
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2025

BLOCKLLM: MEMORY-EFFICIENT ADAPTATION OF
LLMS BY SELECTING AND OPTIMIZING THE RIGHT
COORDINATE BLOCKS

Anonymous authors
Paper under double-blind review

ABSTRACT

Training large language models (LLMs) for pretraining or adapting to new tasks
and domains has become increasingly critical as their applications expand. How-
ever, as model and data sizes grow, the training process presents significant mem-
ory challenges, often requiring a prohibitive amount of GPU memory that may not
be readily available. Existing methods such as low-rank adaptation (LoRA) add
trainable low-rank matrix factorizations, altering the training dynamics and limit-
ing the model’s parameter search to a low-rank subspace. GaLore, a more recent
method, employs Gradient Low-Rank Projection to reduce the memory footprint,
in the full parameter training setting. However GaLore can only be applied to
a subset of the LLM layers that satisfy the “reversibility” property, thus limiting
their applicability. In response to these challenges, we introduce BlockLLM, an
approach inspired by block coordinate descent. Our method carefully selects and
updates a very small subset of the trainable parameters without altering any part
of its architecture and training procedure. BlockLLM achieves state-of-the-art
performance in both finetuning and pretraining tasks, while reducing the memory
footprint of the underlying optimization process. Our experiments demonstrate
that BlockLLM achieves superior performance on finetuning both large and small
models. On pretraining a Llama model on C4 dataset, BlockLLM is able to train
with significantly less memory than the state-of-the-art, while still maintaining
competitive performance.

1 INTRODUCTION

Recent advancements in natural language processing (NLP) have been propelled by the development
of large language models (LLMs) Le Scao et al. (2023); Touvron et al. (2023); OpenAI (2023); Al-
mazrouei et al. (2023). These models have set new benchmarks for a variety of NLP tasks, including
language translation Takase & Kiyono (2021), text summarization Kedia et al. (2021), and sentiment
analysis (Brown et al., 2020). The core strength of LLMs lies in their scale. Empirical evidence sug-
gests that increases in model size not only enhance performance across standard benchmarks but
also unlock new capabilities that are absent in smaller models (Kaplan et al., 2020; Zhao et al.,
2023). Pretraining and finetuning LLMs on domain-specific application data have enhanced their
applicability immensely.

However, pretraining and finetuning LLMs are resource-intensive processes and require substantial
memory and computational power. For example, a 7B parameter Llama model demands approxi-
mately 14GB of memory Zhao et al. (2024), assuming each parameter is a 16-bit float occupying 2
bytes. The memory required for storing gradients during backpropagation is similarly substantial,
adding another 14 GB. Additionally, LLMs are often trained using the Adam optimizer (Kingma
& Ba, 2014) and its variants, which maintain first and second moment estimates for each parame-
ter. This effectively doubles this memory requirement, resulting in an additional 28 GB of VRAM
memory. Consequently, the total memory required for the weights, gradients, and optimizer states
amounts to a substantial 56 GB. The effect of LLMs training’s high memory requirement is far
reaching, in that it comes down to the question of who can train these large models. With the mem-
ory calculations above, a 7 billion parameter model can only be trained on A100 GPUs or above.
As models grow larger, this memory burden will continue to escalate, restricting large-scale LLM

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2025

training to only researchers and organizations with the most advanced GPUs. This is a significant
barrier to entry for practitioners who do not have access to such high-end hardware.

LoRA GaLore BAdam BlockLLM

0.84

0.842

0.844
0.846

0.848

0.85

0.852

0.854

0.856

0.858

14.95 GB

15.43 GB

16.38 GB

21.68 GB

Va
lid

at
io

n
lo

ss

2 hrs 2 mins

2 hrs 21 mins

3 hrs 58 mins

6 hrs 58 mins

Figure 1: Illustration of validation loss,
memory usage, and training time across
various training methods for fine-tuning
LLaMA-2 on the Alpaca dataset. BlockLLM
demonstrates superior performance, achiev-
ing lower memory consumption and reduced
training time.

Existing strategies for memory-efficient training.
To address these challenges, multiple strategies are
being explored to reduce the number of parame-
ters, gradients, and the corresponding optimizer state
size. One popular strategy is the application of
pruning methods, where a large set of parameters
or entire layers are removed from the model archi-
tecture Wang et al. (2019); Ma et al. (2023); Sun
et al. (2023). However, pruning approaches often
require extensive retraining to recover lost accuracy
Fan et al. (2019). Furthermore, identifying which
parameters are crucial before training is challenging
Michel et al. (2019); Sajjad et al. (2023). This chal-
lenge complicates implementation and can lead to
generalization issues, particularly on diverse or un-
seen data Ma et al. (2023).

PEFT (Parameter-Efficient-Fine-Tuning) methods
Hu et al. (2021); Lialin et al. (2023); Hu et al. (2023)
achieve memory efficiency by introducing low-rank
matrices to the transformer architecture. This sig-
nificantly reduces the number of trainable parame-
ters needed during fine-tuning. Although integrating
these low-rank matrices alleviates the extensive re-
training demanded by pruning techniques, they can
alter the training dynamics. This could potentially
lead to quality issues during the merging phase He
et al. (2021). The low-rank assumption may also constrain the model’s expressiveness, limiting its
ability to fully capture complex patterns in the data. Furthermore, the additional parameters in-
troduced by PEFT methods can increase the model’s parameter size, countering efforts to reduce
overall model size.

A recent work, GaLore Zhao et al. (2024) focuses on full parameter training and achieves memory
efficiency by performing low-rank factorization of the gradients in specific layers. However, Ga-
Lore does not achieve high memory efficiency across all model types, as its gradient factorization
method can only be applied to layers that satisfy the reversibility property. This limitation restricts
its applicability and efficiency in models where not all layers exhibit this property.

Techniques such as gradient and activation checkpointing Chen et al. (2016), quantization Han et al.
(2015), and parameter offloading Rhu et al. (2016) are also commonly used to achieve memory sav-
ings. However, these methods often come with trade-offs such as increased computational overhead
or compromised performance. For instance, checkpointing Chen et al. (2016) reduces memory usage
but requires re-computation, quantization lowers precision and can affect accuracy Han et al. (2015)
and parameter offloading increases data transfer latency Rhu et al. (2016). While these methods
have their own limitations, many of these techniques are complementary to the approach presented
in this work and provides additional opportunities for memory reduction when used in combination.

Block coordinate descent (BCD). BCD is popular algorithm in the large-scale optimization litera-
ture. At any training iteration t, instead of updating all the parameters W , BCD updates only a block
of parameters bt by setting W bt

t+1 = W bt
t + dt, where dt is the update for that block. Importantly,

bt does not stay fixed across iterations. As a result, BCD does not constrain model performance,
which is often the case with low-rank approximation methods. Moreover, BCD doesn’t alter the
model architecture in any way and preserves its structure throughout the training process. As it can
be seen, this formulation directly falls in the reduced parameter training regime. This insight forms
the cornerstone of our approach and hence the name BlockLLM.

A related study by (Belilovsky et al., 2019) demonstrated that sequentially solving one-hidden-layer
problems could match the performance of large model training, inspiring us to tackle parameter

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2025

and memory efficiency by training large models in parts. While their approach loses the full model
context by focusing on smaller sub-problems, it inspired us to investigate how maintaining the full
model context during training could potentially yield even better results. Finally, the convergence of
BCD has been theoretically proven on various problem architectures in the optimization literature
(Ramesh et al., 2023; Zeng et al., 2019; Nutini et al., 2022; Nesterov, 2012; Richtárik & Takáč,
2014; Shalev-Shwartz & Zhang, 2013), which inspired us to adapt it to large-scale LLM training.

Some previous works have explored training various neural network models using BCD (Zeng et al.,
2019; Lau et al., 2018; Massart & Abrol, 2022). A recent parallel study (Luo et al., 2024) extends
BCD to LLMs, focusing on memory efficient training. These methods update one block of pa-
rameters per iteration, chosen either randomly or cyclically. This approach is often inefficient for
large-scale models because, in most cases only a small subset of parameters requires to be updated
during finetuning (see our analysis 2 for details). If these critical parameters are not updated fre-
quently enough, training becomes prolonged, impacting overall efficiency. In this work, we address
this issue by updating parameters that are important for training more frequently. Our experimen-
tal results (see Figure 1) demonstrate that this strategy leads to both better performance and more
efficient training.

Our Contributions. The key contributions of this work are as follows:
1. We propose a novel parameter and memory-efficient algorithm, BlockLLM where we dynam-
ically select and train a block of parameters. This approach minimizes memory consumption by
maintaining gradient and optimizer states only for the selected parameters.
2. We introduce a novel block selection criterion tailored for LLM training where impactful param-
eters are updated more frequently. This leads to faster training, as important parameters are updated
earlier in the process.
3. We demonstrate that BlockLLM achieves state-of-the-art training and generalization performance
in both fine-tuning and pretraining tasks, while also enabling faster training and reduced memory
usage.
4. We provide extensive ablation studies showing that BlockLLM is robust across various hyperpa-
rameter settings, including sparsity and patience.

2 METHODOLOGY

They key idea behind BlockLLM is to select and update only a subset of parameters during training,
enabling us to achieve significant memory savings. An illustration of the method is given in Figure 2.
However, the criteria for selecting the “right” subset of parameters is not clear. In this section, we
look at magnitude pruning as a tool to identify parameter importance in the finetuning setting.

Magnitude Pruning. Magnitude pruning is a widely recognized technique for reducing the pa-
rameter count in neural network models Gupta et al. (2022). In this analysis, we use the weight
magnitude of a parameter as a measure of parameter importance and study the impact of training on
the selected parameters. First, we trained DistilBERT (Sanh et al., 2019) on the IMDb dataset (Maas
et al., 2011) for sequence classification, achieving an accuracy of 92.02%. We then conducted infer-
ence on the GLUE-CoLA dataset (Wang et al., 2018) without fine-tuning, resulting in a significant
drop in accuracy to 47.74%. This drop in performance, possibly due to domain shift, encouraged us
to use this setup for our analysis.

Next, we performed magnitude pruning on the IMDb pretrained model at various sparsity levels.
We then finetuned these pruned models on the GLUE-CoLA dataset. Let s denote the sparsity
level, W t represent the model parameters at iteration t, and n be the total number of parameters.
For each parameter wi where i = 1, . . . , n, we compute |wi|. During training, we update only
S = Topk|W 0|, where k = n× (1− s). The results of these experiments, detailing the relationship
between sparsity and accuracy, are summarized in Table 2.

Interesting results emerged from this analysis: at 0.5 sparsity, the model retains a high accuracy of
78.52%, suggesting that up to 50% of parameters can be pruned with minimal performance loss.
However, accuracy drops significantly at 0.7 sparsity to 67.68%. This suggests that there is some
inductive bias that the model can leverage when finetuning on a dataset with significant domain

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2025

Layer 1

Layer 1

Adam

0

0

Layer 1

Layer 1

Adam + BlockLLM

0

0

Figure 2: Given a large language model consisting of many layers, BlockLLM first finds the layers
with the largest gradient ||G̃l|| (highlighted in orange) and selects a subset of the parameters. During
optimization, only the selected layers will be updated (θ) and the optimizer will keep track of its
optimizer states only for those selected parameters (shown in orange).

shift, under a reduced parameter setting. However, estimating the sparsity s apriori is hard, and its
not clear what factors influence this.

Analysis of Weight Magnitudes. To further understand the effects of this parameter selection
strategy, we analyzed |W | before and after training. This helped understand which weights are
updated more frequently and their impact on model performance. Specifically, we compared the
initial weights |W 0| and final weights |W t| of the model after fine-tuning on the CoLA dataset
(Wang et al., 2018). Our findings are presented in Figure 3. The histogram on the left of Figure 3
shows |wt

i | for all i where δi > η. Here, δi = |w0
i − wt

i | and η is the threshold. The histogram on
the right of Figure 3 plots the frequency of δ in the updates, revealing that a large percentage of the
updates were minor.

Several additional insights and questions emerge from these observations. The histogram of δ indi-
cates that most weight changes are minor, suggesting that significant updates are concentrated in a
small portion of the weights. These experiments raise some pertinent questions:

1. Is it reasonable to judge the impact of a parameter during training based on its initial weight
magnitude?
2. How should the appropriate sparsity level s be determined before commencing training?
3. Although we observed that only a few parameters undergo significant changes during training,
which specific parameters are updated during various phases of the training process?

2.1 ANALYSIS OF REDUCED PARAMETER TRAINING

To address the above questions, we further investigated the pruning process. First, we updated the
chosen parameter set S every m iterations based on the weight magnitudes |W t|, at current iteration
t. This means that after every m, the parameter selection criteria is revisited to obtain a new set
of parameters to update. The objective is to understand if S changes significantly over time and
if adaptively selecting S enhances the training performance. In this framework, we continue to
update only the top k = n × (1 − s) parameters in each iteration. However, the percentage of
unique parameters q, updated throughout the entire training process can be greater than (1 − s)%
of parameters updated. (i.e q ≥ 1 − s). Analysing q can reveal how much parameters are truly
impactful for training, thereby addressing our second question.

We conducted this experiment using the same setup: finetuning the DistilBERT model on the GLUE-
CoLA dataset after pre-training on the IMDb dataset. The results of this experiment are summarized

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2025

0.0 0.1 0.2
Parameter Values

0

2

4

6
Fr

eq
ue

nc
y

1e6

(a) Histogram of the parameters that changed dur-
ing finetuning.

0.0 0.1 0.2 0.3 0.4

δ

0

1

2

3

F
re

q
u

en
cy

×107

(b) Histogram of changes in parameter magni-
tudes, revealing that most changes are small.

Figure 3: Analysis of weight magnitudes of DistilBERT model pretrained on IMDb dataset and fine-
tuned on CoLA dataset suggesting that finetuning predominantly affects a narrow set of impactful
parameters. This supports our hypothesis that focusing updates on a smaller number of important
parameters can yield efficient training.

in the Table 3. Additionally, we performed similar experiments on other GLUE (Wang et al., 2018)
datasets, with the results presented in Section A.3

Our observations indicate that as s decreases, that is when more parameters are updated per itera-
tion, the number of unique parameters q increases. This results in better model performance. The
increasing number of unique updates indicates that different parameters may become important at
different stages of training, necessitating a more dynamic approach to parameter updates.

We also evaluated the model with varying update frequencies m. Naturally, as m increases, the
model has fewer opportunities to update a larger number of parameters, leading to a decrease in q.
Interestingly, there is an optimal point up to which performance either improves or remains stable,
beyond which it begins to decline. This suggests that updating too many parameters or too few
parameters can be detrimental to the training process. These findings highlight the need for adaptive
methods to determine the choice of parameters and the update frequency.

The findings from our experiments suggest that a parameter-efficient training method that updates a
small set of parameters each iteration is feasible. However, some key aspects require clarification:

Parameter Selection Criteria: Our analysis in Figure 3 indicates that the model frequently updates
parameters with lower weight magnitudes. This contradicts the very premise of magnitude pruning.
Therefore its not clear if adopting magnitude as a parameter importance criteria will help, in general.
In our work, we bank on evidence from prior work on greedy parameter selection strategy Ramesh
et al. (2023); Nutini et al. (2022) and use gradient as the parameter importance criteria.

Parameter Selection Frequency: As discussed earlier, determining when to change the set of pa-
rameters to update for a given training phase is crucial. In BlockLLM, we developed an adaptive
strategy using the current loss value to decide when the parameter selection needs to be revisited.

2.2 BLOCKLLM

In this section we introduce BlockLLM, a parameter and memory efficient training method designed
to reduce the number of trainable parameters in large language models (LLMs) without compromis-
ing training performance. Akin to other parameter-efficient fine-tuning (PEFT) methods such as
LoRA (Hu et al., 2021) and ReLoRA (Lialin et al., 2023), BlockLLM updates only k parameters at
any iteration t. Here k ≪ n and n is the total number of parameters. However, the main difference
is that BlockLLM optimizes parameter selection by focusing on the most impactful parameters at
different stages of the training process. The overall algorithm of BlockLLM is given in Algorithm 1.

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2025

Parameter Selection Criteria. In the context of LLMs, at iteration t, the update to the parameter
is the processed gradient G̃t, calculated using optimizers such as Adam (Kingma & Ba, 2014).
Specifically, for any layer l of the model, the update is given by,

G̃l
t = M l

t/
√

V l
t + ϵ where, M l

t = β1M
l
t−1 + (1− β1)G

l
t, V l

t = β2V
l
t−1 + (1− β2)G

l
t

2
. (1)

All the operations in equation 1 are applied element-wise. Here, β1 and β2 are hyperparameters
of the optimizer. Gl

t ∈ Rp×q is the gradient at layer l. Mt and Vt denote the bias-corrected first
moment estimate and bias-corrected second moment estimate respectively.

BlockLLM achieves memory savings by storing these optimizer states Mt and Vt only for the cur-
rently selected layers, rather than for all parameters in the model. When the set of selected layers
changes, the optimizer is reset with these new layers. This means it no longer maintains the op-
timizer states for the previously selected layers, similar to methods such as ReLoRA Lialin et al.
(2023). As an alternative, we also tried to offload Mt and Vt of the selected parameters to CPU and
re-load them as needed. But that did not improve the model performance. Thus we decided to adopt
the former strategy to avoid the offloading operation in the interest of faster training.

During the backward pass, BlockLLM selects the layers with large ||G̃l
t|| and updates only those

layers. These selected layers are denoted as the set S. Note that by selecting full layers, we may not
achieve the desired sparsity level s. Therefore, for each selected layer we construct a binary mask
to retain only the top k parameters by gradient magnitude:

mask[i, j] =
{
1 if |G̃l

t[i, j]| ≥ τ

0 otherwise,

where τ is an estimated threshold, computed by looking at the gradient values of each layer. Specif-
ically, τ is obtained computing the (1 − ζ)th percentile in G̃l

t. The value of ζ is defined as
ζ = (Σp − ns)/ns (refer to Algorithm 2 for definitions of Σp and ns). Then, in every iteration
t, the selected parameters in layers l ∈ S are updated using the computed masks. The update rule
is given by W l

t+1 = W l
t − η

(
mask⊙ G̃l

t

)
, where η is the learning rate. An illustration of the

proposed parameter selection procedure is given in Figure 2.

However, there is one caveat with this approach. In the initial training iterations, the gradient es-
timates are known to be noisy. Additionally, in cases such as pretraining and finetuning with sig-
nificant domain shifts, there is often very little useful inductive bias. Therefore, using gradients to
select important parameters may prove to be detrimental to our cause in the initial few iterations.

To address this challenge, our experiments incorporate layer visit frequency f into the selection
criteria. Specifically, for any layer l ∈ L = {1, 2, . . . , n}, then fl represents the sum normalized
number of times the layer has been selected. That is,

Sl
t =

{
1 if layer l is selected at time t

0 otherwise.

The layer visit frequency fl for layer l after T time steps is given by fl =
1
T

∑T
t=1 S

l
t. Consequently,

the layer selection criterion is modified to |G̃l|/fl. This modification favors layers with high gra-
dient norms while also giving priority to layers that have been selected less frequently in previous
iterations. Our experimental results demonstrate that this refined criterion enhances performance.

Parameter Selection Frequency. The natural next question is how many iterations to update the
parameters in the same set of layers S. BlockLLM addresses this by using the loss ϕ as a critical
signal for determining when to change the parameter selection. Specifically, BlockLLM introduces
a hyperparameter, patience m. At any iteration t, if ϕt equals to or exceeds the moving average of
losses over the last m iterations, the set S is revised. The detailed parameter selection frequency
algorithm is provided in Algorithm 2.

Memory Efficiency The memory benefits of training with BlockLLM, stems primarily from its
parameter-efficient training approach. In practice, updating fewer parameters directly reduces the

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2025

number of gradients and optimizer states that need to be stored in VRAM. With s% sparsity, Block-
LLM reduces the optimizer states by s% compared to full parameter training. Our empirical analysis
corroborates this.

The parameter selection in BlockLLM relies on ∥G̃l∥ for each layer l ∈ L, which requires computing
G̃l for all layers. This operation consumes significant memory required to store all the gradients. To
reduce this, we sample a small number of p additional layers per iteration besides the current block.
Gradients for these p layers are computed and their norms stored in a dictionary, which is then used
for efficient parameter selection.

Algorithm 1 BlockLLM Training Algorithm

1: Input: Data X , initial model parameters W0,
sparsity s, set of layers L, learning rate η, pa-
tience parameter m, β1, β2, ϵ.

2: Initialize: M0 = 0, V0 = 0, H = []
//Forward and backward pass

3: for each iteration t do
4: Loss ϕt, Gt = COMPUTE GRADIENT(Wt)
5: if (length(H) ≥ m and

ϕt ≥ 1
m

∑t
i=t−m+1 H[i]) or (t = 0) then

6: mask, S = SELECTPARAM(Gt, s, L)
7: H = [] //Reset loss history
8: end if
9: // Update selected params

10: for each l ∈ S do
11: Gl

t = COMPUTE GRADIENT(W l
t)

12: M l
t , V

l
t , G̃

l
t = ADAM(M l

t−1, V
l
t−1, G

l
t−1)

13: G̃l
t = mask⊙ G̃l

t

14: W l
t+1 = W l

t − ηG̃l
t

15: end for
16: end for

Algorithm 2 Select Parameters Function

1: function SELECTPARAM(Gt, s, L)
2: Compute ∥G̃l

t∥ for each layer l ∈ L
3: n =

∑
l∈L count(l), ns = (1−s)×n

4: D ← sort(L, desc, ∥G̃l
t∥/fl)

5: Initialize S = [], Σp = 0
6: for each l ∈ D do
7: Σp += count(l) , S ← S ∪ {l}
8: if Σp ≥ ns then break
9: end if

10: end for
11: for each l ∈ S do
12: Let maskl = 0|Gl

t|
13: for each i, j in mask do
14: if ∥G̃l

t[i, j]∥ ≥ τ then
15: maskl[i, j] = 1
16: end if
17: end for
18: end for
19: return mask, S
20: end function

Figure 4: (Left) The main BlockLLM algorithm, (right) SELECTPARAM function that performs
parameter selection at iteration t.

3 EXPERIMENTS

We evaluated BlockLLM on both finetuning and pretraining tasks.1 The large-scale finetuning ex-
periments were conducted on an H100 GPU (80 GB), while the pretraining tasks were performed
on NVIDIA A40 (48 GB) and A100 GPUs (80 GB) (one GPU allocated per experiment). The
remaining experiments were conducted using a Tesla V100 GPU (32 GB).

3.1 LARGE SCALE FINETUNING

We conducted a series of experiments to evaluate the effectiveness of our approach in finetuning
large language models. Specifically, we utilized the LLaMA-2 model (Touvron et al., 2023) with
7 billion parameters, and fine-tuned it on the Alpaca dataset (Peng et al., 2023). Alpaca dataset
Peng et al. (2023) is a widely used benchmark for instruction following tasks. It consists of diverse
instruction-response pairs across multiple domains. For the finetuning process, we employed the
Llama-factory framework (Zheng et al., 2024). Llama-factory (Zheng et al., 2024) is an open-source
framework designed for efficient fine-tuning, inference, and deployment of LLaMA models.

We finetuned the LLaMA-2 model (Touvron et al., 2023) with the experimental setup as detailed in
the Appendix 9. Gradient checkpointing was enabled in all cases. We compared the performance of

1All our experiments were based on the code released by Zhao et al. (2024). We thank the authors for
making their code publicly available and for clearly documenting their experimental setup.

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2025

BlockLLM against other state-of-the-art memory efficient training methods such as GaLore (Zhao
et al., 2024), LoRA (Hu et al., 2021) and BAdam (Luo et al., 2024). We excluded Adam (Kingma
& Ba, 2014) from the comparison as it exceeds the available memory on an 80GB GPU, with an
estimated requirement of over 120GB. We evaluated all methods based on peak memory consumed
during training in GB(Gigabytes), training time, and both training and evaluation loss. The results
are provided in the Figure 5. The results indicate that BlockLLM converges to a lower loss value

0 2000 4000 6000 8000
Iteration

0.80

0.85

0.90

0.95

Tr
ai

ni
ng

 L
os

s

LoRA
BAdam
GaLore
BlockLLM

0 10 20 30 40
Iteration

0.84

0.86

0.88

0.90

0.92

Ev
al

 L
os

s

LoRA
BAdam
GaLore
BlockLLM

LoRA BAdam GaLore BlockLLM
Model

0

5

10

15

20

M
ax

 m
em

or
y

us
ag

e
(M

B)

LoRA BAdam GaLore BlockLLM
Model

0

5000

10000

15000

20000

25000

W
al

l c
lo

ck
 ti

m
e

(s
ec

s)

Figure 5: The figures, arranged from left to right and top to bottom, compare training loss, evaluation
loss, peak memory usage, and training time for BlockLLM, LoRA, BAdam, and GaLore. BlockLLM
demonstrates superior performance, with lower memory usage and reduced training time.

than the other methods, while requiring substantially less memory. Additionally, BlockLLM demon-
strates strong generalization, achieving the lowest evaluation loss across all methods. In terms of
runtime, BlockLLM performs comparably to BAdam and is faster than the other two baselines.

3.2 PRETRAINING ON LLAMA MODEL

We also compared BlockLLM with GaLore (Zhao et al., 2024) in pretraining LLaMA-based large
language models Touvron et al. (2023) on the C4 (Colossal Clean Crawled Corpus) dataset (Raffel
et al., 2020). The C4 dataset is a large-scale, cleaned version of the Common Crawl web corpus
used for pre-training language models, featuring diverse and high-quality text from the internet.
Our experiment setup is similar to Zhao et al. (2024), following the setup from Lialin et al. (2023).
We finetuned the learning rate for BlockLLM while keeping all other hyperparameters fixed across
experiments. We ran BlockLLM with the experimental setup described in A.7 and computed the
perplexity scores from final evaluation loss and maximum memory usage in GB(Gigabytes). We ran
GaLore for 10% of total iterations to observe memory consumption, and used the results from Zhao
et al. (2024) for comparison. The perplexity and the memory are shown in Figure 6 and Table 1.

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2025

60M 130M 350M

Perplexity Memory Perplexity Memory Perplexity Memory

BlockLLM 34.31 28.27 25.36 40.68 19.02 42.6

GaLore 34.88 32.26 25.36 46.69 18.95 49.06

Table 1: Comparison of BlockLLM’s accuracy and VRAM memory usage (GB) for LLaMA models
with GaLore. BlockLLM demonstrates reduced memory consumption while maintaining compara-
ble performance.

We note here that BlockLLM takes a little bit longer to converge in some pretraining experiments
(130m and 350m models) compared to GaLore in the pretraining experiment. We suspect this is
due to the fact that we are dealing with noisy gradients in the earlier iterations of training. However,
BlockLLM converges to the state-of-the-art perplexity score in a few more iterations compared to
GaLore. This issue is not present in the finetuning experiments.

Effect of sparsity s. Here, we compare BlockLLM with sparsity values s = 0.5, 0.7 and 0.9 against
GaLore (Zhao et al., 2024). The results are presented in Figure 6. We observe that with s = 0.5,
BlockLLM consumes about 1.5 GB less memory than Galore and higher sparsity values further
reduce memory usage though this comes with the trade-off of requiring more training iterations for
similar performance.

0 20 40 60 80 100
Step (in thousands)

100

200

300

400

500

Pe
rp

le
xi

ty

s = 0.7
s = 0.5
s = 0.9
GaLore

s=0.7
s=0.5

s=0.9

GaL
or

e
20.0

25.0

30.0

35.0

40.0

M
em

or
y

Al
lo

ca
te

d
(G

B
)

29.1
30.7

28.3

32.3

Figure 6: Comparison of perplexity (left) and memory usage (right) of Llama 60M. Here s denotes
the specified model sparsity. As it can be seen, BlockLLM performs competitively with GaLore, but
at a much lower memory footprint.

3.3 ABLATION ON PARAMETER SELECTION STRATEGY

The parameter selection strategy is the cornerstone of our method, where we hypothesize that layers
with large ||G̃l|| are important for training. To validate this, we conducted an ablation study in
which we deliberately chose parameters with small ||G̃l|| (opposite to BlockLLM). Specifically, we
finetuned LLaMA2 7B model on the Alpaca dataset, where parameters with the smallest gradient
norms were selected for updates. We call this method BLockLLM-SubOPT. Naturally, we expect
that this parameter selection strategy to be severely detrimental to the training process.

Let L = {l1, l2, . . . , ln} represent the set of all layers. Now, for each layer l ∈ L, we computed the
processed gradients G̃l. We then sorted the layers in ascending order based on the their processed
gradient norms ||G̃l|| and computed ||G̃l||/fl. From this ordered list, we selected top k layers
with small gradient norms until the sparsity requirement s is satisfied. Then, in each iteration t,
the optimizer updates only the parameters in the selected k layers. We conducted hyperparameter
tuning and set m = 100 for s = 0.95. Now, we compared the training loss of both the methods and
the comparative results are presented in Figure 7. As expected, the results show that BLockLLM-
SubOPT exhibits significantly higher training loss and converges slower than BlockLLM.

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2025

Effect of Layer Visit Frequency f . To evaluate this, we conducted a similar experiment on the
LLaMA 60M model pretrained on the C4 dataset, where we assessed BlockLLM’s strategy to select
layers based on layer visit frequency f . To perform this, we selected layers solely based on their
gradient norms without considering f . We compared this method with BlockLLM and the results
are presented in Figure 7. Our hypothesis was that selecting parameters solely based on ||G̃|| might
result in higher loss during the initial iterations, followed by a gradual reduction in later iterations.
This could be because of the noisy gradients early in training. Important layers might not be chosen
resulting in higher loss compared BlockLLM. As expected, we observed similar behavior as shown
in the figure 7.

0 2000 4000 6000 8000
Iteration

0.800

0.825

0.850

0.875

0.900

0.925

0.950

0.975

Tr
ai

ni
ng

 L
os

s

BlockLLM
BLockLLM-SubOPT

1 3 6 9 12 15 18 21
Step (in thousands)

50

100

150

200

250

300

Pe
rp

le
xi

ty

BlockLLM
Gradient norm only

Figure 7: Ablation study on parameter selection criteria. The figure on the left illustrates the advan-
tage of selecting parameters based on gradient norms and the figure on the right demonstrates the
benefit of incorporating layer selection frequency.

4 CONCLUSION & FUTURE WORK

In this paper we introduced BlockLLM, a novel method for efficiently training large language
models. By dynamically estimating and updating the importance of parameters during training,
BlockLLM effectively achieves state-of-the-art performance while significantly reducing the mem-
ory footprint. Our method achieves the highest validation accuracy on the finetuning tasks, some-
times even surpassing full finetuning. One key aspect of BlockLLM is that it does not presuppose the
importance of layers but continuously evaluates and updates parameter importance throughout train-
ing. This adaptive approach allows for more flexible and efficient optimization compared to methods
that assume certain parameters are critical from the outset. Additionally, BlockLLM preserves the
original architecture without altering the model structure or restricting the parameter search space,
making it suitable for various LLMs and tasks.

Broader Impacts Our work aims to reduce the memory and computational requirements of training
LLMs. First, our technology democratizes access to LLM training, making it more feasible for stu-
dent researchers and institutions with limited computational resources to participate in cutting-edge
AI research. Furthermore, the low-memory requirements of our method means that one can train
with larger batch sizes and achieve faster convergence. This has a direct effect on the environment.

Future works. Future work on BlockLLM could explore several promising avenues. Currently, our
research has focused on parameter selection based on gradient norms, but BlockLLM can be seen as
a framework for parameter-efficient training rather than a single algorithm. This opens the door to
investigating alternative criteria for parameter selection, potentially tailored to specific problems or
tasks. Moreover, while our ablation studies on BlockLLM’s hyperparameters have provided insights
into their impact on training, further research is needed to understand how different layers might be
affected by greedy parameter selection strategies. BlockLLM also complements existing memory-
optimized training techniques, including those discussed in this paper. Exploring the integration of
BlockLLM with methods like quantization or GaLore could further reduce memory consumption.

10

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2025

REFERENCES

Ebtesam Almazrouei, Hamza Alobeidli, Abdulaziz Alshamsi, Alessandro Cappelli, Ruxandra Co-
jocaru, Mérouane Debbah, Étienne Goffinet, Daniel Hesslow, Julien Launay, Quentin Malartic,
et al. The falcon series of open language models. arXiv preprint arXiv:2311.16867, 2023.

Eugene Belilovsky, Michael Eickenberg, and Edouard Oyallon. Greedy layerwise learning can scale
to imagenet. In International conference on machine learning, pp. 583–593. PMLR, 2019.

Tom Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared D Kaplan, Prafulla Dhariwal,
Arvind Neelakantan, Pranav Shyam, Girish Sastry, Amanda Askell, et al. Language models are
few-shot learners. Advances in neural information processing systems, 33:1877–1901, 2020.

Tianqi Chen, Bing Xu, Chiyuan Zhang, and Carlos Guestrin. Training deep nets with sublinear
memory cost. arXiv preprint arXiv:1604.06174, 2016.

Angela Fan, Edouard Grave, and Armand Joulin. Reducing transformer depth on demand with
structured dropout. arXiv preprint arXiv:1909.11556, 2019.

Manas Gupta, Efe Camci, Vishandi Rudy Keneta, Abhishek Vaidyanathan, Ritwik Kanodia, Chuan-
Sheng Foo, Wu Min, and Lin Jie. Is complexity required for neural network pruning? a case
study on global magnitude pruning. ArXiv, abs/2209.14624, 2022. URL https://api.
semanticscholar.org/CorpusID:252595918.

Song Han, Huizi Mao, and William J Dally. Deep compression: Compressing deep neural networks
with pruning, trained quantization and huffman coding. arXiv preprint arXiv:1510.00149, 2015.

Junxian He, Chunting Zhou, Xuezhe Ma, Taylor Berg-Kirkpatrick, and Graham Neubig. Towards a
unified view of parameter-efficient transfer learning. arXiv preprint arXiv:2110.04366, 2021.

Edward J Hu, Yelong Shen, Phillip Wallis, Zeyuan Allen-Zhu, Yuanzhi Li, Shean Wang, Lu Wang,
and Weizhu Chen. Lora: Low-rank adaptation of large language models. arXiv preprint
arXiv:2106.09685, 2021.

Zhiqiang Hu, Lei Wang, Yihuai Lan, Wanyu Xu, Ee-Peng Lim, Lidong Bing, Xing Xu, Soujanya
Poria, and Roy Ka-Wei Lee. Llm-adapters: An adapter family for parameter-efficient fine-tuning
of large language models. arXiv preprint arXiv:2304.01933, 2023.

Siddhartha Rao Kamalakara, Acyr Locatelli, Bharat Venkitesh, Jimmy Ba, Yarin Gal, and Aidan N
Gomez. Exploring low rank training of deep neural networks. arXiv preprint arXiv:2209.13569,
2022.

Jared Kaplan, Sam McCandlish, Tom Henighan, Tom B Brown, Benjamin Chess, Rewon Child,
Scott Gray, Alec Radford, Jeffrey Wu, and Dario Amodei. Scaling laws for neural language
models. arXiv preprint arXiv:2001.08361, 2020.

Akhil Kedia, Sai Chetan Chinthakindi, and Wonho Ryu. Beyond reptile: Meta-learned dot-product
maximization between gradients for improved single-task regularization. In Findings of the As-
sociation for Computational Linguistics: EMNLP 2021, pp. 407–420, 2021.

Diederik P Kingma and Jimmy Ba. Adam: A method for stochastic optimization. arXiv preprint
arXiv:1412.6980, 2014.

Tim Tsz-Kit Lau, Jinshan Zeng, Baoyuan Wu, and Yuan Yao. A proximal block coordinate descent
algorithm for deep neural network training. arXiv preprint arXiv:1803.09082, 2018.

Teven Le Scao, Angela Fan, Christopher Akiki, Ellie Pavlick, Suzana Ilić, Daniel Hesslow, Roman
Castagné, Alexandra Sasha Luccioni, François Yvon, Matthias Gallé, et al. Bloom: A 176b-
parameter open-access multilingual language model. 2023.

Vladislav Lialin, Sherin Muckatira, Namrata Shivagunde, and Anna Rumshisky. Relora: High-rank
training through low-rank updates. In Workshop on Advancing Neural Network Training: Com-
putational Efficiency, Scalability, and Resource Optimization (WANT@ NeurIPS 2023), 2023.

11

https://api.semanticscholar.org/CorpusID:252595918
https://api.semanticscholar.org/CorpusID:252595918

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2025

Yinhan Liu, Myle Ott, Naman Goyal, Jingfei Du, Mandar Joshi, Danqi Chen, Omer Levy, Mike
Lewis, Luke Zettlemoyer, and Veselin Stoyanov. Roberta: A robustly optimized bert pretraining
approach. arXiv preprint arXiv:1907.11692, 2019.

Qijun Luo, Hengxu Yu, and Xiao Li. Badam: A memory efficient full parameter training method
for large language models. arXiv preprint arXiv:2404.02827, 2024.

Xinyin Ma, Gongfan Fang, and Xinchao Wang. Llm-pruner: On the structural pruning of large
language models. Advances in neural information processing systems, 36:21702–21720, 2023.

Andrew L. Maas, Raymond E. Daly, Peter T. Pham, Dan Huang, Andrew Y. Ng, and Christopher
Potts. Learning word vectors for sentiment analysis. In Proceedings of the 49th Annual Meeting
of the Association for Computational Linguistics: Human Language Technologies, pp. 142–150,
Portland, Oregon, USA, June 2011. Association for Computational Linguistics. URL http:
//www.aclweb.org/anthology/P11-1015.

Estelle Massart and Vinayak Abrol. Coordinate descent on the orthogonal group for recurrent neural
network training. In Proceedings of the AAAI Conference on Artificial Intelligence, volume 36,
pp. 7744–7751, 2022.

Paul Michel, Omer Levy, and Graham Neubig. Are sixteen heads really better than one? Advances
in neural information processing systems, 32, 2019.

Yu Nesterov. Efficiency of coordinate descent methods on huge-scale optimization problems. SIAM
Journal on Optimization, 22(2):341–362, 2012.

Julie Nutini, Issam Laradji, and Mark Schmidt. Let’s make block coordinate descent converge faster:
faster greedy rules, message-passing, active-set complexity, and superlinear convergence. Journal
of Machine Learning Research, 23(131):1–74, 2022.

R OpenAI. Gpt-4 technical report. arxiv 2303.08774. View in Article, 2(5), 2023.

Baolin Peng, Chunyuan Li, Pengcheng He, Michel Galley, and Jianfeng Gao. Instruction tuning
with gpt-4. arXiv preprint arXiv:2304.03277, 2023.

Colin Raffel, Noam Shazeer, Adam Roberts, Katherine Lee, Sharan Narang, Michael Matena, Yanqi
Zhou, Wei Li, and Peter J Liu. Exploring the limits of transfer learning with a unified text-to-text
transformer. Journal of machine learning research, 21(140):1–67, 2020.

Amrutha Varshini Ramesh, Aaron Mishkin, Mark Schmidt, Yihan Zhou, Jonathan Wilder Lavington,
and Jennifer She. Analyzing and improving greedy 2-coordinate updates for equality-constrained
optimization via steepest descent in the 1-norm. arXiv preprint arXiv:2307.01169, 2023.

Minsoo Rhu, Natalia Gimelshein, Jason Clemons, Arslan Zulfiqar, and Stephen W Keckler. vdnn:
Virtualized deep neural networks for scalable, memory-efficient neural network design. In 2016
49th Annual IEEE/ACM International Symposium on Microarchitecture (MICRO), pp. 1–13.
IEEE, 2016.

Peter Richtárik and Martin Takáč. Iteration complexity of randomized block-coordinate descent
methods for minimizing a composite function. Mathematical Programming, 144(1):1–38, 2014.

Hassan Sajjad, Fahim Dalvi, Nadir Durrani, and Preslav Nakov. On the effect of dropping layers of
pre-trained transformer models. Computer Speech & Language, 77:101429, 2023.

Victor Sanh, Lysandre Debut, Julien Chaumond, and Thomas Wolf. Distilbert, a distilled version of
bert: smaller, faster, cheaper and lighter. arXiv preprint arXiv:1910.01108, 2019.

Shai Shalev-Shwartz and Tong Zhang. Stochastic dual coordinate ascent methods for regularized
loss minimization. Journal of Machine Learning Research, 14(1), 2013.

Mingjie Sun, Zhuang Liu, Anna Bair, and J Zico Kolter. A simple and effective pruning approach
for large language models. arXiv preprint arXiv:2306.11695, 2023.

Sho Takase and Shun Kiyono. Lessons on parameter sharing across layers in transformers. arXiv
preprint arXiv:2104.06022, 2021.

12

http://www.aclweb.org/anthology/P11-1015
http://www.aclweb.org/anthology/P11-1015

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2025

Hugo Touvron, Thibaut Lavril, Gautier Izacard, Xavier Martinet, Marie-Anne Lachaux, Timothée
Lacroix, Baptiste Rozière, Naman Goyal, Eric Hambro, Faisal Azhar, et al. Llama: Open and
efficient foundation language models. arXiv preprint arXiv:2302.13971, 2023.

Alex Wang, Amanpreet Singh, Julian Michael, Felix Hill, Omer Levy, and Samuel R Bowman.
Glue: A multi-task benchmark and analysis platform for natural language understanding. arXiv
preprint arXiv:1804.07461, 2018.

Ziheng Wang, Jeremy Wohlwend, and Tao Lei. Structured pruning of large language models. arXiv
preprint arXiv:1910.04732, 2019.

Jinshan Zeng, Tim Tsz-Kit Lau, Shaobo Lin, and Yuan Yao. Global convergence of block coordi-
nate descent in deep learning. In International conference on machine learning, pp. 7313–7323.
PMLR, 2019.

Jiawei Zhao, Zhenyu Zhang, Beidi Chen, Zhangyang Wang, Anima Anandkumar, and Yuandong
Tian. Galore: Memory-efficient llm training by gradient low-rank projection. arXiv preprint
arXiv:2403.03507, 2024.

Wayne Xin Zhao, Kun Zhou, Junyi Li, Tianyi Tang, Xiaolei Wang, Yupeng Hou, Yingqian Min,
Beichen Zhang, Junjie Zhang, Zican Dong, et al. A survey of large language models. arXiv
preprint arXiv:2303.18223, 2023.

Yaowei Zheng, Richong Zhang, Junhao Zhang, Yanhan Ye, and Zheyan Luo. Llamafactory: Unified
efficient fine-tuning of 100+ language models. arXiv preprint arXiv:2403.13372, 2024.

13

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2025

A APPENDIX

A.1 SPARSITY ACCURACY TRADEOFF

We performed magnitude pruning on the IMDb pre-trained model (Maas et al., 2011) weights at
various sparsity levels and fine-tuned these pruned models on the GLUE-CoLA dataset (Wang et al.,
2018). The results of these experiments, detailing the relationship between sparsity and accuracy,
are summarized in Table 2.

Sparsity Accuracy

0.0 79.57

0.5 78.52

0.6 74.2

0.7 67.68

0.8 69.12

0.9 69.12

Table 2: Performance of pruned models at various sparsity levels on GLUE-CoLA dataset.

The accuracy generally declines with increasing sparsity. At 0.5 sparsity, the performance remains
relatively high at 78.52%, close to the non-pruned model’s 79.57%. However, accuracy drops more
significantly to 67.68% at 0.7 sparsity. Interestingly, at sparsity levels of 0.8 and 0.9, accuracy
stabilizes around 69.12%.

A.2 ANALYSIS OF WEIGHT MAGNITUDES

In this experiment, we pretrain DistilBERT on the IMDB dataset (Maas et al., 2011) and then fine-
tune it on GLUE-CoLA (Wang et al., 2018) with sparsity s = 0.7. We then plot the histogram of the
weight magnitudes W t where δ = |w0

i −wt
i | > η, with η as the threshold. We set η = 0.001 in this

case.

Figure 8: Histogram of changed parameters for s = 0.7

A.3 ANALYSIS OF REDUCED PARAMETER TRAINING

In this experiment, we updated the chosen parameter set S every m iterations based on the weight
magnitudes |W t|, at current iteration t. This means that after every m, the parameter selection
criteria is revisited to obtain a new set of parameters to update. The objective is to understand if S
changes significantly over time and if adaptively selecting S enhances the training performance. In
this framework, we continue to update only the top k = n × (1 − s) parameters in each iteration.
However, the percentage of unique parameters q, updated throughout the entire training process can

14

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2025

be greater than (1− s)% of parameters updated. (i.e q ≥ 1− s). Analysing q can reveal how much
parameters are truly impactful for training, thereby addressing our second question.

We conducted this experiment using the same setup: finetuning the DistilBERT model on the GLUE-
CoLA dataset after pretraining on the IMDb dataset. The results of this experiment are summarized
in the Table 3.

1− s q m Accuracy Matthews Correlation
0.1 0.58 1000 82.55 0.5882

0.02 0.36 1000 82.45 0.5711

0.02 0.14 4000 82.45 0.5794

0.02 0.10 6000 82.07 0.5679

Table 3: Impact of Update Frequency and Sparsity on CoLA Dataset

Next, we fine-tuned the GLUE datasets (Wang et al., 2018) on the DistilBERT model (Sanh et al.,
2019) pretrained on the IMDb dataset (Maas et al., 2011). We varied the sparsity s and update
frequency m while monitoring the number of unique parameters updated q. We ran the GLUE-SST2
experiments for 8400 iterations and GLUE-STSB for 20000 iterations. Additionally, we tracked the
VRAM usage for the GLUE-SST2 dataset to compare it with the memory consumption of full-
parameter fine-tuning, which is 7.9 GB. This comparison aims to determine if reduced parameter
training effectively decreases memory usage.

1− s q m Spearman Correlation

0.01 0.05 5000 88.82

0.01 0.037 10000 88.77

Table 4: Impact of Update Frequency and Sparsity on STSB Dataset

1− s q m Accuracy VRAM

0.008 0.04 2400 91.97 4.4

0.01 0.11 3000 90.94 5.5

0.02 0.13 1000 90.59 5.5

0.02 0.16 2000 92.2 5.5

Table 5: VRAM Usage with Different Update Frequencies on SST2 Dataset

Table 4 shows the impact of update frequency m and sparsity s on the STSB dataset, where the
correlation remains stable despite changes in update frequency. As m increased too high, the per-
formance declined.

A.4 VRAM MEMORY

All memory values presented in our tables represent actual observed memory usage in gigabytes
(GB) rather than estimates. Memory consumption was monitored using the “nvidia-smi” command,
and the maximum memory usage recorded during the training process was noted.

A.5 FINETUNING ON GLUE

The General Language Understanding Evaluation (GLUE) benchmark (Wang et al., 2018) is widely
used to evaluate the performance of NLP models across a range of tasks, including sentiment anal-
ysis, question answering, and textual entailment. We benchmarked the performance of BlockLLM
against GaLore (Zhao et al., 2024) and full finetuning (FFT) using the pre-trained RoBERTa model

15

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2025

(Liu et al., 2019) on GLUE tasks. We did not compare against LoRA Hu et al. (2021) and its variants
Lialin et al. (2023); Kamalakara et al. (2022), because our experimental setup aligns with those de-
scribed in ReLoRA and GaLore(Lialin et al., 2023; Zhao et al., 2024). The results for these methods
are already documented in GaLore(Zhao et al., 2024).

For BlockLLM, we conducted hyperparameter tuning for the learning rate and the learning rates for
the different tasks are as follows. The batch size was set to 32 for the CoLA dataset, and 16 for all

Table 6: Hyperparameter details for the GLUE experiments

MRPC COLA STS-B RTE SST2 MNLI QNLI QQP

Learning rate 3E-05 5E-05 3E-05 3E-05 3E-05 3E-05 1E-05 3E-05

other datasets. For all tasks, we used s = 0.95 and m = 1
4× total number of iterations. VRAM

memory usage was monitored and recorded as described in Section A.4. For GaLore, we used
the learning rate specified in their original work (Zhao et al., 2024). In our experiments, we used
s = 0.95. We evaluated both performance and memory consumption during the training process for
all methods. The results, presented in Tables 7 and 8, indicate that BlockLLM outperforms the other
models in all tasks while achieving approximately a 13.5% reduction in memory usage on average.

MRPC COLA STS-B RTE SST2 MNLI QNLI QQP Avg.

Block-LLM 3.97 2.8 3.48 9.1 3.6 13.7 12.8 8.36 7.2

GaLore (rank=8) 4.52 4.2 4.8 9.7 3.87 15.1 14.8 8.43 8.18

GaLore (rank=4) 4.52 4.2 4.8 9.7 3.86 15.2 14.8 8.03 8.14

FFT 4.24 3.67 4.4 10.28 3.82 15.53 15.02 9.22 8.27

Table 7: VRAM Memory Comparison Across Different Tasks (measured in GB). VRAM memory
usage was monitored as described in Section A.4.

MRPC COLA STS-B RTE SST2 MNLI QNLI QQP Avg.

Block-LLM 91.8 63.8 90.02 80.14 94.95 87.75 92.95 91.36 86.6

GaLore (rank=8) 89.96 62.5 91.1 79.78 94.38 87.17 92.97 91.11 86.12

GaLore (rank=4) 91.7 61.67 91.09 79.78 94.04 87 92.65 91.06 86.12

FFT 92.36 62.84 91.1 80.5 94.57 87.18 92.33 92.28 86.6

Table 8: Score Comparison Across Different GLUE Tasks

A.6 LARGE SCALE FINETUNING OF LLAMA 2 ON ALPACA

We provide more details on the hyperparameters used in training the Llama 2 model Touvron et al.
(2023) on Alpaca datasetPeng et al. (2023).

16

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2025

Hyperparameter BlockLLM GaLore LoRA BAdam

Learning Rate (LR) 1× 10−5 1× 10−5 1× 10−5 1× 10−5

LR Scheduler Cosine (lr min = 0) Cosine (lr min = 0) Cosine (lr min = 0) Cosine (lr min = 0)

Epochs 3 3 3 3

Batch Size 8 8 8 8

Gradient Accumulation 2 2 2 2

Weight Decay 0.01 0.01 0.01 0.01

Sparsity (s) 0.95 NA NA NA

Patience(m) 100 NA NA NA

K NA NA NA 100

rank NA 8 8 NA

α NA 2 4× rank NA

Table 9: Hyperparameter Details for finetuning LLaMA 2 Alpaca dataset

A.7 PRETRAINING ON LLAMA

We present the hyperparameters utilized for training the LLama models with sizes 60M, 130M and
350M in 10. For 60M and 130M experiments, the maximum sequence length was set to 256 with a
gradient accumulation of 2,and for 350M with a batch size of 128 with a gradient accumulation of
4. A cosine annealing schedule was employed for learning rate adjustment, decaying to 10% of the
initial learning rate. For BlockLLM, no learning rate warmup was applied. However, for GaLore,
the learning rate was warmed up for the first 10% of training, following the approach outlined in
Zhao et al. (2024). The parameter m was set to 50 for all the experiments.

60M 130M 350M

Learning rate 1E-03 1E-03 1E-03

Total training steps 10K 20K 60K

s 0.5 0.5 0.5

Table 10: Hyperparameter Details for Pretraining LLaMA Models with BlockLLM on the C4
Dataset

A.8 ABLATION ON THE HYPERPARAMETER m

We investigated the sensitivity of the model to the patience parameter m in both fine-tuning and pre-
training setups. These experiments were conducted using the GLUE benchmark and the LLaMA
2 model on the C4 dataset. Throughout the experiments, we fixed all parameters of the Adam op-
timizer and maintained a sparsity level of s = 0.5 while varying m. The results are presented in
Figure 9. Our observations indicate that in the fine-tuning setting, the model is relatively insensitive
to variations in m. Specifically, setting m = 50 or m = 1000 did not result in significant perfor-
mance differences. This finding aligns with the observations reported in Zhao et al. (2024), which
suggest that gradients change more slowly. The gradual nature of gradient changes implies a cor-
respondingly gradual variation in the optimal parameter set, thereby reducing sensitivity to changes
in m. In contrast, in the pre-training setting, smaller values of m lead to faster convergence. This
behavior can be attributed to the presence of noisy gradients in the earlier iterations of pre-training.
Consequently, a smaller m helps maintain impactful parameter selection particularly in the initial
phase of training, thereby facilitating faster convergence.

17

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2025

1 2 4 6 8 10 12 14
Step (in thousands)

50

100

150

200

Pe
rp

le
xi

ty

m = 50
m = 75
m = 500
m = 2000

Figure 9: Ablation on the patience parameter m. We see that m affects the algorithm and model
performance significantly in our pre-training experiments.

18

	Introduction
	Methodology
	Analysis of Reduced Parameter Training
	BlockLLM

	Experiments
	Large scale finetuning
	Pretraining on Llama model
	Ablation on Parameter Selection Strategy

	Conclusion & Future work
	Appendix
	Sparsity Accuracy Tradeoff
	Analysis of weight magnitudes
	Analysis of reduced parameter training
	VRAM memory
	Finetuning on GLUE
	Large scale finetuning of Llama 2 on alpaca
	Pretraining on Llama
	Ablation on the hyperparameter m

