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Abstract
Large Language Models (LLMs) have achieved
remarkable success, but often exhibit overcon-
fidence and poor calibration, particularly after
instruction-finetuning, which limits their reliabil-
ity and applicability. To address this, we inves-
tigate ensembles, a technique known to enhance
neural network calibration but underexplored in
LLMs, possibly due to the computational cost
of training and evaluating multiple LLMs. We
introduce Calibration via Augmented Prompt En-
sembles (CAPE), a practical approach to LLM
ensembles that leverages the inherent prompt sen-
sitivity of LLMs by augmenting prompts, e.g., by
template paraphrasing or option permutation. Our
method requires no additional training and can be
efficiently evaluated in batch mode, yielding sig-
nificant calibration improvements for instruction-
tuned LLMs.

1. Introduction
Language Language Models (LLMs) (Raffel et al., 2020;
Brown et al., 2020; OpenAI, 2023) have demonstrated su-
perior performance in numerous academic benchmarks and
applications, benefitting from advancements like instruction-
tuning and Reinforcement Learning from Human Feedback
(RLHF) (Ziegler et al., 2019; Stiennon et al., 2020; Ouyang
et al., 2022; Bai et al., 2022). However, LLMs are prone
to generate false information (i.e., “hallucinations”, Lin
et al., 2021) and are often unaware of whether they know
the answer. While LLMs are sometimes well calibrated
(Kadavath et al., 2022), this depends on model size, and
RLHF has been found to hurt calibration (OpenAI, 2023).

Ensembling is a well-established technique for improving
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neural network accuracy (Hansen & Salamon, 1990; Per-
rone & Cooper, 1992) and capturing predictive uncertainty
(Lakshminarayanan et al., 2017a; Ovadia et al., 2019), but
has remained largely underexplored as a tool for LLM cal-
ibration. This is likely because traditional approaches to
ensembling use models that are separately parameterized
and trained, which would be prohibitively expensive given
the scale of today’s largest models. However, the prompted
nature of LLMs offers an alternative means of ensembling.
The application of LLMs typically involves combining the
task input with an additional “prompt”, which may include
task instructions and a few examples. By using different
prompts with the same task input, we can create diversity in
the model predictions and achieve a similar effect to model
ensembling (Breiman, 2001).

Indeed, LLMs have been found to be sensitive to seman-
tically irrelevant details of the prompts (Zhao et al., 2021;
Lu et al., 2021). To turn this bug into a feature, we
introduce Calibration via Augmented Prompt Ensembles
(CAPE), which establishes an LLM ensemble by applying
augmentations to generate diverse but semantically equiva-
lent prompts, without training any additional LLMs. Similar
techniques that ensemble multiple prompts have been ex-
plored in prior work for improving model accuracy (e.g.,
Jiang et al., 2020; Radford et al., 2021; Izacard et al., 2022,
see Sec. 4 for a literature review), but its potential for im-
proving model calibration is underexplored. We demon-
strate the effectiveness of CAPE in calibrating poorly cali-
brated instruction-tuned LLMs with various generally appli-
cable approaches to prompt augmentation, including tem-
plate paraphrasing and option permutation, which allow
CAPE to serve as a plug-and-play method on new tasks.
Even simply permuting the order of the options in a multiple-
choice task yields surprisingly effective results, revealing
a potential selection bias of LLMs. CAPE is orthogonal
and complementary to other methods for LLM calibration,
such as temperature adjustment (Kadavath et al., 2022), but
has the added benefit of being purely unsupervised. Further-
more, we generalize CAPE to open-ended generation tasks
commonly encountered in real-world applications. Our key
idea is to cast the uncertainty estimation in generation tasks
into a multiple-choice selection problem by instructing the
LLMs to “self-contrast” its own generations (Appx. B).
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Instruction: Scrutinize the given question and pick 
the most fitting answer. Respond with the letter 
associated with the correct choice.

Question: Where can you find a real psychic?
A. Psychics aren’t real
B. By searching online
C. At a convention
D. By calling a hotline
Correct Choice: <A|B|C|D>

[Example #1]
[Example #2]
[Example #3]
…

Prompt Template

In-context Examples

Multiple-Choice Prompt (Enum)

Option permutation

Example permutation

Instruction: Answer the following question truthfully 
with the alphabetic letter corresponding to the most 
appropriate option.

Question: Where can you find a real psychic?
A. Psychics aren’t real
B. By searching online
C. At a convention
D. By calling a hotline
 Answer: <A|B|C|D>

Template paraphrase

[Example #1]
[Example #2]

…

Train Example Bank
Example selection

Instruction: Answer the following question truthfully 
with select the most appropriate option. 

Question: Where can you find a real psychic?
- Psychics aren’t real
- By searching online
- At a convention
- By calling a hotline
Answer: <Answer option text>

[Example #1]
[Example #2]
[Example #3]
…

Prompt Template

In-context Examples

Multiple-Choice Prompt (Item)

A B C D ŏŏ Psychics 
aren’t real

By searching
online

ŏŏAt a 
convention

By calling 
a hotline

Prompt Template

(a) Prompt augmentations on Enum multiple-choice format

<latexit sha1_base64="aPMOcRBQeV6jySvQwuJg2Ym8jrs="></latexit>

(b) Item multiple-choice format

<latexit sha1_base64="jtaYTHZDLzRf2B82RanRpLYO41Y="></latexit>

Figure 1: CAPE for Multiple-Choice Selection. (a) CAPE establishes a prompt ensemble for LLMs by applying various
prompt augmentations, highlighted with colored arrows. The ENUM prompt format enumerates the choices using single-
token symbols (e.g., “A”, “B”, . . . ) and uses the predicted probabilities over these symbols (bottom) to form predictions
and uncertainty estimates. (b) The alternative ITEM prompt format provides the options as an unordered list and uses the
log-likelihood of each option (summed over all its tokens) to form predictions and uncertainty estimates.

Our results demonstrate that CAPE significantly improves
LLM calibration on both multiple-choice (Sec. 3) and gen-
eration tasks (Appx. C), particularly when models exhibit
overconfidence, thereby enhancing overall performance and
reliability in diverse applications.

2. Calibration via Augmented Prompt
Ensembles (CAPE)

We develop CAPE for multiple-choice (MC) tasks that
resemble the typical classification setup, which also con-
stitutes a core component of our CAPE pipeline for open-
ended generation tasks developed in Appx. B. In MC tasks,
a question is presented along with several answer options,
and the objective is to select the most appropriate option
from given ones. Recent studies demonstrated the remark-
able sensitivity of LLMs to semantically irrelevant details of
their prompts (Bach et al., 2022; Lu et al., 2021; Jiang et al.,
2021; Zhao et al., 2021; Perez et al., 2021; Liu et al., 2021).
In particular, subtle yet semantically equivalent variations to
the prompt, such as rephrasing the template (e.g., the task in-
struction and formatting) or reordering in-context examples,
can have a drastic impact on performance. Our method,
Calibration via Augmented Prompt Ensembles (CAPE),
leverages LLMs’ prompt sensitivity to create a diverse en-
semble of prompts by applying various augmentations.

Prompt augmentation CAPE admits various strategies
for augmenting the prompt (Fig. 1a):

• Template paraphrase: Utilizing an LLM (with prompt in
Appx. D.2.1), generate a diverse set of rephrased templates
by employing human-written prompt templates.

• Option permutation: Given a MC question, randomly
permute the order of the options. Although this strategy
may seem subtle, we find that it works remarkably well
(Fig. 2), as LLM predictions appear to be highly sensitive
to the option orders.

• In-context example permutation: In few-shot setups where
in-context examples are provided, randomly permute the
order of the examples.

• In-context example selection: In few-shot setups, select
different in-context examples to format different prompts.

Producing MC predictive distributions For MC tasks,
there is an open question of how to properly normalize LLM
likelihoods of the provided options to obtain a predictive
distribution over them. Prior work (Robinson et al., 2022)
has demonstrated that the MC prompt type and normaliza-
tion strategy employed can significantly affect accuracy. We
hypothesize that this effect extends to the uncertainty es-
timation of LLMs, which we verify by investigating the
following design choices in our empirical study (Table 1):
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Table 1: Results on MC tasks. CAPE consistently and significantly improves model calibration on MC tasks with varying
degrees of temperature scaling (Kadavath et al., 2022). Tp = 1 is the default temperature, T ′

p is the adjusted temperature
tuned on the MMLU dataset, and T ∗

p is the optimal temperature tuned on each dataset independently. For CAPE, 8
augmented prompts are applied. For BASE (non-ensemble), the means computed with the 8 individual prompts are reported.
Refer to Table 8 in Appx. E.5 for the full results with selected T ∗

p s and error bars.

Dataset Measure
ENUM, Tp = 1 ITEM, Tp = 1 ENUM, T ′

p = 10 ITEM, T ′
p = 5 ENUM, T ∗

p ITEM, T ∗
p

BASE CAPE BASE CAPE BASE CAPE BASE CAPE BASE CAPE BASE CAPE

MMLU

Acc ↑ 0.657 0.675 0.669 0.715 0.657 0.705 0.669 0.710 0.657 0.705 0.669 0.710
ECE ↓ 0.302 0.135 0.274 0.105 0.081 0.068 0.094 0.057 0.081 0.068 0.094 0.057
AUROC ↑ 0.778 0.835 0.749 0.742 0.787 0.816 0.752 0.771 0.787 0.816 0.752 0.771
Brier ↓ 0.305 0.174 0.280 0.194 0.176 0.159 0.191 0.169 0.176 0.159 0.191 0.169

HellaSwag

Acc ↑ 0.587 0.735 0.583 0.665 0.587 0.730 0.583 0.660 0.587 0.730 0.583 0.665
ECE ↓ 0.319 0.103 0.332 0.086 0.124 0.250 0.102 0.087 0.120 0.084 0.102 0.057
AUROC ↑ 0.668 0.700 0.684 0.710 0.669 0.695 0.694 0.715 0.671 0.696 0.694 0.713
Brier ↓ 0.334 0.185 0.339 0.203 0.236 0.245 0.221 0.203 0.236 0.186 0.221 0.195

WinoGrande

Acc ↑ 0.619 0.640 0.629 0.635 0.619 0.640 0.629 0.635 0.619 0.635 0.629 0.630
ECE ↓ 0.349 0.224 0.340 0.255 0.195 0.135 0.227 0.181 0.112 0.099 0.087 0.076
AUROC ↑ 0.565 0.596 0.612 0.632 0.546 0.585 0.612 0.639 0.546 0.614 0.612 0.647
Brier ↓ 0.361 0.279 0.351 0.296 0.277 0.239 0.281 0.255 0.238 0.230 0.225 0.221

TruthfulQA

Acc ↑ 0.416 0.440 0.466 0.460 0.416 0.415 0.466 0.470 0.416 0.415 0.466 0.465
ECE ↓ 0.542 0.294 0.483 0.340 0.286 0.213 0.268 0.206 0.120 0.104 0.104 0.092
AUROC ↑ 0.683 0.749 0.745 0.806 0.697 0.802 0.749 0.780 0.651 0.790 0.745 0.775
Brier ↓ 0.533 0.290 0.470 0.308 0.298 0.224 0.281 0.236 0.235 0.199 0.209 0.197

• ENUM: The prompt is structured to bind the options to
a set of enumerated single-token symbols (such as “A”,
“B”, etc), as illustrated in Fig. 1a. The predicted log-
likelihoods ℓ ∈ Rm over the m options are determined
using the log-likelihoods of the associated symbols.

• ITEM: The prompt presents the option as an unordered
list, as illustrated in Fig. 1b. The predicted log-likelihoods
ℓ are computed as the sum of log-likelihoods of all individ-
ual tokens corresponding to each option. Note that ITEM
is essentially different from cloze-based prompts used in
GPT-3 (Brown et al., 2020), in that ITEM provides all op-
tions in the prompt, enabling direct comparison between
options similar to ENUM. Since each option is completely
specified (LLMs can probably produce an exact copy of
one of the answers), no additional normalization (e.g.,
normalizing by length or unconditional log-likelihood as
in (Brown et al., 2020)) is applied.

For both cases, the predicted distribution p over the po-
tential options is computed by normalizing the predicted
log-likelihoods, i.e., p = softmax (ℓ/Tp), where Tp is the
temperature hyper-parameter. By default, Tp = 1 is applied.
In (Kadavath et al., 2022), it is shown that for instruction-
tuned LLMs that exhibit overconfidence, using a calibration-
adjusting T ′

p > 1 can significantly improve their poor cali-
bration. However, the optimal T ∗

p for calibration may vary
across different tasks (as shown in Table 8). It is often im-
practical to tune T ∗

p in a task-specific manner in real-world

scenarios, as this would require access to labeled data for
calculating calibration metrics. In our empirical study (Ta-
ble 1), we demonstrate that the effectiveness of CAPE is
orthogonal to adjusting Tp and CAPE can consistently im-
prove LLM calibration with various temperatures without
the need of any labeled data.

Ensemble aggregation Given a MC question and n aug-
mented prompts, we can obtain n predictive distributions
{p1, p2, . . . , pn} from each prompt. We take the average
as the ensemble predictive distribution p̄ =

∑n
i=1 pi/n, for

computing the ensemble accuracy and calibration.

Computational cost CAPE distinguishes itself from con-
ventional ensembling methods by establishing the ensem-
ble during downstream inference instead of model training,
which eliminates the need to train multiple LLMs for the
purpose of ensembling. As with the conventional ensemble
method, CAPE incurs an O(n) computational overhead at
inference time, trading off for improved calibration. Never-
theless, as the prompt ensemble is applied to a single LLM
during inference, CAPE does not require multiple models,
reducing space complexity from O(n) to O(1). The prompt
ensemble can be evaluated in a batch, potentially reducing
the introduced inference cost.
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3. Experiments
In this section, we demonstrate the effectiveness of CAPE
for enhancing LLM calibration in the MC setup by conduct-
ing an extensive empirical study of our prompt ensemble on
MC tasks. Results on open-ended generation tasks are in
Appx. C. Experimental details and additional results are in
Appx. D and Appx. E, respectively.

Models Our primary results are carried out with the
text-davinci-003 model via the OpenAI API. We
chose to focus on an instruction-tuned model because these
models are currently being deployed but exhibit poor cal-
ibration (Kadavath et al., 2022; OpenAI, 2023). We also
show how our results generalize to other davinci-series
models (text-davinci-001/002), smaller-scale mod-
els (text-curie-001), and base models (davinci) in
Appx. E.1. We found that for instruction-tuned models like
text-davinci-003, few-shot in-context examples do
not improve the model performance by much. Therefore, we
focus on the zero-shot setup in the main paper and include
the results for few-shot setups in Appx. E.2.

Evaluation metrics As measures of calibration and perfor-
mance in our experiments, we report expected calibration
error (ECE), AUROC, Brier score, and accuracy. Detailed
descriptions of each metric are given in Appx. D.1. In
some cases, we observed certain tradeoffs between ECE
(calibration) and AUROC (discrimination), similar to the
observation in (Kadavath et al., 2022).

Setup We run our experiments on four diverse MC tasks:
MMLU (Hendrycks et al., 2020), HellaSwag (Zellers et al.,
2019), WinoGrande (Sakaguchi et al., 2021), and Truth-
fulQA (Lin et al., 2021). For TruthfulQA, we used the
multiple-choice split with a single correct answer. Due to
budget constraints, we randomly sub-sampled 200 samples
from each dataset for our evaluation, as we found the results
to be similar to those using 5x more samples (Appx. E.3).
For CAPE, we augmented the prompt using template para-
phrase and option permutation in the zero-shot setup. We
used 8 augmented prompts by default to achieve a balance
between better calibration and increased cost. The single
prompt baseline (no prompt ensemble) is denoted as BASE.

Temperature adjustment In (Kadavath et al., 2022), it
was observed that increasing the normalization temperature
Tp can largely calibrate the model predictions. Note that,
unlike CAPE which is purely unsupervised, temperature
adjustment requires a labeled dataset and is orthogonal to
our method. We illustrate the efficacy of CAPE in vari-
ous scenarios involving different degrees of temperature
adjustment: (i) Tp = 1, the default temperature without
any adjustment; (ii) T ′

p = 10 for ENUM and 5 for ITEM,
which were selected by optimizing the ECE of the standard,
single prompt approach on MMLU; and (iii) T ∗

p , which is

2 4 8 16 32
Number of Ensembles

0.10

0.15

0.20

0.25

0.30

EC
E Combined

Template paraphrase
Option permutation
Base (Non-Ensemble)

Figure 2: Comparison of prompt augmentations at
various ensemble sizes CAPE (5 seeds)

the optimal temperature selected by optimizing ECE inde-
pendently for each dataset. Although the latter choice is
typically impractical, we use it to investigate the potential
gain achievable with CAPE upon the optimal T ∗

p adjust-
ment. To optimize ECE for purposes of (ii) and (iii), we
considered temperatures in {0.25, 0.5, 1, 2.5, 5, 10, 20, 50}.

How does CAPE improve uncertainty estimation over in-
dividual prompts (BASE)? As shown in Table 1, CAPE
significantly improves the evaluation metrics over BASE
with the default temperature Tp = 1, for which BASE ex-
hibits very poor calibration. The gain remains nontrivial
when a fixed (T ′

p) or optimal (T ∗
p ) temperature adjustment is

applied, illustrating that CAPE is complementary to it and
versatile in its efficacy. In some rare cases, e.g., HellaSwag
with ENUM prompt and T ′

p = 10, BASE achieved better
ECE but at the cost of lower accuracy and AUROC, demon-
strating a certain tradeoff between the two metrics. Finally,
we highlight that CAPE not only maintains the accuracy
but, in most cases, also improves it.

Does the multiple-choice prompt type matter? We
compare the ENUM and ITEM prompt types in Table 1.
We find that the prompt type (along with the predictive
distribution normalization) can sometimes have significant
effects on model calibration. However, the discrepancy is
setup-specific and neither prompt type clearly dominates.

Which prompt augmentation is more effective and can
the gains be combined? In Fig. 2, We compare the ECE
with different prompt augmentations applied on MMLU:
template paraphrase, option permutation, and a combination
of both. We observe that both augmentations improve the
ECE over individual prompts and the option permutation
gives larger gains and scales better with the number of en-
sembles. The gains of both can be combined, achieving the
best calibration.

How does CAPE scale with ensemble size? Fig. 2 studies
how the number of ensembled prompts impacts calibration
on MMLU. We find that the calibration performance of
CAPE improves until n = 16. We use n = 8 in our main

4



Calibrating Language Models via Augmented Prompt Ensembles

001 002 003
Model Type

0.10
0.15
0.20
0.25
0.30
0.35
0.40

EC
E

CAPE
Base

Figure 3: Calibration for different text-davinci
models (3 seeds)

experiments (Tables 1 and 2), as it provides a nice balance
between calibration and compute.

Does CAPE improve other instruction-tuned mod-
els? We investigate how CAPE can improve different
instruction-tuned models in Fig. 3. Specifically, we evalu-
ated the calibration of BASE and CAPE on MMLU with
text-davinci-series models. We observe that CAPE
leads to consistent improvement over BASE. Though the
calibration of the base model degrades from 002 to 003 after
RLHF, CAPE effectively recalibrates it.

4. Related Work
In this section, we discuss related work about language
model calibaration and the utilization of prompt ensem-
bles for MC tasks. Additional related work is included in
Appx. A.

Calibration for Language Models Prior work on the
calibration of language models has largely focused on clas-
sification or multiple-choice tasks (Desai & Durrett, 2020;
Jiang et al., 2021; Desai & Durrett, 2020). Jiang et al. (2021)
revealed that smaller models such as T5 (Raffel et al., 2020)
and GPT-2 (Radford et al., 2019) display poor calibration
on QA tasks by default, but can be improved through fine-
tuning, post-hoc probability modification (including temper-
ature adjustment), or adjustment of the predicted outputs
or inputs. Kadavath et al. (2022) found that Anthropic
LLMs exhibit reasonable calibration and self-knowledge
(of what they know) by default. They found RLHF deterio-
rated model calibration and temperature adjustment could
largely fix the miscalibration. Our method complements
these techniques, offering the unique benefit of being en-
tirely unsupervised.

Prompt Ensembles Ensembling multiple prompts for
LLMs has been explored in previous work mainly for im-
proving model accuracy in classification or multiple-choice
tasks. It has been applied in various scenarios, including
boosting predictive accuracy during inference (Jiang et al.,

2020; Radford et al., 2021; Izacard et al., 2022), serving
as data augmentations during training (Zhou et al., 2022),
generating pseudo-labels for model distillation (Schick &
Schütze, 2020) or prompt selection (Liao et al., 2022). Sim-
ilar techniques have also been applied with “soft” prompts
(Qin & Eisner, 2021; Lester et al., 2021). We refer interested
readers to section 5.1 in Liu et al. (2023) for a more detailed
survey of relevant prompt ensemble methods. Our work
distinguishes itself from prior work in that: (i) We utilized
prompt ensembles for improving model calibration instead
of predictive accuracy; (ii) In Appx. B, we demonstrated
how prompt ensembles can be applied in generation tasks
beyond classification tasks.

5. Discussion
In this paper, we introduced CAPE, a novel prompt en-
semble method that improves the calibration of LLMs. By
capitalizing on the inherent prompt sensitivity of LLMs,
CAPE leverages generally applicable prompt augmenta-
tions to build an ensemble that significantly improves cali-
bration across a wide array of natural language tasks. Our
empirical study reveals that even subtle prompt augmen-
tations, such as option permutation, can yield surprisingly
effective results, pointing to a potential selection bias in
LLMs. CAPE is complementary to other LLM calibration
methods like temperature adjustment, with the added benefit
of being purely unsupervised.

Future work should tackle the limitation of our method
concerning the increased inference cost, e.g., by exploring
prompt augmentations with a better scaling to reduce the
required ensemble size or by finetuning the model as (Lin
et al., 2022; Kadavath et al., 2022).
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A. Additional Related Work
Calibration on Open-ended Generation Task Some re-
cent work has studied calibration or uncertainty in natural
language generation setups. Lin et al. (2022) fine-tuned
GPT-3 to generate uncertainty estimates in natural language
and demonstrated that the calibration gain is not solely at-
tributable to output logits. Kadavath et al. (2022) proposed a
“self-evaluation” method that instructs LLMs to self-evaluate
the correctness of their own generated answers. They also
found fine-tuning provides significant enhancements in cal-
ibration, though a generalization gap persists. Kuhn et al.
(2023) measured the semantic entropy of the generated texts
for a particular question from OPT models (Zhang et al.,
2022) and used it to estimate the uncertainty for the partic-
ular question. Compared to existing methods, our method
differs in that: (i) it provides multiple semantically distinct
candidate generations with confidence scores assigned to
each, in contrast to producing uncertainty only for the max-
imum-likelihood generations (Lin et al., 2022; Kadavath
et al., 2022) or the entire question (Kuhn et al., 2023); and
(ii) it requires no additional fine-tuning thus avoiding the
potential generation gap.

Model Ensembles Ensembling (Hansen & Salamon, 1990;
Perrone & Cooper, 1992) is a well-established method for
improving both performance and calibration in image classi-
fication domains (Lakshminarayanan et al., 2017b; Ovadia
et al., 2019). In language modeling, Jiang et al. (2020)
demonstrated that prompt ensembles can enhance perfor-
mance on classification tasks, while other studies have
reported modest gains by ensembling different few-shot
prompts (Li et al., 2022; Pitis et al., 2023). Regarding cali-
bration, Xiao et al. (2022) conducted a large-scale empirical
study, finding that ensembling with individually trained
models improves calibration for LLMs, though not as sig-
nificantly as temperature scaling (Bhatt et al., 2021). Our
proposed CAPE method does not necessitate individually
trained models for ensembling and is more akin to test-
time augmentation, commonly employed in computer vi-
sion (Krizhevsky et al., 2012). Augmentation-based ensem-
bling shares similarities with other single-model ensemble
techniques that leverage multiple heads, shared weights,
or stochasticity to create an ensemble without indepen-
dently parameterizing each member (Lee et al., 2015; Gal
& Ghahramani, 2016; Osband et al., 2016; Wen et al., 2020;
Havasi et al., 2020; Ruan et al., 2023).

Integrating Data Augmentation and Ensembles While
it might seem natural to assume that combining data augmen-
tation with ensembles would enhance calibration, existing
research presents conflicting evidence. Though based on
train-time augmentation and not quite comparable to our
work, certain studies (Hafner et al., 2018; Hendrycks et al.,
2019) demonstrate improved calibration when combining

data augmentation and ensembling, while others (Qin et al.,
2020; Wen et al., 2021) reveal the opposite. Consequently,
we should not trivially assume that calibration can be con-
sistently enhanced by combining data augmentation and
ensembling.

B. Generalizing CAPE to Open-Ended
Generation

In this section, we extend CAPE to the more general and
practical setting of open-ended generation (OG). In OG
tasks, a context (e.g., a question) is provided and the ob-
jective is to generate a coherent and contextually relevant
continuation (e.g., a semantically correct answer). We start
by discussing the challenges of uncertainty estimation in
OG setups, and then introduce a novel approach that casts
OG tasks into MC selection problems, where CAPE can be
naturally applied as in Sec. 2.

Addressing the Challenges of Uncertainty Estimation in
Open-Ended Generation

We enumerate several key challenges of uncertainty estima-
tion in OG setups (cf. the similar discussion in (Kuhn et al.,
2023)) and discuss how we propose to tackle them:

Infinite sample space For OG tasks, the sample space
includes sequences of tokens with indefinite lengths. This
makes it intractable to marginalize over sequences with
the same semantic meaning to address the surface-form
competition described below. We instead consider obtaining
a compact set of candidate generations sampled from the
model predictions, similar to prior work such as (Kadavath
et al., 2022; Kuhn et al., 2023).

Surface-form competition LLMs often generate sam-
ples that are semantically equivalent but have different syn-
tactic or lexical forms, introducing the issue of surface-
form competition (Holtzman et al., 2021). To address this,
(Kuhn et al., 2023) pointed out that the estimated uncer-
tainty should be computed over the “semantic” space de-
fined by the semantic content of the sequences instead of
their plain lexical forms, such that the uncertainty estimate
will not be distributed across sequences that are semanti-
cally equivalent. We utilize two strategies to alleviate the
surface-form competition: (i) we explicitly prompt LLMs to
generate diverse and semantically distinct samples instead
of naively sampling from model predictions multiple times
with a sampling temperature Ts > 0 as in previous work
(e.g., (Kadavath et al., 2022; Kuhn et al., 2023)), as shown
in Step 1 of Fig. 4; and (ii) following (Kuhn et al., 2023), we
cluster the generated samples into semantically equivalent
groups using a bidirectional entailment classifier, as shown
in Step 2 of Fig. 4.

Scoring candidate generations Another key challenge
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Instruction: Generate a list of up to 5 semantically 
distinct potential answer options for the question 
below, following these guidelines:

<Detailed Guidelines>
Question: What happens if you watch a pot of 
water on the stove?
Answer options:

Candidate Generation Prompt

- The water will eventually boil.
- The water will evaporate.
- The water will become steam.
- The water will reach its boiling point.
-  Nothing will happen.

Generated Candidates

- The water will eventually boil.
- The water will evaporate.
-  Nothing will happen.

Clustered Candidates

Instruction: Answer the following question 
truthfully with the alphabetic letter corresponding 
to the most appropriate option.

Question: What happens if you watch a pot of 
water on the stove?
A. The water will eventually boil.
B. The water will evaporate.
C. Nothing will happen.
D. All the other options are incorrect.
Answer: <A|B|C|D>

Self-Contrast Multiple-Choice Prompt (Enum)

Augmented 
Prompt #1

Augmented 
Prompt #2

Augmented 
Prompt #n

…

A B C

…A
The water will 
eventually boil.

B
The water will 
evaporate.

C
Nothing 

will happen.

Step 1: Generation

<latexit sha1_base64="34AXeyfbfMMMKId5mxcF8DSv+KU="></latexit>

Step 2: Clustering

<latexit sha1_base64="I+6+GfG38EqDHWfDc6zaZDe6e98=">AAAVDnicpVjdjtvGFVbSJk3UNnWavcvNIIJgO5CJleAiTQ0Dm2odrFHHduy1E2C5XQzJI2myQw49M9RqM+ZF3qBv0dv2pndBbvsKRV6mZ4Y/Einuru0QWC11+J3vnDMz54cKUs6U3t3931tv/+rX77z7m/fe7//2d7//4A/XPvzjcyUyGcKzUHAhvw2oAs4SeKaZ5vBtKoHGAYdvgtOpff7NEqRiIjnU5ykcx3SesBkLqUbRybWPfQ0rHczMUw0pmfyFTHmmNEiWzPOTa4Ndb9ddZPtmXN4MeuX1+OTDj372IxFmMSQ65FSpo/Fuqo8NlZqFHPK+nylIaXhK53CEtwmNQR0bF0VOhiiJyExI/Es0cdJNDUNjpc7jAJEx1QvVfmaFXc+OMj3787FhSZppSMLC0CzjRAtil4RETEKo+Tne0FAy9JWECyppiOug+v3+kDxFs4Ijq4QEzkIRxzSJjP8oN741F1JuHuVITB6gnGbXFVFOo+9vwp+U8CAwTxBNEP8EKCdJFgfWUgM8XYOnJXgq4pTDqhv/cI1/WOIfUp3JDX4bSAohQ5FFklK3RaRClh+Nj407GAZu5YOxjQzFuKv25JBEaHd6mnoRzOAFOrEM7e7j5iV38yYCXiAmN3c3IC3ELD+aoGWRgqRaSHs+DJr3eUqPRsdmMMHIWt5GhbMj4qKXsYlyYj0mbgmeaknZfKHJ9eg6ht9QTWmhmsBcL1ii8LiAz2GmbwzGvrRaNwsa5HlMcef1AhRTbZpAXkBzVNEc1zR/xUN1CnqLQ4G+gMQ3FYuf10GB7ndG8grOd7p+lbfdvr6ye4mQ8VrlZaXxslJ4iM+3NSKRYRHbMFUr+g1NUgBbB0mKoEwIPBJf1r59iXJIWKY6jKoQ8vLU472BvNSqwroqAUKRRLk7iVhwNfFHG+olxxQhzGpieW0qL6mMhLbqfog3TeUh2RfaVUZKEMjoVrxYwmhYrFUEXNMTlzaBNH6WYjKF2CGspF6HfYsnDtokYixSLEY/hO0agEuBCaQgECtza5JaB7HOqkW1Tpol54R5zIs8JLdPUTmvgo3xGONCoIycMSw4SE5ogMyEtY7I6xuNfpE99dr21C+Lz5VGpTGhJPCSGEMwdys2eJFhXWYJNiGlJQuy7QOGm9jBQj3lbRNRHgulicoQeN4+K8hgqdxxqdkG41tNQv87wRJ88urMmAFKVzlUfKkOnPtGE22b0D5OKzHT2OwfoCtYXrAt+PH5HmJwLMHqPRpM/D3AhqvNsI/qPputsPVyusIH7n+/SIzB2D0GrqCWWKbIWiglm8wVbcE6Y3l/MwCfBxL7z9EdH3vNkGxdfX/ORUB55a+zYtNq2HeptmloVPiJlQxWqeWuDOdtm9ja0OboDWym9E1t4pl/U6MuXV7ZKk5EOJhSLFx8DoGk7QlqCWXVCuK6Whd1akie41BmJ8BNPELW+K3SNiRfUcydFbkRCVC2TJMaQ+YS4FTdbJXdsCK0e3/n2DFtle3nYAdYPPtF0Di3bifnosE0uoDpQEj2PU6321zNdYmqJtsYhazU7rqltmlk5/TYJpW/DzhvS8DwF49KDeMfytzgX9PPw7rH2U81M4cbfW5IDiXF6UNgPrVGlFrvsBveLK+2qNR7W+6r/V55X28v+97FT8TMzqSShaDa1YrOGzROsMGzj99Fggu6SYHeV+ugOlfnUyynch7TVY5vJ3N/ZO8uA7KkArLkMqDK0hJo7y4BsmRWAu1da/my4DtcnfUAozyNJbkJEulFw3Jxkt20jFvV3sh7HWrVm8O9PD+pOUY1R7+LIEuisnmiu27D3Y5czHw566KkXVB9CcXV3v3tQUfi7KNicXrxcaHvxyyKOPgvi0xtknx1v1okcx8jkkvsK4TcIe5uso1+sIajIeA879ZqJvlB5ak5qOBt6ulBzVxjiJs0L/AFX/6xJMzBqQ3Gf7ejrGSpLj/1OQfixmkqpTgr8miL5GoGN4dfSpFE66yNlCmm0e0AEYcJ5WJsIbHrJx0BooIdXToU7naCkwvQiHvRtX6ZWuCgfYbjuFOzLuOWqgWVaU5uDCY3XVd7ii8A/WFDUy4bZWqrOw1JsymRja7U72RqMrwGwaJicMl0gUNXENoovwgCCUvmKnTz55aVe0O1uRfTU6Cag8ZmVJe7JyLIlJ6W44ZIAF9p8KUs03ZoBO3v4ceeFqeQ+HvF07yYAvcqrJ341ijPjXien2Sc49jml+b7hRLMDXjz0oz1yQrvzc29tbCQMTDMgxbwPpj7a2EhC2cm9GYt4HRmpmthycgi415/mmLQ+P6owxbBUpmlagMpRySOR035mdTmzJOeblHgRKy2hHrJjPaWHmvJ+UIZ7i081ZJLlMsuOajU2I8NebG9Qi9AnlwbjNe/An6O12e3y5vPx/XPgc8n3vi296evJ4O92+UPg+/1Pu590rvRG/c+6+31DnqPe896Ye+H3j97/+r9e+cfO//Z+XHnpwL69lulzke9xrXz3/8Dlb6LCg==</latexit>

Step 3: Self-Contrast
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Step 4: Ensemble
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D

D
I don’t 
know

Figure 4: CAPE for Open-Ended Generation(OG). CAPE casts the uncertainty estimation for OG into a MC selection
problem. It consists of four major steps: (1) The LLM is prompted to generate a diverse set of candidates based on the given
context. (2) The candidates that are semantically equivalent are clustered to alleviate surface-form competition (Holtzman
et al., 2021; Kuhn et al., 2023). This step is optional if Step 1 already generates semantically distinct candidates. (3) The
LLMs are prompted to “self-contrast” the clustered candidates and select the one that best aligns with the context as a
MC selection problem, producing a normalized predictive distribution to form predictions and uncertainty estimates. An
additional IDK option is provided to accommodate the case that the generated options are low-quality. (4) CAPE for MC
(Sec. 2) is applied to augment and ensemble multiple “self-contrast” MC prompts.

is to produce a predictive distribution or uncertainty esti-
mate over candidate generations that genuinely captures
the relative quality of the candidates. Prior work typi-
cally scores candidate LLM generations according to their
log-likelihoods (conditioned on the provided context), op-
tionally normalizing them by length or unconditional log-
likelihood (Brown et al., 2020). However, recent studies
have highlighted the limitations of using the conditional
log-likelihood as a reliable proxy for making accurate pre-
dictions (Robinson et al., 2022) or estimating uncertainty
(Jiang et al., 2021).

We note that the prior approach suffers from another cru-
cial limitation: it scores each candidate generation inde-
pendently, without taking into account the other candidates.
However, the relative probability of generating answer A
over B does not necessarily indicate that the LLM would
prefer A or B if given the explicit choice. Motivated by this,
we propose a novel approach that casts the problem of esti-
mating the uncertainty of candidate generations into a MC
selection problem as in Sec. 2. In particular, we provide the

LLM with the original context and candidate generations,
then prompt it to “self-contrast” them and pick the one that
best aligns with the context, as illustrated in Step 3 of Fig. 4.
This approach allows us to prompt the LLM for a diverse
set of answers, rather than the best answer. To account for
the possibility that all candidates generated are of poor qual-
ity, we provide an additional catch-all option,“All the other
options are incorrect”, which corresponds to a final answer
of IDK (“I don’t know”). While Kadavath et al. (2022)
demonstrated degraded accuracy and calibration when a
similar catch-all was introduced for MC tasks, we observe a
decent improvement of calibration on OG tasks (Table 2).

Our method enjoys the following advantages: (i) it utilizes
a direct comparison between candidate generations for scor-
ing each candidate; and (ii) a normalized predictive distribu-
tion over candidate generations (and the catch-all IDK) can
be naturally obtained for prediction and uncertainty estima-
tion, which can be ensembled over multiple “self-contrast”
MC prompts as described in Sec. 2. Our “self-contrast”
method exhibits some similarities with the “self-evaluation”
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method P(True) proposed by Kadavath et al. (2022). The
key difference is that our method directly compares and eval-
uates all candidate generations, while “self-evaluation” only
evaluates the maximum-likelihood generation with other
candidates presented in the prompt; see Appx. D.2.3 for a
comparison. Empirically, we find that this distinction signif-
icantly impacts the performance of uncertainty estimation
(Table 2).

CAPE Pipeline for Open-Ended Generation

Motivated by the difficulties of OG uncertainty estimation
described above, we now present our full pipeline with
CAPE, as illustrated in Fig. 4. Our pipeline consists of four
major steps:

1. Generation: Prompt the LLMs to generate a diverse set
of k candidate generations S = {s1, s2, . . . , sk} based
on a given context o.

2. Clustering: Identify the candidate generations with the
same semantic content and cluster them into h ≤ k se-
mantic clusters C = {c1, c2, . . . , ch}. Each cluster ci is
a disjoint set of semantically equivalent candidate gener-
ations, i.e., ci = {si1 , si2 , . . . }, with ci∩cj = ∅,∀i ̸= j.
We apply the bidirectional entailment clustering algo-
rithm proposed in (Kuhn et al., 2023). Specifically, for
any pair of candidates (si, sj), we use the Deberta-large
model (He et al., 2020) fine-tuned for natural language
inference to determine their semantic equivalence: si
and sj are semantically equivalent iff si entails sj and
sj entails si. A more advanced model such as GPT-4
(OpenAI, 2023) could potentially be used to improve
the accuracy and efficiency of the clustering algorithm,
and we leave it for future work. If candidate generation
in Step 1 is done in such a way as to generate candidates
that are already semantically distinct, as we found was
the case on certain tasks, this step becomes optional.

3. Self-Contrast: Prompt the LLMs to “self-contrast” the
clustered candidate generations and select the one that
best semantically aligns with the context as a MC prob-
lem. Specifically, we randomly select one candidate
sij ∈ ci as one potential option for each cluster ci ∈ C,
and format the MC selection problem with the context
as the question and all selected candidates and an ad-
ditional IDK option as potential options. As discussed
in Sec. 2, the “self-contrast” MC problem can be struc-
tured with ENUM or ITEM format to obtain a normalized
predictive distribution over the provided options (i.e.,
clustered candidates) to form predictions and uncertainty
estimates.

4. Ensemble: Ensemble the “self-contrast” predictions
over n augmented MC prompts for improving uncer-
tainty estimation, as described in detail in Sec. 2.

In contrast to prior methods, CAPE offers a normalized pre-
dictive distribution over multiple semantically distinct can-
didates, assigning confidence scores for each. This has the
potential to be more informative and practically useful than
uncertainty estimates that only assess overall uncertainty for
the problem (Malinin & Gales, 2020; Kuhn et al., 2023) or
measure the confidence for the maximum-likelihood candi-
date (Kadavath et al., 2022).

C. Open-Ended Generation Experiments
Setup To assess our CAPE pipeline on OG tasks, we chose
to focus on free-form QA, as it is an important category of
OG for which ground truth answers are relatively easy to
determine. We used two tasks for the evaluation: TriviaQA
(Joshi et al., 2017) and TruthfulQA (Lin et al., 2021). To
evaluate the correctness of a generated answer, we used the
Rouge-L score (Lin & Och, 2004) for TriviaQA following
(Kuhn et al., 2023) and the BLEURT metric (Sellam et al.,
2020) adopted in (Lin et al., 2021) for TruthfulQA. See
Appx. D.1 for details.

Baselines The major baseline we compare to is P(True)
(Kadavath et al., 2022), which prompts the LLM to “self-
evaluate” its maximum-likelihood answer with other can-
didate answers (sampled with Ts = 1) incorporated in the
context. We also included some uncertainty measures to
offer interested readers a more comprehensive context and
analysis, including Predictive Entropy (the entropy of pre-
dictive samples estimated with Monte Carlo integration),
Normalized Entropy (Malinin & Gales, 2020) (a variant of
Predictive Entropy which divides the log-likelihood of each
sequence by its length), and Semantic Entropy (Kuhn et al.,
2023) (the entropy computed over semantic space by clus-
tering semantically equivalent sequences as the clustering
step in Fig. 4). We followed (Kuhn et al., 2023) and sam-
pled k = 5 candidates from model predictions with Tp = 1.
We only compute AUROC for these methods because they
only estimate the uncertainty for discrimination without pro-
viding a predictive distribution or confidence for generated
answers. This limits their practical utility because determin-
ing the threshold for discriminating correct answers requires
a labeled dataset which may not be available.

CAPE Recall that the key distinctions between our CAPE
pipeline, as shown in Fig. 4, and the baseline approaches are
primarily in the generation of candidates, the "self-contrast"
method to produce a predictive distribution over these can-
didates, and the ensembling of these "self-contrast" predic-
tions. Below, we conduct a careful qualitative analysis to
better understand the effectiveness of our pipeline and its
main components. We generated 5 candidates to match the
baseline setup and used 8 augmented prompts for CAPE as
before. For TruthfulQA, we observed semantically distinct
generations from our candidate generation, and thus did not
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Table 2: Results on OG tasks. CAPE leads to substantial gains for model calibration on free-form QA tasks. The gains
come from “self-contrast” (BASE vs P(True)), prompt ensemble (CAPE vs BASE), the introduction of an “IDK” option
(row “w/o IDK”), and further temperature adjustment (rows highlighted in cyan). We used 8 augmented prompts for CAPE.
For BASE (non-ensemble), the means and standard deviations computed with the 8 individual prompts are reported. For
temperature adjustment, we used T ′

p selected on MMLU as Table 1 without tuning it to emulate practical scenarios.

Method TriviaQA TruthfulQA

Acc ↑ ECE ↓ AUROC ↑ Brier ↓ Acc ↑ ECE ↓ AUROC ↑ Brier ↓
Baselines

Predictive Entropy 0.695 - 0.784 - 0.390 - 0.502 -
Normalized Entropy 0.695 - 0.721 - 0.390 - 0.515 -
Semantic Entropy 0.695 - 0.801 - 0.390 - 0.517 -

P(True) 0.695 0.285 0.573 0.294 0.390 0.591 0.527 0.586

Our methods

BASE-ENUM 0.676 ± 0.017 0.272 ± 0.016 0.733 ± 0.024 0.289 ± 0.011 0.371 ± 0.029 0.527 ± 0.051 0.536 ± 0.038 0.533 ± 0.049
BASE-ITEM 0.695 ± 0.019 0.255 ± 0.027 0.769 ± 0.015 0.259 ± 0.023 0.394 ± 0.017 0.485 ± 0.028 0.549 ± 0.046 0.497 ± 0.028

CAPE-ENUM 0.705 0.128 0.789 0.178 0.365 0.312 0.533 0.350
- w/o IDK 0.690 0.161 0.792 0.194 0.375 0.362 0.501 0.408
- T ′

p = 10 0.700 0.077 0.801 0.158 0.360 0.178 0.544 0.272

CAPE-ITEM 0.725 0.139 0.769 0.178 0.390 0.282 0.569 0.346
- w/o IDK 0.750 0.146 0.749 0.185 0.415 0.332 0.528 0.388
- T ′

p = 5 0.710 0.069 0.797 0.150 0.375 0.146 0.600 0.264

apply semantic clustering (Step 2).

How does CAPE improve calibration over the baselines?
We compare our methods (including both BASE without en-
sembling and CAPE) with baselines in Table 2. First, we
find that our BASE method with ENUM or ITEM prompts,
which “self-contrast” generated candidate answers, both
perform much better than the P(True) baseline on all evalua-
tion metrics for uncertainty estimation. Next, ensembling
(CAPE-ENUM/ITEM) improves the uncertainty estimation
by a large margin over BASE, consistent with the observa-
tions in MC tasks. Finally, we incorporated temperature
adjustment into CAPE to get insight into the best possible
calibration that CAPE can achieve. To emulate a practical
and realistic scenario, we directly used temperature T ′

p se-
lected on MMLU as Table 1 without tuning it on current
tasks. We observe that CAPE with temperature adjustment,
highlighted in cyan, further boosts model calibration, achiev-
ing an ECE of 0.069 on TriviaQA. In terms of AUROC, our
methods are comparable to entropy-based uncertainty mea-
sures on TriviaQA and outperform them on TruthfulQA.
We hypothesize this is due to a property of these datasets:
TriviaQA is short-form but TruthfulQA is relatively longer-
form which makes Monte Carlo estimation of entropies
challenging.

Does IDK affect the model calibration? In Table 2,
we investigate the impact of integrating an additional IDK
option on model calibration by ablating it from CAPE (de-
noted as “w/o IDK”). The metrics for uncertainty estimation
notably deteriorate upon this exclusion, suggesting the ben-
efits of introducing an IDK option. Kadavath et al. (2022)

Table 3: Candidate generation. Our BASE-ITEM produces
more diverse generations and achieves a better diversity-
accuracy tradeoff than naive generation with different sam-
pling temperatures Ts.

Generation # of Clusters Acc ↑ ECE ↓ AUROC ↑ Brier ↓
Ts = 0 1.00 0.694 0.304 0.649 0.303
Ts = 0.5 1.12 0.711 0.283 0.712 0.283
Ts = 1 1.31 0.673 0.304 0.730 0.300
Ts = 2 1.94 0.494 0.482 0.726 0.474

Ours 4.64 0.695 0.255 0.769 0.259

observed that introducing a similar option degraded accu-
racy and calibration on MC tasks; we conjecture that the
difference stems from the possible lower-quality generations
in OG tasks, hence necessitating a catch-all option to deal
with such cases.

Does diverse candidate generation help? To understand
how our candidate generation (Step 1 in Fig. 4) differs from
the naive generation (sampling from models with Ts > 0)
used in prior work, we compare the performance of BASE-
ITEM with different generation methods in Table 3 (in each
case, after generating, “self-contrast” is applied). For naive
generation, we used different sampling temperatures Ts in
{0, 0.5, 1, 2}. We find that with Ts increasing for naive
generation, the model accuracy and calibration first improve
and then degrade (peak at Ts = 0.5), exhibiting a tradeoff
between generation diversity and accuracy. In contrast, our
method generates more diverse candidates (implied by a
larger number of clusters) while obtains comparable accu-
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racy and better calibration. This suggests that our approach
achieves a better diversity-accuracy tradeoff with no addi-
tional hyperparameters.

D. Experimental Details
D.1. Metrics

Evaluation metrics We measure the LLMs’ uncertainty
estimation with various evaluation metrics:

• ECE: We use expected calibration error (ECE) to mea-
sure model calibration. ECE is computed as the mean,
across 10 equally sized bins, of the absolute difference
between the model’s confidence (i.e., the probability of
the top prediction) and the accuracy (i.e., how often the
model is correct).

• AUROC: We also report the AUROC with respect to pre-
diction confidence or other uncertainty measures (e.g.
predictive entropies). Higher AUROC is better, with
a perfect score of 1 and a chance score of 0.5. Note
that AUROC captures the discriminative power of scalar
uncertainty measures rather than calibration. We ob-
served certain tradeoffs between calibration (ECE) and
discrimination (AUROC), which is consistent with the
observation in (Kadavath et al., 2022).

• Brier Score: To alleviate the tradeoff described above,
we also report the Brier Score, which measures the mean
squared difference between the predicted distributions
and the actual outcome.

Accuracy metrics on OG tasks For TriviaQA, we fol-
lowed (Kuhn et al., 2023) and evaluated the correctness of
a generated answer with the Rouge-L score (Lin & Och,
2004): an answer is considered correct if its Rouge-L score
with respect to the reference answer is larger than 0.3. For
TruthfulQA, we used the BLEURT metric (Sellam et al.,
2020) adopted in (Lin et al., 2021): an answer is considered
correct if its maximum BLEURT score with the correct ref-
erence answers is larger than its maximum score with the
incorrect reference answers.

D.2. Prompts

D.2.1. PROMPT FOR TEMPLATE PARAPHRASE

We provide the prompt that we used to instruct GPT-4 for
paraphrasing prompt templates. We include the prompt for
generating the ENUM type of prompts on the Hellaswag
dataset for illustration, which can be easily generalized
to the ITEM prompt type and other datasets (we omit for
brevity).

We begin by presenting the instructions and guidelines, fol-
lowed by two human-written prompts that we adapted from
(Bach et al., 2022) as the example prompts. The remaining

content is left to be generated by GPT-4.

Create a set of 10 diverse
multiple-choice prompt templates by
following the guidelines provided
below.

Guidelines:
1. Each template must be formatted as a
JSON object containing the fields
`instruction' and `template'. The
`instruction' field is optional and
provides task instructions, while the
`template' field is mandatory for
framing specific instances of the task.
Remember that the text within braces
represents fields that can be
substituted into sentences. 'template'
must have three fields of question,
options and answer.
2. Ensure that the structure and
phrasing of templates are diverse,
avoiding repetition in style or format.
You can modify the format and phrasing
of the template field to enhance
diversity, as long as the semantics
remain the same.
3. Develop templates that accommodate a
wide range of topics to enhance the
versatility of the generated
multiple-choice questions.

List of 10 templates:
1. {"template": "From the list of
endings described below, what ending
makes the most sense for the sentence?
Answer it from A, B, C, D.\n\nSentence:
{question}\n{options}\nAnswer:
{answer}"}
2. {"instruction": "Read the following
sentences and choose the possible
endings from A, B, C, D.", "template":
"Question: {question}\n{options}\nThe
correct ending is: {answer}"}
3.

D.2.2. PROMPT FOR CANDIDATE GENERATION

We provide the complete prompt for candidate generation
(Step 1 in Fig. 4) below.
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Generate a list of up to 5 distinct
potential answer options for the
question below, following these
guidelines:
1. Ensure each generated answer option
is semantically distinct from all
previous options for the question.
Avoid simply rephrasing or reiterating
the previous options to generate a new
option.
2. Stop generating answer options if no
more options can satisfy the above
requirements, even if the list contains
fewer than 5 options.

Question: English economist and
physician Nicholas Barbon helped to
pioneer which type of insurance in
1666?
Answer options:
1.

D.2.3. PROMPT FOR SELF-CONTRAST

We provide an example prompt for self-contrast (Step 3
in Fig. 4) with the ENUM prompt on the TriviaQA dataset
below. In this example, the model generated five answers:
{"Greece", "Finland", "Sweden", "Greece", "The Kingdom
of Denmark."}. These answers result in four distinct clus-
ters: {"Finland", "Sweden", "Greece", "The Kingdom of
Denmark."}. We present an exemplar of a self-contrast
prompt that is augmented with a specific ENUM prompt
paraphrase and option permutation as follows:

Pick the correct answer to the
following trivia question from the
provided options. Answer with the
capital letter of the correct option.

Question: What European country has 227
inhabited islands?
A: The Kingdom of Denmark.
B: Sweden
C: All the other options are incorrect.
D: Finland
E: Greece

Answer:

For comparison purposes, we include the prompt for P(true)
(Kadavath et al., 2022) with the same example below:

Question: What European country has 227
inhabited islands?

Here are some ideas that were
brainstormed: Greece \n Finland \n
Sweden \n Greece \n The Kingdom of
Denmark
Possible answer: Finland
Is the possible answer:
A: True
B: False
The possible answer is:

E. Additional Results
E.1. CAPE with Other Models

davinci-series models We evaluated the performance
of CAPE with different davinci-series models in Table 4.
The experimental setup exactly followed Table 1 except that
different models were used. We find that for instruction-
tuned (text-davinci-001/002/003) models that ex-
hibit overconfidence and poor calibration, CAPE signifi-
cantly improves over BASE. However, for the pretrained
model (davinci) that is already well-calibrated, CAPE
may hurt the calibration performance. We conjecture that
in this case, ensembling may “over-smooth” the model pre-
dictive distributions to be underconfident, leading to the
degradation of calibration.

Table 4: Results on davinci-series models. CAPE
significantly improves over BASE for instruction-tuned
(text-davinci-001/002/003) models that exhibit
overconfidence and poor calibration, but may hurt the cal-
ibration for pretrained model (davinci) that is already
well-calibrated. We used the MMLU dataset and the ENUM
format in a zero-shot setup. For CAPE, 8 augmented
prompts are applied. For BASE, the means and standard
deviations computed with the 8 individual prompts are re-
ported.

Model Method Acc ↑ ECE ↓ AUROC ↑ Brier ↓

davinci
BASE 0.326±0.018 0.093±0.029 0.572±0.049 0.217±0.008
CAPE 0.429 0.152 0.643 0.253

text-davinci-001
BASE 0.480±0.014 0.396±0.021 0.689±0.029 0.396±0.025
CAPE 0.506 0.182 0.733 0.240

text-davinci-002
BASE 0.665±0.021 0.217±0.025 0.764±0.025 0.241±0.021
CAPE 0.703 0.070 0.806 0.161

text-davinci-003
BASE 0.657±0.022 0.302± 0.026 0.778±0.027 0.305±0.021
CAPE 0.675 0.135 0.835 0.174

curie-scale model We assessed the effectiveness of
CAPE on the smaller-scale text-curie-001 model.
We used the MMLU dataset for illustration. The ITEM
prompt type was applied because we found ENUM did not
work well on small-scale models, possibly due to the lack
of symbolic binding capability (Robinson et al., 2022). The
other experimental setups exactly followed Table 4. We
find that text-curie-001 with BASE also exhibits poor
calibration and CAPE substantially improves its calibration.
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Table 5: Results on text-curie-001 model.
text-curie-001 with BASE also exhibits poor calibra-
tion and CAPE substantially improves its calibration. We
used the MMLU dataset and the ITEM format. Other experi-
mental setups exactly followed Table 4.

Model Method Acc ↑ ECE ↓ AUROC ↑ Brier ↓

text-curie-001
BASE 0.296±0.016 0.440±0.033 0.542±0.024 0.427±0.031
CAPE 0.293 0.261 0.560 0.287

E.2. CAPE in Few-Shot Setups

For our experiments in the main paper, we mainly
focused on zero-shot setups because instruction-tuned
text-davinci models already work well. Here, we
demonstrated how our results can be generalized to few-
shot setups.

Setup We used text-davinci-003 model with the
default temperature Tp = 1 on the MMLU dataset. We
included 4 in-context examples in the prompt which were
randomly sampled from the dataset. The sampled in-context
examples were fixed and shared across all test samples. We
applied the ENUM prompt type. For CAPE, we augmented
the prompt using all prompt augmentations described in
Sec. 2. We used 8 augmented prompts by default as before.

How does CAPE improve uncertainty estimation in few-
shot setups? As shown in Table 6, CAPE significantly
improves the calibration metrics over BASE in the few-shot
setups. Interestingly, compared to the zero-shot results in
Table 1, both the calibration metrics of BASE, CAPE im-
prove, implying that adding few-shot examples could im-
prove model calibration which is consistent with the obser-
vation in (Kadavath et al., 2022).

Table 6: Results in few-shot setups. CAPE significantly
improves calibration with few-shot examples. Compared to
the corresponding zero-shot results in Table 1, the calibra-
tion metrics for both BASE and CAPE improve. We used
the ENUM prompt type on the MMLU dataset, 4 in-context
examples, and the default temperature Tp = 1. For CAPE,
we used 8 augmented prompts. For BASE, the means and
standard deviations computed with the 8 individual prompts
are reported.

Method Acc ↑ ECE ↓ AUROC ↑ Brier ↓
BASE 0.692±0.021 0.251±0.015 0.799±0.030 0.253±0.012
CAPE 0.710 0.102 0.850 0.153

Which prompt augmentation is more effective and can
the gains be combined? We compare the ECE with differ-
ent prompt augmentations for few-shot setups in Fig. 5: tem-
plate paraphrase, option permutation, in-context example

ordering, in-context example selection, and a combination
of all. Similar to the observation in zero-shot setups (Fig. 2),
we observe that all augmentations improve the ECE over
individual prompts and their gains can be combined, achiev-
ing the best calibration. Option permutation and in-context
example selection provide the largest gains and scale bet-
ter with the number of ensembles, compared to the other
individual augmentations.

2 4 8 16
Number of Ensembles

0.075
0.100
0.125
0.150
0.175
0.200
0.225
0.250

EC
E

Combined
Template Paraphrase
Option Permutation

Example Permutation
Example Selection
Base (Non-Ensemble)

Figure 5: Comparison of prompt augmentations at vari-
ous ensemble sizes in few-shot setups. All prompt augmen-
tations provide calibration improvements and their gains can
be combined. Option permutation and in-context example
selection provide the most significant gains and scale better
with the number of ensembles. 3 seeds are run and the error
bars are the standard deviations.

E.3. Additional Analysis

How does the number of data samples affect the evalua-
tion? We compared the evaluation results with 200 and
1000 data points on the HellaSwag dataset in Table 7. We
find that using 200 data points for evaluation yields similar
results (within the error bar) as using 1000 data points, and
does not affect the relative comparison between BASE and
CAPE. Therefore, due to budget constraints, we mainly
used 200 data points for evaluation in our experiments to
reduce cost.

E.4. Calibration Plots

We include the calibration plots in Figs. 6 to 9 correspond-
ing to the results in Table 1 for visualizing the prediction
patterns (accuracy vs confidence) of BASE and CAPE. For
each plot, we use 10 bins with an equal number of pre-
dictions in each. We plot the calibration with the default
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Table 7: Evaluation results with a different number of
data points. Using 200 data points yields similar evaluation
results and relative comparisons as using 1000 data points
and the deviation across different data splits is small. We
used the ENUM prompt type on the HellaSwag dataset. For
CAPE, we used 8 augmented prompts. We reported the
means and standard deviations across 3 data split seeds for
the results with 200 data points.

# data Method Acc ↑ ECE ↓ AUROC ↑ Brier ↓

200 BASE 0.597±0.015 0.312±0.011 0.673±0.008 0.327±0.009
CAPE 0.737±0.013 0.096±0.007 0.732±0.015 0.175±0.008

1000 BASE 0.602 0.302 0.683 0.318
CAPE 0.743 0.084 0.742 0.172

temperature Tp = 1 and the fixed adjusting temperature
T ′
p = 10 for the ENUM prompt type.

E.5. Full Results for Reference

We include the full results of Table 1 in Table 8.

F. Analysis
F.1. Ensemble Ambiguity as a Selection Criteria

Given the large space of possible prompt augmentations,
how we pick a subset to serve as our prompt ensemble? In
their pioneering work, Krogh & Vedelsby (1994) propose
an “ambiguity decomposition” for ensembles, which de-
composes the MSE of the ensemble (Brier score) as a the
sum of the mean individual classifier error and the ensemble
“ambiguity” or variance. In Fig. 10, we see that we can
use ambiguity to guide our prompt selection in an unsuper-
vised manner. These figures were formed by subsampling
ensembles of 8 from a stratified sample of various ensem-
ble compositions. We considered the following ensemble
compositions: 8 different option permutations, 4 different
option permutations and 2 template paraphrases, 2 different
option permutations and 4 template paraphrases, and finally,
8 template paraphrases. From each, we sampled various
ensembles of size 8 to apply to the entire dataset, and plot-
ted the ambiguity against the ECE and the accuracy. We
see that ensembles with larger ambiguity tend to be better
calibrated and more accurate. This suggests using ambigu-
ity as a selection criteria for ensemble composition. Note
that, for purposes of this experiment/ablation, the stratified
sampling approach constrains the ensemble composition,
thereby reducing ambiguity—in our main experiments, we
use 8 template paraphrases and 8 option permutations within
each ensemble in order to maximize ambiguity.

(a) BASE

(b) CAPE

Figure 6: Calibration plots of BASE and CAPE on
MMLU. For both the default temperature (Tp = 1) and
the fixed adjusting temperature (T ′

p = 10), applying CAPE
consistently enhances calibration. The ENUM prompt was
used and 8 augmented prompts were applied for CAPE.
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Table 8: Full Results of Table 1 on MC tasks. CAPE consistently and significantly improves model calibration on MC
tasks with varying degrees of temperature scaling (Kadavath et al., 2022). Tp = 1 is the default temperature, T ′

p is the
adjusted temperature tuned on the MMLU dataset, and T ∗

p is the optimal temperature tuned on each dataset independently.
The selected T ∗

p s are recorded as two tuples for each dataset with the first tuple for ENUM and the second for ITEM, the first
element in each tuple is for BASE and the second for CAPE. For CAPE, 8 augmented prompts are applied. For BASE, the
means and standard deviations computed with the 8 individual prompts are reported.

Dataset Measure
ENUM, Tp = 1 ITEM, Tp = 1 ENUM, T ′

p = 10 ITEM, T ′
p = 5 ENUM, T ∗

p ITEM, T ∗
p

BASE CAPE BASE CAPE BASE CAPE BASE CAPE BASE CAPE BASE CAPE

MMLU
T ∗
p = (10, 10), (5, 5)

Acc ↑ 0.657 ± 0.022 0.675 0.669 ± 0.024 0.715 0.657 ± 0.022 0.705 0.669 ± 0.024 0.710 0.657 ±0.022 0.705 0.669 ± 0.024 0.710
ECE ↓ 0.302 ±0.026 0.135 0.274 ±0.028 0.105 0.081 ±0.017 0.068 0.094 ±0.021 0.057 0.081 ±0.017 0.068 0.094 ±0.021 0.057
AUROC ↑ 0.778 ±0.027 0.835 0.749 ±0.026 0.742 0.787 ±0.028 0.816 0.752 ±0.030 0.771 0.787 ±0.028 0.816 0.752 ±0.030 0.771
Brier ↓ 0.305 ±0.021 0.174 0.280 ±0.021 0.194 0.176 ±0.009 0.159 0.191 ±0.010 0.169 0.176 ±0.009 0.159 0.191 ± 0.010 0.169

HellaSwag
T ∗
p = (5, 0.25), (5, 2.5)

Acc ↑ 0.587 ± 0.046 0.735 0.583 ± 0.023 0.665 0.587 ± 0.046 0.730 0.583 ±0.023 0.660 0.587 ± 0.046 0.730 0.583 ±0.023 0.665
ECE ↓ 0.319 ± 0.037 0.103 0.332 ±0.022 0.086 0.124 ± 0.034 0.250 0.102 ±0.014 0.087 0.120 ± 0.045 0.084 0.102 ±0.014 0.057
AUROC ↑ 0.668 ± 0.039 0.700 0.684 ± 0.032 0.710 0.669 ± 0.032 0.695 0.694 ± 0.031 0.715 0.671 ± 0.032 0.696 0.694 ± 0.031 0.713
Brier ↓ 0.334 ± 0.037 0.185 0.339 ± 0.021 0.203 0.236 ± 0.024 0.245 0.221 ± 0.010 0.203 0.236 ±0.032 0.186 0.221 ± 0.010 0.195

WinoGrande
T ∗
p = (50, 20), (20, 20)

Acc ↑ 0.619±0.034 0.640 0.629±0.024 0.635 0.619±0.034 0.640 0.629±0.024 0.635 0.619±0.034 0.635 0.629±0.024 0.630
ECE ↓ 0.349±0.029 0.224 0.340±0.023 0.255 0.195±0.046 0.135 0.227±0.024 0.181 0.112±0.031 0.099 0.087±0.016 0.076
AUROC ↑ 0.565±0.040 0.596 0.612±0.029 0.632 0.546±0.047 0.585 0.612± 0.030 0.639 0.546±0.047 0.614 0.612±0.030 0.647
Brier ↓ 0.361±0.028 0.279 0.351±0.022 0.296 0.277±0.018 0.239 0.281±0.014 0.255 0.238±0.005 0.230 0.225± 0.005 0.221

TruthfulQA
T ∗
p = (50, 20), (10, 10)

Acc ↑ 0.416±0.048 0.440 0.466±0.035 0.460 0.416±0.048 0.415 0.466±0.035 0.470 0.416±0.048 0.415 0.466±0.035 0.465
ECE ↓ 0.542±0.048 0.294 0.483±0.035 0.340 0.286±0.026 0.213 0.268±0.035 0.206 0.120±0.021 0.104 0.104±0.016 0.092
AUROC ↑ 0.683±0.034 0.749 0.745±0.028 0.806 0.697±0.0326 0.802 0.749±0.026 0.780 0.651±0.018 0.790 0.745±0.022 0.775
Brier ↓ 0.533±0.045 0.290 0.470±0.032 0.308 0.298±0.018 0.224 0.281±0.019 0.236 0.235±0.012 0.199 0.209±0.007 0.197
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(a) BASE

(b) CAPE

Figure 7: Calibration plots of BASE and CAPE on Hel-
laswag. The effectiveness of CAPE in calibration varies
depending on the temperature settings. When Tp = 1,
CAPE demonstrates improved calibration. However, when
T ′
p = 10, the calibration performance could be negatively

affected, possibly because ensembling could “over-smooth”
the predictive distributions to be underconfident. The ENUM
prompt was used and 8 augmented prompts were applied
for CAPE.

(a) BASE

(b) CAPE

Figure 8: Calibration plots of BASE and CAPE on Wino-
grande. For both the default temperature (Tp = 1) and
the fixed adjusting temperature (T ′

p = 10), applying CAPE
consistently enhances calibration. The ENUM prompt was
used and 8 augmented prompts were applied for CAPE.
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(a) BASE

(b) CAPE

Figure 9: Calibration plots of BASE and CAPE on Truth-
fulQA. For both the default temperature (Tp = 1) and the
fixed adjusting temperature (T ′

p = 10), applying CAPE
consistently enhances calibration. The ENUM prompt was
used and 8 augmented prompts were applied for CAPE.

0.00 0.02 0.04 0.06 0.08 0.10 0.12 0.14 0.16
Variance of Top Prediction

0.30

0.25

0.20

0.15

0.10

0.05

Ch
an

ge
 in

 E
CE

 d
ue

 to
 E

ns
em

bl
in

g

Ensemble Ambiguity vs. ECE
Hellaswag
MMLU
Winogrande
TruthfulQA

0.000 0.025 0.050 0.075 0.100 0.125 0.150
Variance of Top Prediction

0.02

0.00

0.02

0.04

0.06

0.08

0.10

0.12

Ch
an

ge
 in

 A
cc

ur
ac

y 
du

e 
to

 E
ns

em
bl

in
g

Ensemble Ambiguity vs. Accuracy
Hellaswag
MMLU
Winogrande
TruthfulQA

Figure 10: Ensemble Ambiguity as a Selection Criteria.
Plotting the change in calibration error due to ensembling
(left), and the change in accuracy due to ensembling (right),
against the variance of the ensemble’s top prediction (ensem-
ble ambiguity), we see that ensembles with larger ambiguity
tend to be better calibrated and more accurate. This sug-
gests using ambiguity as a selection criteria for ensemble
composition.
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