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ABSTRACT

This paper considers an efficient video modeling process called Video Latent Flow
Matching (VLFM). Unlike prior works, which randomly sampled latent patches
for video generation, our method relies on current strong pre-trained image gener-
ation models, modeling a certain caption-guided flow of latent patches that can be
decoded to time-dependent video frames. We first speculate multiple images of a
video are differentiable with respect to time in some latent space. Based on this
conjecture, we introduce the HiPPO framework to approximate the optimal pro-
jection for polynomials to generate the probability path. Our approach gains the
theoretical benefits of the bounded universal approximation error and timescale
robustness. Moreover, VLFM processes the interpolation and extrapolation abil-
ities for video generation with arbitrary frame rates. We conduct experiments on
several text-to-video datasets to showcase the effectiveness of our method.

Pre-Trained Visual Decoder Trainable Flow Matching

Figure 1: Illustration of the working mechanism behind Video Latent Flow Matching.

1 INTRODUCTION

The rise of generative models has already demonstrated excellent performance in various fields
like image generation (Saharia et al., 2022; Rombach et al., 2022), text generation (Achiam et al.,
2023; Dubey et al., 2024; Liu et al., 2024), video generation (Brooks et al., 2024; Zheng et al.,
2024; Jin et al., 2024; Tian et al., 2024), etc. (Suno-AI). Among them, some of the most popular
algorithms - Flow Matching (Lipman et al., 2022; Liu et al., 2022), Diffusion (Ho et al., 2020;
Song et al., 2020a) and VAEs (Kingma & Welling, 2013), perform surprise generative capabilities,
however, requiring comprehensive computational resources for training. In particular, this efficiency
drawback harms the development of more successful text-to-video modeling (Brooks et al., 2024),
becoming a frontier challenge in the field of generative modeling.

The prior works about the generation from textual descriptions to realistic and coherent videos usu-
ally involve two strong pre-trained networks (Ho et al., 2022b; Zheng et al., 2024). One encodes
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input captions to rich embedding representations, and another one decodes from sequences of latent
patches (also considered as Gaussian noise) under the guidance of text embedding representations.
Although variants based on such modeling processes are already showing some fine initial results,
the necessity of training on large-scale models and datasets leads these studies to be undemocratic
(Brooks et al., 2024; Kong et al., 2024). In response to this issue, the motivation of this paper is to
design a novel algorithm to simplify the process of text-to-video modeling.

In this paper, we propose Video Latent Flow Matching (VLFM), which relies on the most advanced
pre-trained image generation models (we call visual decoder in the range of this paper) for their
extension in the field of text-to-video generation. In detail, we first introduce a deterministic in-
version algorithm (Song et al., 2020a; Lipman et al., 2022; Liu et al., 2022) to the visual decoder
and apply this inversion operation to the frames of all videos, obtaining a sequence including initial
latent patches from each video. Thus, the base of this paper is that a sequence of latent patches is a
time-dependent and caption-conditional flow, so-called Video Latent Flow. Therefore, we use Flow
Matching (Lipman et al., 2022; Liu et al., 2022) to model it.

Especially, we emphasize four advantages of our VLFM:

• Modeling efficiency. The modeling of VLFM only needs to fit N flows where N is the size
of the training dataset. This computational requirement is close to training a text-to-image
model.

• Optimal polynomial projections. We use discrete HiPPO LegS to generate the time-
dependent flow with provable optimal polynomial projections. The approximating error
decreases with the enlarging order of polynomials.

• Arbitrary frame rate. The reason for applying Flow Matching instead of other ap-
proaches is that it allows solving ODE with arbitrary time t. This further leads to precise
video generation with high frame rates.

• Interpolation and extrapolation. Besides, VLFM is suitable for interpolation and ex-
trapolation for high-precision video recovery and generation since its generalization per-
formance is confirmed in our theoretical part.

In summary, we make the following contributions:

• We give this paper’s preliminary as a theoretical background with several mild assumptions
in Section 3. Hence, we state the derivation of our VLFM in Section 4, which introduces
the HiPPO framework to online approximate the sequence of latent patches.

• The theoretical benefits of VLFM are shown in Section 5. We first utilize the universal
approximation theorem of Diffusion Transformer (DiT) to ensure an appropriate learner
for modeling. The approximation bound then is guaranteed. We also discuss how our
VLFM processes interpolation and extrapolation to real-world videos with an upper bound
on error and its timescale robustness.

• We validate our approach by conducting extensive experiments in Section 6. Our model
leverages DiT-XL-2 and is trained on a diverse collection of seven large-scale video
datasets, including OpenVid-1M, MiraData, and videos from Pixabay. The results demon-
strate strong performance in text-to-video generation, interpolation, and extrapolation,
achieving robust and reliable outputs with significant potential for real-world video ap-
plications.

2 RELATED WORK

This section briefly reviews three topics that are closely related to this work: Text-to-Video Genera-
tion, Flow Matching, and Theory in Transformer-Based Models.

Text-to-Video Generation. Text-to-video generation (Singer et al., 2022; Voleti et al., 2022;
Blattmann et al., 2023) is a specialized form of conditional video generation that aims to synthe-
size high-quality videos from textual descriptions. Recent advancements in this field have predom-
inantly leveraged diffusion models (Song et al., 2020b; Ho et al., 2020), which iteratively refine
video frames by learning to denoise samples from a normal distribution. This approach has proven
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effective in generating coherent and visually appealing videos. Training strategies for text-to-video
models vary widely. One common approach involves adapting pre-trained text-to-image models
by incorporating temporal modules, such as temporal convolutions and attention mechanisms, to
establish inter-frame relationships (Ge et al., 2023; An et al., 2023; Singer et al., 2022; Gu et al.,
2023; Guo et al., 2023). For instance, PYoCo (Ge et al., 2023) introduced a noise prior technique
and utilized the pre-trained eDiff-I model (Balaji et al., 2022) as a starting point. Alternatively,
some methods build on Stable Diffusion (Rombach et al., 2022), leveraging its accessibility and
pre-trained capabilities to expedite convergence (Blattmann et al., 2023; Zhou et al., 2022). How-
ever, this approach can sometimes result in suboptimal outcomes due to the inherent distributional
differences between images and videos. Another strategy involves training models from scratch
on combined image and video datasets (Ho et al., 2022a), which can yield superior results while
requiring intensive computationally.
Flow Matching. Flow Matching has emerged as a highly effective framework for generative mod-
eling, demonstrating significant advancements across various domains, including video generation.
Its simplicity and power have been validated in large-scale generation tasks such as image (Esser
et al., 2024), video (Polyak et al., 2024; Jin et al., 2024), speech (Le et al., 2024), audio (Vyas
et al., 2023), proteins (Huguet et al., 2024), and robotics (Black et al., 2024). Flow Matching origi-
nated from efforts to address the computational challenges associated with Continuous Normalizing
Flows (CNFs), where early methods struggled with simulation inefficiencies (Rozen et al., 2021;
Ben-Hamu et al., 2022). Modern Flow Matching algorithms (Lipman et al., 2022; Liu et al., 2022;
Albergo & Vanden-Eijnden, 2022; Neklyudov et al., 2023; Heitz et al., 2023; Tong et al., 2023; Cao
et al., 2025) have since evolved to learn CNFs without explicit simulation, significantly improv-
ing scalability. Recent innovations, such as Discrete Flow Matching (Campbell et al., 2024; Gat
et al., 2024), have further expanded the applicability of this framework, making it a versatile tool for
generative tasks.

Theory in Transformer-Based Models. Transformers have become a cornerstone in AI and are
widely used in different areas, especially in NLP (Natural Language Process) and CV (Computer
Vision). However, understanding the Transformers from a theoretical perspective remains an on-
going challenge. Several works have explored the theoretical foundations and computational com-
plexities of the Transformers (Tsai et al., 2019; Zandieh et al., 2023; Brand et al., 2023; Alman &
Song, 2024a; Song et al., 2024a; Chen et al., 2024b; Hu et al., 2024b; Munteanu et al., 2022; Song
et al., 2024b; Allen-Zhu et al., 2019; Deng et al., 2022; van den Brand et al., 2021; Song et al., 2021;
Alman et al., 2023; Deng et al., 2023b) focusing on areas such as efficient Transformers (Han et al.,
2023; Shi et al., 2024; Shen et al., 2021; LIU et al., 2021; Liang et al., 2024a;e;c; Li et al., 2024b;
Liang et al., 2024b; Chen et al., 2024c; Li et al., 2024c; Hu et al., 2024e;d;a; Wu et al., 2024a; Hu
et al., 2023; Alman & Song, 2024b; Gao et al., 2023), optimization (Deng et al., 2023a; Chu et al.,
2024), and the analysis of emergent abilities (Brown et al., 2020; Wei et al., 2022; Allen-Zhu & Li,
2023; Jiang, 2023; Xu et al., 2024b; Li et al., 2024a; Xu et al., 2024a; Chen et al., 2024a; Liang et al.,
2024d; Hu et al., 2024c; Wu et al., 2024b; Deng et al., 2024). Notably, (Zandieh et al., 2023; Daliri
et al., 2024) introduced an algorithm with provable guarantees for approximation of Transformers,
(Keles et al., 2023) proved a lower bound for Transformers based on the Strong Exponential Time
Hypothesis, and (Alman & Song, 2024a) provided both an algorithm and hardness results for static
Transformers computation.

3 PRELIMINARY

In this section, we formalize the background of this paper. We first introduce how we invert video
frames into some latent space using the strong pre-trained visual decoder in Section 3.1. We state
the definition of data and assumption in Section 3.2. Section 3.3 defines the main problem we aim
to address in this paper.

3.1 INVERTING VIDEO FRAMES TO LATENT PATCHES

Notations. We use D to denote the flattened dimension of real-world images. We use d to repre-
sent the dimension of latent patches. We introduce d0 as the dimension of Diffusion Transformers.
We utilize V : [0, T ] → RD to denote a video with T duration, where T is the longest time for each
video. We omit ∇ta(t) and a′(t) to denote taking differentiation to some function a(t) w.r.t. time t.
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We use integer s to denote the order of polynomials. The dimensional number of the text embedding
vector is given by integer ℓ.

Visual decoder. Here we denote the visual decoder D : Rd → RD satisfies that: For any flattened
image V ∈ RD, there is a unique u ∈ Rd such that D(u) = V . Then we say D is bijective.
Denote the reverse function of D as D−1 : RD → Rd. Note that this visual decoder D could be
considered as any generative algorithm practically, e.g. LDM (Rombach et al., 2022), DDIM (Song
et al., 2020a) and VAE (Kingma, 2013). We thus implement an inversion algorithm to invert video
frames to latent patches (Mokady et al., 2023). In particular, we define these latent patches here,
which depend on the detailed visual decoder. We consider these latent patches following arbitrary
distribution.

We abuse the notation u : [0, T ] → Rd to denote a sequence of latent patches of a video V . In detail,
we define: ut := D−1(Vt) for any t ∈ [0, T ].

Discretization for cases of real-world data. We denote ∆t as the minimal time unit of measure-
ment in the real world (Planck time). Hence, a video V with T duration can be divided into at most
T
∆t frames. We use matrix Ṽ ∈ R T

∆t×D to denote the compact form of discretized video. We use
Φ ∈ {0, 1} T

∆t×N for N ≤ T
∆t to denote the corresponding observation matrix due to the real-world

consideration, especially Φ⊤1 T
∆t

= 1N . Then the practical form of latent patches is given by:

ũτ := D−1([ΦṼ ]τ ) ∈ Rd,∀τ ∈ [N ]. (1)

3.2 DATA AND ASSUMPTIONS

Caption-video data pairs. Given a video distribution V , we introduce a text embedding state
distribution C that maps one-to-one to V . Then for any video data V ∼ V , c ∈ Rℓ is denoted as the
corresponding caption embedding state vector. We use Vc to denote the distribution that contains
video and embedding vector, such that (V, c) ∼ Vc.

Assumptions. Here we list several mild assumptions in this paper, such that:

• k-differentiable latent patches u. We assume u : [0, T ] → Rd is a differentiable function
with order k.

• Lipschitz smooth visual decoder function D. We assume the visual decoder function D
isL0-smooth for constantL0 > 0. Formally, it is: ∥D(x)−D(y)∥2 ≤ L0 ·∥x−y∥2,∀x, y ∈
Rd.

• Bounded entries of u. For each entry in latent patches u, we assume it is smaller than a
upper bound U for some constant U > 0.

• Caption-to-latency function. For any video-caption data (V, c) ∼ Vc, there exists a
function M : [0, T ]× Rℓ → RD satisfies Vt = Mt(c).

3.3 PROBLEM DEFINITION: MODELING TEXT-TO-LATENCY DATA FROM DISCRETIZED
VIDEO

In this paper, we consider the video modeling problems as follows:

• Given a video-caption pair (V, c) ∼ Vc, we obtain the data ũτ ∈ Rd,∀τ ∈ [N ] via Eq. (1),
we aim to find a algorithm that inputs a time t ∈ [0, T ] and encoded text state vector c ∈ Rℓ

and output a predicted latent patch ût ∈ Rd, it satisfies:

∥D(ût)− Vt∥p ≤ ϵ. (2)

Here we denote the error ϵ ≥ 0 and some ℓp norm metric.

Connecting the main problem to interpolation and extrapolation. Since the frames number
N of obtained video data may be greatly smaller than T/∆t. Recovering the continuous video
data T as completely as possible (both interpolation and extrapolation) would also be our goal in

4



216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2026

the range of this paper. Theoretically, we see such interpolation and extrapolation as one: given a
discrete video data ΦṼ ∈ RN×D, the sequence of latent patches is ũ = [ũ⊤1 , ũ

⊤
2 , · · · , ũ⊤N ] ∈ RN×d

using Eq. (1). The text embedding state vector c ∈ Rℓ could be ensured by some video-to-caption
methods. Our target is to find an algorithm that inputs ũ and outputs ûτ , τ ∈ [T/∆t] that meets the
requirement: ∥D(ûτ )− Ṽτ∥p ≤ ϵ for error ϵ ≥ 0 and some ℓp norm metric.

4 VIDEO LATENT FLOW MATCHING

In this section, we propose Video Latent Flow Matching (VLFM) in response to the main problem in
Section 3.3. Especially, we briefly review the HiPPO (high-order polynomial projection operators)
framework (Gu et al., 2020) in Section 4.1. We state the derivation of our VLFM based on the
popular flow matching approach (Lipman et al., 2022) in Section 4.2. Finally, we define the training
objective of the VLFM for efficient video modeling in Section 4.3.

4.1 HIPPO FRAMEWORK AND LEGS STATE SPACE MODEL

Given an input function f(t) ∈ R for t ≥ 0, we use f≤t to denote the cumulative history of f(t) for
every time t ≥ 0. We choose integer s ≥ 1 as the order of approximation. Then, any s-dimensional
subspace G of this function space is a suitable candidate for the approximation. Given a time-varying
measure family p(t) supported on (−∞, t), a sequence of basis functions G = span{gi(t)}si=1.
HiPPO (Gu et al., 2020) defines an operator that maps f to the optimal projection coefficients c :
R≥0 → Rs, such that:

g(t) := argmin
g∈G

∥f≤t − g∥p(t), g(t) =

s∑
i=1

ci(t) · gi(t).

We focus on the case where the coefficients c(t) have the form of a linear ODE satisfying ∇c(t) =
A(t)c(t) +B(t)f(t) for some A(t) ∈ Rs×s and B(t) ∈ Rs×1. This equation is now also known as
the state space model (SSM) in many works (Kantas et al., 2015; Gu et al., 2022; Gu & Dao, 2023;
Dao & Gu, 2024; Zhu et al., 2024; Xing et al., 2024; Ma et al., 2024; Ruan & Xiang, 2024; Sun
et al., 2024).

Discrete HiPPO-LegS. The setting of HiPPO-LegS defines the update rule of SSM and the discrete
version of A and B matrices, which are cτ+1 = (Is − A

τ )cτ + 1
τBfτ and:

Ai1,i2 =


√

(2i1 + 1)(2i2 + 1), if i1 > i2
i1 + 1, if i1 = i2
0, if i1 < i2

,

Bi1 =
√
2i1 + 1,∀i1, i2 ∈ [s].

4.2 CONDITIONAL VIDEO LATENT FLOW

Here, we emphasize that the core idea of VLFM is to approximate a continuous video distribution
from limited discrete video frame data utilizing the optimal high-order polynomial approximation.

Given a video-caption distribution Vc, then for any video-caption data pair (V, c) ∼ Vc, we obtain
the data ũτ ∈ Rd,∀τ ∈ [N ] via Eq. (1). We aim to define a time-dependent flow ψt(ũ) that takes
inputs ũ and time t, and could match ûτ for all time τ ∈ [N ]. Since û is discrete, HiPPO-LegS will
be the best solution to approximate the continuous data. We define the Video Latent Flow as:

ψt(ũ) := σt(ũ) · z + µt(ũ) ∈ Rd, (3)

where t ∈ [0, T ] and z ∼ N (0, Id), σ : [0, T ]×RN×d → R>0 denotes the time-dependent standard
deviation, where σ0(ũ) = 1, and σ T

N ·τ (ũ) = σmin, for all τ ∈ [N ] ; µ : [0, T ] × RN×d → Rd

denotes the time-dependent mean of Gaussian distribution, where µ0(ũ) = 0d, µ T
N ·τ (ũ) = ũτ , for

all τ ∈ [N ].

Especially, we define:

µt(ũ) := HNg(t), Hτ+1 := Hτ (Is −
1

τ
A)⊤ +

1

τ
ũτB

⊤,

5
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where g(t) := [
√

1
2P0(t),

√
3
2P1(t), · · · ,

√
2s−1

2 Ps−1(t)]
⊤ ∈ Rs, Pi(t),∀i ∈ [s] is Legendre poly-

nomials. We initialize H0 := 0d×s.

Besides, having a large scalar α > 0, we give:

σt(ũ) := (1− σmin) · [sin2(π
N

T
t) + exp(−αt)] + σmin.

4.3 TRAINING OBJECTIVE

Here we define a model function Fθ : Rd × Rℓ × [0, T ] → Rd with parameters θ to learn the
conditional video latent flow ψt(ũ) defined in Eq. (3). This function takes inputs of flow and time to
predict the vector field. The training objective is based on the Flow Matching framework (Lipman
et al., 2022), which aims to minimize the distance between the model’s prediction and the true
derivative of the flow.

The training objective of VLFM is defined as the expectation of the square ℓ2 norm of the difference,
which is:

L(θ) := E
z,t,(V,c)

[∥Fθ(ψt(ũ), c, t)−
d

dt
ψt(ũ)∥22],

where z ∼ N (0, Id), t ∼ Uniform[0, T ] and (V, c) ∼ Vc. By minimizing this objective, the model
learns to approximate the vector field that transports the initial noise distribution to the distribution
of video latent patches. Formally, we solve: minθ L(θ).
Close-form solution. Furthermore, the close-form solution could be easily obtained as follows:
Theorem 4.1. The minimum solution for function Fθ that takes z ∼ N(0, Id) and t ∼ Uniform[0, T ]

is Fθ(z, c, t) =
σ′
t(ũ)

σt(ũ)
(z − µt(ũ)) + µ′

t(ũ).

Proof. This proof follows from Theorem 3 in (Lipman et al., 2022).

5 THEORY

This section provides several theoretical advantages of our VLFM. The approximation theory in this
approach builds up based on using the Diffusion Transformer (DiT) (Peebles & Xie, 2023), which
is a popular choice in previous empirical and theoretical part generative model works (Chen et al.,
2023; Hu et al., 2024e), we briefly state its definitions in Section 5.1.

In addition, we provide the optimal polynomial projection guarantee and universal approximation
theorem (with DiT) of VLFM in Section 5.2 to confirm its approximating ability. Besides, Sec-
tion 5.3 gives error bound of interpolation and extrapolation, and Section 5.4 gives the supplemen-
tary property that VLFM’s timescale robustness, which indicates its theoretical advantages.

5.1 DIFFUSION TRANSFORMER (DIT)

Diffusion Transformer (Peebles & Xie, 2023) is a framework that utilizes Transformers (Vaswani
et al., 2017) as the backbone for Diffusion Models (Ho et al., 2020; Song et al., 2020a). Specifically,
a Transformer block consists of a multi-head self-attention layer and a feed-forward layer, with both
layers having a skip connection. We use TFh,m,r : Rn×d0 → Rn×d0 to denote a Transformer
block. Here h and m are the number of heads and head size in self-attention layer, and r is the
hidden dimension in feed-forward layer. Let X ∈ Rn×d0 be the model input. Then, we have the
model output: Attn(X) :=

∑h
i=1 Softmax(XW i

QW
i
K

⊤
X⊤)·XW i

VW
i
O
⊤
+X,where the projection

weights W i
K ,W

i
Q,W

i
V ,W

i
O ∈ Rd0×m. Moreover, FF(X) := ϕ(XW1 +1nb

⊤
1 ) ·W⊤

2 +1nb
⊤
2 +X,

where the projection weightsW1,W2 ∈ Rd0×r, bias b1 ∈ Rr, b2 ∈ Rd0 , and ϕ is usually considered
as the ReLU activated function.

In our work, we use Transformer networks with positional encoding E ∈ Rn×d0 . The transformer
networks are then defined as the composition of Transformer blocks:

T h,m,r
P = {fT : Rn×d0 → Rn×d0 | fT is a composition of blocks TFh,m,r’s}.

6
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For instance, the following is a Transformer network consisting L blocks and positional encoding

fT (X) = FF(L) ◦ Attn(L) ◦ · · ·FF(1) ◦ Attn(1)(X + E).

5.2 APPROXIMATION VIA DIT

Before we state the approximation theorem, we define a reshaped layer that transforms concatenated
input in flow matching into a length-fixed sequence of vectors. It is denoted as R : Rd+ℓ+1 →
Rn×d0 . Therefore, in the following, we give the theorem utilizing DiT to minimize training objective
L(θ) to arbitrary error.

Theorem 5.1 (Informal version of Theorem E.7). There exists a transformer network fT ∈ T 2,1,4
P

defining function Fθ(z, c, t) := fT (R([z
⊤, c⊤, t]⊤)) with parameters θ that satisfies L(θ) ≤ ϵ for

any error ϵ > 0.

Proof sketch of Theorem 5.1. Please refer to the proof of Theorem E.7 for the detailed analysis.

5.3 INTERPOLATION AND EXTRAPOLATION

Now, we theoretically discuss the approximating error of our VLFM in processing interpolation and
extrapolation. It is considered a recovery of the original idea data from limited sub-sampled obser-
vations. This analysis is achieved by splitting the error into three parts, which are: 1) approximating
error ϵ1 for HiPPO-LegS approximating the original data; 2) Gaussian error ϵ2 for the boundary of
Gaussian vector z; 3) interpolation and extrapolation error ϵ3 that represents the training and pre-
dicting the difference between using original idea data V and limited sub-sampled observations ΦṼ .
We state the results as follows:

Lemma 5.2 (Informal version of Lemma F.3). Denote failure probability δ ∈ (0, 0.1). Let the
flow ψt(ũ) defined in Eq. (3). Denote G := [g(∆t), g(2∆t), · · · , g(T )]⊤ ∈ R T

∆t×s and λ∗ :=
λmin(G) > 0 as the minimum eigenvalue of G. Choosing s = O(∆t

T log((∆t
T )1.5λ∗)). Denote ut =

D(Vt) for any t ∈ [0, T ]. Especially, we define: Part 1. Approximating error ϵ1 := O(T ks−k+1/2).
Part 2. Gaussian error ϵ2 := O(

√
d log(d/δ)). Part 3. Interpolation and extrapolation error

ϵ3 := Ud0.5
√

T
∆t −N ·exp(O( T

∆ts))/λ
∗. Then with a probability at least 1−δ, we have: ∥ψt(ũ)−

ut∥2 ≤ ϵ1 + ϵ2 + ϵ3.

Proof. Proof sketch of Lemma 5.2 This proof follows from its formal version in Lemma F.3

Having Lemma 5.2, the concise bound for solving Eq. (2) could be given below:

Theorem 5.3 (Informal version of Theorem F.4). Following Theorem 5.1, denote failure probability
δ ∈ (0, 0.1) and arbitrary error ϵ0 > 0. Then with a probability at least 1 − δ, the network in
Theorem 5.1 satisfies Eq. (2) with p = 2 and ϵ = ϵ0 + L0(ϵ1 + ϵ2 + ϵ3).

Proof sketch of Theorem 5.3. Please refer to Theorem F.4 for complete proofs.

Discussions. Following the results of Lemma 5.2 and Theorem 5.3, we thus derive few insights as
follows:

• Optimal choice of s: A trade-off between ϵ1 and ϵ3. As shown in the conditions of
Lemma 5.2, the larger value of the order of polynomials s helps to decrease approximating
error in the training dataset while also ruining the generalization ability.

• Stable visual decoder. Theorem 5.3 shows a small value of L0 (the stability and smooth-
ness of visual decoder), which is important for the error of interpolation and extrapolation
with an arbitrary frame rate.

• Information. Besides, a sub-linear factor
√

T
∆t −N , which stands for the obtained infor-

mation about the continuous video, is vital as well for interpolation and extrapolation on
data in distribution.
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5.4 TIMESCALE ROBUSTNESS

Following (Gu et al., 2020), we demonstrate that projection onto latent patches ut is robust to
timescales. Formally, the HiPPO-LegS operator is timescale-equivariant: dilating the input u does
not change the approximation coefficients HN . At the same time, this property is working in the
case of the discretized form ũ. We emphasize that it is crucial to use flow matching to model the
latent patches, where whatever the sampling method and frame rate are, it will not greatly harm
VLFM’s performance. We give its formal statement below.

Lemma 5.4 (Proposition 3 of (Gu et al., 2020), informal version of Lemma F.2). For any integer
scale factor β > 0, the frames of video Ṽτ is scaled to Ṽβτ for each τ ∈ [ T

∆t ], it doesn’t affect the
result of HN .

Proof. This lemma follows from Proposition 3 in (Gu et al., 2020).

T=0 T=0.5

(a) Video caption: A green turtle swimming under the
sea.

T=0 T=0.5

(b) Video caption: Viewing countless sunflowers in a
field from top.

Figure 2: Generated videos with different frame rates {8, 12, 16}.

Ground Truth Interpolation Interpolation InterpolationGround Truth Ground Truth Ground Truth

Ground Truth Ground Truth Ground Truth Ground TruthInterpolation Interpolation Interpolation

Ground Truth Ground Truth Extrapolation Extrapolation Extrapolation Extrapolation Extrapolation Extrapolation

Figure 3: Interpolation and Extrapolation of VLFM.

6 EXPERIMENTS

In this section, we conduct experiments to evaluate the effectiveness of our approach. We first
introduce our experimental setups in Section 6.1. Then, we demonstrate text-to-video generation
using VLFM and VLFM’s capability of generating videos in arbitrary frame rate in Section 6.2.
Furthermore, we showcase the strong performance of interpolation and extrapolation of VLFM in
Section 6.3. We also perform an ablation study to discuss the importance of the flow matching
algorithm in Section 6.4.
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6.1 SETUP

In our experiments, we apply Stable Diffusion v1.5 (Rombach et al., 2022) with DDIM scheduler
(Song et al., 2020a) as the visual decoder. Then, we use a DiT-XL-2 (Peebles & Xie, 2023) as the
backbone for the Flow Matching algorithm (Lipman et al., 2022; Liu et al., 2022), and the choice of
hyper-parameters of σt(ũ) is given by σmin = 0.01 and α = 10. We optimize the DiT using Grams
optimizer (Cao et al., 2024). We sample and combine 7 data resources for comprehensive training
and validation of our method. They are: OpenVid-1M (Nan et al., 2024), UCF-101 (Soomro et al.,
2012), Kinetics-400 (Kay et al., 2017), YouTube-8M (Abu-El-Haija et al., 2016), InternVid (Wang
et al., 2023), MiraData (Ju et al., 2024), and Pixabay (Pixabay).

6.2 TEXT-TO-VIDEO GENERATION WITH ARBITRARY FRAME RATE

In this section, we recover several videos with different frame rates using VLFM with given video
captions in the training dataset. We extract T = 0.5 for demonstrations as Figure 2. In detail, we
choose three frame rates for generation {8, 12, 16}. As shown, our VLFM performs fairly on text-
to-video generation while it requires very small resource that is equivalent to training a new flow
matching text-to-image video, which ensures its efficiency. Moreover, we give more results that are
generated by VLFM in Appendix A and B.

6.3 INTERPOLATION AND EXTRAPOLATION

In this section, we test the interpolation and extrapolation of VLFM. For the interpolation exper-
iment, the model is trained with 24 FPS and evaluated to generate video with 48 FPS. For the
extrapolation, the model is trained with the first video with T = 2 and evaluated to generate the
whole video with T = 8. Referring the results in Figure 3, this demonstrates the strong performance
of our VLFM under our mathematical guarantee of the error bound and its effectiveness.

6.4 ABLATION STUDY

In this section, we compared training VLFM with the Flow Matching algorithm and directly used
DiT to predict the latent patches to showcase the importance of utilizing flow matching in our
VLFM. We compare VLFM with and without flow matching by training the model with 1000 steps
and compare the PSNR (peak signal-to-noise ratio) before and after training for video recovery
with given captions in the training dataset. We state the results in Table 1. Denote MSE(x, y) as
the mean squared error function, the computation of the metric PSNR is given by (x, y ∈ Rr×r):
PSNR(x, y) := 10 log10(

r2

MSE(x,y) ).

Table 1: PSNR comparison (the greater, the better) of Flow Matching and direct generation from
DiT. We boldface the better scores.

ALGORITHM INITIAL PSNR↑ FINAL PSNR↑
FLOW MATCHING 57.20 61.18

DIRECT PREDICTING 9.81 53.77

7 CONCLUSION

This paper proposes Video Latent Flow Matching (VLFM) for efficient training of a time-varying
flow to approximate the sequence of latent patches of the obtained video. This approach is con-
firmed to enjoy theoretical benefits, including 1) universal approximation theorem via applying Dif-
fusion Transformer architecture and 2) optimal polynomial projections and timescale by introducing
HiPPO-LegS. Furthermore, we provide the generalization error bound of VLFM that is trained only
on the limited sub-sampled video to interpolate and extrapolate the whole ideal video. We evaluate
our VLFM on Stable Diffusion v1.5 with DDIM scheduler and the DiT-XL-2 model with datasets
OpenVid-1M, UCF-101, Kinetics-400, YouTube-8M, InternVid, MiraData, and Pixabay. The exper-
imental results validated the potential of our approach to become a novel and efficient training form
for text-to-video generation.
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We do not foresee direct ethical risks. We follow the ICLR Code of Ethics and affirm that all aspects
of this research comply with the principles of fairness, transparency, and integrity.

REPRODUCIBILITY STATEMENT

We ensure reproducibility on both theoretical and empirical fronts. For theory, we include all formal
assumptions, definitions, and complete proofs in the appendix. For experiments, we describe model
architectures, datasets, preprocessing steps, in the main text and appendix. Code and scripts are will
be released soon.
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Appendix
Roadmap. In the appendix, we present more experimental text-to-video generation results in Ap-
pendix A and more interpolation and extrapolation results in Appendix B. Then we introduce the pre-
liminary in Appendix C. Next, we illustrate Video Latent Flow Matching formally in Appendix D.
In Appendix E, we demonstrate the Diffusion Transformer. In Appendix F, we present the interpo-
lation and extrapolation of VLFM. In Section G, we discuss the limitation of this work. Finally, in
Section H, we provide a comprehensive discussion about the potential societal impact statement of
our work.

A MORE TEXT-TO-VIDEO GENERATION RESULTS

We give more text-to-video generation results with different frame rates to demonstrate the genera-
tive ability of our VLFM in Figure 4 and Figure 5.

T=0 T=0.5

(a) Video caption: Venus spinning in the space.

T=0 T=0.5

(b) Video caption: Steam is coming out of a pot.

Figure 4: Generated videos with different frame rates {8, 12, 16}.

B MORE INTERPOLATION AND EXTRAPOLATION RESULTS

We give more results of interpolation and extrapolation of VLFM in Figure 6.
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T=0 T=0.5

(a) Video caption: Flame flickers on the candles.

T=0 T=0.5

(b) Video caption: A train is running through the rail road near the coast.

Figure 5: Generated videos with different frame rates {8, 12, 16}.

Ground Truth Ground TruthInterpolation Interpolation Interpolation Ground TruthGround Truth

Ground Truth Ground Truth Extrapolation Extrapolation Extrapolation Extrapolation Extrapolation Extrapolation

Ground Truth Ground Truth Extrapolation Extrapolation Extrapolation Extrapolation Extrapolation Extrapolation

Figure 6: Interpolation and Extrapolation of VLFM.
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C PRELIMINARY

In the preliminary section, we first introduce our notation in the appendix in Appendix C.1. Then, in
Appendix C.2, we formally define the video-caption data and visual decoder. In Appendix C.3, we
define the latent patches. Appendix C.4 makes some assumptions which we will use later. Finally,
in Appendix C.5, we list some basic useful facts.

C.1 NOTATIONS

Notations. We use D to denote the flattened dimension of real-world images. We use d to repre-
sent the dimension of latent patches. We introduce d0 as the dimension of Diffusion Transformers.
We utilize V : [0, T ] → RD to denote a video with T duration, where T is the longest time for each
video. We omit ∇ta(t) and a′(t) to denote taking differentiation to some function a(t) w.r.t. time t.
We use integer s to denote the order of polynomials. The dimensional number of the text embedding
vector is given by integer ℓ.

C.2 VIDEO-CAPTION DATA

Definition C.1 (Video-caption data pairs and their distribution). We define a video caption distribu-
tion (V, c) ∼ Vc. Here, V : [0, T ] → RD is considered as a function and c ∈ Rℓ is the corresponding
text embedding vector.
Definition C.2. Given a video caption distribution Vc as Definition C.1. We denote ∆t as the
minimal time unit of measurement in the real world (Planck time). For any (V, c) ∼ Vc, we define
the discretized form of V : [0, T ] → RD, which is Ṽ ∈ R T

∆t×D, and its τ -th row ∀τ ∈ [ T
∆t ] is given

by:

Ṽτ := V∆t·τ ∈ RD.

Definition C.3 (Obtained data in real-world cases). If the following conditions hold:

• Given a video caption distribution Vc as Definition C.1.

• For any (V, c) ∼ Vc, we define the discretized form of video Ṽ as Definition C.2.

We define an observation matrix Φ : {0, 1}N× T
∆t . The obtained data in real-world cases then is

denoted as ΦṼ ∈ RN×D.
Definition C.4 (Bijective Visual Decoder). We define the visual decoder D : Rd → RD satisfies
that:

• For any flattened image V ∈ RD, there is a unique u ∈ Rd such that D(u) = V .

Then we say D is bijective. Denote the reverse function of D as D−1 : RD → Rd.

C.3 LATENT PATCHES DATA

Definition C.5. If the following conditions hold:

• Given a video caption distribution Vc as Definition C.1.

• For any (V, c) ∼ Vc, we define the discretized form of video Ṽ as Definition C.2.

• Let the observation matrix Φ : {0, 1}N× T
∆t be defined as Definition C.3.

• Let the visual decoder function D : Rd → RD be defined as Definition C.4.

We define the ideal version (without observation matrix) of the sequence of latent patches u ∈
R T

∆t×d, and its τ -th ∀τ ∈ [ T
∆t ] row is defined as follows:

uτ := D−1(Ṽτ ).
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Definition C.6. If the following conditions hold:

• Given a video caption distribution Vc as Definition C.1.

• For any (V, c) ∼ Vc, we define the discretized form of video as Definition C.2.

• Let the observation matrix Φ : {0, 1}N× T
∆t be defined as Definition C.3.

• Let the visual decoder function D : Rd → RD be defined as Definition C.4.

We define the real-world version (with observation matrix) of the sequence of latent patches ũ ∈
R T

∆t×d, and its τ -th ∀τ ∈ [N ] row is defined as follows:

ũτ := D−1
(
(ΦV )τ

)
.

C.4 ASSUMPTIONS

Assumption C.7. If the following conditions hold:

• Given a video caption distribution Vc as Definition C.1.

• For any (V, c) ∼ Vc, we define the discretized form of video as Definition C.2.

• Let the observation matrix Φ : {0, 1}N× T
∆t be defined as Definition C.3.

• Let the visual decoder function D : Rd → RD be defined as Definition C.4.

• Let the ideal version of the sequence of latent patches u ∈ R T
∆t×d be defined as Defini-

tion C.5.

We assume uτ is k-differentiable, there exists:

u(i)τ = lim
∆t→0

u
(i−1)
τ+1 − u

(i−1)
τ

∆t
,∀i ∈ [k], τ ∈ [

T

∆t
],

where, we use u(i)τ to denote the i-th derivation of u.
Assumption C.8. If the following conditions hold:

• Let the visual decoder function D : Rd → RD be defined as Definition C.4.

We assume the visual decoder function D is L0-smooth for constant L0 > 0, such that:

∥D(x)−D(y)∥2 ≤ L0∥x− y∥2,∀x, y ∈ Rd.

Assumption C.9. If the following conditions hold:

• Given a video caption distribution Vc as Definition C.1.

• For any (V, c) ∼ Vc, we define the discretized form of video as Definition C.2.

• Let the observation matrix Φ : {0, 1}N× T
∆t be defined as Definition C.3.

• Let the visual decoder function D : Rd → RD be defined as Definition C.4.

• Let the ideal version of the sequence of latent patches u ∈ R T
∆t×d be defined as Defini-

tion C.5.

We assume each entry in latent patches u is bounded by a constant U > 0.
Assumption C.10. If the following conditions hold:

• Given a video caption distribution Vc as Definition C.1.

• For any (V, c) ∼ Vc

For any (V, c) ∼ Vc, we assume there exists a function M : [0, T ]×Rℓ → RD satisfies Vt = Mt(c).
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C.5 BASIC FACTS

Fact C.11. For a variable x ∼ N (0, σ2), then with probability at least 1− δ, we have:

|x| ≤ Cσ
√
log(1/δ)

Fact C.12. For a PD matrix A ∈ Rd1×d2 with a positive minimum eigenvalue λmin(A) > 0, the
infinite norm of its pseudoinverse matrix A† is given by:

∥A†∥∞ ≤ 1

λmin(A)
.

Fact C.13. For two matrices A,B ∈ Rd1×d2 , we have:

∥A† −B†∥ ≤ Cmax{∥A†∥2, ∥B†∥2} · ∥A−B∥,

where C > 0 is some costant.

D VIDEO LATENT FLOW MATCHING

This section, we first introduce the HiPPO Framework and LegS in Appendix D.1. Then, we for-
mally define the video latent flow in Appendix D.2. Last, we introduce the training objective of
VLFM in Appendix D.3.

D.1 HIPPO FRAMEWORK AND LEGS

Definition D.1. We define matrix A ∈ Rs×s where its (i1, i2)-th entry ∀i1, i2 ∈ [s] is given by:

Ai1,i2 =


√
(2i1 + 1)(2i2 + 1), if i1 > i2

i1 + 1, if i1 = i2
0, if i1 < i2

.

Definition D.2. We define matrix B ∈ Rs×1 where its i1-th entry ∀i1 ∈ [s] is given by:

Bi1 =
√
2i1 + 1.

Definition D.3. If the following conditions hold:

• Let matrix A ∈ Rs×s be defined as Definition D.1.

• Let matrix B ∈ Rs×1 be defined as Definition D.2.

We initialize a matrix H0 = 0d×s. Then we define:

Hτ := Hτ−1(Is −
1

τ
A)⊤ +

1

τ
ũτB

⊤,∀τ ∈ [N ].

Definition D.4. We define g(t) := [
√

1
2P0(t),

√
3
2P1(t), · · · ,

√
2s−1

2 Ps−1(t)]
⊤ ∈ Rs,

wherePi(t),∀i ∈ [s] is some polynomials. Especially, g(t) satisfies:

• Define G :=


g(∆t)⊤

g(2∆t)⊤

...
g(T )⊤

, λmin(G) > 0. Here, λmin is the function that outputs the

minimal eigenvalue of the input matrix.

• |Gτ,i| ≤ exp(O( T
∆ts)) for any τ ∈ [ T

∆t ], i ∈ [s].
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D.2 VIDEO LATENT FLOW

Definition D.5. If the following conditions hold:

• Given a video caption distribution Vc as Definition C.1.

• For any (V, c) ∼ Vc, we define the discretized form of video as Definition C.2.

• Let the observation matrix Φ : {0, 1}N× T
∆t be defined as Definition C.3.

• Let the visual decoder function D : Rd → RD be defined as Definition C.4.

• Let the ideal version of the sequence of latent patches u ∈ R T
∆t×d be defined as Defini-

tion C.5.

• Let the real-world version of the sequence of latent patches ũ ∈ RN×d be defined as
Definition C.6.

• Let HN ∈ Rd×s be defined as Definition D.3.

• Let the function of polynomials g(t) be defined as Definition D.4.

We define the time-dependent mean of Gaussian distribution as follows:

µt(ũ) := HNg(t) ∈ Rd

Definition D.6. If the following conditions hold:

• Given a video caption distribution Vc as Definition C.1.

• For any (V, c) ∼ Vc, we define the discretized form of video as Definition C.2.

• Let the observation matrix Φ : {0, 1}N× T
∆t be defined as Definition C.3.

• Let the visual decoder function D : Rd → RD be defined as Definition C.4.

• Let the ideal version of the sequence of latent patches u ∈ R T
∆t×d be defined as Defini-

tion C.5.

• Let the real-world version of the sequence of latent patches ũ ∈ RN×d be defined as
Definition C.6.

• Let HN ∈ Rd×s be defined as Definition D.3.

• Let the function of polynomials g(t) be defined as Definition D.4.

• Denote σmin > 0.

• Given a hyper-parameter α > 0.

We define the time-dependent standard deviation as follows:

σt(ũ) := (1− σmin) · [sin2(π
N

T
t) + exp(−αt)] + σmin ∈ R≥0.

Lemma D.7. If the following conditions hold:

• Given a video caption distribution Vc as Definition C.1.

• For any (V, c) ∼ Vc, we define the discretized form of video as Definition C.2.

• Let the observation matrix Φ : {0, 1}N× T
∆t be defined as Definition C.3.

• Let the visual decoder function D : Rd → RD be defined as Definition C.4.

• Let the ideal version of the sequence of latent patches u ∈ R T
∆t×d be defined as Defini-

tion C.5.
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• Let the real-world version of the sequence of latent patches ũ ∈ RN×d be defined as
Definition C.6.

• Let HN ∈ Rd×s be defined as Definition D.3.

• Let the function of polynomials g(t) be defined as Definition D.4.

• Let the time-dependent mean of Gaussian distribution µt(ũ) be defined as Definition D.5.

• Let the time-dependent standard deviation σt(ũ) be defined as Definition D.6.

• Denote σmin > 0.

• Given a hyper-parameter α > 0.

Then for any α > 0, we have:

|σ
′
t(ũ)

σt(ũ)
| ≤ 1− σmin

σmin
.

Proof. This result can be obtained following very simple algebras.

Definition D.8. If the following conditions hold:

• Given a video caption distribution Vc as Definition C.1.

• For any (V, c) ∼ Vc, we define the discretized form of video as Definition C.2.

• Let the observation matrix Φ : {0, 1}N× T
∆t be defined as Definition C.3.

• Let the visual decoder function D : Rd → RD be defined as Definition C.4.

• Let the ideal version of the sequence of latent patches u ∈ R T
∆t×d be defined as Defini-

tion C.5.

• Let the real-world version of the sequence of latent patches ũ ∈ RN×d be defined as
Definition C.6.

• Let HN ∈ Rd×s be defined as Definition D.3.

• Let the function of polynomials g(t) be defined as Definition D.4.

• Let the time-dependent mean of Gaussian distribution µt(ũ) be defined as Definition D.5.

• Let the time-dependent standard deviation σt(ũ) be defined as Definition D.6.

• Denote σmin > 0.

• Sample z ∼ N (0, Id).

We define the Video Latent Flow:

ψt(ũ) := σt(ũ) · z + µt(ũ) ∈ Rd.

D.3 TRAINING OBJECTIVE

Definition D.9. If the following conditions hold:

• Given a video caption distribution Vc as Definition C.1.

• For any (V, c) ∼ Vc, we define the discretized form of video as Definition C.2.

• Let the observation matrix Φ : {0, 1}N× T
∆t be defined as Definition C.3.

• Let the visual decoder function D : Rd → RD be defined as Definition C.4.
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• Let the ideal version of the sequence of latent patches u ∈ R T
∆t×d be defined as Defini-

tion C.5.

• Let the real-world version of the sequence of latent patches ũ ∈ RN×d be defined as
Definition C.6.

• Let HN ∈ Rd×s be defined as Definition D.3.

• Let the function of polynomials g(t) be defined as Definition D.4.

• Let the time-dependent mean of Gaussian distribution µt(ũ) be defined as Definition D.5.

• Let the time-dependent standard deviation σt(ũ) be defined as Definition D.6.

• Denote σmin > 0.

• Sample z ∼ N (0, Id).

• Define a model function Fθ : Rd × Rℓ × [0, T ] → Rd with parameters θ.

We define the training objective of Video Latent Flow Matching as follows:

L(θ) := E
z∼N (0,Id),t∼Uniform[0,T ],(V,c)∼Vc

[∥Fθ(ψt(ũ), c, t)−
d

dt
ψt(ũ)∥22].

Theorem D.10. If the following conditions hold:

• Given a video caption distribution Vc as Definition C.1.

• For any (V, c) ∼ Vc, we define the discretized form of video as Definition C.2.

• Let the observation matrix Φ : {0, 1}N× T
∆t be defined as Definition C.3.

• Let the visual decoder function D : Rd → RD be defined as Definition C.4.

• Let the ideal version of the sequence of latent patches u ∈ R T
∆t×d be defined as Defini-

tion C.5.

• Let the real-world version of the sequence of latent patches ũ ∈ RN×d be defined as
Definition C.6.

• Let HN ∈ Rd×s be defined as Definition D.3.

• Let the function of polynomials g(t) be defined as Definition D.4.

• Let the time-dependent mean of Gaussian distribution µt(ũ) be defined as Definition D.5.

• Let the time-dependent standard deviation σt(ũ) be defined as Definition D.6.

• Denote σmin > 0.

• Sample z ∼ N (0, Id).

• Define a model function Fθ : Rd × Rℓ × [0, T ] → Rd with parameters θ.

• Let the training objective L(θ) be defined as Definition D.9.

Then the minimum solution for function Fθ that takes z ∼ N(0, Id) and t ∼ Uniform[0, T ] is:

Fθ(z, c, t) =
σ′
t(ũ)

σt(ũ)
(z − µt(ũ)) + µ′

t(ũ).

Proof. This proof follows from Theorem 3 in (Lipman et al., 2022).
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E DIFFUSION TRANSFORMER

In this section, we first define the Diffusion Transformer in Appendix E.1. Moreover, we introduce
the Approximation via DiT in Appendix E.2.

E.1 DEFINITIONS

Definition E.1 (Multi-head self-attention). Given h-heads query, key, value and output projection
weights {(W i

Q,W
i
K ,W

i
V ,W

i
O)}hi=1 ⊂ Rd0×4m with each weight is a d0 ×m shape matrix, for an

input matrix X ∈ Rn×d0 , we define a multi-head self-attention computation as follows:

Attn(X) :=

h∑
i=1

Softmax(XW i
QW

i
K

⊤
X⊤) ·XW i

VW
i
O

⊤
+X ∈ Rn×d0 .

Definition E.2 (Feed-forward). Given two projection weights W1,W2 ∈ Rd0×r and two bias vec-
tors b1 ∈ Rr and b2 ∈ Rd0 , for an input matrix X ∈ Rn×d0 , we define a feed-forward computation
as follows:

FF(X) := ϕ(XW1 + 1nb
⊤
1 ) ·W⊤

2 + 1nb
⊤
2 +X ∈ Rn×d0 .

Here, ϕ is an activation function and usually be considered as ReLU.

Definition E.3 (Transformer block). Given a set of model weights θh,m,r =
{{(W i

Q,W
i
K ,W

i
V ,W

i
O)}hi=1, W1,W2, b1, b2}, the computation of a transformer block is given

by the combination of multi-head self-attention computation (Definition E.1) and feed-forward
computation (Definition E.2). Formally, for an input matrix X ∈ Rn×d0 , we define:

TFθh,m,r (X) := FF ◦ Attn(X) ∈ Rn×d0

Definition E.4 (Reshape Layer). We define the reshape network R : Rd → Rn×d0 .

Definition E.5 (Complete transformer network). We consider a transformer network as a composi-
tion of a transformer block (Definition E.3) with model weight θh,m,r, which is:

T h,m,r

:= {F : Rn×d0 → Rn×d0

| F is a composition of Transformer blocks TFθh,m,r ’s with positional embedding E ∈ Rn×d0}

We especially say θh,m,r is the model weight that contains h heads, m hidden size for attention and
r hidden size for feed-forward. See Example E.6 for further explanation of the sequence-to-sequence
mapping F .

Example E.6. We here give an example for the sequence-to-sequence mapping F in Definition E.5:
Denote L as the number of layers in some transformer network. For an input matrix X ∈ Rn×d, we
use E ∈ Rn×d to denote the positional encoding, we then define:

F(X) := TFL ◦ TFL−1 ◦ · · · ◦ TF2 ◦ TF1(X + E)

E.2 APPROXIMATION VIA DIT

Theorem E.7. If the following conditions hold:

• Given a video caption distribution Vc as Definition C.1.

• For any (V, c) ∼ Vc, we define the discretized form of video as Definition C.2.

• Let the observation matrix Φ : {0, 1}N× T
∆t be defined as Definition C.3.

• Let the visual decoder function D : Rd → RD be defined as Definition C.4.

• Let the ideal version of the sequence of latent patches u ∈ R T
∆t×d be defined as Defini-

tion C.5.
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• Let the real-world version of the sequence of latent patches ũ ∈ RN×d be defined as
Definition C.6.

• Let HN ∈ Rd×s be defined as Definition D.3.

• Let the function of polynomials g(t) be defined as Definition D.4.

• Let the time-dependent mean of Gaussian distribution µt(ũ) be defined as Definition D.5.

• Let the time-dependent standard deviation σt(ũ) be defined as Definition D.6.

• Denote σmin > 0.

• Sample z ∼ N (0, Id).

• Define a model function Fθ : Rd × Rℓ × [0, T ] → Rd with parameters θ.

• Let the training objective L(θ) be defined as Definition D.9.

Then there exists a transformer network fT ∈ T 2,1,4
P defining function Fθ(z, c, t) :=

fT (R([z
⊤, c⊤, t]⊤)) with parameters θ that satisfies L(θ) ≤ ϵ for any error ϵ > 0.

Proof. Following Assumption C.10, we first denote Ṽτ = M̃τ (c) for any τ ∈ [ T
∆t ] to discretize

function M. Then we have:

ũτ = D−1
(
(ΦM̃(c))τ

)
. (4)

where this step follows from Definition C.3 and Definition C.4.

Besides, we also have:

µt(ũ) = HNg(t)

=
(
HN−1(Is −

1

N
A)⊤ +

1

N
ũNB

⊤
)
g(t)

=

(
HN−2

(
(Is −

1

N − 1
A)⊤ +

1

N − 1
ũNB

⊤
)
(Is −

1

N
A)⊤ +

1

N
ũNB

⊤

)
g(t)

=

(
H0

N∏
τ=1

(Is −
1

τ
A)⊤ +

N∑
τ=1

( τ−1∏
τ ′=1

(Is −
1

τ ′
A)⊤

)
· 1

N + 1− τ
ũN+1−τB

⊤

)
g(t) (5)

where these steps follow from Definition D.5 and simple algebras.

Recall Fθ(z, c, t) := fT (R([z
⊤, c⊤, t]⊤)), we choose n = 1, then there is a target function given

by:

fT ([z
⊤, c⊤, t])

=
σ′
t(ũ)

σt(ũ)
(z −

(
H0

N∏
τ=1

(Is −
1

τ
A)⊤ +

N∑
τ=1

( τ−1∏
τ ′=1

(Is −
1

τ ′
A)⊤

)
· 1

N + 1− τ
ũN+1−τB

⊤

)
g(t))

+

(
H0

N∏
τ=1

(Is −
1

τ
A)⊤ +

N∑
τ=1

( τ−1∏
τ ′=1

(Is −
1

τ ′
A)⊤

)
· 1

N + 1− τ
ũ′N+1−τB

⊤

)
g(t)

+

(
H0

N∏
τ=1

(Is −
1

τ
A)⊤ +

N∑
τ=1

( τ−1∏
τ ′=1

(Is −
1

τ ′
A)⊤

)
· 1

N + 1− τ
ũN+1−τB

⊤

)
g′(t)

=
σ′
t(ũ)

σt(ũ)
(z

−

(
H0

N∏
τ=1

(Is −
1

τ
A)⊤ +

N∑
τ=1

( τ−1∏
τ ′=1

(Is −
1

τ ′
A)⊤

)
· 1

N + 1− τ
D−1

(
(ΦM̃(c))N+1−τ

)
B⊤

)
g(t))
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+

(
H0

N∏
τ=1

(Is −
1

τ
A)⊤ +

N∑
τ=1

( τ−1∏
τ ′=1

(Is −
1

τ ′
A)⊤

)
· 1

N + 1− τ

(
D−1

(
(ΦM̃(c))N+1−τ

))′
B⊤

)
g(t)

+

(
H0

N∏
τ=1

(Is −
1

τ
A)⊤ +

N∑
τ=1

( τ−1∏
τ ′=1

(Is −
1

τ ′
A)⊤

)
· 1

N + 1− τ
D−1

(
(ΦM̃(c))N+1−τ

)
B⊤

)
g′(t)

where the first step follows the combination of Theorem D.10 and Eq. (5), and the differentiablity
of ũτ is ensure by Assumption C.7, the second step follows from Eq. (4).

Following Theorem 2 and Theorem 3 in (Yun et al., 2019), we thus complete the proof by obtaining
the theorem result.

F INTERPOLATION AND EXTRAPOLATION

This section first introduce properties of HiPPO-LegS in Appendix F.1. Also, we bound the error of
VLFM in Appendix F.2.

F.1 HIPPO-LEGS PROPERTIES

Lemma F.1 (Proposition 6 in (Gu et al., 2020)). If the following conditions hold:

• Given a video caption distribution Vc as Definition C.1.

• For any (V, c) ∼ Vc, we define the discretized form of video as Definition C.2.

• Let the observation matrix Φ : {0, 1}N× T
∆t be defined as Definition C.3.

• Let the visual decoder function D : Rd → RD be defined as Definition C.4.

• Let the ideal version of the sequence of latent patches u ∈ R T
∆t×d be defined as Defini-

tion C.5.

• Let the real-world version of the sequence of latent patches ũ ∈ RN×d be defined as
Definition C.6.

• Let HN ∈ Rd×s be defined as Definition D.3.

• Let the function of polynomials g(t) be defined as Definition D.4.

• Let the time-dependent mean of Gaussian distribution µt(ũ) be defined as Definition D.5.

• Let the time-dependent standard deviation σt(ũ) be defined as Definition D.6.

• Denote σmin > 0.

• Sample z ∼ N (0, Id).

• Define a model function Fθ : Rd × Rℓ × [0, T ] → Rd with parameters θ.

• Let the training objective L(θ) be defined as Definition D.9.

• Let Assumptions C.7, Assumption C.8, Assumption C.10 and Assumption C.9 hold.

Then we have:

∥µτ ·∆t(ũ)− ũτ∥2 = O(tks−k+1/2)

Proof. This lemma is a re-statement of Proposition 6 in (Gu et al., 2020).

Lemma F.2 (Proposition 3 in (Gu et al., 2020)). If the following conditions hold:

• Given a video caption distribution Vc as Definition C.1.
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• For any (V, c) ∼ Vc, we define the discretized form of video as Definition C.2.

• Let the observation matrix Φ : {0, 1}N× T
∆t be defined as Definition C.3.

• Let the visual decoder function D : Rd → RD be defined as Definition C.4.

• Let the ideal version of the sequence of latent patches u ∈ R T
∆t×d be defined as Defini-

tion C.5.

• Let the real-world version of the sequence of latent patches ũ ∈ RN×d be defined as
Definition C.6.

• Let HN ∈ Rd×s be defined as Definition D.3.

• Let the function of polynomials g(t) be defined as Definition D.4.

• Let the time-dependent mean of Gaussian distribution µt(ũ) be defined as Definition D.5.

• Let the time-dependent standard deviation σt(ũ) be defined as Definition D.6.

• Denote σmin > 0.

• Sample z ∼ N (0, Id).

• Define a model function Fθ : Rd × Rℓ × [0, T ] → Rd with parameters θ.

• Let the training objective L(θ) be defined as Definition D.9.

• Let Assumptions C.7, Assumption C.8, Assumption C.10 and Assumption C.9 hold.

For any integer scale factor β > 0, the frames of video Ṽτ is scaled to Ṽβτ , it doesn’t affect the
result of HN (Definition D.3).

Proof. This lemma is a re-statement of Proposition 3 in (Gu et al., 2020).

F.2 ERROR BOUNDS

Lemma F.3. If the following conditions hold:

• Given a video caption distribution Vc as Definition C.1.

• For any (V, c) ∼ Vc, we define the discretized form of video as Definition C.2.

• Let the observation matrix Φ : {0, 1}N× T
∆t be defined as Definition C.3.

• Let the visual decoder function D : Rd → RD be defined as Definition C.4.

• Let the ideal version of the sequence of latent patches u ∈ R T
∆t×d be defined as Defini-

tion C.5.

• Let the real-world version of the sequence of latent patches ũ ∈ RN×d be defined as
Definition C.6.

• Let HN ∈ Rd×s be defined as Definition D.3.

• Let the function of polynomials g(t) and matrix G be defined as Definition D.4.

• Denote 1/λ∗ := λmin(G) > 0.

• Let the time-dependent mean of Gaussian distribution µt(ũ) be defined as Definition D.5.

• Let the time-dependent standard deviation σt(ũ) be defined as Definition D.6.

• Denote σmin > 0.
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• Sample z ∼ N (0, Id).

• Define a model function Fθ : Rd × Rℓ × [0, T ] → Rd with parameters θ.

• Let the training objective L(θ) be defined as Definition D.9.

• Let Assumptions C.7, Assumption C.8, Assumption C.10 and Assumption C.9 hold.

• δ ∈ (0, 1).

• Choosing s = O(∆t
T log((∆t

T )1.5/1/λ∗)).

Particularly, we define:

• ϵ1 := O(T ks−k+1/2).

• ϵ2 := O(
√
d log(d/δ)).

• ϵ3 := 1/λ∗Ud0.5
√

T
∆t −N · exp(O( T

∆ts)).

Then with a probability at least 1− δ, we have:

∥ψt(ũ)− ut∥2 ≤ ϵ1 + ϵ2 + ϵ3.

Proof. We have:

∥ψt(ũ)− ut∥2 = ∥σt(ũ) · z + µt(ũ)− ut∥2
≤ ∥σt(ũ) · z∥2 + ∥µt(ũ)− ut∥2
≤ ∥z∥2 + ∥µt(ũ)− ut∥2
≤ O(

√
d log(d/δ)) + ∥µt(ũ)− ut∥2

= ϵ2 + ∥µt(ũ)− ut∥2
where the first step follows from Definition D.8, the second step follows from triangle inequality,
the third step follows from σt(ũ) ≤ 1,∀t ∈ [0, T ] by some simple algebras and Definition D.6, the
fourth step follows from the union bound of Gaussian tail bound (Fact C.11), the last step follows
from the definition of ϵ2.

Then we get:

∥µt(ũ)− ut∥2 = ∥HNg(t)− ut∥2
= ∥(M ·G)†(M · u) · g(t)− ut∥2

≤ ∥(M ·G)†(M · u) · g(t)−G†u · g(t)∥2 +O((
T

∆t
)ks−k+1/2)

≤ ∥((M ·G)†(M · u)−G†u∥2 · ∥g(t)∥2 +O((
T

∆t
)ks−k+1/2)

= ∥((M ·G)†(M · u)−G†u∥2 · ∥g(t)∥2 + ϵ1

where the first step follows from Definition D.5, the second step follows from optimal error of
solving ∥MGH − Mu∥22, pseudoinverse matrix (M · G)† ∈ Rd× T

∆t and defining a mask M =

diag(m) where m := {0, 1} T
∆t and ⟨m,1 T

∆t
⟩ = N , the third step follows from the optimal error of

solving ∥GH − u∥22, pesdueo-inverse matrix G† ∈ Rd× T
∆ and Lemma F.1, the fourth step follows

from Cauchy–Schwarz inequality and the last step follows from the definition of ϵ2.

Next, we can show that:

∥(M ·G)†(M · u)−G†u∥2 = ∥(M ·G)†(M · u)−G†(M · u) +G†(M · u)−G†u∥2
≤ ∥(M ·G)†(M · u)−G†(M · u)∥2 + ∥G†(M · u)−G†u∥2
≤ ∥(M ·G)† −G†∥∥M · u∥2 + ∥G†∥∥(M · u)− u∥2
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where the first step follows from simple algebras, the second step follows from triangle inequality,
the last step follows from Cauchy–Schwarz inequality.

We first give:

∥G†∥ ≤ 1/λ∗
√

T

∆t
· s (6)

where this step follows from Definition D.4, Fact C.12 and the definition of ℓ2 norm.

And:

∥u∥2 ≤ U

√
T

∆t
· d

where this step follows from Assumption C.9 and the definition of ℓ2 norm.

Also:

∥G∥ ≤
√

T

∆t
· s exp(O(

T

∆t
· s)) (7)

where this step follows from Definition D.4 and the definition of ℓ2 norm.

Besides, we have:

∥(M ·G)† −G†∥ ≤ max{∥G†∥, ∥M ·G†∥} · ∥(M ·G)† −G†∥

≤
1/λ∗

2
( T
∆ts)

1.5
√

T
∆t −N · exp(O( T

∆ts))

1− 1/λ∗ T
∆ts
√

T
∆t −N · exp(O( T

∆ts))

where the first step follows from Fact C.13, simple algebras, and Cauchy–Schwarz inequality, the
second step follows from Eq. (6), Eq. (7), Definition D.4 and simeple algebras.

Combining all results, we get:

∥((M ·G)†(M · u)−G†u∥2

≤
1/λ∗

2
( T
∆ts)

1.5
√

T
∆t −N · exp(O( T

∆ts))

1− 1/λ∗ T
∆ts
√

T
∆t −N · exp(O( T

∆ts))
· U
√

T

∆t
Nd+ 1/λ∗

√
T

∆t
−N · U

√
T

∆t
· d

≤ 1/λ∗Ud0.5
√

T

∆t
(
T

∆t
−N) ·

(1/λ∗( T
∆t )

1.5N0.5s1.5 · exp(O( T
∆ts))

1− 1/λ∗( T
∆t )

1.5s · exp(O( T
∆ts))

+ 1
)

≤ 1/λ∗Ud0.5
√

T

∆t
(
T

∆t
−N) · 1

1− 1/λ∗( T
∆t )

1.5s · exp(O( T
∆ts))

≤ O
(
1/λ∗Ud0.5

√
T

∆t
(
T

∆t
−N)

)
where the second and third steps follow from simple algebras, the last step follows from plugging
the choice of s.

Finally, we have:

∥((M ·G)†(M · u)−G†u∥2 · ∥g(t)∥2 ≤ O
(
1/λ∗Ud0.5

√
T

∆t
(
T

∆t
−N)

)
·
√
s exp(O(

T

∆t
s))

≤ 1/λ∗Ud0.5
√

T

∆t
−N · exp(O(

T

∆t
s))

= ϵ3

these steps follow from simple algebras, Definition D.4 and the definition of ϵ3.

Theorem F.4. If the following conditions hold:
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• Given a video caption distribution Vc as Definition C.1.

• For any (V, c) ∼ Vc, we define the discretized form of video as Definition C.2.

• Let the observation matrix Φ : {0, 1}N× T
∆t be defined as Definition C.3.

• Let the visual decoder function D : Rd → RD be defined as Definition C.4.

• Let the ideal version of the sequence of latent patches u ∈ R T
∆t×d be defined as Defini-

tion C.5.

• Let the real-world version of the sequence of latent patches ũ ∈ RN×d be defined as
Definition C.6.

• Let HN ∈ Rd×s be defined as Definition D.3.

• Let the function of polynomials g(t) and matrix G be defined as Definition D.4.

• Denote 1/λ∗ := λmin(G) > 0.

• Let the time-dependent mean of Gaussian distribution µt(ũ) be defined as Definition D.5.

• Let the time-dependent standard deviation σt(ũ) be defined as Definition D.6.

• Denote σmin > 0.

• Sample z ∼ N (0, Id).

• Define a model function Fθ : Rd × Rℓ × [0, T ] → Rd with parameters θ.

• Let the training objective L(θ) be defined as Definition D.9.

• Let Assumptions C.7, Assumption C.8, Assumption C.10 and Assumption C.9 hold.

• δ ∈ (0, 1).

Particularly, we define:

• ϵ1 := O(T ks−k+1/2).

• ϵ2 := O(
√
d log(d/δ)).

• ϵ3 := 1/λ∗Ud0.5
√

T
∆t −N · exp(O( T

∆ts)).

Then with a probability at least 1− δ, we have:

∥D(z +

∫ t

0

Fθ(z, c, t
′)dt′)− ut∥2 ≤ ϵ0 + L0(ϵ1 + ϵ2 + ϵ3).

Proof. This proof follows from the combination of Assumption C.8, Theorem E.7 and Lemma F.3.

G LIMITATION

Since the motivation of this paper focuses on simply and efficiently solving the main goal, it lacks
enough exploring each design and how it affects the empirical performance, providing little insights
for the follow-ups. Hence, we leave these comprehensive explorations, and its more concise theo-
retical working mechanism behind as future works. On the other hand, although VLFM simplifies
the video modeling process, it necessitates additional computational consumption concerning the
combination of the visual decoder part and the flow matching part at the inference stage. We also
leave such exploration to a more efficient inference method as a future direction.
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H IMPACT STATEMENT

This work introduces Video Latent Flow Matching (VLFM), a novel and efficient framework for
text-to-video generation that significantly reduces training complexity by leveraging pre-trained im-
age models and polynomial-based flow matching. It achieves both interpolation and extrapolation
with theoretical guarantees, enabling precise video generation at arbitrary frame rates. Our method
is empirically validated on seven large-scale datasets and demonstrates strong potential for democra-
tizing high-quality video synthesis with minimal resources. We do not foresee any negative potential
societal impact of this work.

LLM USAGE DISCLOSURE

LLMs were used only to polish language, such as grammar and wording. These models did not
contribute to idea creation or writing, and the authors take full responsibility for this paper’s content.
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