-0-16-8 Twins-4-16-8 Twins-0-16-12 Twins-0-20-8

CLUB 0.517(0.004) 0.513(0.006) 0.563(0.004) 0.487(0.005) 0.016(0.013) 0.026(0.009) 0.021(0.012) 0.018(0.010)

Ours 0.012(0.008) 0.022(0.017) 0.029(0.018) 0.013(0.010) 0.012(0.007) 0.011(0.006) 0.012(0.006) 0.011(0.009)

(a) (b) (c) (d)

Figure 4: Hyper-parameters sensitivity analysis of α, β, γ, δ on Syn-0-4-4-2-2 dataset. The blue
and red lines show the ATE results of these parameters in within-sample and out-of-sample settings,
respectively. The blue circle and red star represent the best parameters for the setting.

5.3.3 DIFFICULTY OF MUTUAL INFORMATION ESTIMATION

The difficulty of high-dimensional mutual information estimation has been widely discussed in
(Poole et al., 2019; Belghazi et al., 2018; Cheng et al., 2020). To quantify this difficulty, we re-
place our core disentanglement module with one of the state-of-the-art mutual information estima-
tors (CLUB (Cheng et al., 2020)) to directly minimize the mutual information between Rz , Rc,
Ra. The related experimental results on out-of-sample cases (CLUB in Table 2) show that the
performance of our method gets impeded dramatically, indicating the importance of bypassing the
complex mutual information estimator. We leave the results for within-sample cases in Appendix
A.2.1.

5.3.4 HYPER-PARAMETERS ANALYSIS

With the multi-term total loss function shown in equation 10, we study the impact of each item on
the counterfactual prediction on Syn-0-4-4-2-2 dataset. As can be seen from Figure 4(c), the per-
formance of SD2 is mostly affected by the changing in γ. In addition, although the performance
fluctuates with the change of α and β, SD2 performs better than almost all baselines. These two
facts demonstrate that the improvement of inference performance is greatly contributed by the de-
composition of Z and C. Besides, from Figure 4(d), we find that the performance of the method is
affected by changing δ as well, indicating the necessity of limiting the complexity of the model.

The ablation study, scalability analysis, used hardware and optimal hyper-parameters are provided
in the Appendix A.2.3, A.2.4, A.3.3 and A.3.4.

6 CONCLUSION AND LIMITATIONS

To resolve the challenge of decomposing confounders and instrumental variables in causal disen-
tangled representation learning, we provide a theoretically guaranteed solution to minimizing the
mutual information, which fundamentally disentangles three types of underlying factors in obser-
vational features. On this basis, we design a hierarchical self-distilled disentanglement framework
SD2 to advance counterfactual prediction by eliminating the confounding bias caused by the ob-
served and unobserved confounders simultaneously. Extensive experimental results on synthetic and
real-world datasets validate the effectiveness of our proposed theory and framework in both binary
and continuous data settings. Limitations: Due to the lack of real-world counterfactual datasets,
SD2 is only evaluated on limited tasks. It would be interesting to extend our method into other re-
search areas, such as transfer learning (Rojas-Carulla et al., 2015), domain adaptation (Magliacane
et al., 2017), counterfactual fairness (Kim et al., 2020), for robust feature extraction. We will leave
future work for the generalization of our method to these fields.
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A APPENDIX

A.1 THEORETICAL PROOF

A.1.1 PROOF OF PROPOSITION 3.2

In the causal graph shown in Fig.1(a), instrumental variables Z and confounders C have the same
dependence with treatment T , outcome Y and adjustable variables A.

Proof. Based on the d-separation (Pearl et al., 2000), we consider the cases related to T , Y and A,
respectively.

1. Cases related to T

Obviously, Z and C are direct parents of T . Therefore, they are both dependent on T and
conditional dependent on T when any variables are conditioned on.

2. Cases related to Y

Firstly, C is a direct parent of Y , which means it is dependent on Y and conditionally
dependent on Y conditioned on any variables.

Secondly, the relations between Z and Y are as following:

① Z ⊥̸ Y because of the chain structure Z → T → Y .
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② Z ⊥̸⊥ Y | T as the collider structure Z → T ← C is opened when T is conditioned on.
The correlation flows from Z to C to Y .

③ Z ⊥̸⊥ Y | A similar with 2.①.

④ Z ⊥̸⊥ Y | A, T similar with 2.②.

3. Cases related to A

The dependence between Z, C with A are as following:

① Z ⊥ A because of the collider structure T → Y ← A.

C ⊥ A because of the collider structure C → Y ← A.

② Z ⊥⊥ A | T and C ⊥⊥ A | T because of the collider structure C → Y ← A.

③ Z ⊥̸⊥ A | Y as the collider structure T → Y ← A is opened when Y is conditioned on.
The correlation flows from Z to T to A.

C ⊥̸⊥ A | Y as the collider structure C → Y ← A is opened when Y is conditioned on.

④ Z ⊥̸⊥ A | T, Y and C ⊥̸⊥ A | T, Y as the collider structures T → Y ← A and C → Y ←
A are opened at the same time. Z, C and A become dependent on each other.

We have listed all the possible cases, showing that Z and C have the same dependence with A, T
and Y . Therefore, Prop.3.2 holds.

A.1.2 PROOF OF THEOREM 4.1

Consider Ra and Rc as the representations of A and C produced by the representation networks,
and let Y be the label of the outcome. We have,

min I(Y ;Rc)− I(Rc;Y | Ra)⇐⇒ min H(Y )−H(Y | Rc)−H(Y | Ra) +H(Y | Rc, Ra).

Proof. Based on the definition of mutual information (Belghazi et al., 2018):

I(Y ;Rc) = H(Y )−H(Y | Rc), (12)

where H(Y ) denotes Shannon entropy, and H(Y | Rc) is the conditional entropy of Y given Rc.
Similarly,

I(Rc;Y | Ra) = H(Y | Ra)−H(Y | Ra, Rc), (13)

where I(Rc;Y | Ra) denotes the conditional mutual information between Rc and Y given Ra;
H(Y | Ra) and H(Y | Ra, Rc) is the the conditional entropy of Y given Ra, Ra and Rc, respec-
tively.

Combining equation 12 and equation 13, we have Theo.4.1 holds.

A.1.3 PROOF OF COROLLARY 4.2

One of sufficient conditions of minimizing I(Ra;Rc) is:

min

{
DKL[PY ∥PRa

Y ]

DKL[PRa

Y ∥P
Rc

Y ],

where PRa

Y = p(Y | Ra), PRc

Y = p(Y | Rc) represent the predicted distributions, PY = p(Y )
represents the real distribution, and DKL denotes the KL-divergence.
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Proof. Based on the definition of conditional entropy, for any continuous variables Rc, Ra and Y ,
we have:

H(Y )−H(Y | Rc)−H(Y | Ra) +H(Y | Rc, Ra) =

−
∫

p(Y )logp(Y )dY

+

∫
p(Rc)dRc

∫
p(Y | Rc)logp(Y | Rc)dY︸ ︷︷ ︸

termC

+

∫
p(Ra)dRa

∫
p(Y | Ra)logp(Y | Ra)dY︸ ︷︷ ︸

termA

−
∫∫

p(Ra, Rc)dRadRc

∫
p(Y | Ra, Rc)logp(Y | Ra, Rc)dY︸ ︷︷ ︸
termM

.

(15)

We further inspect termC in equation 15 and have:∫
p(Rc)dRc

∫
p(Y | Rc)logp(Y | Rc)dY =∫∫

p(Rc)p(Y | Rc)log

[
p(Y | Rc)

p(Y | Ra)
p(Y | Ra)

]
dRcdY.

(16)

By factorizing the double integrals in equation 16 into another two components, we show the fol-
lowing:∫∫

p(Rc)p(Y | Rc)log

[
p(Y | Rc)

p(Y | Ra)
p(Y | Ra)

]
dRcdY =∫∫

p(Rc)p(Y | Rc)log
p(Y | Rc)

p(Y | Ra)
dRcdY︸ ︷︷ ︸

termC1

+

∫∫
p(Rc)p(Y | Rc)logp(Y | Ra)dRcdY︸ ︷︷ ︸

termC2

.
(17)

Conduct similar factorization for termA and termM in equation 15, we have:∫
p(Ra)dRa

∫
p(Y | Ra)logp(Y | Ra)dY =∫∫

p(Ra)p(Y | Ra)log
p(Y | Ra)

p(Y | Rc)
dRadY︸ ︷︷ ︸

termA1

+

∫∫
p(Ra)p(Y | Ra)logp(Y | Rc)dRadY︸ ︷︷ ︸

termA2

(18)

∫∫
p(Ra, Rc)dRadRc

∫
p(Y | Ra, Rc)logp(Y | Ra, Rc)dY =∫∫∫

p(Ra, Rc)p(Y | Ra, Rc)log
p(Y | Ra, Rc)

p(Y | Ra)
dRadRcdY︸ ︷︷ ︸

termM1

+

∫∫∫
p(Ra, Rc)p(Y | Ra, Rc)logp(Y | Ra)dRadRcdY︸ ︷︷ ︸

termM2

.

(19)

Integrate termC1, termA1 and termM1 over Y :

C1 =

∫
p(Rc)DKL [p(Y | Rc)∥p(Y | Ra)] dRc, (20)

A1 =

∫
p(Ra)DKL [p(Y | Ra)∥p(Y | Rc)] dRa, (21)

M1 =

∫∫
p(Ra, Rc)DKL [p(Y | Ra, Rc)∥p(Y | Ra)] dRadRc, (22)
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where DKL denotes KL-divergence. Integrate termC2 and termA2 over Rc and Ra, respectively,
we have:

C2 =

∫
p(Y )logp(Y | Ra)dY, (23)

A2 =

∫
p(Y )logp(Y | Rc)dY. (24)

Integrate termM2 over Rc, we have:

M2 =

∫∫
p(Y,Ra)logp(Y | Ra)dRadY. (25)

We further factorize equation 25 into another two components:∫∫
p(Y,Ra)logp(Y | Ra)dRadY

=

∫∫
p(Y,Ra)log

[
p(Y,Ra)

p(Ra)

]
dRadY

=

∫∫
p(Y,Ra)logp(Y,Ra)dRadY −

∫∫
p(Y,Ra)logp(Ra)dRadY

= −H(Y,Ra) +H(Ra)

= −H(Y | Ra).

(26)

In the view of above, we have the following:
H(Y )−H(Y | Rc)−H(Y | Ra) +H(Y | Rc, Ra) =

−
∫

p(Y )logp(Y )dY

+

∫
p(Rc)DKL [p(Y | Rc)∥p(Y | Ra)] dRc +

∫
p(Y )logp(Y | Ra)dY

−H(Y | Ra)

−
∫∫

p(Ra, Rc)DKL [p(Y | Ra, Rc)∥p(Y | Ra)] dRadRc +H(Y | Ra).

(27)

Based on the non-negativity of KL-divergence, equation 27 is upper bounded by:

−
∫

p(Y )logp(Y )dY +

∫
p(Rc)DKL [p(Y | Rc)∥p(Y | Ra)] dRc +

∫
p(Y )logp(Y | Ra)dY =∫

p(Rc)DKL [p(Y | Rc)∥p(Y | Ra)] dRc +

∫
p(Y )log

[
p(Y | Ra)

p(Y )

]
dY.

(28)
Equivalently, we have the upper bound as:

ERa∼Eθ(Ra|X)ERc∼Eϕ(Rc|X)[DKL[p(Y | Rc)∥p(Y | Ra)]] + ERa∼Eθ(Ra|X)

[
log

[
p(Y | Ra)

p(Y )

]]
,

(29)
where θ, ϕ denote the parameters of the representation networks of A and C, respectively. Therefore,
the objective of separating C and A from X can be formalized as:

min
θ,ϕ

ERa∼Eθ(Ra|X)ERc∼Eϕ(Rc|X)

[
DKL[PRa

Y ∥P
Rc

Y ] + log

[
PRa

Y

PY

]]
, (30)

where PRa

Y = p(Y | Ra), PRc

Y = p(Y | Rc) and PY denote the predicted distributions of Y from
the representations Ra, Rc and real distribution of Y , respectively.

Clearly, the first term in equation 30 is equivalent to minimize the discrepancy between the predicted
distributions of Y from the representations Ra, Rc. Notice the second term in equation 30 can be
implicitly reduced by minimizing DKL

[
PRa

Y ∥PY

]
. Thus, we have:

min

{
DKL[PY ∥PRa

Y ]

DKL[PRa

Y ∥P
Rc

Y ]
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Table 3: Performance comparison of bias of ATE between SD2 and a method which replaces the
disentanglement modules in SD2 with one of the SOTA mutual information estimators CLUB for
within-sample cases.

Method 0-4-4-2-2 2-4-4-2-2 0-4-4-2-10 0-6-2-2-2 Twins-0-16-8 Twins-4-16-8 Twins-0-16-12 Twins-0-20-8

CLUB 0.514(0.005) 0.513(0.006) 0.563(0.006) 0.481(0.006) 0.020(0.009) 0.029(0.008) 0.024(0.007) 0.023(0.005)

Ours 0.010(0.008) 0.017(0.013) 0.029(0.019) 0.014(0.013) 0.008(0.006) 0.007(0.004) 0.007(0.006) 0.008(0.006)

Table 4: Performance comparison of bias of ATE between SD2 and the SOTA baselines on the
synthetic datasets (mv-mz-mc-ma-mu) and Twins datasets (Twins-mv-mx-mu) in within-sample
setting. Bold/Underline indicates the method with the best/second-best performance.

Within-Sample Synthetic Twins

Method 0-4-4-2-2 2-4-4-2-2 0-4-4-2-10 0-6-2-2-2 Twins-0-16-8 Twins-4-16-8 Twins-0-16-12 Twins-0-20-8

DirectRep 0.037(0.023) 0.034(0.009) 0.060(0.014) 0.043(0.025) 0.015(0.007) 0.009(0.008) 0.018(0.012) 0.012(0.007)

CFR 0.031(0.014) 0.032(0.017) 0.056(0.017) 0.060(0.019) 0.011(0.010) 0.012(0.008) 0.017(0.014) 0.010(0.011)

DFL 3.696(0.034) 3.702(0.045) 4.055(0.041) 3.450(0.030) 0.173(0.018) 0.181(0.014) 0.169(0.020) 0.175(0.019)

DRCFR 0.058(0.018) 0.050(0.025) 0.071(0.020) 0.066(0.015) 0.015(0.016) 0.008(0.005) 0.016(0.017) 0.024(0.017)

DEVAE 0.424(0.009) 0.432(0.007) 0.373(0.004) 0.461(0.008) 0.037(0.010) 0.034(0.006) 0.030(0.009) 0.026(0.007)

DeepIV-Log 0.569(0.024) 0.567(0.011) 0.601(0.011) 0.531(0.019) 0.019(0.010) 0.017(0.016) 0.022(0.011) 0.012(0.007)

DeepIV-Gmm 0.466(0.012) 0.387(0.021) 0.518(0.012) 0.437(0.007) 0.017(0.011) 0.013(0.009) 0.017(0.011) 0.013(0.011)

DFIV 3.947(0.108) 3.810(0.041) 4.400(0.134) 3.644(0.103) 0.257(0.145) 0.255(0.148) 0.256(0.144) 0.227(0.151)

OneSIV 0.504(0.008) 0.441(0.063) 0.569(0.013) 0.478(0.012) 0.016(0.014) 0.011(0.007) 0.025(0.020) 0.013(0.010)

CBIV 0.063(0.025) 0.065(0.032) 0.049(0.022) 0.033(0.023) 0.024(0.016) 0.057(0.012) 0.051(0.038) 0.037(0.019)

Ours 0.010(0.008) 0.017(0.013) 0.029(0.019) 0.014(0.013) 0.008(0.006) 0.007(0.004) 0.007(0.006) 0.008(0.006)

⇒ minH(Y )−H(Y | Rc)−H(Y | Ra) +H(Y | Rc, Ra).

Corol.4.2 holds.

A.2 ADDITIONAL EXPERIMENTS

A.2.1 RESULTS OF WITHIN SAMPLES

We present the experimental results of within-sample cases for binary settings in Table 4 and for
Section 5.3.3 in Table 3, which are consistent with the findings in the main paper.

A.2.2 EXPERIMENTS ON CONTINUOUS SETTING

The experimental results on Demands datasets are presented in Table 5. It can be seen that whether
adding the information of instrumental variables (Demands-5-1) or increasing the information of
confounders (Demands-0-5), our algorithm performs far better than all the baseline, which proves
the efficiency and generalizability of our method.

A.2.3 ABLATION STUDY

We perform the ablation experiments to examine the contributions of each component in total loss
function on final inference performance. We test the performance improvement of treatment regres-
sion , adjustable variable decomposition, instrument variable and confounder decomposition to the
final effect. The results are shown in Table 6.

Firstly, we only preserve representation networks and deep outcome classifier in Figure 2. The
objective loss is reduced to factual loss Lp plus regularization loss. Secondly, we add the deep
treatment classifier into the model on the basis of the first model, while the objective loss becomes
Lp + Lt. Then, the adjustable variables decomposition module is integrated into the second model,
thus the objective loss is Lp + Lt + La. To demonstrate the difficulty of mutual information es-
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Table 5: Performance comparison of MSE between SD2 and the SOTA baselines on the Demands
datasets (Demands-α-β). Bold/Underline indicates the method with the best/second-best perfor-
mance.

Within-Sample Out-of-Sample

Method Demands-0-1 Demands-0-5 Demands-5-1 Demands-0-1 Demands-0-5 Demands-5-1

DirectRep 472.14(292.68) 319.27(156.58) 795.38(304.10) 494.47(287.92) 303.22(144.85) 768.15(278.24)

CFR 1180.26(439.56) 340.12(175.82) 1891.91(79.78) 1103.00(362.45) 326.54(110.31) 1877.60(119.71)

DFL 786.92(122.35) 1074.71(142.78) 874.78(103.71) 736.35(123.44) 914.08(90.11) 822.71(65.88)

DRCFR 720.51(195.09) 451.31(407.55) 809.04(94.98) 766.22(188.86) 498.22(363.25) 864.21(83.39)

DEVAE >10000 >10000 >10000 >10000 >10000 >10000

DeepIV-Gmm 1774.71(757.98) 3429.79(438.65) 2618.72(775.20) 904.60(618.41) 2423.33(326.23) 2405.33(675.40)

DFIV 862.00(123.71) 1420.24(257.10) 909.25(137.05) 943.57(188.70) 1213.27(388.08) 1050.65(253.38)

OneSIV 2573.15(157.31) >10000 2352.69(125.16) 2744.87(182.35) 4243.51(596.10) 2538.77(147.29)

CBIV 819.52(535.05) 410.42(241.71) 2542.58(442.26) 2990.19(735.92) 316.66(114.89) 2958.70(614.26)

Ours 170.55(6.51) 216.55(47.11) 171.07(6.41) 183.21(14.18) 199.44(14.60) 187.20(16.05)

Datasets
Within-Sample

Lp Lp + Lt Lp + Lt + La CLUB Total

Twins-0-16-8 0.027(0.012) 0.025(0.007) 0.021(0.007) 0.020(0.009) 0.008(0.006)

Twins-4-16-8 0.067(0.078) 0.022(0.005) 0.024(0.005) 0.029(0.008) 0.008(0.005)

Twins-0-16-12 0.113(0.110) 0.027(0.005) 0.024(0.005) 0.024(0.007) 0.007(0.006)

Twins-0-20-8 0.031(0.010) 0.020(0.004) 0.023(0.006) 0.023(0.005) 0.008(0.006)

Syn-0-4-4-2-2 0.519(0.005) 0.513(0.005) 0.513(0.004) 0.514(0.005) 0.010(0.008)

Syn-2-4-4-2-2 0.517(0.007) 0.513(0.007) 0.513(0.007) 0.513(0.006) 0.017(0.013)

Syn-0-4-4-2-10 0.569(0.005) 0.565(0.004) 0.565(0.005) 0.563(0.006) 0.029(0.019)

Syn-0-6-2-2-2 0.486(0.004) 0.483(0.004) 0.483(0.004) 0.481(0.006) 0.015(0.013)

Datasets
Out-of-Sample

Lp Lp + Lt Lp + Lt + La CLUB Total

Twins-0-16-8 0.022(0.011) 0.020(0.011) 0.018(0.010) 0.016(0.013) 0.012(0.007)

Twins-4-16-8 0.059(0.076) 0.017(0.012) 0.019(0.012) 0.026(0.009) 0.009(0.006)

Twins-0-16-12 0.111(0.109) 0.022(0.011) 0.019(0.012) 0.021(0.012) 0.012(0.006)

Twins-0-20-8 0.026(0.013) 0.015(0.009) 0.018(0.012) 0.018(0.010) 0.011(0.009)

Syn-0-4-4-2-2 0.522(0.004) 0.517(0.004) 0.516(0.004) 0.517(0.004) 0.012(0.008)

Syn-2-4-4-2-2 0.517(0.006) 0.512(0.007) 0.513(0.006) 0.513(0.006) 0.022(0.017)

Syn-0-4-4-2-10 0.568(0.004) 0.565(0.004) 0.564(0.004) 0.563(0.004) 0.029(0.018)

Syn-0-6-2-2-2 0.492(0.005) 0.489(0.005) 0.489(0.005) 0.487(0.005) 0.013(0.010)

Table 6: Ablation Study. Lp represents preserving representation networks and deep outcome clas-
sifier only. Lp + Lt adds deep treatment classifier on the basis of the model of Lp. Lp + Lt + La

adds the adjustable variable decomposition module on the basis of the model of Lp + Lt. CLUB
adds one mutual information estimator on the basis of Lp + Lt + La. Total model is our proposed
model.

timation, we add one of the state-of-the art mutual information estimator (Cheng et al., 2020) into
the third model and denote this model as CLUB. Finally, we introduce our shallow treatment and
outcome classifiers into the third model, the objective loss of which is presented in equation 10 in
the main paper and named as Total.

Main Results: We have the following observations from the experimental results in Table 6: (1)
The model with loss function Lp performs the worst for all data settings on Twins and Synthetic
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Figure 5: Scalability Analysis of SD2.

datasets, demonstrating the significance of treatment prediction for counterfactual prediction in the
presence of unobserved confounders. (2) If we only decompose adjustable variables A from ob-
served features X , as the results under the loss Lp + Lt + La shows, the model indeed does not get
much improvement on the inference performance compared with the results under the loss Lp +Lt.
This may be due to the fact that only decomposing A cannot eliminate the confounding bias caused
by the unmeasured confounders U and underlying confounders existing in observed features X . In
addition, it indicates the necessity of the decomposition of C and Z for counterfactual prediction.
(3) When added shallow classifiers of treatment and outcome during training, as the results of Total
model show, our framework SD2 achieves the best performance with the improvement of more than
60% on Synthetic datasets and over 95% on Twins datasets on the basis of the model under the loss
Lp+Lt+La, which demonstrates the decomposition of C and Z indeed advance the counterfactual
inference.

A.2.4 SCALABILITY ANALYSIS

To demonstrate the scalability of our algorithm, we conduct experiments on Syn-0-4-4-2-2 with dif-
ferent sample sizes with our method and one excellent causal disentangled learning method DRCFR
(Hassanpour & Greiner, 2019). Figure 5 shows the results of the related experimental results.It can
be seen from the results that the performance of SD2 remains stable and efficient with the variation
of sample size in the dataset, which demonstrates the scalability of our algorithm.

A.3 REPRODUCIBILITY

A.3.1 DATA GENERATION

We generate the synthetic datasets according to the following steps:

• For K in Z, C, A, V , U , sample K from N (0, Imk), where Imk denotes mk degree
identity matrix. Concatenate Z, C, and A to constitute the observed covariates matrix X .
V represents the observed IVs, the dimension of which could be set to 0. The setting of V is
mainly for the comparison of IV-based methods. U represents the unobserved confounders.

• Sample treatment variables T as following:

Ti ∼Bern(Sigmoid(
mz∑
i=1

Zi +

mc∑
i=1

Ci +

mv∑
i=1

Vi +

mu∑
i=1

Ui)),
(32)

where mz, mc, mv, mu represent the dimension of Z, C, V , U respectively.
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• Sample outcome variables Y as following:

Yi ∼Bern(Sigmoid((

Ti

ma+mc+mu

ma∑
i=1

Ai
2 +

mc∑
i=1

Ci
2 +

mu∑
i=1

Ui
2)+

(
1− Ti

ma+mc+mu

ma∑
i=1

Ai +

mc∑
i=1

Ci +

mu∑
i=1

Ui))),

(33)

where ma represents the dimension of A.

A.3.2 LOSS FUNCTIONS FOR CONTINUOUS SCENARIO

The loss function for disentangling A is defined as following:

La = β1L(T̂c, T ) + β2KL(T̂c, T̂ ) + β3KL(T̂c, T̂a), (34)

where T̂variable in L(·) represents the predicted values for variable while in KL(·) it denotes the
distribution of the variable. Same below.

We assume that the continuous variable follows a normal distribution, therefore the KL divergence
can be calculated with:

KL(q∥p) = log σ2 − log σ1 +
σ2
1 + (µ1 − µ2)

2

2σ2
2

− 1

2
, (35)

where q ∼ N
(
µ1, σ

2
1

)
,p ∼ N

(
µ2, σ

2
2

)
.

The loss function for disentangling Z and C are shown in equation 36 and equation 37:

Lz = L(Qz,t
Y , Y ) + L(Qt

Y , Y ) + L(Qz,t
Y , QY ) + L(Qt

Y , QY ) + L(Qz,t
Y , Qt

Y ), (36)

Lc = L(Qz
T , T ) + L(Qc

T , T ) + L(Qc
T , QT ) + L(Qz

T , QT ) + L(Qc
T , Q

z
T )

+ L(Qc
Y , Y ) + L(Qa

Y , Y ) + L(Qc
Y , QY ) + L(Qa

Y , QY ) + L(Qc
Y , Q

a
Y ).

(37)

To reduce the confounding bias led by observed confounders, we define the following loss function:

Loc = (T̂z, T ) + (T̂z, T̂ ) + (T̂z, T̂c̃), (38)

where c̃ denotes the representation of C after re-balance network.

Therefore, the total loss function of SD2 for the continuous scenario can be devised as:

LSD2 = L(Ŷ , Y ) + αL(T̂ , T )︸ ︷︷ ︸
factual loss

+βLa + γ(Lc + Lz)︸ ︷︷ ︸
disentanglement loss

+ ωLoc︸ ︷︷ ︸
rebalance loss

+ δ∥W∥2︸ ︷︷ ︸
regularization loss

.
(39)

A.3.3 OPTIMAL HYPER-PARAMETERS

Optimal hyper-parameters are presented in Table 7 and Table 8.

A.3.4 HARDWARE

In this work, we perform all experiments on a cluster with two 12-core Intel Xeon E5-2697 v2 CPUs
and a total 768 GiB Memory RAM.
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Hyper-parameters
Synthetic Twins

0-4-4-2-2 2-4-4-2-2 0-4-4-2-10 0-6-2-2-2 0-16-8 4-16-8 0-16-12 0-20-8

Learning rate 5e-4 5e-4 5e-4 5e-4 5e-4 5e-4 5e-4 5e-4

α 1 1 1 1 0.1 0.1 0.1 1

β 1 1 1 1 0.01 0.01 0.01 0.001

γ 1 1 1 1 0.1 0.1 0.1 1

δ 1e-4 1e-4 1e-4 1e-4 1e-4 1e-4 1e-4 1e-4

Temperature 1 1 1 1 1 1 1 1

Depth of representation network 3 3 3 3 3 3 3 3

Depth of treatment classifier 2 2 2 2 2 2 2 2

Depth of outcome classifier 3 3 3 3 3 3 3 3

Dim of representation network (256)3 (256)3 (256)3 (256)3 (256)3 (256)3 (256)3 (256)3

Dim of treatment classifier 128-64 128-64 128-64 128-64 128-64 128-64 128-64 128-64

Dim of outcome classifier (128)3 (128)3 (128)3 (128)3 (128)3 (128)3 (128)3 (128)3

Iteration 2000 2000 2000 2000 1000 1000 2000 300

Batch size 100 100 100 100 100 100 100 100

Table 7: Optimal hyper-parameters for binary datasets.

Hyper-parameters Demands-0-1 Demands-0-5 Demands-5-1

Learning rate 1e-3 1e-3 1e-3

α 0.01 0.1 0.01

β 0.1 0.1 0.1

γ 1 0.1 1

ω 0.1 0.1 0.1

δ 1e-4 1e-4 1e-4

Depth of representation network 3 3 3

Depth of treatment regressor 3 3 3

Depth of outcome regressor 3 3 3

Dim of representation network (256)3 (256)3 (256)3

Dim of treatment classifier (64)3 (64)3 (64)3

Dim of outcome classifier (64)3 (64)3 (64)3

Iteration 10000 10000 10000

Batch size 100 100 100

Table 8: Optimal hyper-parameters for continuous datasets.
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