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ABSTRACT

Wavelet Shrinkage typically selects only a small proportion of large coefficients
via soft or hard thresholding, since the strong signal composed by these coef-
ficients has more semantic meaning than others. Typical examples include the
object’s shape in the image or the burst activity in the low β band in Parkinson’s
Disease. However, it has been found that there also exists weak signal that should
not be ignored. Such a weak signal refers to the set of small coefficients, which
in the above examples resp. correspond to the texture of an image or the non-
burst/tonic activity in Parkinson’s Disease. Although it is not as interpretable as
the strong signal, ignorance of it may miss information in signal reconstruction.
Existing methods either suffered from failing to disentangle the strong signal apart
with a too small threshold parameter, or inaccurate estimation of the whole sig-
nal (i.e., strong and weak signals) due to the bias/errors in the strong signal and
over-smoothing of the weak signal. To resolve these problems, we propose a Split-
ted Wavelet Differential Inclusion, which is provable to achieve better estimation
on both the strong signal and the whole signal than Wavelet Shrinkage. Specifi-
cally, equipped with an ℓ2 splitting mechanism, we obtain the solution path from
the differential inclusion of a couple of parameters, of which the sparse one can
remove bias in estimating the strong signal and the dense parameter can addition-
ally capture the weak signal with the ℓ2 shrinkage. The utility of our method is
demonstrated by the improved accuracy in a numerical experiment and moreover
the additional findings of tonic activity in Parkinson’s Disease.

1 INTRODUCTION

Wavelet Shrinkage Donoho & Johnstone (1994; 1995; 1998); Donoho (1995), which has been
widely applied in image denoising Goyal et al. (2020), electrocardiogram (ECG) data denoising
Priya et al. (2016) and brain fMRI (Functional magnetic resonance imaging) data analysis Wang
et al. (2015), projected the noisy data into the Wavelet domain, followed by a hard or soft thresh-
olding method to force noisy coefficients to zeros. To select the threshold parameter, many meth-
ods have been proposed, such as Universal (σ

√
2 log n) Donoho & Johnstone (1994), Minimaxi

Verma & Verma (2012), SureShrink Donoho & Johnstone (1995), Bayesian Shrinkage Do & Vet-
terli (2002); Simoncelli & Adelson (1996); JOHNSTONE & SILVERMAN (2005), non-parametric
shrinkage Antoniadis & Fan (2001); Gao (1998) such as SureLet Luisier et al. (2007) and Neigh
Shrink Sure Chen et al. (2005).

Most of these methods only selected a small proportion of large coefficients since they are assumed
to be all the information contained in the signal Atto et al. (2011). However, it has been found
in many applications that there may exist small coefficients Donoho & Johnstone (1994), such as
texture/contour in image denoising Atto et al. (2011), the non-burst activity in Parkinson’s Dis-
easeKhawaldeh et al. (2020), procedural bias/enlarged gray matter voxels in Alzheimer’s Disease
Sun et al. (2017). In this paper, the signal composed by such small (resp. large) coefficients is called
the weak (resp. strong) signal. Although the strong signal typically has more semantic meaning and
is more interpretable than the weak signal, ignorance of the latter can lead to the loss of information
in reconstruction. For example, although elevated energy in the β band (8-35 Hz) of subthalamic nu-
cleus local field potentials is a significant biomarker in the Parkinson’s study, the non-burst activity
was also found to contain more information on motor prediction Khawaldeh et al. (2020); Brittain &
Brown (2014); Mallet et al. (2008). Therefore, it is desired to identify the strong signal as a semantic
part and meanwhile estimate the whole signal (including both strong and weak signals) well.
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For these tasks, existing methods with too small or too large thresholds either suffer from failing to
eliminate noise components in estimating the strong signal or ignoring the weak signal part in esti-
mating the whole signal. Specifically, the methods with too large threshold values (e.g., Universal,
or Minimaxi) can eliminate the noise components, but they can induce large bias/errors in estimating
the strong signal; moreover, they can over-smooth the weak signal part with small coefficients. On
the other, the methods with smaller thresholds (e.g. SureShrink Donoho & Johnstone (1995)) may
fail to eliminate noise components in estimating the strong signal for interpretation.

To resolve these problems, we in this paper propose a differential inclusion method with an ℓ2 split-
ting mechanism, dubbed as Splitted Wavelet Differential Inclusion, which is provable to achieve
better estimation than Wavelet Shrinkage on both the strong signal and the whole signal. Specifi-
cally, we can obtain a regularized solution path from the differential inclusion of a couple of sparse
and dense parameters introduced via the ℓ2 splitting mechanism, where the sparse parameter can
estimate the strong signal without bias via early stopping while the dense parameter can additionally
capture the weak signal via ℓ2 shrinkage. We can show that our method has a unique closed-form
solution path. To extend to a non-orthogonal Wavelet Decomposition, we provide a discretization
method that can effectively generate the solution path. The utility and effectiveness of our method
are demonstrated in a numerical experiment and the effectiveness study of Dopaminergic medica-
tion in Parkinson’s Disease. Particularly, the signal recovered by our method is more significantly
correlated to the medication, which can be explained by the non-burst activity found by our method.

To summarize, our contributions are listed as follows:

• We propose the Splitted Wavelet Differential Inclusion, which involves a dual parameter to
simultaneously estimate the strong and the whole signal.

• We theoretically show that the closed-form solution path can achieve better estimation than
Wavelet Shrinkage on both the strong signal and the whole signal. For the strong signal,
our estimation is bias-free while for the whole signal, our dense parameter can accurately
capture the weak signal via an ℓ2 shrinkage.

• We apply our method to neural signal recognition in Parkinson’s Disease and identify the
non-burst activity that has been recently found to be also responsive to the medication.

2 RELATED WORK

Wavelet Shrinkage. The threshold selection has been a challenging problem for Wavelet shrink-
age methods, which can be traced back to Donoho & Johnstone (1994) that proposed a universal
selection parameter σ

√
2 log n where n denotes the length of the signal and σ denotes the noise

level. Although it can eliminate noise components, it can induce biases/errors in estimation. To re-
solve this problem, many non-adaptive and adaptive methods have been proposed, such as Minimaxi
Verma & Verma (2012), SureShrinkage Donoho & Johnstone (1995) that leveraged the Jame-Stein
Shrinkage method for more accurate estimation, Bayesian shrinkage Do & Vetterli (2002); Simon-
celli & Adelson (1996); JOHNSTONE & SILVERMAN (2005); ter Braak (2006), non-parametric
shrinkage Antoniadis & Fan (2001); Gao (1998) including SureLet Luisier et al. (2007) and Neigh
Shrink Sure Chen et al. (2005), etc.

Some methods above relied on the strongly sparsity assumption Atto et al. (2011), i.e., the signal (or
each sub-band) is a representation of only a small proportion of strong signal coefficients with large
magnitude. As introduced next, there may exist small/weak coefficients in many applications (such
as image denoising, and neuroimaging analysis) and should not be ignored.

Weak Signal Coefficients refer to those small coefficients that have been found in many appli-
cations, such as textures, contours in image denoising Atto et al. (2011), procedural bias/enlarged
gray matter voxels in Alzheimer’s Disease Sun et al. (2017), the non-burst component in dopamine-
dependent motor symptoms with Parkinson’s patients Khawaldeh et al. (2020); Brittain & Brown
(2014); Mallet et al. (2008). In these applications, these weak signal coefficients may not be as inter-
pretable/of semantic meaning as strong signal coefficients (e.g., lesion voxels that are pathologically
related to Alzheimer’s Disease or burst component in Parkinson’s Disease analysis); however, the
ignorance of these weak signals due to over-smoothing may lose information in image reconstruc-
tion or prediction power in disease diagnosis. Therefore, it is desired to i) disentangle the strong

2



signals as the semantic component of the signal, and meanwhile ii) accurately estimate the whole
signal by capturing the weak signal coefficients.

Limitations of Wavelet Shrinkage and Our Specifications. Existing Wavelet Shrinkage meth-
ods either suffer from failing to disentangle strong signals apart because of small thresholds (e.g.,
SureShrink), or ignoring weak signals because of large thresholds (e.g., Minimaxi or Universal√
2 log n). In contrast, the splitting mechanism in our Wavelet Differential Inclusion introduces a

couple of sparse and dense parameters, which can respectively estimate the strong signal without
bias and the whole signal by capturing weak signal coefficients. Note that our method is motivated
by but different from the differential inclusion method in signal recovery Osher et al. (2005; 2016).
For the reason of coherence and space limit, we leave the review of these methods in Appx. A.

3 PRELIMINARY

Problem Setup. Suppose we observe data {yi}ni=1 with n = 2J , such that yi = f(ti) + ei with
e1, ..., en ∼i.i.d N (0, σ2), ti := i

n and f denoting the ground-truth signal we would like to recover.
One may construct a wavelet transformation to decompose the observed signal y into an orthogonal
wavelet basis, including stationary wavelet transform (SWT), discrete wavelet transform (DWT),
etc. For discrete wavelet transform, we can obtain a wavelet matrix W ∈ Rn×n depending on the
type of wavelet filters (such as Coiflets, Symlets, Daubechies Cohen et al. (1993), Beylkin Beylkin
et al. (1991), Morris minimum-bandwidth Morris & Peravali (1999)), the number of vanishing mo-
ments M and the coarsest resolution level L.

With such W , we can obtain the coefficients θ up to the linear transformation of noise:

ω = θ∗ + ε, ω = Wy, ε = We ∼ N (0, σ2In),

when W is orthogonal. Here, we assume the θ∗ contains three types of coefficients:

1. Strong Signal Coefficients. S := {i : |θ∗i | > 2σ(1 + a)
√
2 log n} for some constant a > 0.

2. Weak Signal Coefficients. T := {i : 1 < |θ∗i | = o(
√
2 log n)}.

3. Null. N := {i : θ∗i = 0}.

Wavelet Shrinkage via Soft-Thresholding. The Wavelet Shrinkage method in Donoho & John-
stone (1994); Donoho (1993); Donoho & Johnstone (1995) proposed the soft-thresholding estimator
θ̂i = η(ωi, λ) = sign(ωi)max(|ωi| − λ, 0) for some λ > 0, followed by inverse wavelet transfor-
mation to recover the signal f̂ := W−1η(ω, λ). To remove the noise components, the Donoho &
Johnstone (1994) selected λ ∼ O(

√
2 log n), which is provable to be minimax optimal.

Proposition 3.1 (Theorem 2 in Donoho & Johnstone (1994)). Denote θ̂(λn) := η(ω, λn), then the
minimax threshold λ∗

n is λ∗
n := arg infλ≥0 supθ∗ E[∥θ̂(λn)− θ∗∥22] ∼

√
2 log n.

Although λ ∼
√
2 log n can effectively remove noise with high probability, it suffers from two

limitations: i) the estimation of strong signal coefficients is biased due to non-zero λ; ii) it ignores
the weak signal coefficients, which leads to additional errors in estimating the whole signal θ∗.
Specifically, for i), although the threshold

√
2 log n can identify strong coefficients S by removing

others with high probability, it can induce bias in estimating θ∗,s. This is shown by the following
result, which states that once we identify S, the optimal threshold value in estimating θ∗,s is λ = 0.
Proposition 3.2. We have 0 = arg infλ sup|θ∗

i |≥1 E(η(ωi, λ)− θ∗i )
2.

Remark 3.3. This result shows that in terms of population error, the best optimal threshold value is
also 0 for weak coefficients. However, it does not mean we should select λ = 0 to estimate θ∗. First,
it fails to remove noise components in N . Moreover, even for weak signals, we will show that with
an appropriate non-zero, we can achieve better estimation with a high probability.

Besides for ii), the λ ∼
√
2 log n fails to account for weak signal coefficients that are o(

√
2 log n). To

achieve a more accurate estimation, the Donoho & Johnstone (1995) proposed SureShrink (Stein’s
unbiased estimate of risk), which can reduce biases in θ∗. However, it can mistakenly induce noise
and weak signals into estimation, thus failing to disentangle the strong signal (interpretable part)
apart. This may be undesired in many applications, e.g., bust component identification in Biomarker
identification in Parkinson’s patients, or lesion features identification in Alzheimer’s Disease.
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In summary, existing methods either suffer from bias of strong signal coefficients and ignorance of
weak coefficients in estimating θ∗; or fail to disentangle the strong signal θ∗,s apart.

4 SPLITTED WAVELET DIFFERENTIAL INCLUSION

We introduce a new method from the perspective of differential inclusion, which can simultaneously
identify the strong signal θ∗,s (in Sec. 4.1) and accurately estimate the whole signal θ∗ (in Sec. 4.2).

4.1 WAVELET DIFFERENTIAL INCLUSION FOR THE STRONG SIGNAL θ∗.s

In this section, we introduce our method to remove the bias in estimating the strong signal θ∗,s, by
considering the following differential inclusion:

ρ̇(t) = −∇θℓ(θ(t)) = ω − θ(t), (1a)
ρ(t) ∈ ∂∥θ(t)∥1, (1b)

where we denote ℓ(θ) := 1
2∥ω − θ∥22 and ρ(0) = θ(0) = 0. We call Eq. 1 as Wavelet Differential

Inclusion (WDI). Note that it is a special form of the Bregman Inverse Scale Space (ISS) Osher et al.
(2016) when the design matrix is set to In in the linear model, which can be viewed as a continuous
dynamics of Bregman Iteration proposed to Osher et al. (2005) in image denoising. Thanks to the
identity matrix design, the differential inclusion of Eq. 1 in the Wavelet scenario has a closed-form
solution θ(t), which can illustrate the effectiveness of bias removal in estimating θ∗.

Specifically, starting from ρ(0) = 0, Eq. 1 generates a unique solution path of θ(t), in which more
elements become non-zeros as t grows as shown in the following proposition:
Proposition 4.1. The solution of differential inclusion in Eq. 1 is θj(t) = ωj(t) for t ≥ 1

|ωj | ; and
= 0 otherwise for each j.
Remark 4.2. To explain the effect of bias removal, we compare Eq. 1 with Wavelet Shrinkage,
whose solution θ(t) (t = 1

λ ) is equivalent to the Lasso estimator: 1
2∥ω − θ∥22 + 1

t ∥θ∥1, whose
solution satisfies ρ(t)

t = ω − θ(t) with ρ(0) = θ(0) = 0. When |ρj(t)| becomes non-zero, then
we have θj(t) = ωj − ρj(t))

t , where ρj(t))
t can induce the bias. As a contrast, when |ρj(t)| = 1, its

gradient ρ̇j(t) = 0, which can give θj(t) = ωj and hence can remove the bias.

As shown in Prop. D.1, t plays a similar role as 1/λ in disentangling the strong signal from others.
However, it is interesting to note that different from the Wavelet Shrinkage, the solution θj(t) =
ωj = η(ωj , λ = 0) is without additional threshold parameter! In contrast to θj(λ =

√
2 log n) :=

η(ωj ,
√
2 log n), this estimator can remove the bias caused by λ. Therefore, our differential inclusion

can not only remove noise and weak components when t is large enough but also can estimate θ∗,s

without bias induced by λ that is necessary for removing bias in Wavelet Shrinkage. Equipped with
bias removal of Eq. 1, we can achieve a smaller ℓ2 error than the Wavelet Shrinkage.
Theorem 4.3. Denote θ∗,smin := mini∈S |θ∗i | and s := |S|. Then at τ̄ := 1/((1 + a)

√
2 log n) and n

is large enough such that a
2

√
2 log n > θ∗j for j ̸∈ S. Then with probability at least 1 − 2n−4a2 −

max
(
exp

(
−sλ2/8

)
, n−(1+a)2/4

)
, we have

∥θ(τ̄)− θ∗,s∥2 < ∥η(ω, λ)− θ∗,s∥2 ∀λ > 0,where θ(t) is the solution of Eq. 1. (2)

Remark 4.4. The proof of Thm. 4.3 is left to Appx. D. We will show that the τ̄ can disentangle S
from other components since maxj |εj | < (1 + a)

√
2 log n with high probability.

4.2 WAVELET DIFFERENTIAL INCLUSION WITH ℓ2-SPLITTING FOR THE WHOLE SIGNAL θ∗

In this section, we proceed to introduce our method to additionally capture the weak signal, so as to
well estimate the whole signal θ∗. To achieve this goal, we propose the Splitted Wavelet Differential
Inclusion (SWDI), which generates a solution path of θs(t) ∈ Rn (to estimate θ∗,s) coupled with
a dense parameter θ(t) (to estimate θ∗) introduced by an ℓ2 splitting term. We will show that the
θs(t) maintains the same bias removal property as WDI in Eq. 1; moreover, the dense parameter can
additionally capture the weak signal with the ℓ2 shrinkage induced by the ℓ2 splitting mechanism.
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Specifically, we consider the loss ℓρ(θ, θs) := 1
2∥ω − θ∥22 +

ρ
2∥θ − θs∥22, where ρ

2∥θ − θs∥22 with
ρ > 0 denotes the ℓ2 splitting term that introduces a couple of parameters, which is expected to
simultaneously estimate the strong signal θ∗,s and the whole signal θ∗ well. This is achieved by the
following differential inclusion:

0 = −∇θℓρ(θ, θ
s) = ω − θ(t) + ρ(θs(t)− θ(t)), (3a)

ρ̇(t) = −∇θsℓρ(θ, θ
s) = ρ(θ(t)− θs(t)), (3b)

ρ(t) ∈ ∂∥θs(t)∥1, (3c)

where ρ(0) = θ(0) = θs(0). Similar to the WDI in Eq. 1, when t is large enough, it can remove
the noise and weak signal components, i.e., T ∪ N to identify the strong signal component in θs;
while the θ is always dense, i.e., all elements are non-zeros, which can hence additionally capture
the weak components. Formally, Eq. 3 can generate an unique solution path:
Proposition 4.5. The solution of differential inclusion in Eq. 3 is{

θj(t) = θsj (t) = ωj , t ≥ (1 + 1/ρ)/(ωj)

θj(t) =
ωj

1+ρ , θ
s
j (t) = 0 t < (1 + 1/ρ)/(ωj)

∀j.

Prop. 4.5 suggests that when t is large enough, the noise and weak components can be removed
in θs and meanwhile, the θs, which is the same to the solution in WDI in Eq. 1, can estimate the
strong components without bias. On the other hand for the dense parameter θ(t), it keeps the strong
components in θs and meanwhile estimates the weak signals with ωj

1+ρ via the ℓ2 shrinkage.

To explain, note that starting from ρj(0) = 0, when |ρj(t)| = 1 then we have ρ̇j(t) = 0 and
hence θsj (t) = θj(t) according to Eq. 3b, which further has θj(t) = ωj according to Eq. 3a. When
|ρj(t)| < 1 for some j, then we have θsj = 0 and Eq. 3a gives θj =

ωj

1+ρ . Indeed, the θj(t) for t > tj

given by Eq. 3a is the minimizer of 1
2 (ωj(t)− θj(t))

2 + ρ
2 (θj(t))

2, where ρ
2 (θj)

2 can be viewed as
an ℓ2 regularization of θj . Such an ℓ2 shrinkage, which is equivalent to the maximum a posteriori
probability (MAP) estimate with the Gaussian prior ρ ∼ N (0, 1), is similar to the shrinkage effect in
the Jame-Stein Estimator which estimates the posterior mean and variance. With such a shrinkage,
we show in the following that (θs(t), θ(t)) can estimate the θ∗,s and θ∗ well.

Theorem 4.6. Denote θ∗max,T := maxi∈T |θ∗i | and n is large enough such that θ∗max,T < a0
√
log n

for some 0 < a0 < 1. Then for (θ(t), θs(t)) in Eq. 3, if n > 41/(1−a0) at τ̄ := (1 + 1
ρ )/((1 +

a)
√
2 log n), the following holds with probability at least

1− 2n−4a2

−max
(
n−s/32, n−(1+a)2/16

)
− exp

(
−
∑
i∈T

(θ∗i )
2
/72

)
− exp

(
−n1−a0

∑
i∈T (θ

∗
i )

2

24(2 + logn)

)

− exp

(
−|T |

8
max

(
1,
∑
i∈T

(θ∗i )
2/|T | − 1

))
− exp

(
−|N |

8
max

(
1,
∑
i∈T

(θ∗i )
2)/|T | − 1

))
:

1. Strong Signal Recovery. For the strong signal coefficients θ∗,sS ,

∥θs(τ̄)− θ∗,S∥2 = ∥θS(τ̄)− θ∗,sS ∥2 < ∥η(ω, λ)− θ∗,s∥2, ∀λ > 0. (4)

2. Weak Signal Recovery. For the weak signal coefficients θ∗T , there exists ∞ > ρ∗ > 0 such that

∥θ(τ̄)T − θ∗T ∥2 < ∥0− θ∗T ∥2 = ∥θ∗T ∥2 i.e., ρ = ∞ Shrinkage to 0;
∥θ(τ̄)T − θ∗T ∥2 < ∥ωT − θ∗T ∥2 = ∥εT ∥2 i.e., ρ = 0 No Shrinkage.

This bound similarly holds for θ∗Sc , where Sc := T ∪N contains the weak and null components.

3. Whole Signal Recovery. For θ∗, under the same ρ∗ in item 2, we have

∥θ(τ̄)− θ∗∥2 < ∥η(ω, λ)− θ∗∥2, ∀λ ≥
√
log n.

Item 1 inherits the property in Thm. 4.3 for WDI in Eq. 1. Item 2 means we can better estimate
the weak components θ∗T (and also the noise and weak components together, i.e., θ∗T∪N ) via ℓ2
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shrinkage. Finally, item 3 means our Splitted WDI is more accurate than the Wavelet Shrinkage
method with λ ∼

√
2 log n. Although this conclusion may not hold for λ = o(

√
log n), the Wavelet

Shrinkage with these λ’s fails to remove noise in identifying θ∗,s.

Selecting stopping time τ̄ and ρ∗. The τ̄ := (1 + 1/ρ)/((1 + a)
√
2 log n) involves an unknown

parameter a, which is used to define the level of strong signal coefficients θ∗,s Donoho & Johnstone
(1994). Empirically, we can set it to a small constant 1 ≥ a ≥ 0 so as to remove other components
and identify as many strong components as possible. For ρ∗, we will show in Appx. E that ρ∗ :=
(∥εT∪N∥22 +

∑
j∈T θ∗j εj)(∥θT ∥22 +

∑
j∈T θ∗j εj) ∼ n/(|T |mean(θ∗T )). This term is approximate

O(1) if we believe that the weak signal is dense enough (i.e., |T |
n ∼ O(1)), e.g., non-burst activity

in the low β band should be dense enough to be responsive to the medication.

Solution path generation via Linearization. One can generate a solution path according to
Prop. 4.5. Here we consider another method to generate (θs(t), θ(t))t via linearization proposed
in Yin et al. (2008). Specifically, we consider the following differential inclusion:

θ̇(t)

κ
= −∇θℓρ(θ, θ

s) = ω − θ(t) + ρ(θs(t)− θ(t)), (5a)

v̇(t) = −∇θsℓρ(θ, θ
s) = ρ(θ(t)− θs(t)), (5b)

v(t) ∈ ∂

(
∥θs(t)∥1 +

1

2κ
∥θs∥22

)
= ρ(t) +

θs(t)

κ
, (5c)

where we introduce an ℓ2 norm 1
2κ∥θ

s∥22 for discretization. We show in Appx. E that Eq. 5 also has
a closed form solution (θs,κ(t), θκ(t)), which is continuous w.r.t. κ and converges to (θs(t), θ(t))
in Eq. 3 as κ → ∞. Therefore, Thm. 4.6 still holds in Eq. 5 when κ is large enough. Moreover,
1
2κ∥θ

s∥22 enables to implement gradient descent to generate a discrete solution path:

θk+1 = θk + κδ (ω − θ(k) + ρ(θs(k)− θ(k))) , (6a)
v(k + 1) = v(k) + δρ(θ(t)− θs(t)), (6b)
θs(k + 1) = κη(v(k + 1), 1), (6c)

where δ denotes the step size. We show in Appx. F with sufficiently large κ, Thm. 4.6 still holds in
Eq. 6 as long as δ < 1/(κ(1 + ρ)). Note that such a discrete corresponds to a general form where
the Wavelet matrix may not be orthogonal i.e., ℓρ(θ, θs) := 1

2∥y −Wθ∥22 +
ρ
2∥θ − θ2∥22, in which

the closed-form solution may not be obtained.

5 NUMERICAL EXPERIMENTS

In this section, we conduct numerical experiments to demonstrate the effectiveness of our method in
estimating both strong signals and the whole signal.

Data Synthesis. We set n = 1024 and the 1-d discrete wavelet transform (DWT) matrix W ∈ Rn×n

as the Daubechies 6 with level 5, which is orthogonal. For the coefficients θ∗ ∈ Rn, we respectively
set the strong signal set and the weak signal set as S := {1, 4, 7, ..., 199} and T := {401, 403, ..., n}.
We set a = 0.3 and θ∗i = 2(1+a)

√
2 log (n) if i ∈ S; = 2 if i ∈ T ; and = 0 otherwise. We generate

the sequence f = Wθ∗+ε with ε1, ..., εn ∼i.i.d N (0, 1). We denote θ∗,s as the strong signal vector
such that θ∗,si = θ∗i for i ∈ S and = 0 otherwise. We measure the ℓ2 error of θ∗,s and θ∗. To remove
the effect of randomness, we repeat 20 times.

Implementations of Our method and Compared Baselines. We compare with the following
threshold value methods that estimate θ̂ := η(W ′f, λ), which includes i) SURE Donoho & John-
stone (1995) that selects λ based on Stein’s Unbiased Risk Estimate; ii) Universal method that
constantly set λ =

√
2 log (n) Donoho & Johnstone (1994); iii) Mixture method that Verma

& Verma (2012) combines SURE and Universal, depending on the signal-to-noise (SNR) ratio.
Specifically, if the SNR is high, the Universal adopts the same threshold value with the Univer-
sal method; and iv) Minimax Verma & Verma (2012) that selects λ using a minimax rule, i.e.,
λ = (0.3936 + 0.10829 log2 n) if n > 32 and = 0 otherwise. For our method, we set κ = 1000,
δ = 1

κ(1+ρ) , ρ = 1
2 and the stopping time t̂ = 1+1/ρ

2
√
2 logn

s.t. our final estimations are θ(t̂), θs(t̂).
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Table 1: Avenge ± Std of relative ℓ2-error of estimating θ∗ and θ∗,s.

SURE Universal (
√

2 log (n)) Mixture Minimax Ours (θ(t̂)) Ours (θs(t̂))
∥θ̂−θ∗,s∥2

∥θ∗,s∥2
0.4195 ± 0.0180 0.3991 ± 0.0099 0.3991 ± 0.0099 0.2849 ± 0.0099 0.4686 ± 0.0114 0.1400 ± 0.0373

∥θ̂−θ∗∥2

∥θ∗∥2
0.3001 ± 0.0073 0.5437 ± 0.0060 0.5437 ± 0.0060 0.4297 ± 0.0058 0.2918 ± 0.0063 0.3742 ± 0.0064

Results Analysis. We report the average of relative ℓ2 error of both θ∗,s and θ∗ in Tab. 1. As shown,
our method has a smaller error compared to others. Specifically, for the strong signal θ∗,s, all
methods except SURE adopt an overly large threshold value (O ∼ log n) which can induce errors in
estimating strong signals. The SURE method with a smaller threshold value however induces noise
components into the estimation, which can explain why SURE also suffers from a large error. For
θ∗, our method is comparable to the SURE and outperforms others which drop the weak signals.

Figure 1: Visualization of Signal Recovery of W ∗ θ∗,s (top) and W ∗ θ∗ (bottom). The blue curve
represents the original signal, the red curve represents the estimated one.

Visualization of Reconstructed Signals. As shown in Fig. 1, our method can well recover Wθ∗,s

(top row) and Wθ∗ (bottom row); as a contrast, SURE induces additional errors accounted by weak
signals and noise in estimating θ∗,s while other methods with excessive shrinkage strategy will suffer
from inaccurate estimations of θ∗,s and the ignorance of the weak signals in estimating θ∗.

ℓ2 error along the solution path. As shown in Fig. 2, the ℓ2 error of ∥θ(t)−θ∗∥2 (blue curve in the
right) and ∥θs(t) − θ∗,s∥2 (red curve in the left) first decreases then increases as t grows. For θ∗,s,
the θs(t) continuously identifies more signals until all strong signals are picked up. Meanwhile, the
dense parameter θ(t) can additionally learn weak signals, therefore has a smaller error in estimating
θ∗. If t continues to increase, θs(t) will learn weak signals and finally both θs(t) and θ(t) converge
to the noisy coefficients W ′y. Moreover, our estimated stopping time t̂ (blue vertical line) yields a
comparable estimation error to the minimum in the solution path (red vertical line).

Figure 2: ℓ2 error of θ∗,s (left) and θ∗ (right) along the path. The blue (resp. red) curve represents
the MSE of θ(t) (resp. θ̃(t)). The blue (resp. red) vertical represents the estimated (resp. ground-
truth) stopping time t̂ (resp., t∗).
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6 APPLICATION TO NEURAL SIGNAL RECOGNITION IN PARKINSONIANS

We apply our method to the signal neural signals reconstruction in Parkinson’s Disease1, which can
be further used to predict the upcoming movements and study the medication study.

Data & Problem Description. We consider the Local field potential signals (LFPs) in the sub-
thalamic nucleus (STN), which are pathologically related Maling & McIntyre (2016); Kühn et al.
(2006); Little et al. (2013). For such signals, the θ∗,s corresponds to the burst activity that contains
all local synaptic activity from clusters of hundreds of neurons Buzsáki et al. (2012), while θ∗ con-
tains both burst and tonic/non-burst activities. Although increased burst activity of β band signals
(especially low β band Khawaldeh et al. (2022)) has been the most typical biomarker of Parkinson’s
Disease Lofredi et al. (2023); Tinkhauser et al. (2017), the non-burst signal can further help predict
the upcoming movement Khawaldeh et al. (2020).

The data collected in Nie et al. (2021); Wiest et al. (2023)) contains 17 advanced Parkinson’s disease
patients (34 hemispheres) recruited at St. George’s University Hospital NHS Foundation Trust, Lon-
don, King’s College Hospital NHS Foundation Trust, London, and the University Medical Center
Mainz. For each patient, we record the resting-state LFPs in the on-medication and off-medication
(at least 12h off) states 3 to 7 days after electrode implantation surgery. We adopt Nie et al. (2021) to
process these signals. Obvious artifacts (including large baseline fluctuations and muscle activity)
were ruled out by visual inspection. For each recording, at least 100s of the raw signal was preserved
during processing. Then, low pass filter at 90HZ and high pass filter at 2HZ, and resample to 320Hz.
Eliminate power frequency interference through a 50 Hz adaptive notch filter.

Implementation details. We follow Luo et al. (2018) to perform a 1-d stationary wavelet transform
(SWT) on LFPs as the Symlet 8 with level 6. We follow Donoho & Johnstone (1995) to estimate
σ as σ̃ = Median(Wj)/0.6745. For Wavelet shrinkage, we select λ according to the minimax rule
in Donoho & Johnstone (1994). To well adapt to each layer, we follow Baldazzi et al. (2020) to
multiply λ with 1/(ln j + 1) for the layer j. For SWDI, we set κ = 20, δ = 1/(κ(1 + ρ)) with
ρ = 0.1 and the stopping time as t̂ = 1+1/ρ

σ̃/(ln j+1) .

Figure 3: Two-sample T-test on the change of signal’s energy after medication.

Medication Effect. With reconstructed signals by inverse Wavelet transformation, we implement
a two-sample T-test to measure whether the signal’s energy is significantly reduced before (i.e.,
“OFF”) and after receiving medications (i.e., “ON”). Here, the energy is defined as the power of low
β, i.e., E(t) = 1

W

∑t
i=t−W+1 f̂

2(i) in Maling & McIntyre (2016), with W denoting the window
size. We report the p-values in Fig. 3. As shown, the reconstructed strong signal (respectively
corresponding to “Burst” in Wavelet Shrinkage and “θ∗,s” of our SWDI in Fig. 3) of our method is
more significant (p = 0.0023) than Wavelet Shrinkage (p = 0.0053) in the response to medications,
which may due to the effectiveness in bias removal. On the other hand, the significance “noise”
component decreases from p = 0.0097 to p = 0.0117, which is accounted for by the non-burst
component that also shows a significant correlation, i.e., p = 0.0065.

Motor Symptoms Improvement. To measure the effectiveness of the energy’s reduction to the
symptom relief, we in Fig. 4 report the correlation between the “reduction in the low β power”
(i.e., energy) and the improvement of motor symptoms measured by the change of clinical Unified

1We also apply our method to Electroencephalography (EEG) signal denoising, please refer to Appx. H.
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Figure 4: Correlation between changes of signal’s energy and the UPDRS that measures the im-
provement of motor symptoms.

Parkinson’s Disease Rating Scale (UPDRS) defined in Goetz et al. (2008). As shown, our recon-
structed strong signal θs is significantly correlated to the improvement of motor symptoms while
the one given by Wavelet Shrinkage is not. Besides, with additional learned non-burst components
which are recognized as noise by Wavelet Shrinkage, the θ(t̂) shows an even stronger correlation.

Results Analysis. Fig. 3,. 4 suggest that the reconstructed signals by our method contain more
physiological and clinical information. Specifically, the whole signal we learn is not only composed
of synchronized/burst activity (in the Low β band) that corresponds to high amplitude components;
but also other lower components called the non-burst activity. Traditional methods mainly focused
on the effectiveness of medication in inhibiting burst activity Lofredi et al. (2023); Tinkhauser et al.
(2017); while our method additionally shows that such an inhibition also happens on non-burst
activity, which echos a recent finding in Lofredi et al. (2023). To explain how such a non-burst
activity affects the LFP signals, a recent study Kajikawa & Schroeder (2011) hypothesized that such
a non-burst activity may correspond to the electric field environment of neuron clusters. Since the
LFP signal, which appears as a mixture of local potentials from neuron clusters, has been found to
be affected by the fluctuation of this field environment Caruso et al. (2018), the change of such a
non-burst activity after medications leads to the change of the LFP signal and its energy.

Signal Recovery. To further explain the above results, we visualize the recovered coefficients. As
shown in Fig. 5, our reconstructed strong signal (marked by blue) can remove the bias; meanwhile
the estimated θ(t) (marked by red) can capture the information of the weak signal.

Figure 5: Estimated Signal Coefficients by Wavelet Shrinkage (left) and ours (right).

7 CONCLUSION

In this paper, we propose the Splitted Wavelet Differential Inclusion, which can simultaneously re-
move bias in estimating the strong signal and capture weak components in estimating the whole
signal. Our method has a unique closed-form solution. Moreover, we theoretically and empirically
show that our method has better estimations than Wavelet Shrinkage. Besides, we provide an ef-
ficient discretization algorithm that can efficiently obtain the whole solution path. In Parkinson’s
Disease analysis, our method identifies the non-burst/tonic activity in the low β band, which has
been recently found to be responsive to medical treatment.

Limitations and Future Work. We only discuss the signal recovery in a non-adaptive way. How-
ever, the sub-band and spatially adaptive wavelet decomposition can achieve better reconstruction
results. While saying so, our has shown promising results in real applications. Moreover, by con-
sidering the strong ad the weak signals on each sub-band, our method can be potentially applied to
adaptive decomposition and will be carefully investigated in the future.
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A RELATED WORK OF DIFFERENTIAL INCLUSION IN SIGNAL RECOVERY

The differential inclusion method in signal recovery was proposed in Osher et al. (2016), which is
called (Linearized) Bregman Inverse Scale Space and can be viewed as a continuous dynamics of
the Linearized Bregman Iteration (LBI) proposed in Osher et al. (2005); Yin et al. (2008) for image
denoising. From the perspective of differential inclusion, Osher et al. (2016) firstly showed the
model selection consistency property, recovering the true signal set under irrepresentable conditions.
The Huang & Yao (2018) later generalized this result to from the linear model to a general convex
function. Moreover, Huang et al. (2016; 2020) proposed the variable splitting method which leads
to better model selection consistency. The Sun et al. (2017) further applied them to Alzheimer’s
Disease and found there exists another type of lesion feature (which they called “procedural bias”)
that can help disease diagnosis. Our method is motivated by differences from this method in the
Wavelet Denoising scenario, in which our primary goal is to reconstruct the signal. Besides, thanks
to the orthogonality of the Wavelet Matrix, our method has a closed-form solution, which leads to
theoretical advantages over Wavelet Shrinkage.

B SUPPORTING LEMMAS

Lemma B.1 (Concentration for Lipschitz functions). Let (X1, . . . , Xn) be a vector of i.i.d. standard
Gaussian variables, and let f : Rn → R be L-Lipschitz with respect to the Euclidean norm. Then
the variable f(X)− E[f(X)] is sub-Gaussian with parameter at most L, and hence

P[|f(X)− E[f(X)]| ≥ t] ≤ 2e−
t2

2L2 for all t ≥ 0.

Lemma B.2 (Hoeffding bound). Suppose that the variables Xi, i = 1, . . . , n are independent, and
Xi has mean µi and sub-Gaussian parameter σi. Then for all t ≥ 0, we have

P

[
n∑

i=1

(Xi − µi) ≥ t

]
≤ exp

{
− t2

2
∑n

i=1 σ
2
i

}
.

Lemma B.3 (χ2-variables). Let (X1, . . . , Xn) be a vector of i.i.d. standard Gaussian variables.
Then

(
X2

1 , ..., X
2
n

)
are i.i.d Chi-squared variables with 1 degree of freedom. Then we have

P

[
1

n

∣∣∣∣∣
n∑

i=1

X2
i − n

∣∣∣∣∣ ≥ t

]
≤ e−

nt2

8 , ∀t ∈ (0, 1).

Lemma B.4 (Expectation of Maximum Gaussian (Theorem 1 in Kamath (2015))). Let Let
(X1, . . . , Xn) be a vector of i.i.d. standard Gaussian variables, then

E[ max
1≤i≤n

Xi] ≤
√
2 log n.

|f(Ax)− f(Ay)| ≤
√

max
i=1,...,n

(ATA)ii∥x− y∥2, x, y ∈ Rn.

C PROOF OF SECTION 3

Proposition C.1. We have 0 = arg infλ sup|θ∗
i |≥1 E(η(ωi, λ)− θ∗i )

2.

Proof. Since θ∗i ≥ 1, then

arg inf
λ

sup
θ∗
i ≥1

E(η(ωi, λ)− θ∗i )
2

n−1 +min ((θ∗i )
2, 1)

= arg inf
λ

sup
θ∗
i ≥1

E(η(ωi, λ)− θ∗i )
2

According to Theorem 2 in Donoho & Johnstone (1994), we have

E(η(ωi, λ)− θ∗i )
2 = 1 + λ2 +

(
(θ∗i )

2 − λ2 − 1
)
{Φ(λ− θ∗i )− Φ(−λ− θ∗i )}
− (λ− θ∗i )ϕ(λ+ θ∗i )− (λ+ θ∗i )ϕ(λ− θ∗i ).
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Denote g(λ, θi∗) := E(η(ωi, λ)− θ∗i )
2. Then it is sufficient to show that for each θ∗i , we have

g(λ, θi∗) ≥ g(λ, 0) ≥ g(0, 0) = g(0, θi∗). (7)

According to Lemma 1 in Donoho & Johnstone (1994), we have g(λ, θi∗) is increasing w.r.t. |θ∗i |,
therefore we have g(λ, θi∗) ≥ g(λ, 0). The ”=” in Eq. 7 is also obvious since

g(0, θi∗) = 1,∀ θi ∗ .

It is left to prove the 2nd ”≥” in Eq. 7. It is suffcient to show that

g(λ, 0) = (1 + λ2) (1− Φ(λ) + Φ(−λ))− 2λϕ(λ)

is non-increasing w.r.t. λ. Take the gradient of g(λ, 0) w.r.t. λ, we have

∂g(λ, 0)

∂λ
= −2(1 + λ2)ϕ(λ) + 2λ (1− Φ(λ) + Φ(−λ))− 2ϕ(λ) + 2λ2ϕ(λ)

= −4ϕ(λ) + 2λ (1− Φ(λ) + Φ(−λ)) .

Then it is sufficient to show that ∂g(λ,0)
∂λ ≤ 0. To show this, we first consider the 2nd derivative of

g(λ, 0), which gives

∂2g(λ, 0)

∂λ2
= 4λϕ(λ) + 2 (1− Φ(λ) + Φ(−λ)) + 2λ(−2ϕ(λ))

= 2 (1− Φ(λ) + Φ(−λ)) ≥ 0.

This means l(λ) := ∂g(λ,0)
∂λ is non-decreasing. We consider limλ→∞ l(λ), according to the Hôpital’s

rule, we have

lim
λ→∞

l(λ) =
limλ→∞ 2 (1− Φ(λ) + Φ(−λ))

limλ→∞
1
λ

=
limλ→∞ 4ϕ(λ)

limλ→∞
1
λ2

= lim
λ→∞

4λ2ϕ(λ) = 0.

This means l(λ) := ∂g(λ,0)
∂λ ≤ 0. Therefore, we have g(λ, 0) ≥ g(0, 0). Hence,

arg inf
λ

sup
θ∗
i ≥1

E(η(ωi, λ)− θ∗i )
2 = 0.

The proof is finished.

D PROOF OF SECTION 4.1

Proposition D.1. The solution of differential inclusion in Eq. 1 is θj(t) = ωj(t) for t ≥ 1
|ωj | ; and

= 0 otherwise for each j.

Proof. Note that ρ(0) = θ(0) = 0. We define tj := supt{ρj(0) + tωj ∈ ∂|θj(0)|}. Then we define
θj(t) = 0 for t < tj and = ωj for t ≥ tj and ρj(t) = ωjt for t < tj and = sign(ωj) for t ≥ tj . It
can be shown that this defined {ρ(t), θ(t)} is the solution of Eq. 1. This solution is unique since the
loss ℓ(θ(t)) := 1

2∥ω − θ(t)∥22 is strictly convex w.r.t. θ. According to Theorem 2.1 in Osher et al.
(2016), we know that the θ(t) is unique.

Theorem D.2. Denote θ∗,smin := mini∈S |θ∗i |. Then at τ̄ := 1
(1+a)

√
2 logn

for some a > 0 and

θ∗,smin ≥ 2(1+ a)
√
2 log n and a

2

√
2 log n > θ∗j for j ̸∈ S. Then with probability at least 1− 2

n4a2 −

max

(
exp

(
− sλ2

8

)
, 1

n
(1+a)2

4

)
, we have

∥θ(τ̄)− θ∗,s∥2 < ∥η(ω, λ)− θ∗,s∥2, (8)

where θ(t) is the solution of Eq. 1.

Proof. First we show the model selection consistency: supp(θ(τ̄)) = S. According to Prop. D.1,
it is sufficient to show that τ̄ ≥ 1

|ωj :=θ∗,s
j +εj |

for all j ∈ S and τ̄ < 1
|ωj :=θ∗

j+εj | for all j ̸∈ S.

Since |θ∗j | ≤ a
2

√
2 log n, it is sufficient to show that max1≤j≤n |εj | ≤ (1 + a

2 )
√
2 log n with high
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probability, which can ensure that |θ∗,sj + εj | ≥ θ∗,smin −max1≤j≤n |εj | > (1 + a)
√
2 log n = 1

τ̄ for
j ∈ S and |θ∗j +εj | < a

2

√
2 log n+max1≤j≤n |εj | ≤ (1+a)

√
2 log n = 1

τ̄ . Since max1≤j≤n |εj | <
max{max1≤n εj ,max1≤n −εj}, then we have

P ( max
1≤j≤n

|εj | > (1 +
a

2
)
√
2 log n)

≤P

(
max
1≤j≤n

εj > (1 +
a

2
)
√
2 log n)

)
+ P

(
max
1≤j≤n

−εj > (1 +
a

2
)
√

2 log n)

)
≤2P

(
max
1≤j≤n

εj > (1 +
a

2
)
√
2 log n)

)
= 2P

(
max
1≤j≤n

εj −
√

2 log n >
a

2

√
2 log n)

)
≤2P

(
max
1≤j≤n

εj − E
[
max
1≤j≤n

εj

]
>

a

2

√
2 log n)

)
.

According to lemma ?? and lemma B.1, we have

P

(
max
1≤j≤n

εj − E
[
max
1≤j≤n

εj

]
>

a

2

√
2 log n)

)
<

1

n
a2

4

.

To prove Eq. 25, without loss of generality we assume that θ∗,sj > 0 for j ∈ S. Then we have

∥θ(τ̄)− θ∗,s∥22 = ∥εS∥22 (9)

and that (
η(ω, λ)j − θ∗,sj

)2
=

{
(θ∗,sj )2, λ ≥ θ∗,sj + εj
(εj − λ)2, λ < θ∗,sj + εj

We denote I := {j : λ ≥ θ∗,sj + εj} and II = S − I. Then we have

∥η(ω, λ)− θ∗,s∥22 ≥ ∥η(ω, λ)S − θ∗,s∥22 = ∥θ∗,sI ∥22 + ∥εII∥22 − 2λ
∑
j∈II

εj + λ2(s− |I|) (10)

If λ < (1 + a)
√
2 log n, then condition on max1≤j≤n |εj | ≤ (1 + a

2 )
√
2 log n, we have I = ∅.

Combining Eq. 9 and Eq. 10, it is sufficient to show that∑
j∈S

εj <
sλ

2
,

which has probability at least 1 − exp
(

−sλ2

8

)
applying Lemma B.2. Otherwise, if λ ≥ (1 +

a)
√
2 log n, then condition on max1≤j≤n |εj | ≤ (1 + a

2 )
√
2 log n, we have ∥εI∥22 < ∥θ∗,sI ∥22. Com-

bining Eq. 9 and Eq. 10, it is sufficient to show that∑
j∈II

εj <
|II|λ
2

,

which has probability at least 1− 1

n
(1+a)2

4

applying Lemma B.2. The proof is completed.

D.1 LINEARIZED WAVELET DIFFERENTIAL INCLUSION

Similar to SWDI, we also provide a linearized version in the following:

ρ̇(t) +
θ̇(t)

κ
= ω − θ(t), (11a)

ρ(t) ∈ ∂∥θ(t)∥1. (11b)

Proposition D.3. The solution of differential inclusion in Eq. 11 is

θj(t) =

{
ωj

(
1− exp

(
−κ
(
t− 1

ωj

)))
, t ≥ 1

|ωj |

0, otherwise
∀j.

16



Proof. Similar to Prop. D.1, we define tj for each j and ρj(t) = ωjt for t < tj and = sign(θj)
for t ≥ tj . It is easy to validate that such defined (ρ(t), θ(t)) is the solution of Eq. 11. To see the
uniqueness, we denote v(t) := ρ(t) + θ(t)

κ , then we have

ż(t) = ω − κη(z(t), 1) := g(z(t)).

Since g(·) is Lipschitz continuous, the solution is unique according to the Picard-Lindelöf Theorem.

Theorem D.4. Under the same conditions and the definition of τ̄ in Thm. D.2. Then with probability

at least 1− 2
n4a2 −max

(
exp

(
− sλ2

32

)
, 1

n
(1+a)2

16

)
, we have

∥θ(τ̄)− θ∗,s∥2 < ∥η(ω, λ)− θ∗,s∥2, (12)

where θ(t) is the solution of Eq. 11.

Proof. Similar to Thm. D.2, conditioning on max1≤j≤n |εj | ≤ (1+ a
2 )
√
2 log n (with probability at

least 1 − 2
n4a2 ), we have that supp(θ(τ̄)) = S, by additionally noting that τ̄ is exactly greater than

1
ωj

for any j ∈ S. Next, we show that with probability at least 1−max

(
exp

(
− sλ2

32

)
, 1

n
(1+a)2

16

)
,

we have

∥θ(τ̄)− θ∗,s∥22 < ∥η(ω, λ)− θ∗,s∥22 −min

(
λ2

2
, (1 + a)2 log n

)
, (13)

where θ(t) = limκ→∞ θκ(t) with θκ(t) being the solution of Eq. 11 with a fixed κ > 0. According
to Prop. D.1, D.3, the θ(t) is the solution of Eq. 11. If Eq. 13 holds, then due to the continuity
of θκ(t) with respect to κ, we have Eq. 12 as long as κ is large enough. Similar to the proof for
Thm. D.2, when λ < (1 + a)

√
2 log n, conditioning on max1≤j≤n |εj | ≤ (1 + a

2 )
√
2 log n we have∑

j∈S εj <
sλ
4 and hence

∥θ(τ̄)− θ∗,s∥22 < ∥η(ω, λ)− θ∗,s∥22 −
λ2

2

with probability at least 1 − exp
(

−sλ2

32

)
. When λ ≥ (1 + a)

√
2 log n, we have

∑
j∈II εj < |II|λ

2

and therefore

∥θ(τ̄)− θ∗,s∥22 < ∥η(ω, λ)− θ∗,s∥22 − (1 + a)2 log n

with probability at least 1− 1

n
(1+a)2

16

.

E PROOF OF SECTION 4.2

Proposition E.1. The solution of differential inclusion in Eq. 3 isθj(t) = γj(t) = ωj , t ≥ 1+ 1
β

ωj

θj(t) =
ωj

1+β , γj(t) = 0 t <
1+ 1

β

ωj

∀j.

Proof. Note that γ(0) = ρ(0) = 0. Then we define tj for each j as

tj := sup
t>0

{ρj(0) +
tωj

1 + β
̸∈ ∂|γj(0)|}.

When t < tj , we have |ρj(t)| < 1 thus γj(t) = 0 and also θj =
ωj

1+β according to Eq. 3a. For
t ≥ tj , we have |ρj(t)| = 1 and thus ρ̇j(t) = 0. Therefore, we have γj(t) = θj(t) = ωj . It is

easy to see such defined (ρ(t), θ(t), γ(t)) is the solution of Eq. 3. We can obtain that tj =
1+ 1

β

ωj
.

According to Huang et al. (2016), this solution is unique.
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Theorem E.2. Denote θ∗max,T := maxi∈T |θ∗i | and n is large enough such that θ∗max,T < a0
√
log n

for some 0 < a0 < 1. Then for (θ(t), θs(t)) in Eq. 3, if n > 41/(1−a0) at τ̄ :=
1+ 1

ρ

(1+a)
√
2 logn

, the
following holds with probability at least

1− 2

n4a2 −max

(
1

n
s
32

,
1

n
(1+a)2

16

)
− exp

(
−
∑

i∈T (θ∗i )
2

72

)
− exp

(
−n1−a0

∑
i∈T (θ

∗
i )

2

24(2 + logn)

)

− exp

−
|T |max

(
1,

∑
i∈T (θ∗i )2

|T | − 1
)

8

− exp

−
|N |max

(
1,

∑
i∈T (θ∗i )2

|T | − 1
)

8

 :

1. Strong Signal Recovery. For the strong signal coefficients θ∗,sS ,

∥θs(τ̄)− θ∗,S∥2 = ∥θS(τ̄)− θ∗,sS ∥2 < ∥η(ω, λ)− θ∗,s∥2, ∀λ > 0. (14)

2. Weak Signal Recovery. For the weak signal coefficients θ∗T , there exists ∞ > ρ∗ > 0 such that

∥θ(τ̄)T − θ∗T ∥2 < ∥0− θ∗T ∥2 = ∥θ∗T ∥2 i.e., ρ = ∞ Shrinkage to 0;
∥θ(τ̄)T − θ∗T ∥2 < ∥ωT − θ∗T ∥2 = ∥εT ∥2 i.e., ρ = 0 No Shrinkage.

We can obtain a similar result for θ∗Sc , where Sc := T ∪ N contains the weak and null compo-
nents.

3. Whole Signal Recovery. For θ∗, under the same ρ∗ in item 2, we have

∥θ(τ̄)− θ∗∥2 < ∥η(ω, λ)− θ∗∥2, ∀λ ≥
√
log n.

Proof. The proof of Strong Signal Recovery is the same as the proof for Thm. D.2. For Weak
Signal Recovery, we define I(p) = ∥(1− p)ωT − θ∗T ∥22 = ∥pθ∗T − (1− p)εT ∥22. We then have

I ′(p) = 2p
∑
i∈T

(θ∗i + εi)
2 − 2

∑
i∈T

εi(θ
∗
i + εi).

We obtain the minimizer of I(p) as p∗ =
∑

i∈T ε2i+
∑

i∈T εiθ
∗
i∑

i∈T (θ∗
i +εi)2

by setting I(p′) = 0. If we can show

that 0 < p∗ < 1, then there exists a β∗ such that p∗ = β∗

1+β∗ . Then it is sufficient to show that∑
i

εiθ
∗
i +

∑
i

ε2i > 0, (15)

∑
i

εiθ
∗
i +

1

6

∑
i

θ∗i > 0. (16)

For Eq. 15, we have that:

P

(∑
i

εiθ
∗
i +

∑
i

ε2i < 0

)

=P

(∑
i

εiθ
∗
i +

∑
i

ε2i < 0,
∑
i

ε2i <
|T |
2

)
+ P

(∑
i

εiθ
∗
i +

∑
i

ε2i < 0,
∑
i

ε2i ≥ |T |
2

)

≤P

(∑
i

ε2i <
|T |
2

)
+ P

(∑
i

εiθ
∗
i < −|T |

2

)
Applying Lemma B.3 to the first term and Lemma B.2 to the second term, we have that

P

(∑
i

ε2i <
|T |
2

)
< exp

(
−|T |

8

)
, P

(∑
i

εiθ
∗
i < −|T |

2

)
< exp

(
− |T |2

8
∑

i∈T (θ
∗
i )

2

)
.

For Eq. 16, we have

P

(∑
i

εiθ
∗
i +

1

4

∑
i

(θ∗i )
2 < 0

)
= P

(∑
i

εiθ
∗
i < −

∑
i(θ

∗
i )

2

6

)
.
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Applying Lemma B.2, we have that

P

(∑
i

εiθ
∗
i < −

∑
i∈T (θ

∗
i )

2

4

)
≤ exp

(
−
∑

i∈T (θ
∗
i )

2

72

)
.

Since ∥θ∗T ∥2 is the ℓ2 error of 0T with p = 1 and ∥εT ∥2 is the ℓ2 error of ωT with p = 0, we obtain
the conclusion. To extend this result to θ∗Sc , following the same procedure, we can obtain that

p∗ =

∑
i∈T ε2i +

∑
i∈T εiθ

∗
i +

∑
j∈N ε2j∑

i∈T (θ
∗
i + εi)2 +

∑
j∈N ε2j

,

which is < 1 and > 0 if Eq. 15, 16 holds. Finally, we prove the Whole Signal Recovery. According
to the above results, it is sufficient to show that there exists a β such that

∥θ(τ̄)Sc − θ∗Sc∥2 < ∥η(ω, λ)T − θ∗T ∥2 < ∥η(ω, λ)Sc − θ∗Sc∥2.
condition on ∥θ(τ̄)S − θ∗S∥2 < ∥η(ω, λ)S − θ∗S∥2 that holds with high probability. We first show
that

∥η(ω, λ)T − θ∗T ∥22 >
1

3
∥θ∗T ∥22, (17)

∥θ(τ̄)Sc − θ∗Sc∥22 <
2

3
∥θ∗T ∥22, (18)

for some ∞ > β > 0. For Eq. 17, we denote bi := η(ω, λ)i, then we have

∥η(ω, λ)T − θ∗T ∥22 =
∑
i∈T

b2i +
∑
i∈T

2θ∗i bi +
∑
i∈T

(θ∗i )
2 ≥

∑
i∈T

2θ∗i bi +
∑
i∈T

(θ∗i )
2,

which holds as long as
∑

i∈T θ∗i bi ≥ − 1
6

∑
i∈T (θ

∗
i )

2. We then have

P

(∑
i∈T

θ∗i bi ≤ −1

6

∑
i∈T

(θ∗i )
2

)
= P

(∑
i∈T

θ∗i bi −
∑
i∈T

θ∗i E[bi] ≤ −1

6

∑
i∈T

(θ∗i )
2 −

∑
i∈T

θ∗i E[bi]

)

≤ exp

(
−
(
1
6

∑
i∈T (θ

∗
i )

2 +
∑

i∈T θ∗i E[bi]
)2

2
∑

i∈T (θ
∗
i )

2E[b2i ]

)
. (19)

Without loss of generality, we assume θ∗i > 0. Then for E[bi], we have

E[bi] =
1√
2π

(∫ +∞

√
logn−θ∗

i

x exp

(
−x2

2

)
dx+

∫ −
√
logn−θ∗

i

−∞
x exp

(
−x2

2

)
dx

)

= − 1√
2π

∫ −
√
logn+θ∗

i

−
√
logn−θ∗

i

x exp

(
−x2

2

)
dx

> − 1√
2π

1

n
1−

θ∗
i√

log n

≥ − 1√
2π

1

n1−a0
.

For E[b2i ], we have

E[b2i ] =
1√
2π


∫ +∞

√
logn−θ∗

i

x exp

(
−x2

2

)
dx︸ ︷︷ ︸

J1

+

∫ −
√
logn−θ∗

i

−∞
x exp

(
−x2

2

)
dx︸ ︷︷ ︸

J2

 .

For J1, we have

1√
2π

J1 =
1√
2π

∫ +∞

√
logn−θ∗

i

xd

(
− exp

(
−x2

2

))
=

1√
2π

− x exp

(
−x2

2

)∣∣∣∣+∞

√
logn−θ∗

i

+ P (εi >
√
log n− θ∗i )

=P (εi >
√
log n− θ∗i ) +

1√
2π

(√
log n− θ∗i

)
exp

(
−
(√

log n− θ∗i
)2

2

)
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Similarly, for J2, we have

1√
2π

J2 = P (εi >
√
log n+ θ∗i ) +

1√
2π

(√
log n+ θ∗i

)
exp

(
−
(√

log n+ θ∗i
)2

2

)

≤P (εi >
√
log n− θ∗i ) +

1√
2π

(√
log n+ θ∗i

)
exp

(
−
(√

log n− θ∗i
)2

2

)
.

Therefore, we have

E[b2i ] ≤ 2P (εi >
√
log n− θ∗i ) +

2√
2π

√
log n exp

(
−
(√

log n− θ∗i
)2

2

)
≤ 2 + log n

n1−a0
.

Substituting these results into Eq. 19, we have:

P

(∑
i∈T

θ∗i bi ≤ −1

6

∑
i∈T

(θ∗i )
2

)
≤ exp

−n1−a0

(
1
6 − 1√

2πn1−a0

)∑
i∈T (θ

∗
i )

2

2(2 + log n)

 ,

≤ exp

(−n1−a0
∑

i∈T (θ
∗
i )

2

24(2 + log n)

)
,

as long as n > 41/(1−a0). Next we prove Eq. 18, which is equivalent to showing that∑
i∈T

ε2i +
∑
j∈N

ε2j − 2β
∑
i∈T

θ∗i εi <
2(2β + 1)

3

∑
i∈T

(θ∗i )
2.

If we take β = n/|T |, then it is sufficient to show that∑
i∈T ε2i
|T |

≤ 1

|T |
∑
i∈T

(θ∗i )
2, (20)∑

j∈N ε2j

|N |
≤ 1

|T |
∑
j∈T

(θ∗j )
2, (21)

∑
i∈T

εiθ
∗
i +

1

6

∑
j∈T

(θ∗i )
2 > 0. (22)

Conditioning on
∑

i εiθ
∗
i +

1
6

∑
i(θ

∗
i )

2 > 0,
∑

i∈T ε2i ≥ |T |
2 and ∥θ(τ̄)S−θ∗S∥2 < ∥η(ω, λ)S−θ∗S∥2,

we have that Eq. 22 hold. For Eq. 20, we have

P

(∑
i∈T ε2i
|T |

>
1

|T |
∑
i∈T

(θ∗i )
2

)
≤ exp

−
|T |max

(
1,

∑
i∈T (θ∗

i )
2

|T | − 1
)

8

 .

Similarly, for Eq. 21, we have

P

(∑
j∈N ε2j

|N |
>

1

|T |
∑
i∈T

(θ∗i )
2

)
≤ exp

−
|N |max

(
1,

∑
i∈T (θ∗

i )
2

|T | − 1
)

8

 .

Summarizing these conclusions together, we have with probability at least

1− 2

n4a2 −max

(
1

n
s
32
,

1

n
(1+a)2

16

)
− exp

(
−
∑

i∈T (θ∗i )
2

72

)
− exp

(−n1−a0
∑

i∈T (θ
∗
i )

2

24(2 + log n)

)

− exp

−
|T |max

(
1,

∑
i∈T (θ∗

i )
2

|T | − 1
)

8

− exp

−
|N |max

(
1,

∑
i∈T (θ∗

i )
2

|T | − 1
)

8

 ,

we have ∥θ(τ̄)− θ∗∥2 < ∥η(ω, λ)− θ∗∥2 for any λ ≥
√
log n.
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Proposition E.3. Denote

t∗j = min
t>0

{
t :

∫ t

0

ω(j)

1 + 1
β

(
1− exp

(
−κ (1 + β)

(
t̃− 1 + β

ω(j)

)))
dt̃ > 0

}
.

Then there exists a unique {C1
1 , ..., C

n
1 } with Cj

1 > 0 and {C1
2 , ..., C

n
2 } with Cj

2 > 0 such that

• Strong Signal Coefficients. For each j, when t > tj ,

γj(t) = Cj
1 exp

−
κt
(
1 + 2β −

√
1 + 4β2

)
2

+ Cj
2 exp

−
κt
(
1 + 2β +

√
1 + 4β2

)
2

+ ω(j);

(23a)

θj(t) =

Cj
1 +

1

κβ

−
κt
(
1 + 2β −

√
1 + 4β2

)
2

 exp

−
κt
(
1 + 2β −

√
1 + 4β2

)
2


+

Cj
2 +

1

κβ

−
κt
(
1 + 2β +

√
1 + 4β2

)
2

 exp

−
κt
(
1 + 2β +

√
1 + 4β2

)
2

+ ω(j).

(23b)

• Weak Signal Coefficients. For each j, when t ≤ tj ,

θj(t) =
ω(j)

1 + β

(
1− exp

(
−κ (1 + β)

(
t− 1 + β

ω(j)

)))
and γj(t) = 0. (24)

Proof. It can be directly checked that that the Eq. 23a, 23b, 24 for any positive {C1
1 , ..., C

n
1 } and

{C1
2 , ..., C

n
2 }. To ensure the continuity of θ(t) and γ(t) (they are continuous since they are differ-

entiable) at tj , we can determine {C1
1 , ..., C

n
1 } and {C1

2 , ..., C
n
2 }. The uniqueness of {C1

1 , ..., C
n
1 }

and {C1
2 , ..., C

n
2 } comes from the uniqueness of the solution (θ(t), γ(t)), which can be similarly

obtained by Picard-Lindelöf Theorem.

Theorem E.4. Under the same assumptions in Thm. E.2. Suppose κ is sufficiently large, then we
can obtain the same results in Thm. E.2 for Eq. 5.

Proof. We can know from the solution of Eq. 5 given by Prop. E.3 and the solution of Eq. 3 given by
Prop. E.1 that the solution of (θ(t), γ(t)) in Eq. 23, 24 is continous with respect to κ and converges
to the solution of Eq. 3 given by Prop. E.1. Therefore the conclusions in Thm. E.2 hold when κ is
sufficiently large.

F THEORETICAL ANALYSIS FOR DISCRETE FORM

Proposition F.1. The ℓi(θ(k), γ(k)) :=
1
2 (ωi − θi(k))

2 + β
2 (θi(k) − γi(k))

2 is non-increasing as
long as δ < 2

κmax(1,β) in Eq. 6b.
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Proof. Denote H := ∇2ℓi(θ(k), γ(k)) =

(
1 + β −β
−β β

)
. Denote

(
θi(k + 1)− θi(k)
γi(k + 1)− γi(k)

)
:=

∆i(k). We have

ℓi(θ(k + 1), γ(k + 1))− ℓi(θ(k), γ(k)) = ⟨∇ℓi(θ(k), γ(k)),∆i(k)⟩+
1

2
∆i(k)

⊤H∆k(k)

≤ −1

δ
⟨−δ∇ℓ(θ(k), γ(k)),∆i(k)⟩+

∥H∥2
2

∥∆i(k)∥22

≤ −1

δ

〈(
θi(k+1)−θi(k)

κ

ρi(k + 1)− ρi(k) +
γi(k+1)−γi(k)

κ

)
,∆i(k)

〉
+

∥H∥2
2

∥∆i(k)∥22

≤ −1

δ
⟨ρi(k + 1)− ρi(k), γi(k + 1)− γi(k)⟩+

(
∥H∥2
2

− 1

κδ

)
∥∆i(k)∥22.

Since
⟨ρi(k + 1)− ρi(k), γi(k + 1)− γi(k)⟩ = |γi(k + 1)|+ |γi(k)|

− ρi(k) · γi(k + 1)− ρi(k + 1) · γi(k) ≥ 0,

we have ℓi(θ(k+1), γ(k+1)) ≤ ℓ(θ(k), γ(k)) as long as κδ∥H∥2 ≤ 2. Since ∥H∥2 ≤ max(1, β),
we have that δ < 2

κmax(1,β) .

Theorem F.2. Denote K := ⌊ (1+ 1
β )τ̄

δ ⌋ with δ = 1
κ(1+β) and τ̄ defined in Thm. D.2. Denote

θ∗max := maxi |θ∗i |. Besides, we inherit the definition θ∗max,T in Thm. E.2. For (θ(k), γ(k)) in Eq. 6,
if n > 41/(1−a0) and κ is sufficiently large, then with probability at least

1− 2

n4a2 −max

(
1

n
s
32
,

1

n
(1+a)2

16

)
− exp

(
−
∑

i∈T (θ∗i )
2

72

)
− exp

(−n1−a0
∑

i∈T (θ
∗
i )

2

24(2 + log n)

)

− exp

−
|T |max

(
1,

∑
i∈T (θ∗

i )
2

|T | − 1
)

8

− exp

−
|N |max

(
1,

∑
i∈T (θ∗

i )
2

|T | − 1
)

8

 ,

we have

1. Strong Signal Recovery. For the strong signal coefficients θ∗,sS ,

∥θS(K)− θ∗,sS ∥2 < ∥η(ω, λ)S − θ∗,sS ∥2, (25)
for any λ > 0.

2. Weak Signal Recovery. For the weak signal coefficients and nulls θ∗T , there exists ∞ >
β∗ > 0 such that

∥θ(K)T − θ∗T ∥2 < ∥θ∗T ∥2 i.e., β = ∞ Shrinkage to 0;
∥θ(K)T − θ∗T ∥2 < ∥εT ∥2 i.e., β = 0 No Shrinkage.

We can obtain a similar result for θ∗Sc , the weak signal coefficients and null coefficients.

3. The Whole Signal Recovery. For the whole signal coefficients θ∗, there exists ∞ > β∗ > 0
such that

∥θ(K)− θ∗∥2 < ∥η(ω, λ)− θ∗∥2
for any λ ≥

√
log n. That means Eq. 3 can be more accurate than Minimax and similar

approaches in Donoho & Johnstone (1994).

Proof. It is sufficient to prove that for any residue e > 0, there exists a κo such that as long as
κ > κo, the following condition holds:

γi(k) = 0, ∀k ≤ K and i ∈ Sc. (26)∣∣∣∣θi(K)− ωi

1 + β

∣∣∣∣ < e, ∀i. (27)

|θi(K)− wi| < e, |θi(K)− γi(K)| < e, ∀i ∈ S. (28)
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We first prove Eq. 26. With zi(k) := ρi(k) +
γi(k)
κ and zi(0) = θi(0) = 0, it follows from Eq. 6

that
zi(k + 1)− zi(k)

δ
= − β

1 + β

(
θi(k + 1)− θi(k)

κδ
− ε̃i

)
.

where ε̃i := θ∗i + εi ∀i ∈ Sc and θ∗i = 0 if i ∈ N . Therefore, we have

zi(k) = − β

1 + β

θi(k)

κ
+

β

1 + β
kδε̃i.

Note that ℓi(k) := ℓi(θ(k), γ(k)) :=
1
2 (ωi−θi(k))

2+ β
2 (θi(k)−γi(k))

2 in Eq. F.1 is non-increasing
since δ < 2

κmax(1,β) , therefore, we have

|θi(k)| ≤ |ωi| ≤ θ∗max + (1 + a/2)
√

2 log n
∆
= B

condition on max1≤j≤n |εj | ≤ (1 + a
2 )
√
2 log n. Then we have

|zi(k)| ≤
βB

(1 + β)κ
+ kδ

β

1 + β
ε̃i <

βB

(1 + β)κ
+ τ̄(1 + a)

√
2 log n,

since |ε̃i| < a
2

√
2 log n and we have conditioned on max1≤j≤n |εj | ≤ (1 + a

2 )
√
2 log n. Then there

exists κ(1) > 0 such that for any κ > κ(1), we have

|zi(k)| <
βB

(1 + β)κ
+ τ̄(1 + a)

√
2 log n < 1,

for any k ≤ K. This can prove Eq. 26. Next we prove Eq. 27. Note that Eq. 6b is equivalent to:

θi(k + 1) = θi(k)− κδ ((1 + β)θi(k)− ωi) ,

which implies

θi(k + 1)− ωi

1 + β
= (1− κδ)

(
θi(k)−

ωi

1 + β

)
.

Denote erri(k) :=
∣∣∣θi(k)− ωi

1+β

∣∣∣, we have erri(k) = (1 − κδ)kerri(0). Denote Ke := min{k :

erri(k) < e, then we have

Ke ≤
log e− log erri(0)

log(1− κδ)
≤ log e− log erri(0)

− log 2

≤ log e− logB

− log 2
≪ ⌊

(1 + 1
β )τ̄

δ
⌋ = ⌊κ(1 + 1

β
)τ̄⌋ := K, (29)

which will holds for any κ > κ(2) for some κ(2) > 0. Finally we prove Eq. 28. Denote K1,i :=
min{k : |zi(k)| ≥ 1} for i ∈ S. When k < K1,i, we have

zi(k) = δβ
∑
k=0

θi(k).

Denote K0,i := min{|θi(k)| > (1+3a/2)
√
2 logn

1+β , where |θi(k)| > (1+3a/2)
√
2 logn

1+β can be implied
by

|θi(k)−
ωi

1 + β
| < a/2

√
2 log n

1 + β

∆
= b

for i ∈ S conditioning on max1≤j≤n |εj | ≤ (1 + a
2 )
√
2 log n. According to Eq. 29, we have

K0,iδ ≪ (1 +
1

β
)τ̄ ,

when κ > κ(3) for some κ(3) > 0. Besides, it follows from the non-increasing property of
ℓi(θ(k), γ(k)) that we have

sign(θi(k)) = sign(ωi)
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for any k once θi(k) ̸= 0. If this does not hold, then at some k, we have

ℓi(θ(k), γ(k)) > ℓi(θ(0), γ(0)),

which contradicts to the non-increasing property. This means θi(k) = 0 or does not change the sign
once it becomes non-zero. Therefore, the |zi(k)| is non-decreasing and moreover, if K1,i > K0,i,
then for any k < K1,i

|zi(k)| = δβ

∣∣∣∣∣∣
K0,i∑

k=0

θi(k) +
∑

k=K0,i+1

θi(k)

∣∣∣∣∣∣ ≥ δβ
∑

k=K0,i+1

|θi(k)|

≥ δ(k −K0,i)
β(1 + 3a/2)

√
2 log n

1 + β
.

Therefore, we have

δ(K1,i −K0,i) ≤
1 + 1

β

(1 + 3a/2)
√
2 log n

< τ̄ .

Since |zi(k)| is non-decreasing, then once it is greater than 1, we have zi(k) = γi(k). Therefore,

we have (recall that we define ∆i(k) =

(
θi(k + 1)− θi(k)
γi(k + 1)− γi(k)

)
in Prop. F.1)

∆i(k)

κ
= δ

((
ωi

0

)
−Hdi(k)

)
,

where di(k) :=

(
θi(k)
γi(k)

)
and H is defined in Prop. F.1. Denote δ̃i :=

(
ωi

0

)
, then multiplying

H on both sides, we have

Hdi(k + 1)− ω̃i = (I2 − κδH)(Hdi(k)− ω̃i).

Since κδ∥H∥2 < 1, then we have I2 − κδH ⪰ 0 and that ∥I2 − κδH∥2 ≤ max(1,β)
1+β

∆
= c < 1.

Denote ˜erri(k) := ∥Hdi(k)− ω̃i∥2, we have

˜erri(k) ≤ ck ˜erri(k).

Applying the same technique in proving Eq. 27, we have that ˜erri(K) < e
2 for any κ > κ(4) for

some κ(4) > 0, which is sufficient to obtain Eq. 28.

G RECONSTRUCTED NEURAL SIGNALS IN SEC. 6

We visualize the reconstructed signals in Fig. 6. Specifically, if we denote the SWT transformation
as g, then for the Wavelet Shrinkage that is shown in the left-hand image, we visualize the original
signal y (marked by blue), the reconstructed sparse signal g−1(θλ) (marked by orange) and the noise
y − g−1(θλ) (marked by yellow); for our SWDI that is shown in the right-hand image, we visualize
the original signal y (marked by blue), the reconstructed strong signal g−1θs (marked by orange)
and the weak signal g−1θ−g−1θs (marked by yellow), and the noise y−g−1(θ) (marked by purple).

As shown, the sparse signal of the Wavelet Shrinkage shows a large difference from the original
signal, especially at the peaks and valleys of oscillations. Therefore, it may miss a lot of information
that may be mainly accounted for by the weak signal and the bias due to the threshold parameter. In
contrast, the reconstructed strong signal by our SWDI can learn more information due to the ability
to remove bias. More importantly, we are pleasantly surprised to find that the reconstructed weak
signal shares a similar trend to the original signal. In this regard, it can well capture the pattern
encoded in the neural signal. This result suggests that the weak signal, which may refer to the non-
burst signal that can encode the conduct effect of the electric field, has a non-ignorable affection
on the formation of neural signals. Such an effect, together with the additional information learned
by the strong signal of SWDI over the sparse signal of the Wavelet Shrinkage, can well explain the
more significant medication response achieved by our method than the Wavelet Shrinkage.
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Figure 6: Visualization of reconstructed signals. Left: the original signal y (marked by blue), the
reconstructed sparse signal g−1(θλ) (marked by orange) by the Wavelet Shrinkage and the noise
y − g−1(θλ) (marked by yellow); besides the original signal, the right image presents the strong
signal g−1(θs) (marked by orange), the weak signal g−1(θ)− g−1(θs) (marked by yellow) learned
by SWDI, and the noise y − g−1(θ) (marked by purple).

H ELECTROENCEPHALOGRAPHY SIGNAL DENOISING

Data & Problem Description We extract one subject with 80 trials from Walters-Williams & Li
(2011), which comprises a 32-channel Electroencephalography (EEG) signal recorded from a single
subject. We added Gaussian white noise to each channel with the signal-to-noise ratio set to 20.
We present the mean-squared error (MSE) for the signal reconstruction achieved by our method
compared to Wavelet Shrinkage.

Implementation Details. Similar to Sec. 6, we perform a 1-d stationary wavelet transform (SWT)
on EEG as the Symlet 8 with level 6. We follow Donoho & Johnstone (1995) to estimate σ as
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σ̃ = Median(Wj)/0.6745. For Wavelet shrinkage, we select λ according to the minimax rule in
Donoho & Johnstone (1994). For SWDI, we set κ = 20, δ = 1/(κ(1 + ρ)) with ρ = 0.1 and the
stopping time as t̂ = (1 + 1/ρ)/σ̃.

Results Analysis. Fig. 7 shows that our method, especially the dense parameter, can significantly
outperform the Wavelet Shrinkage and the sparse parameter, which suggests the importance of cap-
turing weak signals and the capability of our method in learning such weak signals. It’s worth men-
tioning that even when neglecting weak signals, the sparse parameter can still surpass the Wavelet
Shrinkage method, thanks to the reduced biases inherent in our methods, as asserted in Thm. D.2
and D.4.

Figure 7: MSE (Microvolts) of the sparse parameter of SWDI θs(t̂) (red), dense parameter θ(t̂)
(blue) and the Wavelet Shrinkage (black).
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