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ABSTRACT

Large language models (LLMs) have demonstrated strong performance in various
robot control tasks. However, their deployment in real-world applications remains
constrained. Even state-of-the-art LLMs, such as GPT-5, frequently produce in-
valid action plans that violate physical constraints, such as directing a robot to an
unreachable location or causing collisions between robots. This issue primarily
arises from a lack of awareness of these physical constraints during the reasoning
process. To address this issue, we propose a novel framework that integrates re-
inforcement learning with verifiable rewards (RLVR) to incentivize knowledge of
physical constraints into LLMs to induce constraints-aware reasoning during plan
generation. In this approach, only valid action plans that successfully complete a
control task receive positive rewards. We applied our method to two small-scale
LLMs: a non-reasoning Qwen2.5-3B-Instruct and a reasoning Qwen3-4B. The
experiment results demonstrate that constraint-aware small LLMs largely outper-
form large-scale models without constraint knowledge training, grounded on both
the BoxNet task and a newly developed BoxNet3D environment built using
MuJoCo, which involves LLM planning for up to 25 robots. This work highlights
the effectiveness of grounding even small LLMs with physical constraints to en-
able scalable and efficient multi-robot control in complex, physically constrained
environments. Our project website is at this link1.

1 INTRODUCTION

Robotic control task requires controllers to find action plans given the robot’s physical constraints.
Conventional methods often employ planning tools, such as PDDL (Fox & Long, 2003) and tem-
poral logics (Emerson, 1990) to find optimal plans. However, they often demand expert knowledge
to convert task constraints to formal language and struggle to scale efficiently in multi-robot sys-
tems due to increased search time (Chen et al., 2024a; 2025; Huang et al., 2022). Recent advances
in Large Language Models (LLMs), which excel at complex reasoning tasks like math and cod-
ing (Luo et al.; DeepSeek-AI, 2025; Shao et al., 2024; Liu & Zhang, 2025), have inspired their
application in robotic control. LLMs can interpret natural-language task instructions and generate
valid action plans (Meng et al., 2025; Chen et al., 2024b; Chu et al., 2025); for instance, ChatGPT
can effectively generate high-level commands such as “Robot A, move the square object to panel
2” (Chen et al., 2024b; Mandi et al., 2023). Paired with low-level execution functions that translate
these commands into control signals for robots, they have proven successful in various multi-robot
tasks (Chen et al., 2024b; Mandi et al., 2023; Sun et al., 2022).

However, these successes have mainly been in synthetic or constrained environments, where phys-
ical interactions are overly simplified. For example, most tasks in RocoBench have predefined all
the possible valid robot interactions with the objects, largely restricting the action space for LLMs.
This has led to significant issues in real-world scenarios, where LLM planners tend to violate many
basic physical constraints. In particular, two important constraints are often overlooked. Reach-
ability constraint: LLM would direct a robot arm to an unreachable position (Chen et al., 2024b;
Zhang et al., 2025). Collision constraint: LLM would schedule robots to the same space, leading
to collisions (Mandi et al., 2023; Jones et al., 2025).

1https://anonym-submission-user.github.io
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Figure 1: Illustration of LLM-based multi-robot control. (Left) Without grounding constraint knowl-
edge, the LLM generates action plans that result in unreachable positions or collisions. (Right) Our
planner generates valid movement actions through constraint-aware reasoning (highlighted in red)
that successfully completes the BoxNet task after grounding robotic constraints knowledge.

As an example, Figure 1 (left) shows invalid actions generated by a SOTA reasoning LLM GPT-5,
which easily violate these constraints, leading to significant safety and feasibility concerns.

These issues highlight the imperative to equip LLM planners with the ability to understand, analyze,
and adhere to basic physical constraints. However, incorporating these constraints would require
strong geometric reasoning and self-reflection capabilities, particularly when the number of robots
is large, which may pose nontrivial challenges to LLMs. This raises a key research question: Can
LLMs, given their current reasoning capabilities, be trained to integrate physical constraints into
the planning process? If so, to what extent can they succeed?

To study these research questions, this paper presents a novel framework to incentivize these physical
constraints into LLM planners, enabling them to reason about action validity during plan generation.
Specifically, we leverage reinforcement learning with verifiable rewards (RLVR) that incorporates
checks for reachability, kinematic feasibility, and collision avoidance. By using binary success/-
failure signals derived from the robot control environment, we ensure that the LLM only receives
rewards for generating physically valid plans. This fine-tuning process enables the LLM to reason
about the validity during plan generation, leading to more reliable and collision-free action plans.

Our experiments on two LLMs, a non-reasoning Qwen2.5-3B-Instruct and a reasoning Qwen3-4B,
have shown several encouraging findings. First, by incorporating the physical constraints into the
reward, LLM planners can quickly acquire the ability to adhere to the physical constraints, thus
drastically increasing the planning success rate, outperforming SOTA large-scale LLMs. For exam-
ple, our best planner can achieve 0.87 and 0.53 pass@1 on two BoxNet-task multi-robot datasets
that require controlling up to 25 robots, while the best baseline planner can only achieve 0.52 and
0.39 pass@1, respectively. Figure 1 (right) shows the thinking process and the generated plan by
our fine-tuned LLM, which successfully solves the task without violating physical constraints. Sec-
ond, our reasoning probing experiments have revealed that LLMs indeed learn to correctly identify
whether the geometric constraints are satisfied or not. Finally, such capabilities acquired from RL
can generalize to unseen environments with new environment size and geometric configurations,
which further verifies that LLMs learn the generic reasoning skills rather than overfitting to specific
geometric configurations.

In summary, the contributions of this work are as follows:

• We propose a novel framework that grounds LLMs with knowledge of action validity and
collision constraints, ensuring LLM-planner-generated plans avoid unreachable positions,
object collisions, or robot collisions.
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• We introduce two new environments based on BoxNet task featuring tasks with up to
25 and 9 robots, respectively, which incorporate realistic physical constraints and serve as
testbeds for evaluating LLM-based multi-robot control.

• We implement our approach on two small-scale LLMs, demonstrating that even small mod-
els like Qwen2.5-3B-Instruct and Qwen3-4B, when grounded with physical constraints, can
outperform larger, state-of-the-art LLMs with no internal physical constraint knowledge in
complex multi-robot control tasks.

2 METHOD

2.1 OVERVIEW

In this section, we introduce our framework for grounding LLMs with reachability and collision
awareness. Denote Mθ0

(·) as the initial LLM for performing the robot control tasks, which is
capable of generating an action plan s ∼ Mθ0(q; C) for solving the given control task described
by q under a set of physical constraints C, such as the reachability of a robot arm and collision
avoidance. Our goal is to fine-tune the LLM such that the generated solution s successfully moves
objects to their target positions while not violating the constraints C. In the following, we first
introduce the RLVR framework for grounding physical constraints in Section 2.2, then introduce our
initial LLM policy warmup strategy in Section 2.3, and two different planner modes we consider in
Section 2.4.

2.2 GROUNDING LLM WITH PHYSICAL CONSTRAINTS THROUGH RLVR

We adopt a similar RL framework to the DeepSeek-R1 LLM (DeepSeek-AI, 2025; Ren et al., 2025),
which employs the group relative policy optimization (GRPO) algorithm (Shao et al., 2024). Specif-
ically, at each training step i, i ≥ 1, we sample a group of different plans and its corresponding
reasoning {s1, s2, . . . , sG} from the old LLM policy Mθi−1

for each query robot-control task q,
where G is the group size. Each plan sj is simulated in a manually implemented environment with
physical constraints. The corresponding reward function r(·) later estimates whether it successfully
completes the given task with the simulation environment feedback. Then the LLM is optimized by
maximizing the following objective (Shao et al., 2024).

JGRPO(Mθi) = E
[(

q ∼ D, {sj}Gj=1 ∼ Mθi−1(O|q; C)
)]

=
1

G

G∑
j=1

(
min

(
Mθ(sj |q; C))

Mθi−1(sj |q; C))
Aj , clip

(
Mθ(sj |q; C))

Mθi−1(sj |q; C))
, 1− ϵ, 1 + ϵ

)
Aj

)
−βDKL

(
Mθi

∥∥Mθ0

))
,

where D denotes the training data and Aj represents the advantage, computed as the reward of each
plan subtracted by the average reward within the group. Detailed definitions are in Appendix D.

Our reward function, denoted as r(·) largely follows the design in DeepSeek-R1 (DeepSeek-AI,
2025), with an additional plan efficiency term. Specifically,

r(s; q, s∗, C) = rformat(s) + rexecute(s; C)− refficiency(s; s
∗),

rformat(s) = 0.1 if the generated solution adheres to the required thinking-then-response format and
0 otherwise. rexecute(s; C) = 1 if the simulator verifies that the plan ❶ accomplishes the task AND
❷ no physical constraints are violated, and 0 otherwise. Incorporating physical constraint checking
in rexecute is the key mechanism to improve constraint awareness of the LLM planner. Finally,

refficiency(s; s
∗) = max (0, 0.1× (len(s)− len(s∗)))

penalizes the excessive length compared to a golden plan, s∗, which is obtained by an A* search
algorithm (see Appendix D for search details). Additionally, we implement a minimum cap of
2 × rformat(s) when s is a valid plan that successfully solves the task to ensure that correct plans
always receive a higher reward than incorrect ones.

3
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Table 1: Example synthesized reasoning trace for FULLPLAN planner and REPLAN planner. We
highlight three reasoning behaviors: 1. environment analysis in blue, 2. validity verification in
green, and 3. efficiency consideration in orange. The environment feedback is marked in gray.

FULLPLAN Planner Reasoning: REPLAN Planner Reasoning:
Object positions:

Object 0: [0.75, 1.75] . . .
<think>Okay, let me analyze the given environ-
ment before coming up with a movement plan . . . .
### Evaluating Reachability:
- **Robot 0** cannot reach either object . . .
### Collision Checks:
- No objects are placed at the same position. . .
Let me finalize this, since there are no collisions,
this plan efficiently moves all objects . . .

<observation>
Object positions:

Object 0: [0.75, 2.75] . . .
</observation>
<think>Alright, let’s break down the situation . . .
<observation>
Object positions:

Object 1: [2.25, 2.75] . . .
</observation>
<think>Alright, let’s analyze this . . .

Figure 2: (Left) An example BoxNet2D environment. The blue lines mark the robot arm, and
the red lines mark the movement trajectory. (Right) An example BoxNet3D environment. Both
environments require robots to collaborate to move boxes to the circle with the corresponding color.

2.3 INITIAL SUPERVISED FINE-TUNING (SFT) WARMUP

Prior works have shown that LLMs’ initial performance on a reasoning task is crucial to RLVR
training (Luo et al.; Shao et al., 2024; Liu & Zhang, 2025). Since off-the-shelf LLMs often struggle
with robotic control tasks, we introduce an SFT warmup to equip them with basic robot control
knowledge before RL training.

The SFT data needs to contain two components: ❶ a correct plan to solve a given task, and ❷ a
reasoning chain that reflects a multi-step decision-making process leading to the correct plan. To
synthesize such data, for each task, we first use the A* search algorithm to search for the optimal
plan. Then, we pass the plan to an LLM, which is prompted to generate a reasoning process for the
plan, consisting of the following three patterns:

• Analysis of the given environment, where the LLM assesses the current positions of robot arms
and objects, e.g., let me analyze the current situation;
• Validity verification, where the LLM reasons about an arm’s reachable area based on its base po-
sition and potential collision between different arms, e.g., If Robot 0 moves, . . . , it will collide;
• Efficiency considerations, where the LLM evaluates whether multiple movements can be paral-
lelized to improve the plan efficiency.

Table 1 shows the example reasoning chain synthesized by GPT4o-mini, where the three patterns
are rendered in different colors. Appendix F shows the full prompt for our reasoning synthesis.

2.4 TWO PLANNERS: FULLPLAN PLANNER AND REPLAN PLANNER

We consider two different LLM-based planners in this work. The first planner, referred to as
FULLPLAN, involves the LLM directly generating the entire plan that may take multiple execu-
tion steps for solving a task based on the initial positions of all objects and robot poses in the
environment. The second planner, denoted as REPLAN, generates one step at a time, observing the
updated object positions from the environment (appended to its context) before generating the next

4
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step. This allows the planner to evolve dynamically as the environment changes through multiple
steps. Table 1 provides the example planning processes for two different LLM-based planners for
the same initial environment. We highlight that the REPLAN planner observes multiple intermediate
observations of the environment, while the FULLPLAN planner only sees the initial environment.

3 BOXNET-BASED MULTI-ROBOT ENVIRONMENTS

In this work, we primarily experiment with BoxNet task (Chen et al., 2024b), where multiple
robots collaborate to move objects across different cells to targeted locations in a fixed grid map.
This section details two environments we developed, a modified BoxNet2D environment and the
newly developed BoxNet3D environment, both equipped with realistic physical constraint checks.

BoxNet2D. Figure 2 (left) shows a BoxNet2D environment. In this environment, robot arms
are placed at a corner of a grid environment. Each arm can reach its neighboring grids for picking
and placing objects. Unlike the previous BoxNet environment that predefined all valid robot arm
actions, we allow LLMs to generate spatial coordinates directly, significantly expanding the action
space. For example, the action “Robot0 Move (1.25, 1.25) → (1.75, 1.75), False” moves Robot0’s
arm to (1.75, 1.75) without picking up an object. In contrast, “Robot1 Move (2.25, 1.75) → (1.25,
1.25), True” indicates Robot1 picking up the object at (1.75, 1.25) and moving it to (2.25, 1.75). For
BoxNet2D environment, each arm moves along a straight path from the start point to target point.

We pre-define four points within each grid, e.g., (0.25, 0.25), (0.25, 0.75), (0.75, 0.25), (0.75,0.75),
for object placement and robot arm moving, and later we will show that the fine-tuned LLM can gen-
eralize to other points in experiments. Three physical constraints are incorporated: ❶ reachability
verification, which checks whether the target position of a robot is unreachable. ❷ robot collision
detection, which checks whether the movement trajectory of different arms intersects with each
other, or one robot’s movement trajectory intersects with another robot arm, leading to a collision.
❸ object collision detection, which checks whether two objects are placed at the same spatial co-
ordinates during the plan execution. To implement these constraints, we manually implement these
constraint detection functions and raises error when any constraint is not satisfied. For example,
reachability verification checks whether an arm’s position has larger offset to its base, i.e., ∆x > 1
or ∆y. The robot collision constraint detection whether two arm movement paths has intersecting
point. Example invalid actions of BoxNet2D are provided in Appendix E.

BoxNet3D. Figure 2 (right) shows a BoxNet3D environment. In this environment, we employ
the UR5e robot arm as the basic robot arm2. Similar to the 2D environment, the goal is to move
colored boxes into corresponding circles of the same color with the fewest actions. Each robot arm’s
base is fixed at grid joint and moves its arm around to reach adjacent grid center position for object
pickup and placement. We employ an RRT planner implemented by RoCoBench (Mandi et al.,
2023) for low-level control signal generation, i.e., the robot joint configuration trajectory during
each step of movement, given LLM planner-generated coordinates for arm position movement3. We
employ Mujoco as the engine (Todorov et al., 2012) to power arm reachability check and collision
detection, where unreachable position result in failed robot joint calculation in the low-level RRT
planner, and collision result in geometry contact that can be captured by Mujoco engine. Example
invalid actions of BoxNet3D are provided in Appendix E.

4 EXPERIMENT

In this section, we conduct empirical experiments on the two BoxNet-based environments to assess
the effectiveness of our method. We first present the experiment setup in Section 4.1 and then the
experiment results in Section 4.2, followed by additional ablation studies in Section 4.3.

2https://www.universal-robots.com/products/ur5e/
3The RRT planner is adapted from the implementation in RoCoBench official code base (https://

github.com/MandiZhao/robot-collab/blob/main/rocobench/rrt.py)
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Table 2: Performance of different LLM planners on BoxNet2D and BoxNet3D. For each task,
we report Success, ratio of pass@1 accuracy over four trials, StepDiff, the difference in number
of steps between model-generated plans and A* searched plans for successful executions, and
Para., the maximum number of robots operatin in parallel. For each model, the performance for
FULLPLAN planner and REPLAN planner side-by-side (FULLPLAN / REPLAN).

Model BoxNet2D BoxNet3D
Success ↑ StepDiff. ↓ Para. ↑ Success ↑ StepDiff. ↓ Para. ↑

Search Algorithm

A* 1 0 2.24 1 0 2.14

LLMs without constraint knowledge grounding

GPT-4omini 0.06 / 0.05 2.35 / 0.14 1.17 / 1.15 0.07 / 0.06 0.79 / 0.45 1.03 / 1.08
GPT-4o 0.12 / 0.11 2.14 / 0.13 1.15 / 1.22 0.10 / 0.12 0.23 / 0.68 1.35 / 1.11
GPT-o4mini 0.37 / 0.35 0.24 / -0.31 1.58 / 1.87 0.11 / 0.33 0.14 / 1.21 1.45 / 1.53
GPT-5-mini 0.43 / 0.31 1.13 / 0.44 1.44 / 1.75 0.23 / 0.30 0.25 / 0.44 1.24 / 1.33
GPT-5 0.52 / 0.44 0.78 / 0.13 1.52 / 1.61 0.31 / 0.39 0.29 / 0.37 1.34 / 1.21
Qwen2.5-3B-Inst 0.0 / 0.0 —– / —– —– / —– 0.08 / 0.0 0.20 / —– 1.40 / —–
Qwen2.5-7B-Inst 0.02 / 0.02 1.45 / 0.31 1.20 / 1.23 0.05 / 0.08 0.41 / 0.35 1.13 / 1.07
QwQ-32B 0.04 / 0.07 0.35 / 0.17 1.12 / 1.21 0.07 / 0.15 0.24 / -0.09 1.08 / 1.31
Qwen3-4B 0.14 / 0.13 0.23 / 0.14 1.29 / 1.29 0.15 / 0.11 0.07 / 0.31 1.17 / 1.14
Qwen3-8B 0.18 / 0.15 -0.23 / -0.34 1.24 / 1.31 0.17 / 0.13 -0.02 / 0.09 1.22 / 1.21
Qwen3-14B 0.19 / 0.21 -0.31 / -0.24 1.34 / 1.41 0.10 / 0.14 0.17 / 1.37 1.34 / 1.35
Qwen3-32B 0.11 / 0.14 0.17 / -0.03 1.24 / 1.12 0.14 / 0.17 0.09 / 0.04 1.27 / 1.09

LLMs with grounded constraint knowledge

Qwen2.5-3B-SFT 0.34 / 0.30 0.11 / -0.04 1.51 / 1.39 0.27 / 0.39 -0.07 / -0.05 1.27 / 1.39
Qwen2.5-3B-RL 0.58 / 0.68 -0.65 / 0.23 1.53 / 1.50 0.42 / 0.48 -0.15 / -0.14 1.33 / 1.49
Qwen3-4B-SFT 0.45 / 0.31 -0.12 / -0.15 1.92 / 1.35 0.37 / 0.43 0.09 / -0.11 1.32 / 1.48
Qwen3-4B-RL 0.87 / 0.75 -0.84 / -0.64 1.73 / 1.64 0.45 / 0.53 -0.25 / -0.29 1.39 / 1.56

4.1 EXPERIMENT SETUP

Dataset generation. We create environments with various map sizes and object initial and target
positions for both BoxNet2D and BoxNet3D . Specifically, for BoxNet2D , we use map sizes
ranging from 2 × 2 to 6 × 6 and 1 to 5 objects, resulting in 55,000 training and 250 testing envi-
ronments. For BoxNet3D , we use map sizes from 2 × 2 to 4 × 4 with 1 to 3 objects, yielding
1,800 training and 160 testing environments. The object position is randomly sampled from the
pre-defined points, while the robot arms are evenly placed at the grid joints to ensure that all grids
in the map can be reached. With the robot placement strategy introduced earlier, the maximum
number of robots reaches up to 25 and 9 for BoxNet2D and BoxNet3D, respectively. For each
randomly sampled environment, the manually implemented A* search algorithm verifies that a valid
solution action plan exists. While our focus is on solvable environments, we include a discussion of
unsolvable cases in Appendix C.4. Detailed dataset statistics are summarized in Appendix D.3.

Evaluation metric. We evaluate LLM-based planners mainly from two perspectives: ❶ Success,
the proportion of generated plans that solve given robotic tasks, measured by pass@1 over four trials
per environment; and ❷ StepDiff., the difference in number of steps between successful plans and
the best plan among A* solutions. We also report Para., the maximum number of robots operating
in parallel in any intermediate step of a successful plan.

Baseline LLMs. We mainly compare with off-the-shelf LLMs via direct prompting on robot con-
trol task. To ensure comprehensive coverage of existing LLMs, our evaluation includes both rea-
soning and non-reasoning models, closed-source and open-source ones across different parameter
scales. Specifically, we consider closed-source LLMs, GPT-4o, GPT-4o-mini, GPT-o4-mini, GPT-5-
mini and GPT-5. On the open-source side, we include Qwen-2.5 and Qwen3 series, with parameter
sizes ranging from 3B to 32B. We also compare with LLM-based symbolic translation approach
such as AutoTAMP (Chen et al., 2024a) in Appendix C.1.

6
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Training details. We use two base LLMs: a non-reasoning LLM Qwen-2.5-3B-Instruct and a
reasoning LLM Qwen3-4B. For SFT warm-up, we use a learning rate of 1e − 5 for Qwen-2.5-
3B-Instruct and 3e − 5 for Qwen-3-4B with the AdamW optimizer (Loshchilov & Hutter, 2017).
Training runs for 10 epochs on FULLPLAN and 5 epochs on REPLAN . RLVR training uses a fixed
1e − 6 learning rate for 200 steps with the GRPO algorithm (Guo et al., 2025). Batch sizes are
256 (group size 8) for BoxNet2D and 64 for BoxNet3D . Following prior work (Luo et al.; Liu &
Zhang, 2025), we set β = 0 in the GRPO loss. We use the VeRL framework (Sheng et al., 2024), and
run all experiments on 2× 8 NVIDIA H100 GPUs. Detailed computation cost is in Appendix D.2.

4.2 EXPERIMENTAL RESULTS

Grounding empowers small-scale LLMs to outperform larger ones. We first evaluate
the grounded LLM planner performance in Table 2 and a detailed error type breakdown
is in Appendix C.3. The LLMs with physical constraints knowledge grounded through
SFT warmup and further RL training are denoted by the suffix -SFT and -RL, respectively.

Figure 3: Success rate against num-
ber of boxes (up) and against in the
BoxNet2D environment.

We highlight three observations: First, grounding con-
straint knowledge significantly boosts planning perfor-
mance, enabling 3B and 4B LLMs to achieve higher suc-
cess against larger ones. For example, Qwen3-4B-RL
FULLPLAN planner achieves 0.87 success rate, 0.5 higher
than the best baseline GPT-o4mini. Second, grounded
LLM planners produce more efficient plans than the A*
search algorithm on solved tasks. For example, Qwen3-
4B-RL has 0.84 fewer steps than the ground-truth plan
from our A* implementation, showing a strong reason-
ing ability and also echoes the findings in prior works
that compare LLM planners with A* on Sudoku (Lehnert
et al., 2024; Su et al., 2024). Third, planner performance
on BoxNet3D is generally worse than on BoxNet2D.
This suggests that, although we applied multiple feasibil-
ity checks in BoxNet2D, some physical constraints re-
main missing. The BoxNet3D environment uses a more
advanced simulation engine and thus exposes more limi-
tations. These results underscore the importance of developing realistic robotic environments that
capture real-world complexity for future LLM-based robotic control research.

Figure 3 visualizes performance against the number of boxes for BoxNet2D. We highlight that
RL-trained planners better preserve performance when task complexity increases. For example, the
performance gap between Qwen3-4B-SFT and Qwen3-4B-RL grows from 0.13 to 0.53 when the
number of boxes increases from 1 to 5, highlighting better scalability of RL planners.

Table 3: Planning performance generalization on unseen
BoxNet2D environments.

Model RANDROB NEWCOORD UNSEENMAP
Success ↑ StepDiff. ↓ Success ↑ StepDiff. ↓ Success ↑ StepDiff. ↓

FULLPLAN Planner

Qwen2.5-3B-SFT 0.39 0.12 0.32 0.21 0.25 0.17
Qwen2.5-3B-RL 0.58 -0.04 0.55 -0.32 0.35 0.05
Qwen3-4B-SFT 0.48 0.03 0.43 -0.03 0.30 0.11
Qwen3-4B-RL 0.79 -0.40 0.87 -0.39 0.40 -0.24

REPLAN Planner

Qwen2.5-3B-SFT 0.39 0.23 0.33 0.09 0.18 0.22
Qwen2.5-3B-RL 0.71 1.24 0.68 1.04 0.39 0.14
Qwen3-4B-SFT 0.41 -0.03 0.37 0.15 0.32 -0.05
Qwen3-4B-RL 0.75 -0.15 0.69 0.09 0.42 -0.11

RL planners generalize better to
unseen environments. To measure
how the planners’ reasoning ability
generalizes, we evaluate the plan-
ners’ performance in two unseen
variants of BoxNet2D test data: ❶
Random robot layout, denoted as
RANDROB, where the robot positions
are randomly assigned on the grid
joints in maps ranging from 2 × 2 to
5× 5. We ensure that all testing data
are solvable, which means every box
can reach its target position via robot movement. ❷ Unseen coordinates, i.e., NEWCOORD, where
the initial and target position coordinates of all objects in BoxNet2D test set are perturbed by a
random offset (∆x,∆y) ∼ U([−0.2, 0.2]2). ❸ Unseen map size, i.e., NEWMAP, where the testing
grid size is extended to two unseen sizes 10× 5 and 7× 7. Example data are shown in Appendix E.
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Collision: Same End Position

<think>
Let me start by analyzing the initial map state. I have the positions of 
the objects, their targets, and the robots' locations.
- Object 0 is at [0.25, 0.25] and needs to move to [1.75, 0.25].
- Object 1 is at [1.75, 1.75] and needs to move to [0.75, 1.25].
…
Now, I need to plan the movements. The primary goal is to move 
each object to its target. I should also ensure that the robots do not 
collide with each other.
…
3. **Second Movement:**
- After moving Object 1 to its target, Robot 1 will be at [0.75, 1.25].
- Robot 0 can also move Object 0 to [0.75, 1.25].

4. **Check for Collision:**

- If Robot 0 moves to [0.75, 1.25], it will 
collide with Robot 1, which is already 
there.
- Therefore, I need to find another way.

- Once Robot 1 has placed Object 1 at 
[0.75, 1.25], it can hold the position, and 
Robot 0 can move without any intersection. 

Qwen3-4B-RL

Qwen3-4B-SFT

Collision: Overlap Movement Trajectory

<think>
Let me analyze the current situation. I have two objects and two 
robots, and I need to move these objects to their respective target 
positions without any collisions.
First, I'll list the current positions of the objects and their targets:
- Object 0 is at [0.25, 1.75] and needs to go to [1.25, 0.25].
- Object 1 is at [0.75, 0.25] and needs to go to [0.25, 0.25].
…
Now, I need to plan the movements step-by-step …
1. **First Movement:**

- Robot 1 moves its arm from [1.25, 1.25] to [0.25, 1.75] to pick up 
Object 0.

- Robot 0 can also move its arm from [0.25, 1.25] to [0.75, 1.75].

2. **Check for Collision:**

- If Robot 0 moves to [0.75, 1.75], it will 
collide with Robot 1 since the movement 
paths intersect.
3. **Adjusting Movement:**

- No collision here because they are 
targeting different coordinates.

Qwen3-4B-RL

Qwen3-4B-SFT

Figure 4: Example reasoning trace generated by grounded FULLPLAN planners. Invalid action plans
are manually inserted into the trace history and highlighted in blue. The correct continuations that
identify and correct these errors are shown in green, while incorrect continuations are shown in red.
The bottom figure visualizes the collision between two movements. RL planner better detects errors.

Table 3 reports the performance of our grounded planners on three unseen environments. We high-
light that the RL-trained planners consistently outperform SFT ones while maintaining plan effi-
ciency. For example, Qwen3-4B-RL FULLPLAN planner achieves 0.87 success rate on NEWCO-
ORD, 0.44 better than the SFT variant, showing better generalization of the reasoning capability.
This observation also aligns with previous RL for LLM works (Chu et al., 2025; Razin et al., 2025).

Reasoning behavior change after RL. Previous results have shown that RL training significantly
improves the planner’s planning ability. In this section, we analyze in more detail how the reasoning
behavior of the LLM-based planners changes before and after RL fine-tuning. Given the critical role
of reachability checks and collision checks in generating successful action plans, we prompt GPT-4o
to count the number of these checks in the reasoning traces produced by our FULLPLAN planners
across three BoxNet2D environment variants. The prompts used are provided in Appendix F.

Table 4: Number of different reasoning behaviors
for grounded FULLPLAN planners.

Model BoxNet2D RANDROB NEWCOORD
Rea. Col. Rea. Col. Rea. Col.

Qwen2.5-3B-SFT 8.0 9.8 8.4 8.3 8.9 9.1
Qwen2.5-3B-RL 8.6 10.4 9.2 8.9 9.8 9.5

Qwen3-4B-SFT 9.1 7.4 7.3 6.4 10.1 9.4
Qwen3-4B-RL 10.1 8.2 7.7 6.7 10.3 9.6

As shown in Table 4, the RL planners per-
form more reachability checks (Rea.) and colli-
sion checks (Col.) than the initial SFT planner.
These checks help ensure the feasibility of ac-
tion plans and lead to a large improvement in
success rate. This observation suggests that RL
training helps the LLM better understand the
importance of these checks and use them more
consistently.

We also verify their reasoning ability to identify and recover from intermediate errors by manually
injecting error steps into the trace. Specifically, we insert an invalid action that would lead to a
collision into the intermediate reasoning steps. To test whether the planner can recognize and correct
such errors, we append the phrase “Collision Check” to the perturbed trace to trigger verification.
Figure 4 shows two qualitative examples, where the injected invalid actions are highlighted in blue.
The LLM’s continuation is marked in green if it identifies and corrects the error, and in red if it
fails. We find that the RL-trained planner successfully finds the error and traces the issue to same
target position and overlapped movement paths. This suggests that RL helps build better physical
constraints-aware reasoning. Further quantitative analysis results are presented in Appendix C.2.
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4.3 ABLATION STUDY

In this section, we explore the design choices for our framework on the BoxNet2D environment,
focusing on: ❶ How does SFT warmup affect final planner performance? ❷ Is the textual thinking
necessary for planners? ❸ How does the efficiency penalty affect the planner’s behavior?

Initial LLM policy matters. Figure 5 shows how the training reward evolves over the first 40
steps for different initial FULLPLAN planners. For the original Qwen2.5-3 B-Instruct and Qwen3-4B
models, we observe a sharp reward increase of about 0.1 (the format reward) within the first 10 steps,
which indicates that they quickly learn to produce answers in required format. This observation
aligns with previous RLVR works (DeepSeek-AI, 2025) However, after this initial gain, the reward
plateaus, indicating limited additional learning to further improve the LLM’s planning capability.

Figure 5: Training reward trajectory in first
40 steps for different initial LLMs.

In contrast, the LLM with SFT warmup shows a con-
sistent increasing reward trend. This suggests that
the SFT warmup helps build a strong foundation,
allowing it to continue learning and optimize effec-
tively in RL.

Textual reasoning improves planning perfor-
mance. To assess the role of textual reasoning for
LLM planners, we perform an ablation study with
our SFT and RL pipeline on Qwen-2.5-3B-Instruct.
In this experiment, we train a planner without the
synthesized reasoning, i.e., it generates only the fi-
nal action plan with no textual thinking. As shown
in Table 5, removing intermediate reasoning leads to
a notable performance drop: success rates fall from
0.34 to 0.26 for SFT planner, and from 0.58 to 0.39
for RL planner. This shows the importance of textual thinking for LLM planners.

Table 5: Impact of ablating thinking and
refficiency on BoxNet2D performance.

Model BoxNet2D
Success ↑ StepDiff. ↓ Para. ↑

Qwen2.5-SFT 0.34 0.11 1.51
− thinking 0.26 0.05 1.35

Qwen2.5-RL 0.58 -0.65 1.53
− thinking 0.39 -0.07 1.43
− refficiency 0.52 1.44 1.07

Efficiency penalty in reward improves plan ef-
ficiency. We observed a surprising finding that
RL-trained LLM planners produce more efficient
plans than those generated by our hand-crafted A*
search algorithm in Table 2, which is likely due
to the efficiency penalty term in the reward func-
tion. To further understand its role, we conduct
an ablation study on refficiency. Starting from the
same initial LLM policy Qwen-2.5-3B-SFT, we per-
form RL training without the efficiency penalty for
FULLPLAN planner. Table 5 presents the results.
While both RL-finetuned LLM largely improve the success rate, their plan efficiency differs sig-
nificantly. The planner trained with refficiency produces plans that are 2.09 steps shorter. In contrast,
the parallelism drops close to 1 without the penalty in RL. These results underscore the importance
of efficiency penalty in reward.

5 RELATED WORK

Robotic planning and control with LLMs. Classical robot task planning involves formalizing
goals and physical constraints with Temporal Logic or PDDL and solving them with constraint
solvers (Fox & Long, 2003; Emerson, 1990). LLM-based alternatives either select among motion
primitives (Guan et al., 2023; Skreta et al., 2023; Loula et al., 2025), generate code as a control
interface (Chen et al., 2025; Huang et al., 2022; Meng et al., 2025; Liang et al., 2023; Ahn et al.,
2022; Singh et al., 2023), combine with classical planners (Chen et al., 2024a; Lin et al., 2023), or
use multi-LLM discussion (Chen et al., 2024b; Zhang et al., 2024; Guo et al., 2024; Shen et al.,
2025b). Despite promising progress, many methods overly simplify physical constraints; we show
that even SOTA LLMs struggle under realistic constraints and introduce a method that grounds
smaller LLMs with constraint knowledge to substantially improve performance.
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Reinforcement learning with verifiable rewards for LLM reasoning. RL with verifiable re-
wards has strengthened LLM reasoning in mathematics (Ren et al., 2025; Guo et al., 2025; Zeng
et al., 2025), code (Liu & Zhang, 2025; Luo et al.; OpenAI, 2025), and multi-agent settings (Jin
et al., 2025; Singh et al., 2025; Feng et al., 2024; OpenAI, 2024). Such training often induces emer-
gent behaviors like feasibility checks and self-reflection, beyond supervised fine-tuning (Chu et al.,
2025; Zelikman et al., 2024; Pan et al., 2025; Shen et al., 2025a; Hou et al., 2025). We extend RLVR
to robotic control by integrating physical verification signals (collision avoidance, reachability, goal
satisfaction) into training, thereby grounding constraint knowledge and yielding more robust plans.
Additional related work discussion is provided in Appendix B.

6 CONCLUSION

In this paper, we present a novel framework that grounds LLMs with physical constraint knowl-
edge, such as robot arm reachability and collision avoidance. By incorporating these constraints,
LLMs are able to reason more effectively about action feasibility and generate efficient and physi-
cally viable action plans. To evaluate our approach, we developed two BoxNet-based multi-robot
environments, BoxNet2D and BoxNet3D, both equipped with action feasibility checks. Experi-
ments show that even small-scale LLMs at 3B and 4B parameter size, when grounded with constraint
knowledge, significantly outperform larger SOTA LLMs without constraint knowledge training. Ad-
ditional experiments on reasoning behavior and generalization further confirm that our models learn
constraint-aware reasoning rather than simply overfitting to training data.

Ethic Statement This work aims to enhance the LLM-based multi-robot controller with an en-
hanced training pipeline to incorporate physical constraint knowledge, such as reachability aware-
ness and collision awareness, into the LLM planner. While our method performs better than off-the-
shelf LLMs, it cannot achieve perfect accuracy under the considered multi-robot control setting. The
effectiveness of our planner on more complex tasks, such as robot hand manipulation, is unexplored.
Therefore, users should remain cautious when employing our planner in real-life deployment. We
advise that users enforce additional verification and human overseeing when employing this the
proposed pipeline in high-stake real-life robot control environments.

Reproducibility Statement Our work can be easily reproduced. We have included a detailed al-
gorithm description in Section 2, and experiment setup in Section 4. We also include a detailed
description of the environment implementation in Appendix D.3, the search algorithm we employed
in Appendix D.4, and other implementation details in Appendix D. We also provide the code imple-
mentation with corresponding data in the supplementary materials.
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A LIMITATIONS AND SOCIETAL IMPACTS

Our work introduces a novel framework to ground LLMs with physical constraint knowledge for
robot control tasks, significantly enhancing their ability to reason about action feasibility during
plan generation. This leads to substantial improvements in planning performance. We validate the
effectiveness of our approach through experiments in two BoxNet-based multi-robot environments
on two small-scale LLMs. However, this work has two limitations: ❶ Our experiments are lim-
ited to the BoxNet task due to the high implementation overhead required for other robot control
environments. Extending our framework to additional physical constraint-sensitive tasks remains
an important direction for future work. ❷ The RL training is conducted at a limited scale due to
computational constraints. Unlike typical RL setups in math and coding domains that allow for
training over multiple epochs (Liu & Zhang, 2025; Luo et al.), our training is restricted to just one or
two epochs. Despite this limitation, our experimental results already demonstrate strong reasoning
capabilities on robotic tasks.

Our work aims to advance the integration of LLMs into robotic control planning, which has many
promising societal benefits. By enabling LLMs to better understand and operate within physical
constraints, LLMs can help build safer, more reliable, and more efficient multi-robot systems. This
can potentially enhance robotic automation domains heavily involving many robots. In particular,
improved planning performance can reduce operational errors and increase productivity. However,
as with any deployment of AI in real-world decision-making systems, there are potential risks if
the planners are deployed with a dangerous purpose. Future extensions of this work should also
consider robustness to adversarial scenarios to ensure responsible real-world integration.
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B ADDITIONAL RELATED WORK

B.1 ROBOTIC PLANNING AND CONTROL WITH LLMS

Robotic planning and control is a complex task that requires high-level planning under various phys-
ical constraints. Traditional approaches typically translate task goals and physical constraints into
formal logic specifications, such as Temporal Logic or PDDL (Fox & Long, 2003; Emerson, 1990),
and solve them using constraint solvers. More recently, LLMs have been applied to robotic control
due to their strong reasoning capabilities and better scalability compared to constraint solvers. For
example, some works use LLMs to choose actions from predefined motion primitives (Guan et al.,
2023; Skreta et al., 2023; Loula et al., 2025), while others treat code as an intermediate representa-
tion for control (Chen et al., 2025; Huang et al., 2022; Meng et al., 2025; Liang et al., 2023; Ahn
et al., 2022; Singh et al., 2023). Hybrid approaches, such as AutoTAMP (Chen et al., 2024a) and
Text2Motion (Lin et al., 2023), combine traditional planning tools with LLMs for action planning.
Another series of works employs multi-LLM discussion for robotic tasks (Chen et al., 2024b; Mandi
et al., 2023; Zhang et al., 2024; Guo et al., 2024; Shen et al., 2025b). While these methods show
promising results, many of them overly simplify physical constraints, limiting their real-world ap-
plicability. In this work, we demonstrate that even SOTA LLMs struggle under realistic physical
constraints, and further introduce a novel approach that grounds smaller LLMs with this constraint
knowledge, which largely improves performance.

B.2 REINFORCEMENT LEARNING WITH VERIFIABLE REWARDS FOR LLM REASONING

Reinforcement learning (RL) has demonstrated significant promise in enhancing the reasoning ca-
pabilities of large language models (LLMs) across a wide range of domains, including mathemat-
ics (Ren et al., 2025; Guo et al., 2025; Zeng et al., 2025), code generation (Liu & Zhang, 2025;
Luo et al.; OpenAI, 2025), and complex multi-agent systems (Jin et al., 2025; Singh et al., 2025;
Feng et al., 2024; OpenAI, 2024). A common paradigm involves training LLMs to optimize for a
verifiable reward, such as the correctness of a math solution or whether the generated code passes
unit tests, using RL training. Many previous works show that the RL training process vastly im-
proves LLM reasoning (Chu et al., 2025; Feng et al., 2024; Pan et al., 2025; Shen et al., 2025a;
Hou et al., 2025). The improvement is often accompanied by emergent reasoning behaviors such
as feasibility checks and self-reflection, which are difficult to elicit through supervised fine-tuning
alone (Chu et al., 2025; Zelikman et al., 2024; Hosseini et al., 2024). In this work, we extend the
RLVR to robotic control, with a focus on grounding LLMs with knowledge of physical constraints.
Our method leverages RLVR to teach LLMs to reason under the constraints inherent in robotic
planning tasks, such as collision avoidance, reachability accordance, and goal satisfaction. By inte-
grating physical verification signals into the training process, the model learns to internalize these
constraints as part of its reasoning process. This grounding leads to more robust and reliable control
planning decisions in downstream robotic applications.

C ADDITIONAL EXPERIMENTAL RESULTS AND ANALYSIS

C.1 COMPARISON WITH SYMBOLIC LANGUAGE TRANSLATION-BASED METHODS

While our main paper focuses on prompting an LLM to generate robot control plans, there is a
series of work employing LLM to generate intermediate representations of the task, such as the tem-
poral logic language (Chen et al., 2024a; Emerson, 1990). To ensure a comprehensive comparison
between our method and previous work, we follow the AutoTAMP setup and prompt two strong
LLMs, GPT-4o and GPT-4o-mini, to generate Python function calls to our A* search algorithm for
solving the given task, i.e., translate the given task to Python language and utilize a solver engine to
complete the task, similar to previous PDDL solver methods (Fox & Long, 2003; Chen et al., 2025).

Specifically, we evaluate two translation schemes on BoxNet2D: input, where the LLM converts
the environment textual description into two lists representing initial object and robot arm positions;
and code, where the LLM generates a full Python function call, including argument construction
and invocation, e.g., env = BoxNet2D(); a star search(env). We note that input is a simplified task,
as it only requires the LLM to summarize the environment description without performing full code
synthesis.
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Table 6 below summarizes the results. We highlight that directly combining an off-shelf LLM
for AutoTAMP style translation performs worse than our fine-tuned planner, potentially due to the
inability to understand the translation process, even for the simplified input synthesis. For a more
complicated full-function call translation, the performance is even worse. On the other hand, we note
that our SFT-then-RL pipeline can also be combined with AutoTAMP-style translation, where LLM
is fine-tuned to generate correct translation and achieve high performance. We leave the exploration
for this control scheme in future work.

Table 6: Success rate of AutoTamp baseline and our planner on BoxNet2D environment.

Model Success ↑

AutoTamp (Input)

GPT-4omini 0.60
GPT-4o 0.72

AutoTamp (Code)

GPT-4omini 0.38
GPT-4o 0.45

Our FULLPLAN planner

Qwen2.5-3B-RL 0.64
Qwen3-4B-RL 0.76

C.2 ABILITY TO IDENTIFY AND RECOVER FROM INTERMEDIATE ERRORS

Figure 4 presents an example of LLM planner identifying and recovering from the manually in-
serted invalid actions. We further extend the evaluation to a quantitative analysis in this section.
Specifically, we collect 50 correct reasoning traces on BoxNet2D environment and manually in-
sert an invalid action step in using the fixed template “Robot x can move Object y to coordinate”.
Here, we create an incorrect action by setting an unreachable object for a robot or setting the coor-
dinate to a collision point, which are denoted with Unreachable and Collision, respectively. Then,
a FULLPLAN planner continues generation at the end of this invalid action sentence. The table be-
low reports the final task success rate after this perturbation. We note that the performance remains
stable, with a slight drop of around 3% accuracy. This further validates the observation from our
qualitative analysis.

Table 7: Success rate on BoxNet2D environment under different reasoning step perturbations.

Model Original ↑ Unreachable ↑ Collision ↑

FULLPLAN Success Rate

Qwen2.5-3B-SFT 0.44 0.42 0.40
Qwen2.5-3B-RL 0.64 0.62 0.60
Qwen3-4B-SFT 0.58 0.52 0.54
Qwen3-4B-RL 0.76 0.72 0.70

C.3 PLANNER ERROR TYPE BREAKDOWN

To better understand the reasoning errors in our fine-tuned LLM planners, we perform a detailed
breakdown of failure types. Specifically, we categorize four different outcome types for the gener-
ated plan: ❶ Success, where the planner successfully completes the task with all objects correctly
moved to their target positions; ❷ Unreachable Position, where the planner attempts to move an
object to a location that is not reachable for a certain robot; ❸ Collision, where the generated plan
results in object or robot collisions during execution; ❹ Incomplete execution, where the planner
fails to move all required objects to their target positions by the end of execution despite no invalid
action. Table 8 presents the full results for our fine-tuned planner on BoxNet2D environment.
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We note that the most invalid plans are from unreachable position and collision for the
FULLPLAN planner, which is likely due to the difficulty in predicting all intermediate object posi-
tions during execution. On the other hand, collision and incomplete execution are two main sources
for the failures of the REPLAN planner.

Table 8: Error type breakdown for finetuned LLM planners on BoxNet2D environment. Each
number is the ratio of outcome types among all tested environments.

Model Success ↑ Unreachable Pos. ↓ Collision ↓ Incomplete Exec. ↓

FULLPLAN Breakdown

Qwen2.5-3B-SFT 0.34 0.37 0.24 0.05
Qwen2.5-3B-RL 0.58 0.23 0.15 0.04
Qwen3-4B-SFT 0.45 0.36 0.17 0.02
Qwen3-4B-RL 0.87 0.06 0.05 0.02

REPLAN Breakdown

Qwen2.5-3B-SFT 0.30 0.18 0.30 0.22
Qwen2.5-3B-RL 0.68 0.02 0.11 0.19
Qwen3-4B-SFT 0.31 0.11 0.31 0.27
Qwen3-4B-RL 0.75 0.03 0.07 0.15

C.4 UNSOLVABLE TASK IN ENVIRONMENT

In this work, we mainly consider solvable tasks for both BoxNet2D and BoxNet3D. However,
there is a potential scenario where the given task is unsolvable. While our work is not designed to
handle this case, we show that further fine-tuning of our LLM planner on a combination of solvable
task environments and unsolvable task environments can inject this ability to the planner in this
section. Specifically, we follow the original SFT-and-RL training pipeline and further fine-tune
the BoxNet2D FULLPLAN planner by adding 1,000 unsolvable BoxNet2D environments to the
training set. During training, we instruct the planner to respond with a refusal sentence “This is an
unsolvable environment” and avoid generating any action plan.

Table 9 presents the results, where we evaluate the updated planner (denoted by * suffix) on the
original test set and 50 unseen unsolvable environments. As shown in the table, the updated Qwne3-
4B-RL* planner achieves 98% detection accuracy on unsolvable cases while maintaining original
performance on solvable environments, indicating that we can easily adapt the framework to incor-
porate unsolvable task awareness to the planner.

Table 9: Success rate and unsolvable case detection rate for RL-tuned LLM planners on
BoxNet2D environment.

Model Success ↑ Unsolvable Detection ↑

FULLPLAN Planner

Qwen2.5-3B-RL 0.34 0.00
Qwen3-4B-RL 0.58 0.01
Qwen2.5-3B-RL* 0.45 0.96
Qwen3-4B-RL* 0.87 0.98

D ADDITIONAL IMPLEMENTATION DETAILS

In this section, we provide more implementation details, including: the RL training algorithm (Sec-
tion D.1), the implementation of BoxNet2D , BoxNet3D and dataset statistics (Section D.3), train-
ing efficiency analysis(Section D.2) and the A* search algorithm for data generation (Section D.4).

D.1 GRPO ALGORITHM

GRPO (Shao et al., 2024), or group relative policy optimization, is a variant of PPO algo-
rithm (Schulman et al., 2017) proposed for LLM RL. In this section, we briefly outline the GRPO
algorithm and refer readers to the original paper (DeepSeek-AI, 2025) for more details.
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As we mentioned in the main paper, given an initial LLM policy Mθ0
and a train dataset D, the

GRPO loss is defined as follows:

JGRPO(Mθi) = E
[(

q ∼ D, {sj}Gj=1 ∼ Mθi−1(O|q; C)
)]

=
1

G

G∑
j=1

(
min

(
Mθ(sj |q; C))

Mθi−1(sj |q; C))
Aj , clip

(
Mθ(sj |q; C))

Mθi−1(sj |q; C))
, 1− ϵ, 1 + ϵ

)
Aj

)
−βDKL

(
Mθi

∥∥Mθ0

))
,

where i denotes the train step, G denotes the group size, q denotes a textual query describing a
robotic control task, C denotes the constraints in text, Aj denotes the advantage for j-th rollout sj .
The definition of advantage is:

Aj =
rj − mean(r)

std(r)
,

given the reward r = {r1, . . . , rG} for all LLM rollouts to the query task q, following the General-
ized Advantage Estimation (GAE) (Schulman et al., 2015).

D.2 TRAINING EFFICIENCY ANALYSIS

In this section, we include detailed statistics on the training cost of our method in Table 10. In
general, our training is relatively light-weight since the base LLM is small in scale. We note that
the GPU hours are much larger for RL training due to the heavy cost in generating a batch of new
responses, given the same input for GRPO training.

Table 10: Computation cost and data usage for BoxNet2D and BoxNet3D experiments. We em-
ploy H100 as the GPU.

Model Step GPU Hour Data num

BoxNet2D

Qwen2.5-3B-SFT 4296 4.3 220,000
Qwen2.5-3B-RL 160 87.2 5,120
Qwen3-4B-SFT 4296 5.5 220,000
Qwen3-4B-RL 160 102.5 5,120

BoxNet3D

Qwen2.5-3B-SFT 562 1.9 9,000
Qwen2.5-3B-RL 120 184.8 3,840
Qwen3-4B-SFT 562 2.25 9,000
Qwen3-4B-RL 120 194.4 3,840

D.3 BOXNET ENVIRONMENT IMPLEMENTATION AND STATISTICS

We implement two different environments based on the BoxNet task, which involves multiple
robots in a grid map and collaborating to move objects to the corresponding target positions. Both
environments are implemented in Python.

BoxNet2D For BoxNet2D, we manually implement the feasibility check by calculating the rel-
ative geometric position of robot arms and objects. The map size ranges from 2×2 to 6×6, and the
object number ranges from 1 to 5. With the default robot placement strategy, the number of robots
involved ranges from 1 to 25 for different grid size configurations. For each unique map configura-
tion, i.e., a tuple of map width, height, and the object number, we randomly generate at most 150
different object initial and target positions to construct the unique environments in train dataset. The
testing data consists of the square maps with the width ranging from 2 to 6, and the object number
ranges from 1 to 5. We generate at most 10 unique environments to construct the test dataset. The
detailed dataset statistics are summarized in Table 11.

In the unseen environment transfer experiment, we generate two variants of BoxNet2D test set:
RANDROB, where the robot position is not evenly placed at the grid joints, and NEWCOORD, where
the object position coordinates are perturbed with a random offset. For RANDROB, all robots are
placed in a connected manner, meaning that all objects can be reached by a robot.
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Table 11: Dataset statistics of BoxNet2D and BoxNet3D. The average steps to complete and
parallelism are all based on the optimal plans generated by our manually implemented A* algorithm.

Dataset Sample No. Avg. Step Para. Avg. Robot

BoxNet2D-train 55000 8.13 1.73 6.25
BoxNet2D-test 250 8.32 1.75 6.25
RANDROB 200 7.06 1.49 6.25
NEWCOORD 250 8.59 1.77 6.25

BoxNet3D-train 1800 6.27 1.89 2.25
BoxNet3D-test 160 5.62 1.88 2.25

BoxNet3D For BoxNet3D, we use MuJoCo to implement the feasibility checks such as robot
arm collision and object collisions. The map size ranges from 2× 2 to 4× 4, and the object number
ranges from 1 to 4. With the default robot placement strategy, the number of robots involved ranges
from 1 to 9 for different grid size configurations. For each map configuration, we randomly generate
at most 100 different environments for the training data and at most 5 for the test data. Detailed
dataset statistics are summarized in Table 11

D.4 A* SEARCH ALGORITHM

We implement an A* search algorithm for solving the generated task. At each search step, the
general workflow is: ❶ select the current best environment state, ❷ generate valid action for a single
robot, ❸ combine multiple valid actions and check whether they can run in parallel, and ❹ update
the environment with potential next step actions and put to candidate tools for next search step.

We list a Python reference code below:
Listing 1: Reference A* search implementation

def astar_search(env: Any, max_iterations: int = 1000):
open_set = []
closed_set = set()

g_scores: Dict[int, float] = {}
came_from: Dict[int, Tuple[Optional[int], Optional[str]]] = {}
states_cache: Dict[int, EnvStates] = {}

try:
initial_state_data = env.get_states()
current_state = EnvStates(env, current_state_data=initial_state_data)
initial_hash = current_state.hash()

except Exception as e:
raise e

g_scores[initial_hash] = 0.0
came_from[initial_hash] = (None, None)
states_cache[initial_hash] = current_state

heapq.heappush(open_set, (current_state.heuristic(), random.random(),
initial_hash))↪→

iterations = 0

while open_set and iterations < max_iterations:
iterations += 1

f_val, _, current_hash = heapq.heappop(open_set)

if current_hash in closed_set:
continue

current_state = states_cache[current_hash]
closed_set.add(current_hash)

if current_state.is_goal():
return reconstruct_path(came_from, current_hash)
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potential_next_moves = generate_potential_actions(current_state)

for action_str, next_state_obj in potential_next_moves:
if next_state_obj is None:

continue

next_hash = next_state_obj.hash()
if next_hash in closed_set:

continue

cost_of_this_action = 1.0
tentative_g_score = g_scores[current_hash] + cost_of_this_action

if tentative_g_score < g_scores.get(next_hash, float('inf')):
came_from[next_hash] = (current_hash, action_str)
g_scores[next_hash] = tentative_g_score
states_cache[next_hash] = next_state_obj

f_score_neighbor = tentative_g_score + next_state_obj.heuristic()
heapq.heappush(open_set, (f_score_neighbor, random.random(),

next_hash))↪→

return None

class EnvStates:
_hash_val: Optional[int] = None

def __init__(self, env: Any, parent_state_data=None, current_state_data=None):
self.env = env
self.parent_state_data = parent_state_data
self.cur_states = current_state_data
# Assumes env has get_target_pos() and can define retraction height

internally or via config↪→
self.target_positions = self.env.get_target_pos() # Target positions should

include Z if relevant↪→

def hash(self) -> int:
if self._hash_val is not None:

return self._hash_val
self._hash_val = xxhash.xxh64(self.cur_states.tobytes()).intdigest()
return self._hash_val

def _box_positions(self):
self.env.reset(states=self.cur_states)
return {

boxname: self.env.get_box_pos(boxname)
for boxname in self.env.object_names

}

def arm_positions(self):
self.env.reset(states=self.cur_states)
return {

robot_name: self.env.get_arm_pos(robot_name)
for robot_name in self.env.robot_names

}

def is_goal(self) -> bool:
current_box_pos_map = self._box_positions()
if len(current_box_pos_map) != len(self.target_positions):

return False

for box_name, target_val in self.target_positions.items():
if box_name not in current_box_pos_map:

return False
# Use new env method for checking if object is at its target
if not self.env.is_object_at_target(current_box_pos_map[box_name],

target_val, box_name):↪→
return False

return True

def heuristic(self) -> float:
self.env.reset(states=self.cur_states)
current_obj_positions_map = self._box_positions()

h = 0.0
num_matched = 0

for name, target_pos_val in self.target_positions.items():
if name in current_obj_positions_map:
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current_pos_val = current_obj_positions_map[name]
if any(np.isnan(current_pos_val)): # Check for NaN

return float("inf")
# Use env method for calculating distance/cost component for

heuristic↪→
h += self.env.calculate_placement_quality(current_pos_val,

target_pos_val, name)↪→
num_matched +=1

else: # Object in target not found in current state
return float("inf")

if num_matched != len(self.target_positions): # Not all target objects were
found or matched↪→
return float("inf")

return math.sqrt(h) if h > 0 else 0.0

def apply_actions(self, action_strings: Union[List[str], str]) ->
Optional["EnvStates"]:↪→
self.env.reset(states=self.cur_states)
action_input = action_strings
if isinstance(action_strings, list):

action_input = "\n".join(action_strings)

out = self.env.simulate_one_step(action_input)
if out["success"]:

return EnvStates(
self.env,
parent_state_data=self.cur_states,
current_state_data=self.env.get_states(),

)
else:

return None

# --- Utility Functions (Domain-specific helpers removed, env handles them) ---

def generate_single_robot_action(robot_id: str, state: EnvStates) -> List[str]:
robot_actions = []
env = state.env # Get the environment reference
base_pos = env.get_base_pos(robot_id)
arm_pos = state.arm_positions()[robot_id]

for obj_id, obj_pos_val in state._box_positions().items():
target_pos_val = state.target_positions[obj_id]

if env.check_reach_range(robot_id, obj_pos_val): # Existing env call for
reachability↪→
if env.is_object_at_target(obj_pos_val, target_pos_val, obj_id):

continue

# Get potential next positions for the object from the environment
potential_next_obj_placements = env.get_valid_next_object_positions(

obj_id, obj_pos_val, robot_id, base_pos
)
current_placement_quality = env.calculate_placement_quality(obj_pos_val,

target_pos_val, obj_id)↪→

action_candidates_for_obj = []

# Try to move the object to a better position
for next_obj_p in potential_next_obj_placements:

if env.calculate_placement_quality(next_obj_p, target_pos_val,
obj_id) < current_placement_quality:↪→
# Check if arm is already at the object
if not env.is_arm_at_position(arm_pos, obj_pos_val[:2],

robot_id):↪→
# Action: Move arm to object
action_str = env.format_move_action_string(robot_id,

obj_pos_val[:2], False)↪→
action_candidates_for_obj.append(action_str)

# Action: Move object (arm is now assumed to be at object or
will be moved by first action)↪→

action_str = env.format_move_action_string(robot_id,
next_obj_p[:2], True)↪→

action_candidates_for_obj.append(action_str)

# Try to move arm to an alternative/safe position if not productively
moving an object↪→

if not action_candidates_for_obj or all(
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# Check if any action involves carrying (True flag)
# This logic might need refinement based on how

format_move_action_string works↪→
# or if we have a better way to check if an action is "productive"
"True" not in act for act in action_candidates_for_obj

):
alternative_arm_destinations = env.get_alternative_arm_destinations(

robot_id, base_pos, arm_pos
)
if alternative_arm_destinations:

# Environment can decide which one to pick or return just one
chosen_alt_dest = alternative_arm_destinations[0] # Take the

first one↪→
if not env.is_arm_at_position(arm_pos, chosen_alt_dest[:2],

robot_id):↪→
action_str = env.format_move_action_string(robot_id,

chosen_alt_dest[:2], False)↪→
action_candidates_for_obj.append(action_str)

for action_str_candidate in action_candidates_for_obj:
if action_str_candidate not in robot_actions:

robot_actions.append(action_str_candidate)

return robot_actions

def verify_parallel_actions(actionstr_input: Union[List[str], str], state:
EnvStates) -> Tuple[bool, Optional[EnvStates]]:↪→
current_env = state.env
current_env.reset(states=state.cur_states)

action_to_simulate = actionstr_input
if isinstance(actionstr_input, list):

action_to_simulate = "\n".join(actionstr_input)

out = current_env.simulate_one_step(action_to_simulate)

if out["success"]:
new_state_data = current_env.get_states()
new_search_state = EnvStates(

current_env,
parent_state_data=state.cur_states,
current_state_data=new_state_data,

)
return True, new_search_state

else:
return False, None

def generate_potential_actions(state: EnvStates) -> List[Tuple[str, EnvStates]]:
if not hasattr(state.env, 'robot_names'):

return []

robot_names = sorted(state.env.robot_names)

single_robot_potential_actions: Dict[str, List[str]] = {
r: generate_single_robot_action(r, state) for r in robot_names

}

valid_action_sets: List[Tuple[str, EnvStates]] = []
action_verification_tasks = []

for robot_id, actions in single_robot_potential_actions.items():
for action in actions:

action_verification_tasks.append(([action], state))

active_robots = [r for r in robot_names if single_robot_potential_actions[r]]
if len(active_robots) >= 2:

max_concurrent_robots = 2
if hasattr(state.env, 'object_names'): # Check if object_names exists before

using its length↪→
max_concurrent_robots = min(4, len(state.env.object_names),

len(active_robots))↪→
else: # Fallback if object_names is not available

max_concurrent_robots = min(2, len(active_robots))

for group_size in range(2, max_concurrent_robots + 1):
if group_size > len(active_robots): continue
for robot_group in itertools.combinations(active_robots, group_size):
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action_combos_for_group = list(
itertools.product(

*[single_robot_potential_actions[r] for r in robot_group]
)

)
cleaned_combos = [[a for a in combo] for combo in

action_combos_for_group]↪→
for combo in cleaned_combos:

action_verification_tasks.append((combo, state))

verify_results = []
for action_combo, original_state_for_verification in action_verification_tasks:

success, new_state_obj = verify_parallel_actions(action_combo,
original_state_for_verification)↪→

if success and new_state_obj is not None:
verify_results.append(("\n".join(action_combo), new_state_obj))

verify_results.sort(
key=lambda x_tuple: (x_tuple[1].heuristic(), -x_tuple[0].count("True"),

-len(x_tuple[0].split("\n")))↪→
)

return verify_results[:20]

def reconstruct_path(came_from: Dict[int, Tuple[Optional[int], str]], final_hash:
int) -> List[str]:↪→
actions_sequence = []
current_hash = final_hash
while current_hash in came_from:

parent_hash, action = came_from[current_hash]
if action is not None:

actions_sequence.append(action)
if parent_hash is None:

break
current_hash = parent_hash

actions_sequence.reverse()
return actions_sequence

E BOXNET2D AND BOXNET3D ENVIRONMENT EXAMPLES

In this section, we provide more examples of the two environments we developed in this work. We
note that all examples shown in this section are in 3×3 and 4×4 grid maps, but the dataset contains
a wider range of map sizes. For more BoxNet3D video examples, please visit our project website
at this anonymous link https://anonym-submission-user.github.io.

E.1 BOXNET2D EXAMPLES

Original BoxNet2D examples Figure 6 shows two example BoxNet2D environments. Figure 7
shows four example collisions in BoxNet2D environments.

Unseen BoxNet2D examples for generalization experiment Figure 8 shows two example RAN-
DROB environments. Figure 9 shows two example NEWCOORD environments.

E.2 BOXNET3D EXAMPLES

Figure 10 shows examples for BoxNet3D environments. Figure 11 further shows examples for
realistic robot-robot collisions that is not incorporated in previous works.
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Figure 6: Example BoxNet2D environment

Figure 7: Example collisions in BoxNet2D environment. The movements involved in a collision
are highlighted with a yellow outline.
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Figure 8: Example RANDROB environment.

Figure 9: Example NEWCOORD environment.
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Figure 10: Example BoxNet3D environment.

25



1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403

Under review as a conference paper at ICLR 2026

Figure 11: Examples of BoxNet3D robot-robot collision. We highlight that such hard constraints
are not considered in previous works.
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F DETAILED PROMPTS

In this section, we summarize the full prompts for SFT data synthesis in Section F.1, BoxNet2D and
BoxNet3D environments with two planner modes in Section F.2, and reasoning behavior analysis
in Section F.3.

F.1 PROMPT FOR SFT DATA SYNTHESIS

We list the prompt for BoxNet2D thinking synthesis in Listing 2, and BoxNet3D thinking synthe-
sis in Listing 3.

Listing 2: Prompt for synthesizing reasoning trace for BoxNet2D

You are required to **assume the role of a central planner**. Your task is to
simulate the step-by-step thinking process that logically leads you to the
provided ground-truth plan.

↪→
↪→

Your thinking should be presented from a **first-person perspective**, clearly
demonstrating your internal reasoning process of planning, validating and
adjusting to avoid collision, and planning decisions.

↪→
↪→

## Requirement for your generated firt-person thinking:
1. **First-Person Perspective**: Write your internal thoughts as if you are

personally making the decisions:↪→
- Use phrases like "Let me see...", "Wait, is that correct?", "I should check

collisions first...", "Can I parallel two robot movements to make the plan
more efficient?"

↪→
↪→
- Demonstrate real-time analysis and potential hesitations or reconsiderations.

2. **Thinking Process with `<think>` Tags**:
- Enclose your entire reasoning sequence in `<think>` ... `</think>` tags.
- Make sure you have explicit checks, e.g. collision checks, range feasibility,

and confirmations of correctness. You can start the explicit checks with
"Wait", "Hmm", "let me check", etc.

↪→
↪→
- Make sure to pose questions to yourself, and then answer them. Show how you

arrive at each movement decision.↪→
- You must include multiple explict checks and self-questioning in your thinking

process.↪→

Below is the detailed task description. You can learn the rules for the task from
these descriptions.↪→

## Task Description:
You are a central planner responsible for coordinating multiple robotic arms

operating in a grid-like environment. Your goal is to plan and execute
efficient, collision-free movements to transport objects to their designated
target positions.

↪→
↪→
↪→

*Task Representation:*
* Objective: Move all objects to their specified target locations safely and

efficiently.↪→
* Input: A detailed map state containing positions of robots, objects, and target

locations.↪→
* Output: A precise movement plan specifying each robot arm's actions for moving

objects.↪→

*Position Representation:*
* All positions (robots, objects, targets) are given by their center coordinates,

e.g., [0.25, 0.25], [0.75, 1.25].↪→
* Robots have a fixed base location and an extendable arm with a limited reach

range.↪→

*Movement Rules:*
* Each robot arm can only move within a limited range relative to its fixed base

position:↪→
* X-axis: from (Base_X - 1.0) to (Base_X + 1.0) (exclusive).
* Y-axis: from (Base_Y - 1.0) to (Base_Y + 1.0) (exclusive).

* For example:
* If a robot's base is [1.0, 1.0], its arm can reach [0.25, 0.75] or [1.25,

1.75], but not [0, 0.25] or [2.0, 0.75].↪→
* Robots may move an object only if their arm aligns exactly with the object's

current position, and if explicitly indicated in the action (move_object:
True).

↪→
↪→
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## How to Generate Your Response:
Your response must **clearly indicate your thinking process** enclosed in <think>

and </think> tags, followed by the generated step of the movement plan.↪→

*Thinking:*
* Clearly describe your analysis and decisions from a first-person perspective.
* Identify potential collisions explicitly and explain how you avoid them.
* Highlight your reasoning for movement choices, considering efficiency and

collision avoidance.↪→

*Movement Plan (Output):*
* Your generated step of the movement plan should be in markdown format and contain

a JSON dictionary, with robot names as keys and their movement instructions as
values, structured as follows:

↪→
↪→
```json
[
{

"robot_name": "start_position -> end_position, move_object"
"robot_name": "start_position -> end_position, move_object",

},
{

"robot_name": "start_position -> end_position, move_object",
}
]
```
* *start_position* and *end_position* represent the *[x, y]* coordinates of the

robot arm's movement.↪→
* *move_object* is a boolean indicating whether the robot moves an object (*True*)

or simply moves its arm without carrying an object (*False*).↪→
* Robots without actions in the current step should not be included.
Ensure your final step completes the objective of placing all objects at their

target positions, and your plan forms a valid JSON array.↪→

## Collision Avoidance Rules:
Your plan must strictly avoid collisions, as follows:
* Robot-Robot Collision:

* Two robot arms cannot occupy the same position simultaneously.
* Robot arms cannot cannot intersect with each other or have intersecting

movement trajectories during a step movement.↪→
* For example:

* Collision occurs if Robot 1 moves [0.75, 0.75] -> 0.75, 1.25] and Robot 2
moves [2.25, 1.75] -> [0.75, 1.25] (same endpoint).↪→

* Collision occurs if Robot 1 moves [0.25, 0.25] -> [0.75, 0.25] and Robot 2
moves [1.25, 0.25] -> [0.25, 0.75] (intersecting arms as the end
position Robot 1 is at the arm, as the end of Robot 2 arm position
occupies [0.75, 0.25])

↪→
↪→
↪→
* Collision occurs if Robot 1 moves [0.25, 0.25] -> [0.75, 0.75] and Robot 2

moves [0.25, 0.75] -> [0.75, 0.25] (intersecting movement as both arms
moves across [0.5, 0.5]).

↪→
↪→

* Object-Object Collision:
* Two objects cannot occupy the same position at any time.

## Example Environment and Ground-Truth Plan:
Below is an example scenario and its ground-truth solution:

```text
{environment}
```

With the above information clearly provided, please start by explicitly presenting
your first-person reasoning for the whole plan enclosed in <think></think> tags.
Make sure you include explicit checks and self-questioning in your thinking
process. Your reasoning should be clear and easy to follow, as if you are
explaining it to someone else. Limit your thinking length within 2000 tokens.

↪→
↪→
↪→
↪→

Listing 3: Prompt for synthesizing reasoning trace for BoxNet3D

You are required to **assume the role of a central planner**. Your task is to
simulate the step-by-step thinking process that logically leads you to the
provided ground-truth movement plan.

↪→
↪→

Your thinking should be presented from a **first-person perspective**, clearly
demonstrating your internal reasoning process of planning, validating and
adjusting to avoid collision, and planning decisions.

↪→
↪→
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## Requirement for your generated firt-person thinking:
1. **First-Person Perspective**: Write your internal thoughts as if you are

personally making the decisions:↪→
- Use phrases like "Let me see...", "Wait, is that correct?", "I should check

collisions first...", "Can I parallel two robot movements to make the plan
more efficient?"

↪→
↪→
- Demonstrate real-time analysis and potential hesitations or reconsiderations.

2. **Thinking Process with `<think>` Tags**:
- Enclose your entire reasoning sequence in `<think>` ... `</think>` tags.
- Make sure you have explicit checks, e.g. collision checks, range feasibility,

and confirmations of correctness. You can start the explicit checks with
"Wait", "Hmm", "let me check", etc.

↪→
↪→
- Make sure to pose questions to yourself, and then answer them. Show how you

arrive at each movement decision.↪→
- You must include multiple explict checks and self-questioning in your thinking

process.↪→

Below is the detailed task description. You can learn the rules for the task from
these descriptions.↪→

## Task Description:
You are a central planner responsible for coordinating multiple robotic arms

operating in a grid-like environment. Your goal is to plan and execute
efficient, collision-free movements to transport objects to their designated
target positions.

↪→
↪→
↪→

*Task Representation:*
* Objective: Move all objects to their specified target locations safely and

efficiently.↪→
* Input: A detailed map state containing positions of robots, objects, and target

locations.↪→
* Output: A precise movement plan specifying each robot arm's actions for moving

objects.↪→

*Position Representation:*
* All positions (robots, objects, targets) are given by their center coordinates,

e.g., [0.55, 1.65], [2.75, 0.55].↪→
* Robots have a fixed base location and an extendable arm with a limited reach

range.↪→

*Movement Rules:*
* Each robot arm can only move within a circular band around its fixed base

position:↪→
- Let d = sqrt((X - Base_X)**2 + (Y - Base_Y)**2).
- The arm may reach (X, Y) only if 0.4 < d < 0.8

* For example:
- If a robot's base is at [1.1, 1.1]:
- It can reach [0.55, 0.55] since sqrt((1.1 - 0.55)**2 + (1.1 - 0.55)**2) around

0.77 < 0.8↪→
- It can reach [0.6, 1.1] since sqrt((0.6 - 1.1)**2 + (1.1 - 1.1) ** 2)) = 0.5 >

0.4↪→
- It cannot reach [2.0, 1.1] because sqrt(0.9**2 + 0**2) = 0.9, which exceeds

0.8↪→
- It cannot reach [2.25, 0.65] because sqrt(1.15**2 + 0.45**2) around 1.23,

which exceeds 0.8↪→
- If a robot needs to move an object within its range and the arm is not aligned

with the object, the robot should first move its arm to the position of that
object. By aligning, it meas the distance between object center and arm
position is less than 0.1

↪→
↪→
↪→
- When you plan a move, please follow following rules:
- First check that the proposed target lies within the circular band 0.5 < d <

0.8.↪→
- If it does not, adjust your plan or reject that movement.
- If the arm is not yet aligned with an object it needs to move and that object

lies within the band, plan a preliminary move to position the arm aligned
with the object before picking it up.

↪→
↪→

## How to Generate Your Response:
Your response must **clearly indicate your thinking process** enclosed in <think>

and </think> tags, followed by the generated step of the movement plan.↪→
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*Thinking:*
* Clearly describe your analysis and decisions from a first-person perspective.
* Identify potential collisions explicitly and explain how you avoid them.
* Highlight your reasoning for movement choices, considering efficiency and

collision avoidance.↪→

*Movement Plan (Output):*
* Your generated step of the movement plan should be in markdown format and contain

a JSON dictionary, with robot names as keys and their movement instructions as
values, structured as follows:

↪→
↪→
```json
[
{

"robot_name1": "Move end_position, move_object",
"robot_name2": "Move end_position, move_object"

},
{

"robot_name3": "Move end_position, move_object"
}
]
```
* *end_position* represent the target *[x, y]* coordinates of the robot arm end

point of the movement around circular path. Note that only the arm moves while
its base remains fixed.

↪→
↪→
* *move_object* is a boolean indicating whether the robot moves an object (*True*)

or simply moves its arm without carrying an object (*False*).↪→
* One robot can only be moved once in each step, which means that no repeated keys

are allowed in the same step.↪→
* Robots without actions in the current step should not be included.
Ensure your final step completes the objective of placing all objects at their

target positions, and your plan forms a valid JSON array.↪→

## Collision Avoidance Rules:
Your plan must strictly avoid collisions, as follows:
* Robot-Robot Collision

* Each robot arm always swings along a smooth **circular** path around its base.
* Two robot arms cannot occupy the same position at the end of a move.
* Their curved paths must not cross or share any point during the move.
* Sometimes a robot needs to move its arm to a safe position to avoid collision

between another robot that move its arm to reach an object.↪→
* **Example:**
* robot_0 swings from [0.25, 0.25] to [0.75, 0.75] and robot_1 swings from

[0.25, 0.75] to [0.75, 0.25] at the same time. Both arcs pass through [0.5,
0.5], causing a collision.

↪→
↪→

* Object-Object Collision
* Two objects cannot occupy the same (x, y) at any time.
* If you move more than one object at once, they must have different drop-off

points and non-crossing straight-line paths.↪→
* Robot-Object Collision

* An arm's circular path must not sweep through any object it isn't carrying.
* Before moving, confirm the curved trajectory does not pass over another object's

position.↪→

## Plan Efficiency Considerations:
* Each step of your plan involves simultaneous robot arm movements from their

current positions to specified target positions.↪→
* Each robot arm moves at a constant speed of 0.5 units/time.
* The duration of each step is determined by the longest single-arm movement within

that step.↪→
* The total execution time is the sum of all individual step durations.
* You should aim to minimize total execution time while ensuring collision-free

movements and successful object placements.↪→

## Example Environment and Ground-Truth Plan:
Below is an example scenario and its ground-truth solution:

```text
{environment}
```

With the above information clearly provided, please start by explicitly presenting
your first-person reasoning for the whole plan enclosed in <think></think> tags.
Make sure you include explicit checks and self-questioning in your thinking
process. Your reasoning should be clear and easy to follow, as if you are
explaining it to someone else. Limit your thinking length within 2000 tokens.

↪→
↪→
↪→
↪→
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F.2 PROMPT FOR BOXNET2D AND BOXNET3D ENVIRONMENT

BoxNet2D We list the prompt for FULLPLAN planner in BoxNet2D in List 4, and REPLAN plan-
ner in List 5.

BoxNet3D We list the prompt for FULLPLAN planner in BoxNet3D in List 6, and REPLAN plan-
ner in List 7.

Listing 4: Prompt for FULLPLAN planner in BoxNet2D environment

You are a central planner responsible for coordinating robotic arms in a grid-like
environment to transport objects to their designated targets. Each robot is
stationed at the corner of a 1x1 square and uses its arm to move objects. Your
task is to generate an efficient and collision-free plan for multiple robots,
ensuring all objects reach their target positions after the whole plan is
executed.

↪→
↪→
↪→
↪→
↪→

## Task Description:
*Task Representation:*
* Objective: Move all objects to their specified target locations safely and

efficiently.↪→
* Input: A detailed map state containing positions of robots, objects, and target

locations.↪→
* Output: A precise movement plan specifying each robot arm's actions for moving

objects.↪→

*Position Representation:*
* All positions (robots, objects, targets) are given by their center coordinates,

e.g., [0.25, 0.25], [0.75, 1.25].↪→
* Robots have a fixed base location and an extendable arm with a limited reach

range.↪→

*Movement Rules:*
Your generated movement must strictly consider the reachability of each robot arm,

detaild rule in following:↪→
* Each robot arm can only move within a limited range relative to its fixed base

position:↪→
* X-axis: from (Base_X - 1.0) to (Base_X + 1.0) (exclusive).
* Y-axis: from (Base_Y - 1.0) to (Base_Y + 1.0) (exclusive).

* For example:
* If a robot's base is [1.0, 1.0], its arm can reach [0.25, 0.75] or [1.25,

1.75], but not [0, 0.25] or [2.25, 1.75] because 2.25 - 1.0 = 1.25 > 1.0 and
0 - 1.0 = -1.0 <= -1.

↪→
↪→
* Robots may move an object only if their arm position aligns exactly with the

object's current position, and if explicitly indicated in the action
(move_object: True).

↪→
↪→
* Make sure you explicitly think about whether your proposed movement for one

arm is valid, and correct it if it is not.↪→
* If a robot needs to move an object within its range and the arm is not aligned

with the object, the robot should first move its arm to the position of that
object.

↪→
↪→

## How to Generate Your Response:
Your response must **clearly indicate your thinking process** enclosed in <think>

and </think> tags, followed by the generated step of the movement plan.↪→

*Thinking:*
* Clearly describe your analysis and decisions from a first-person perspective.
* You should think carefully whether your plan has collision by explictly generating

your thoughts, and avoid them in your final output if there is any.↪→
* Highlight your reasoning for movement choices, considering efficiency and

collision avoidance.↪→

*Movement Plan (Output):*
* Your generated step of the movement plan should be in markdown format and contain

a JSON list, with each entry as a dictionary indicating one step, and the robot
names are keys and their movement instructions as values for each step,
structured as follows:

↪→
↪→
↪→
```json
[
{

"robot_name1": "start_position -> end_position, move_object",
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"robot_name2": "start_position -> end_position, move_object"
},
{

"robot_name3": "start_position -> end_position, move_object"
}
]
```
* *start_position* and *end_position* represent the *[x, y]* coordinates of the

robot arm before and after the movement. Note that only the arm moves while base
remains fixed.

↪→
↪→
* *move_object* is a boolean indicating whether the robot moves an object (*True*)

or simply moves its arm without carrying an object (*False*).↪→
* Robots without actions in a certain step should not be included.
* One robot can only be moved once in each step, which means that no repeated keys

are allowed in the same step.↪→
Ensure your final step completes the objective of placing all objects at their

target positions, and your plan forms a valid JSON list.↪→

## Collision Avoidance Rules:
Your plan must strictly avoid collisions, as follows:
* Robot-Robot Collision:

* Two robot arms cannot occupy the same position simultaneously.
* Robot arms cannot cannot intersect with each other or have intersecting

movement trajectories during a step movement.↪→
* For example:

* Collision occurs if Robot 1 moves [0.75, 0.75] -> 0.75, 1.25] and Robot 2
moves [2.25, 1.75] -> [0.75, 1.25] (same endpoint).↪→

* Collision occurs if Robot 1 moves [0.25, 0.25] -> [0.75, 0.25] and Robot 2
moves [1.25, 0.25] -> [0.25, 0.75] (intersecting arms as the end
position Robot 1 is at the arm, as the end of Robot 2 arm position
occupies [0.75, 0.25])

↪→
↪→
↪→
* Collision occurs if Robot 1 moves [0.25, 0.25] -> [0.75, 0.75] and Robot 2

moves [0.25, 0.75] -> [0.75, 0.25] (intersecting movement as both arms
moves across [0.5, 0.5]).

↪→
↪→

* Object-Object Collision:
* Two objects cannot occupy the same position at any time.

## Plan Efficiency Considerations:
* Each step of your plan involves simultaneous robot arm movements from their

current positions to specified target positions.↪→
* Each robot arm moves at a constant speed of 0.5 units/time.
* The duration of each step is determined by the longest single-arm movement within

that step.↪→
* The total execution time is the sum of all individual step durations.
* You should aim to minimize total execution time while ensuring collision-free

movements and successful object placements.↪→

## Example Input & Output:
* Input:
Object positions:

Object 1: [0.75, 0.75]
Object 2: [1.75, 0.25]

Target positions:
Object 1 target: [2.25, 0.75]
Object 2 target: [0.25, 1.25]

Robot positions:
Robot 1: base [1.0, 1.0], arm [0.75, 0.75]
Robot 2: base [2.0, 0.0], arm [1.75, 0.75]

* Output:
<think> Let's understand the scenerio ... </think>
```json
[

{"Robot 1": "[0.75, 0.75] -> [1.25, 0.25], True", "Robot 2":
"[1.75, 0.75] -> [1.75, 0.25], False"},↪→

{"Robot 2": "[1.75, 0.25] -> [1.75, 0.75], True"},
{"Robot 1": "[1.25, 0.25] -> [1.75, 0.75], False", "Robot 2":

"[1.75, 0.75] -> [1.25, 0.25], False"},↪→
{"Robot 1": "[1.75, 0.75] -> [0.25, 1.25], True", "Robot 2":

"[1.25, 0.25] -> [2.25, 0.75], True"}↪→
]
```

Given the information above, now consider the following environment:
Input:

{mapstate}
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Generate the full plan for moving these robots.

Listing 5: Prompt for REPLAN planner in BoxNet2D environment

You are a central planner responsible for coordinating robotic arms in a grid-like
environment to transport objects to their designated targets. Each robot is
stationed at the corner of a 1x1 square and uses its arm to move objects. Your
task is to interactively generate an efficient and collision-free movement plan
for controlling these robots, targeting at moving all objects to their target
positions.

↪→
↪→
↪→
↪→
↪→

At each step, you will receive the current state of the environment wrapped by
<observation> and </observation> tags. You need to generate the next-step plan
for moving the robots, ensuring that your output contains your thinking process
and the markdown json dict.

↪→
↪→
↪→

## Task Description:
*Task Representation:*
* Objective: Move all objects to their specified target locations safely and

efficiently.↪→
* Input: A detailed map state containing positions of robots, objects, and target

locations.↪→
* Output: A precise movement plan specifying each robot arm's actions for moving

objects.↪→

*Position Representation:*
* All positions (robots, objects, targets) are given by their center coordinates,

e.g., [0.25, 0.25], [0.75, 1.25].↪→
* Robots have a fixed base location and an extendable arm with a limited reach

range.↪→

*Movement Rules:*
* Each robot arm can only move within a limited range relative to its fixed base

position:↪→
* X-axis: from (Base_X - 1.0) to (Base_X + 1.0) (exclusive).
* Y-axis: from (Base_Y - 1.0) to (Base_Y + 1.0) (exclusive).

* For example:
* If a robot's base is [1.0, 1.0], its arm can reach [0.25, 0.75] or [1.25,

1.75], but not [0, 0.25] or [2.25, 1.75] because 2.25 - 1.0 = 1.25 > 1.0 and
0 - 1.0 = -1.0 <= -1.

↪→
↪→
* Robots may move an object only if their arm aligns exactly with the object's

current position, and if explicitly indicated in the action (move_object:
True).

↪→
↪→
* If a robot needs to move an object within its range and the arm is not aligned

with the object, the robot should first move its arm to the position of that
object.

↪→
↪→

## How to Generate Your Response:
Your response must **clearly indicate your thinking process** enclosed in <think>

and </think> tags, followed by the generated step of the movement plan.↪→

*Thinking:*
* Clearly describe your analysis and decisions from a first-person perspective.
* Think carefully and try to identify potential collisions explicitly in the

analysis and explain how you avoid them.↪→
* Highlight your reasoning for movement choices, considering efficiency and

collision avoidance.↪→

*Movement Plan (Output):*
* Your generated step of the movement plan should be in markdown format and contain

a JSON dictionary, with robot names as keys and their movement instructions as
values, structured as follows:

↪→
↪→
```json
{

"robot_name1": "start_position -> end_position, move_object"
"robot_name2": "start_position -> end_position, move_object",

},
```
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* *start_position* and *end_position* represent the *[x, y]* coordinates of the
robot arm before and after the movement. Note that only the arm moves while base
remains fixed.

↪→
↪→
* *move_object* is a boolean indicating whether the robot moves an object (*True*)

or simply moves its arm without carrying an object (*False*).↪→
* Robots without actions in a certain step should not be included.
* One robot can only be moved once in each step, which means that no repeated keys

are allowed in the same step.↪→
Ensure your output forms a valid JSON dictionary of next-step plan.

## Collision Avoidance Rules:
Your plan must strictly avoid collisions, as follows:
* Robot-Robot Collision:

* Two robot arms cannot occupy the same position simultaneously.
* Robot arms cannot cannot intersect with each other or have intersecting

movement trajectories during a step movement.↪→
* For example:

* Collision occurs if Robot 1 moves [0.75, 0.75] -> 0.75, 1.25] and Robot 2
moves [2.25, 1.75] -> [0.75, 1.25] (same endpoint).↪→

* Collision occurs if Robot 1 moves [0.25, 0.25] -> [0.75, 0.25] and Robot 2
moves [1.25, 0.25] -> [0.25, 0.75] (intersecting arms as the end
position Robot 1 is at the arm, as the end of Robot 2 arm position
occupies [0.75, 0.25])

↪→
↪→
↪→
* Collision occurs if Robot 1 moves [0.25, 0.25] -> [0.75, 0.75] and Robot 2

moves [0.25, 0.75] -> [0.75, 0.25] (intersecting movement as both arms
moves across [0.5, 0.5]).

↪→
↪→

* Object-Object Collision:
* Two objects cannot occupy the same position at any time.

## Plan Efficiency Considerations:
* The exeuction time of your plan involves simultaneous robot arm movements from

their current positions to specified target positions.↪→
* Each robot arm moves at a constant speed of 0.5 units/time.
* The duration of the plan is determined by the longest single-arm movement within

it.↪→
* You should aim to minimize the execution time while ensuring collision-free

movements and successful object placements.↪→

## Example Input & Output:
Input:
<observation>
Object positions:

Object 1: [0.75, 0.75]
Object 2: [1.75, 0.25]

Target positions:
Object 1 target: [2.25, 0.75]
Object 2 target: [0.25, 1.25]

Robot positions:
Robot 1: base [1.0, 1.0], arm [0.75, 0.75]
Robot 2: base [2.0, 0.0], arm [1.75, 0.75]

</observation>

* Output:
<think> Let's understand the scenerio ... </think>
```json
{"Robot 1": "[0.75, 0.75] -> [1.25, 0.25], True", "Robot 2":

"[1.75, 0.75] -> [1.75, 0.25], False"}↪→
```

Now work on the following problem given by user.

<observation>
{mapstate}
</observation>

Listing 6: Prompt for FULLPLAN planner in BoxNet3D environment

You are a central planner responsible for coordinating robotic arms in a grid-like
environment to transport objects to their designated targets. Each robot is
stationed at the corner of a 1.1x1.1 square and uses its arm to move objects.
Your task is to generate an efficient and collision-free plan for multiple
robots, ensuring all objects reach their target positions after the whole plan
is executed.

↪→
↪→
↪→
↪→
↪→
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## Task Description:
*Task Representation:*
* Objective: Move all objects to their specified target locations safely and

efficiently.↪→
* Input: A detailed map state containing positions of robots, objects, and target

locations.↪→
* Output: A precise movement plan specifying each robot arm's actions for moving

objects.↪→

*Position Representation:*
* All positions (robots, objects, targets) are given by their center coordinates,

e.g., [0.55, 1.65], [2.75, 0.55].↪→
* Robots have a fixed base location and an extendable arm with a limited reach

range.↪→

*Movement Rules:*
Your generated movement must strictly consider the reachability of each robot arm,

detaild rule in following:↪→
* Each robot arm can only move within a circular band around its fixed base

position:↪→
- Let d = sqrt((X - Base_X)**2 + (Y - Base_Y)**2).
- The arm may reach (X, Y) only if 0.4 < d < 0.8

* For example:
- If a robot's base is at [1.1, 1.1]:
- It can reach [0.55, 0.55] since sqrt((1.1 - 0.55)**2 + (1.1 - 0.55)**2) around

0.77 < 0.8↪→
- It can reach [0.6, 1.1] since sqrt((0.6 - 1.1)**2 + (1.1 - 1.1) ** 2)) = 0.5 >

0.4↪→
- It cannot reach [2.0, 1.1] because sqrt(0.9**2 + 0**2) = 0.9, which exceeds

0.8↪→
- It cannot reach [2.25, 0.65] because sqrt(1.15**2 + 0.45**2) around 1.23,

which exceeds 0.8↪→
- If a robot needs to move an object within its range and the arm is not aligned

with the object, the robot should first move its arm to the position of that
object. By aligning, it meas the distance between object center and arm
position is less than 0.1

↪→
↪→
↪→
- When you plan a move, please follow following rules:
- First check that the proposed target lies within the circular band 0.5 < d <

0.8.↪→
- If it does not, adjust your plan or reject that movement.
- If the arm is not yet aligned with an object it needs to move and that object

lies within the band, plan a preliminary move to position the arm aligned
with the object before picking it up.

↪→
↪→

## How to Generate Your Response:
Your response must **clearly indicate your thinking process** enclosed in <think>

and </think> tags, followed by the generated step of the movement plan.↪→

*Thinking:*
* Clearly describe your analysis and decisions from a first-person perspective.
* You should think carefully whether your plan has collision by explictly generating

your thoughts, and avoid them in your final output if there is any.↪→
* Highlight your reasoning for movement choices, considering efficiency and

collision avoidance.↪→

*Movement Plan (Output):*
* Your generated step of the movement plan should be in markdown format and contain

a JSON list, with each entry as a dictionary indicating one step, and the robot
names are keys and their movement instructions as values for each step,
structured as follows:

↪→
↪→
↪→
```json
[
{

"robot_name1": "Move end_position, move_object",
"robot_name2": "Move end_position, move_object"

},
{

"robot_name3": "Move end_position, move_object"
}
]
```
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* *end_position* represent the target *[x, y]* coordinates of the robot arm after
the movement. Note that only the arm moves while its base remains fixed.↪→

* *move_object* is a boolean indicating whether the robot moves an object (*True*)
or simply moves its arm without carrying an object (*False*).↪→

* Robots without actions in a certain step should not be included.
* One robot can only be moved once in each step, which means that no repeated keys

are allowed in the same step.↪→
Ensure your final step completes the objective of placing all objects at their

target positions, and your plan forms a valid JSON list.↪→

## Collision Avoidance Rules:
Your plan must strictly avoid collisions, as follows:
* Robot-Robot Collision

* Each robot arm always swings along a smooth **circular** path around its base.
* Two robot arms cannot occupy the same position at the end of a move.
* Their curved paths must not cross or share any point during the move.
* Sometimes a robot needs to move its arm to a safe position to avoid collision

between another robot that move its arm to reach an object.↪→
* **Example:**
* robot_0 swings from [0.25, 0.25] to [0.75, 0.75] and robot_1 swings from

[0.25, 0.75] to [0.75, 0.25] at the same time. Both arcs pass through [0.5,
0.5], causing a collision.

↪→
↪→

* Object-Object Collision
* Two objects cannot occupy the same (x, y) at any time.
* If you move more than one object at once, they must have different drop-off

points and non-crossing straight-line paths.↪→
* Robot-Object Collision

* An arm's circular path must not sweep through any object it isn't carrying.
* Before moving, confirm the curved trajectory does not pass over another object's

position.↪→

## Plan Efficiency Considerations:
* Each step of your plan involves simultaneous robot arm movements from their

current positions to specified target positions.↪→
* Each robot arm moves at a constant speed of 0.5 units/time.
* The duration of each step is determined by the longest single-arm movement within

that step.↪→
* The total execution time is the sum of all individual step durations.
* You should aim to minimize total execution time while ensuring collision-free

movements and successful object placements.↪→

## Example Input & Output:
* Input:
Object positions:

Object 1: [0.55, 1.65]
Target positions:

Object 1 target: [1.65, 0.55]
Robot positions:

Robot 1: base [1.1, 1.1], arm [1.24, 0.61]
Robot 2: base [1.1, 2.2], arm [1.24, 1.71]

* Output:
<think> Let's understand the scenerio ... </think>
```json
[

{
"Robot 1": "Move [0.55, 1.65] False"

},
{

"Robot 1": "Move [1.65, 1.65] True"
},
{

"Robot 1": "Move [1.10, 1.70] False", "Robot 0": "Move [1.65, 1.66] False"
},
{

"Robot 0": "Move [1.65, 0.55] True"
}

]
```

Given the information above, now consider the following environment:
Input:
{mapstate}
Generate the full plan for moving these robots.
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Listing 7: Prompt for REPLAN planner in BoxNet3D environment

You are a central planner responsible for coordinating robotic arms in a grid-like
environment to transport objects to their designated targets. Each robot is
stationed at the corner of a 1.1x1.1 square and uses its arm to move objects.
Your task is to interactively generate an efficient and collision-free movement
plan for controlling these robots, targeting at moving all objects to their
target positions.

↪→
↪→
↪→
↪→
↪→

At each step, you will receive the current state of the environment wrapped by
<observation> and </observation> tags. You need to generate the next-step plan
for moving the robots, ensuring that your output contains your thinking process
and the markdown json dict.

↪→
↪→
↪→

## Task Description:
*Task Representation:*
* Objective: Move all objects to their specified target locations safely and

efficiently.↪→
* Input: A detailed map state containing positions of robots, objects, and target

locations.↪→
* Output: A precise movement plan specifying each robot arm's actions for moving

objects.↪→

*Position Representation:*
* All positions (robots, objects, targets) are given by their center coordinates,

e.g., [0.55, 1.65], [2.75, 0.55].↪→
* Robots have a fixed base location and an extendable arm with a limited reach

range.↪→

*Movement Rules:*
Your generated movement must strictly consider the reachability of each robot arm,

detaild rule in following:↪→
* Each robot arm can only move within a circular band around its fixed base

position:↪→
- Let d = sqrt((X - Base_X)**2 + (Y - Base_Y)**2).
- The arm may reach (X, Y) only if 0.4 < d < 0.8

* For example:
- If a robot's base is at [1.1, 1.1]:
- It can reach [0.55, 0.55] since sqrt((1.1 - 0.55)**2 + (1.1 - 0.55)**2) around

0.77 < 0.8↪→
- It can reach [0.6, 1.1] since sqrt((0.6 - 1.1)**2 + (1.1 - 1.1) ** 2)) = 0.5 >

0.4↪→
- It cannot reach [2.0, 1.1] because sqrt(0.9**2 + 0**2) = 0.9, which exceeds

0.8↪→
- It cannot reach [2.25, 0.65] because sqrt(1.15**2 + 0.45**2) around 1.23,

which exceeds 0.8↪→
- If a robot needs to move an object within its range and the arm is not aligned

with the object, the robot should first move its arm to the position of that
object. By aligning, it meas the distance between object center and arm
position is less than 0.1

↪→
↪→
↪→
- When you plan a move, please follow following rules:
- First check that the proposed target lies within the circular band 0.5 < d <

0.8.↪→
- If it does not, adjust your plan or reject that movement.
- If the arm is not yet aligned with an object it needs to move and that object

lies within the band, plan a preliminary move to position the arm aligned
with the object before picking it up.

↪→
↪→

## How to Generate Your Response:
Your response must **clearly indicate your thinking process** enclosed in <think>

and </think> tags, followed by the generated step of the movement plan.↪→

*Thinking:*
* Clearly describe your analysis and decisions from a first-person perspective.
* Think carefully and try to identify potential collisions explicitly in the

analysis and explain how you avoid them.↪→
* Highlight your reasoning for movement choices, considering efficiency and

collision avoidance.↪→

*Movement Plan (Output):*
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* Your generated step of the movement plan should be in markdown format and contain
a JSON dictionary, with robot names as keys and their movement instructions as
values, structured as follows:

↪→
↪→
```json
{

"robot_name1": "Move end_position, move_object",
"robot_name2": "Move end_position, move_object"

},
```
* *end_position* represent the target *[x, y]* coordinates of the robot arm end

point of the movement around circular path. Note that only the arm moves while
its base remains fixed.

↪→
↪→
* *move_object* is a boolean indicating whether the robot moves an object (*True*)

or simply moves its arm without carrying an object (*False*).↪→
* Robots without actions in a certain step should not be included.
* One robot can only be moved once in each step, which means that no repeated keys

are allowed in the same step.↪→
Ensure your output forms a valid JSON dictionary of next-step plan.

## Collision Avoidance Rules:
Your plan must strictly avoid collisions, as follows:
* Robot-Robot Collision

* Each robot arm always swings along a smooth **circular** path around its base.
* Two robot arms cannot occupy the same position at the end of a move.
* Their curved paths must not cross or share any point during the move.
* Sometimes a robot needs to move its arm to a safe position to avoid collision

between another robot that move its arm to reach an object.↪→
* **Example:**
* robot_0 swings from [0.25, 0.25] to [0.75, 0.75] and robot_1 swings from

[0.25, 0.75] to [0.75, 0.25] at the same time. Both arcs pass through [0.5,
0.5], causing a collision.

↪→
↪→

* Object-Object Collision
* Two objects cannot occupy the same (x, y) at any time.
* If you move more than one object at once, they must have different drop-off

points and non-crossing straight-line paths.↪→
* Robot-Object Collision

* An arm's circular path must not sweep through any object it isn't carrying.
* Before moving, confirm the curved trajectory does not pass over another object's

position.↪→

## Plan Efficiency Considerations:
* The exeuction time of your plan involves simultaneous robot arm movements from

their current positions to specified target positions.↪→
* Each robot arm moves at a constant speed of 0.5 units/time.
* The duration of the plan is determined by the longest single-arm movement within

it.↪→
* You should aim to minimize the execution time while ensuring collision-free

movements and successful object placements.↪→

## Example Input & Output:
Input:
<observation>
Object positions:

Object 1: [0.55, 1.65]
Target positions:

Object 1 target: [1.65, 0.55]
Robot positions:

Robot 1: base [1.1, 1.1], arm [1.24, 0.61]
Robot 2: base [1.1, 2.2], arm [1.24, 1.71]

</observation>

* Output:
<think> Let's understand the scenerio ... </think>
```json
{

"Robot 1": "Move [0.55, 1.65] False"
}
```

Now work on the following problem given by user:

<observation>
{mapstate}
</observation>
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F.3 PROMPT FOR REASONING BEHAVIOR PROBING

We list the prompt for the reachability check in List 8, and the prompt for the collision check in
List 9.

Listing 8: Prompt for GPT-4o to count reachability check

How many reachability checks about the robot's movement are presented in the
following reasoning trace? For example, a sentence like 'Robot 0 (base [1.0,
1.0]) can reach [0.25, 0.25]' counts as one verification. Give me an integer
number without saying anything else.

↪→
↪→
↪→
The reasoning trace is:
{trace}

Listing 9: Prompt for GPT-4o to count collision check

How many collision checks about the robot's movement are presented in the following
reasoning trace? For example, a sentence like 'Robot 0 moves to [0.25, 0.25],
and Robot 1 moves to [0.25, 0.25]. They may collide with each other.' counts as
one verification. Give me an integer number without saying anything else.

↪→
↪→
↪→
The reasoning trace is:
{trace}

F.4 EXAMPLE PLANNER OUTPUT FOR BOXNET2D AND BOXNET3D ENVIRONMENT

In this section, we provide example LLM planner reasoning process for the BoxNet2D and
BoxNet3D environments we developed in this work in List 10 and List 11. For video vi-
sualization of the movement, please visit our project website at this anonymous link https:
//anonym-submission-user.github.io.

Listing 10: Example FULLPLAN planner reasoning process in BoxNet2D environment

<think>

Let me analyze the current scenario. I have multiple objects that need to be moved
to their respective target positions, and several robots that can perform these
movements. First, I need to understand the initial positions of the objects,
their targets, and the robots' locations.

↪→
↪→
↪→

The objects are positioned as follows:

Object 0: [2.75, 0.25]
Object 1: [1.25, 0.25]
Object 2: [2.25, 1.75]
Object 3: [2.75, 0.75]
Object 4: [0.25, 2.75]
Their corresponding target positions are:

Object 0 target: [2.75, 1.75]
Object 1 target: [0.75, 1.75]
Object 2 target: [0.25, 1.75]
Object 3 target: [0.25, 0.25]
Object 4 target: [2.25, 2.25]
The robots are positioned as follows:

Robot 0: base: [0.0, 1.0], arm: [0.25, 1.25]
Robot 1: base: [0.0, 2.0], arm: [0.25, 2.25]
Robot 2: base: [1.0, 1.0], arm: [1.25, 1.25]
Robot 3: base: [1.0, 2.0], arm: [1.25, 2.25]
Robot 4: base: [2.0, 1.0], arm: [2.25, 1.25]
Robot 5: base: [2.0, 2.0], arm: [2.25, 2.25]
Now, I need to plan the movements of the robots to ensure that all objects are moved

to their targets efficiently and without any collisions.↪→

First, I should check the reachability of each object by the robots. For example,
Robot 4 can reach Object 0 at [2.75, 0.25] and can also reach Object 3 at [2.75,
0.75]. However, it cannot reach Object 1 at [1.25, 0.25] directly.

↪→
↪→

Hmm, let me see which robots can move which objects:

Robot 3 can move Object 4 at [0.25, 2.75] to its target at [2.25, 2.25].
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Robot 4 can move Object 0 at [2.75, 0.25] to its target at [2.75, 1.75] and Object 3
at [2.75, 0.75] to [0.25, 0.25].↪→

Robot 5 can move Object 2 at [2.25, 1.75] to its target at [0.25, 1.75].
I need to ensure that these movements do not collide. For the first step, if Robot 3

moves Object 4, Robot 4 can simultaneously move Object 0 and Object 3. However,
I need to check their paths for any intersections.

↪→
↪→

Wait, if Robot 3 moves from [1.25, 2.25] to [0.25, 2.75], it is not in the path of
Robot 4, which is moving from [2.25, 1.25] to [2.75, 0.75]. Additionally, Robot
5 can move from [2.25, 2.25] to [2.25, 1.75] without interfering with the
others.

↪→
↪→
↪→

So, the first step looks like this:

Robot 3 moves Object 4 to its target.
Robot 4 moves Object 0 to its target.
Robot 5 moves Object 2 to its target.
Now, let’s plan the next step. After the first step, the positions will be updated.

I need to check the new positions and see what movements are possible.↪→

Hmm, after Robot 3 has moved Object 4, it will be at [1.75, 2.25]. Robot 4 will have
moved Object 0 to [2.75, 1.75] and Object 3 to [1.25, 1.25]. Robot 5 will be at
[2.25, 1.75].

↪→
↪→

In the next step, Robot 2 can now move Object 1 at [1.25, 0.25] to its target at
[0.75, 1.75]. Also, Robot 5 can move Object 2 to [1.25, 1.75].↪→

I should also check for any collisions. Robot 2 moving to [0.75, 1.75] does not
conflict with Robot 5 moving to [1.25, 1.75].↪→

Let’s summarize this into the movement plan so far:

</think>

[
{

"Robot 3": "[1.25, 2.25] -> [0.25, 2.75], False",
"Robot 4": "[2.25, 1.25] -> [2.75, 0.75], False"

},
{

"Robot 3": "[0.25, 2.75] -> [1.75, 2.25], True",
"Robot 4": "[2.75, 0.75] -> [1.25, 1.25], True"

},
{

"Robot 2": "[1.25, 1.25] -> [0.25, 0.25], True",
"Robot 5": "[2.25, 2.25] -> [2.25, 1.75], False"

},
{

"Robot 5": "[2.25, 1.75] -> [1.25, 1.75], True",
"Robot 4": "[1.25, 1.25] -> [2.75, 0.25], False"

},
{

"Robot 2": "[0.25, 0.25] -> [1.25, 1.75], False",
"Robot 4": "[2.75, 0.25] -> [2.75, 1.75], True"

},
{

"Robot 2": "[1.25, 1.75] -> [0.25, 1.75], True"
},
{

"Robot 2": "[0.25, 1.75] -> [1.25, 0.25], False",
"Robot 5": "[1.25, 1.75] -> [1.75, 2.25], False"

},
{

"Robot 2": "[1.25, 0.25] -> [0.75, 1.75], True",
"Robot 5": "[1.75, 2.25] -> [2.25, 2.25], True"

}
]

Listing 11: Example FULLPLAN planner reasoning process in BoxNet3D environment

<think>

Let me analyze the initial map state. I have several objects that need to be moved
to their target positions, and I need to coordinate the movements of multiple
robots while ensuring they don't collide.

↪→
↪→

The positions are as follows:
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Objects:

Object 0: [0.55, 1.65]
Object 1: [1.65, 1.65]
Object 2: [1.65, 3.85]
Target positions:

Object 0 target: [2.75, 2.75]
Object 1 target: [2.75, 0.55]
Object 2 target: [0.55, 2.75]
Robot positions:

Robot 0: base: [1.1, 1.1], arm: [1.23, 0.61]
Robot 1: base: [1.1, 2.2], arm: [1.23, 1.71]
Robot 2: base: [1.1, 3.3], arm: [1.23, 2.81]
Robot 3: base: [2.2, 1.1], arm: [2.33, 0.61]
Robot 4: base: [2.2, 2.2], arm: [2.33, 1.71]
Robot 5: base: [2.2, 3.3], arm: [2.33, 2.81]
Robot 6: base: [3.3, 1.1], arm: [3.43, 0.61]
Robot 7: base: [3.3, 2.2], arm: [3.43, 1.71]
Robot 8: base: [3.3, 3.3], arm: [3.43, 2.81]
Step 1:
I need to first check which robots can move to pick up the objects.

Robot 1 can reach Object 0 at [0.55, 1.65]:

The distance is sqrt((1.1 - 0.55)ˆ2 + (2.2 - 1.65)ˆ2) = 0.65, which is within the
0.4 < d < 0.8 range. It can pick it up.↪→

Robot 2 can reach Object 2 at [1.65, 3.85]:

The distance is sqrt((1.1 - 1.65)ˆ2 + (3.3 - 3.85)ˆ2) = 0.65, which is also
reachable.↪→

Robot 4 can reach Object 1 at [1.65, 1.65]:

The distance is sqrt((2.2 - 1.65)ˆ2 + (2.2 - 1.65)ˆ2) = 0.78, which is within range.
So, I can plan for these robots to move to the respective objects without any

collision at this stage.↪→

Step 2:
Next, I need to ensure that when these robots move, they won’t collide.

Robot 1 will move towards [0.55, 1.65], Robot 2 towards [1.65, 3.85], and Robot 4
towards [1.65, 1.65].↪→

Their paths do not intersect, so they can move simultaneously.
Step 3:
Now that the objects are picked up, I need to plan the movements to the target

positions.↪→

Robot 1 will move Object 0 to [1.65, 2.75]:

The distance from its current arm position is within the reach, and it can move
directly since the object is already picked up.↪→

Robot 2 will move Object 2 to [0.55, 2.75]:

This also is a valid move; it’s within the reach of Robot 2 and it’s aligned to pick
up the object.↪→

Robot 4 will move Object 1 to [2.75, 0.55]:

The distance is also valid for Robot 4 to reach and pick up the object.
Step 4:
Now that the first set of movements is planned, I need to ensure that the second set

of movements do not cause any collisions.↪→

Robot 1 will now move to [1.65, 2.75].
Robot 2 will move to [0.55, 2.75].
Robot 4 will move to [2.75, 1.65].
Again, I must check that their paths do not intersect.

Step 5:
Next, I need to plan for the third movement. Robot 1 will place Object 0 at [1.60,

2.20] without carrying any object, and Robot 4 will move to [1.65, 2.75] without
carrying any object.

↪→
↪→

Robot 3 will move Object 1 to [2.75, 0.55], which is valid as it is within range and
won’t collide with others.↪→

Step 6:
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For the final step, Robot 1 will move to [0.55, 1.65] without carrying any object,
Robot 2 will move to [0.60, 3.30] also without carrying any object, Robot 4 will
move to [2.75, 1.65] without carrying any object, and Robot 5 will move Object 2
to [1.65, 2.75].

↪→
↪→
↪→

I’ll finalize the movements to ensure everything is correct before concluding.

Final Movement Plan:
The robots have clear paths, and I can confirm that all movements are valid and

collision-free. Let’s compile the final movement plan in the required JSON
format. </think>

↪→
↪→

[
{

"Robot 1": "Move [0.55, 1.65] False",
"Robot 2": "Move [1.65, 3.85] False",
"Robot 4": "Move [1.65, 1.65] False"

},
{

"Robot 1": "Move [1.65, 2.75] True",
"Robot 2": "Move [0.55, 2.75] True",
"Robot 4": "Move [2.75, 1.65] True"

},
{

"Robot 1": "Move [1.60, 2.20] False",
"Robot 3": "Move [2.75, 1.65] False",
"Robot 4": "Move [1.65, 2.75] False"

},
{

"Robot 3": "Move [2.75, 0.55] True",
"Robot 4": "Move [2.75, 2.75] True",
"Robot 5": "Move [2.75, 1.65] False"

}
]

42


	Introduction
	Method
	Overview
	Grounding LLM with Physical Constraints through RLVR
	Initial Supervised Fine-Tuning (SFT) Warmup
	Two Planners: FullPlan Planner and Replan Planner

	BoxNet-Based Multi-Robot Environments
	Experiment
	Experiment Setup
	Experimental Results
	Ablation Study

	Related Work
	Conclusion
	Limitations and Societal Impacts
	Additional Related Work
	Robotic planning and control with LLMs
	Reinforcement learning with verifiable rewards for LLM reasoning

	Additional Experimental Results and Analysis
	Comparison with Symbolic Language Translation-based Methods
	Ability to Identify and Recover from Intermediate Errors
	Planner Error Type Breakdown
	Unsolvable Task in Environment

	Additional Implementation Details
	GRPO Algorithm
	Training Efficiency Analysis
	BoxNet Environment Implementation and Statistics
	A* Search Algorithm

	BoxNet2D and BoxNet3D Environment Examples
	BoxNet2D Examples
	BoxNet3D Examples

	Detailed Prompts
	Prompt for SFT Data Synthesis
	Prompt for BoxNet2D and BoxNet3D environment
	Prompt for Reasoning Behavior Probing
	Example planner output for BoxNet2D and BoxNet3D environment


