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ABSTRACT

In many neural networks, different values of the parameters may result in the same
loss value. Parameter space symmetries are loss-invariant transformations that
change the model parameters. Teleportation applies such transformations to accel-
erate optimization. However, the exact mechanism behind this algorithm’s success
is not well understood. In this paper, we show that teleportation not only speeds
up optimization in the short-term, but gives overall faster time to convergence.
Additionally, teleporting to minima with different curvatures improves general-
ization, which suggests a connection between the curvature of the minimum and
generalization ability. Finally, we show that integrating teleportation into a wide
range of optimization algorithms and optimization-based meta-learning improves
convergence. Our results showcase the versatility of teleportation and demonstrate
the potential of incorporating symmetry in optimization.

1 INTRODUCTION

Given a deep neural network architecture and a dataset, there may be multiple points in the parameter
space that correspond to the same loss value. Despite having the same loss, the gradients and learn-
ing dynamics originating from these points can be very different (Kunin et al., 2021; Van Laarhoven,
2017; Grigsby et al., 2022). Parameter space symmetries, which are transformations of the parame-
ters that leave the loss function invariant, allow us to teleport between points in the parameter space
on the same level set of the loss function (Armenta et al., 2023). In particular, teleporting to a steeper
point in the loss landscape leads to faster optimization.

Despite the empirical evidence, the exact mechanism of how teleportation improves convergence
in optimizing non-convex objectives remains elusive. Previous work shows that gradient increases
momentarily after a teleportation, but could not show that this results in overall faster convergence
(Zhao et al., 2022). In this paper, we provide theoretical guarantees on the convergence rate. In
particular, we show that stochastic gradient descent (SGD) with teleportation converges to a basin
of stationary points, where every point reachable by teleportation is also stationary. We also provide
conditions under which one teleportation guarantees optimality of the entire gradient flow trajectory.

Previous applications of teleportation are limited to accelerating optimization. The second part of
this paper explores a different objective – improving generalization. We relate properties of minima
to their generalization ability and optimize them using teleportation. We empirically verify that cer-
tain sharpness metrics are correlated with generalization (Keskar et al., 2017), although teleporting
towards flatter regions has negligible effects on the validation loss. Additionally, we hypothesize that
generalization also depends on the curvature of minima. For fully connected networks, we derive
an explicit expression for estimating curvatures and show that teleporting towards larger curvatures
improves the model’s generalizability.

To demonstrate the wide applicability of parameter space symmetry, we expand teleportation to
standard optimization algorithms beyond SGD, including momentum, AdaGrad, RMSProp, and
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Adam. Experimentally, teleportation improves the convergence speed for these algorithms. Inspired
by conditional programming and optimization-based meta-learning (Andrychowicz et al., 2016), we
also propose a meta-optimizer to learn where to move parameters in a loss level set. This approach
avoids the computation cost of optimization on group manifolds and improves upon existing meta-
learning methods that are restricted to local updates.

The convergence speedup, applications in improving generalization, and the ability to integrate with
different optimizers demonstrate the potential of improving optimization using symmetry. In sum-
mary, our main contributions are:

• theoretical guarantees that teleportation accelerates the convergence rate of SGD;
• quantifying the curvature of a minimum and evidence of its correlation with generalization;
• a teleportation-based algorithm to improve generalization;
• various optimization algorithms with integrated teleportation including momentum, Ada-

Grad, and optimization-based meta-learning.

2 RELATED WORK

Parameter space symmetry. Continuous symmetries have been identified in the parameter space
of various architectures, including homogeneous activations (Badrinarayanan et al., 2015; Du et al.,
2018), radial rescaling activations (Ganev et al., 2022), and softmax and batchnorm functions (Kunin
et al., 2021). Permutation symmetry has been linked to the structure of minima (Şimşek et al.,
2021; Entezari et al., 2022). Quiver representation theory provides a more general framework for
symmetries in neural networks with pointwise (Armenta & Jodoin, 2021) and rescaling activations
(Ganev & Walters, 2022). A new class of nonlinear and data-dependent symmetries are identified in
(Zhao et al., 2023). Since symmetry defines transformations of parameters within a level set of the
loss function, these works are the basis of the teleportation method discussed in our paper.

Knowledge of parameter space symmetry motivates new optimization methods. One line of work
seeks algorithms that are invariant to symmetry transformations (Neyshabur et al., 2015; Meng et al.,
2019). Others search in the orbit for parameters that can be optimized faster (Armenta et al., 2023;
Zhao et al., 2022). We build on the latter by providing theoretical analysis on the improvement of
the convergence rate and by augmenting the teleportation objective to improve generalization.

Initializations and restarts. Teleportation before training changes the initialization of parame-
ters, which is known to affect the training dynamics. For example, imbalance between layers at
initialization affects the convergence of gradient flows in two-layer models (Tarmoun et al., 2021).
Different initializations, among other sources of variance, also lead to different model performance
after convergence (Dodge et al., 2020; Bouthillier et al., 2021; Ramasinghe et al., 2022). In addition
to initialization, teleportation allows changes in landscape multiple times throughout the training.

Teleportation during training re-initializes the parameters to a point with the same loss. Its effect can
resemble warm restart (Loshchilov & Hutter, 2017), which encourages parameters to move to more
stable regions by periodically increasing the learning rate. Compared to restarts, teleportation leads
to smaller temporary increase in loss and provides more control of where to move the parameters.

Sharpness of minima and generalization. The sharpness of minima has been linked to the gen-
eralization ability of models both empirically and theoretically (Hochreiter & Schmidhuber, 1997;
Keskar et al., 2017; Petzka et al., 2021; Ding et al., 2022; Zhou et al., 2020), which motivates op-
timization methods that find flatter minima (Chaudhari et al., 2017; Foret et al., 2021; Kwon et al.,
2021; Kim et al., 2022). We employ teleportation to search for flatter points along the loss level
sets. The sharpness of a minimum is often defined using properties of the Hessian of the loss func-
tion, such as the number of small eigenvalues (Keskar et al., 2017; Chaudhari et al., 2017; Sagun
et al., 2017) or the product of the top k eigenvalues (Wu et al., 2017). Alternatively, sharpness can
be characterized by the maximum loss within a neighborhood of a minimum (Keskar et al., 2017;
Foret et al., 2021; Kim et al., 2022) or approximated by the growth in the loss curve averaged over
random directions (Izmailov et al., 2018). The sharpness of minima does not always capture gener-
alization (Dinh et al., 2017) (Andriushchenko et al., 2023). Some reparametrizations do not affect
generalization but can lead to minima with different sharpness.
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3 THEORETICAL GUARANTEES FOR IMPROVING OPTIMIZATION

In this section, we provide a theoretical analysis of teleportation. We show that with teleportation,
SGD converges to a basin of stationary points. Building on its relation to Newton’s method, telepor-
tation leads to a mixture of linear and quadratic convergence. Lastly, in certain loss functions, one
teleportation guarantees optimality of the entire gradient flow trajectory.

Symmetry Teleportation. We briefly review the symmetry teleportation algorithm (Zhao et al.,
2022), which searches for steeper points in a loss level set to accelerate gradient descent. Consider
the optimization problem

w∗ = argmin
w∈Rd

L(w), L(w)
def
= Eξ∼D [L(w, ξ)]

where D is the data distribution, ξ is data sampled from D, L the loss, w the parameters of the
model, and Rd the parameter space. Let G be a group acting on the parameter space, such that

L(w) = L(g ·w), ∀g ∈ G, ∀w ∈ Rd.
Symmetry teleportation uses gradient ascent to find the group element g that maximizes the magni-
tude of the gradient, and applies g to the parameters while leaving the loss value unchanged:

w′ =g ·w, g = argmax
g∈G

∥∇L(g ·w)∥2.

3.1 TELEPORTATION AND SGD

At each iteration t ∈ N+ in SGD, we choose a group element gt ∈ G and use teleportation before
each gradient step as follows

wt+1 = gt ·wt − η∇L(gt ·wt, ξt). (1)

Here η is a learning rate, ∇L(wt, ξt) is the gradient of L(wt, ξt) with respect to the parameters w,
and ξt ∼ D is a mini-batch of data sampled i.i.d from the data distribution at each iteration.

By choosing the group element that maximizes the gradient norm, we show in the following theorem
that the iterates in equation 1 converge to a basin of stationary points, where all points that can be
reached via teleportation are also stationary points (visualized in Figure 1).

Theorem 3.1. (Smooth non-convex) Let L(w, ξ) be β–
smooth and let

σ2 def
= L(w∗)− E

[
inf
w
L(w, ξ)

]
.

Consider the iterates wt given by equation 1 where

gt ∈ argmax
g∈G
∥∇L(g ·wt)∥2,

which we assume exists. 1 If η = 1
β
√
T−1

then

min
t=0,...,T−1

E
[
max
g∈G
∥∇L(g ·wt)∥2

]
≤ 2β√

T − 1
E
[
L(w0)− L(w∗)

]
+

βσ2

√
T − 1

, (2)

where the expectation is the total expectation with respect to
the data ξt for t = 0, . . . , T − 1.

!∗

" ⋅ !∗

Figure 1: With teleportation,
SGD converges to a basin
where all points on the level set
are stationary points.

This theorem is an improvement over vanilla SGD, for which we would have instead that

min
t=0,...,T−1

E
[
∥∇L(wt)∥2

]
≤ 2β√

T − 1
E
[
L(w0)− L(w∗)

]
+

βσ2

√
T − 1

.

1For instance when G is compact and ∥∇L(g ·wt)∥ is continuous over G, or when the gradient is a coercive
function and G is bounded.
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The above only guarantees that there exists a single point wt for which the gradient norm will
eventually be small. In contrast, our result in equation 2 guarantees that for all points over the
orbit {g · wt : ∀g ∈ G}, the gradient norm will be small. For strictly convex loss functions,
maxg∈G∥∇L(g ·w)∥2 is non-decreasing with L(w). In this case, the value of L is smaller after T
steps of SGD with teleportation, compared to vanilla SGD (Proposition A.2).

3.2 TELEPORTATION AND NEWTON’S METHOD

Intuitively, teleportation can speed up optimization as it behaves similarly to Newton’s method. After
a teleportation that takes parameters to a critical point on a level set, the gradient descent direction is
the same as the Newton direction (Zhao et al., 2022). As a result, we can leverage the convergence
of Newton’s method to derive the convergence rate of teleportation for the deterministic setting.
Proposition 3.2 (Quadratic term in convergence rate). Let L be strictly convex and let w0 ∈ Rd.
Let

w′ ∈ argmax
w∈Rd

1

2
∥∇L(w)∥2, s.t. L(w) = L(w0).

Let ∇2L be the Hessian of L, and λmax(∇2L(w)) be the largest eigenvalue of ∇2L(w). If
∇L(w′) ̸= 0, then there exists λ0 such that 0 ≤ λ0 ≤ λmax(∇2L(w0)), and one step of gra-
dient descent after teleportation with learning rate γ > 0 gives

w1 = w′ − γ∇L(w′) = w′ − γλ0∇2L(w′)−1∇L(w′). (3)

Let w′ = g0 · w0. If γ ≤ 1
λ0

, L is a µ–strongly convex L–smooth function, and the Hessian is
G–Lipschitz, then we have that

∥w1 −w∗∥ ≤ G

2µ
∥g0 ·w0 −w∗∥2 + |1− γλ0|

L

2µ
∥g0 ·w0 −w∗∥.

More details about the assumptions and the proof are in Appendix B. Note that due to unknown step
size λ0, extra care is needed in establishing this convergence rate.

The above proposition shows that taking one step of teleportation and one gradient step, the result
is equal to taking a dampened Newton step (equation 3). Hence, the convergence rate has a quadrat-
ically contracting term ∥g0 · w0 − w∗∥2, which is typical of second order methods. In particular,
setting γ = 1/λ0 we would have local quadratic convergence. In contrast, without the teleportation
step and under the same assumptions, we would have the following linear convergence

∥w1 −w∗∥ ≤ (1− µγ) ∥w0 −w∗∥
for γ ≤ 1

L using gradient descent. Thus there would be no quadratically contracting term.

3.3 WHEN IS ONE TELEPORTATION ENOUGH

Despite the guaranteed improvement in convergence, teleporting before every gradient descent step
is computationally expensive. Hence we teleport only occasionally. In fact, for certain optimization
objectives, every point on the gradient flow has the largest gradient norm in its loss level set after one
teleportation (Zhao et al., 2022). In past work, this result is limited to convex quadratic functions. In
this section, we give a sufficient condition for when one teleportation results in an optimal trajectory
for general loss functions. Full proofs can be found in Appendix C.

Let V :M−→ TM be a vector field on the manifoldM, where TM denotes the associated tangent
bundle. Here we consider the parameter space M = Rn, although results in this section can be
extended to optimization on other manifolds. In this case, we may write V = vi ∂

∂wi using the
component functions vi : Rn −→ R and coordinates wi.

Consider a smooth loss function L :M −→ R. Let G be a symmetry group of L, i.e. L(g · w) =
L(w) for all w ∈ M and g ∈ G. Let X be the set of all vector fields on M. Let R = ri ∂

∂wi ,
where ri = − ∂L

∂wi
, be the reverse gradient vector field. Let X⊥ = {A = ai ∂

∂wi ∈ X| ai ∈
C∞(M) and

∑
i a
i(w)ri(w) = 0,∀w ∈ M} be the set of vector fields orthogonal to R. If G is a

Lie group, the infinitesimal action of its Lie algebra g defines a set of vector fields Xg ⊆ X⊥.
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A gradient flow is a curve γ : R −→ M where the velocity is given by the value of R, i.e. γ′(t) =
Rγ(t) for all t ∈ R. The Lie bracket [A,R] defines the derivative of R with respect to A. Flows of
A and R commute if and only if [A,R] = 0 (Theorem 9.44, Lee (2013)). That is, teleportation can
affect the convergence rate only if [A,R]L ̸= 0 for some A ∈ Xg. To simplify notation, we write
([W,R]L)(w) = 0 for a set of vector fields W ⊆ X when ([A,R]L)(w) = 0 for all A ∈W .

We consider a gradient flow optimal if every point on the flow is a critical point of the magnitude of
gradient in its loss level set. Note that this definition does not exclude the case where points on the
flow are minimizers of the magnitude of gradient.

Definition 3.3. Let f :M −→ R,w 7→
∥∥ ∂L
∂w

∥∥2
2
. A point w ∈ M is optimal with respect to a set of

vector fields W ⊆ X⊥ if Af(w) = 0 for all A ∈ W . A gradient flow γ : R −→ M is optimal with
respect to W if γ(t) is optimal with respect to W for all t ∈ R.
Proposition 3.4. A point w ∈ M is optimal with respect to a set of vector fields W if and only if
([W,R]L)(w) = 0.

A sufficient condition for one teleportation to result in an optimal trajectory is that whenever the
function [A,R]L vanishes at w ∈M, it vanishes along the entire gradient flow starting at w.
Proposition 3.5. Let W ⊆ X⊥ be a set of vector fields that are orthogonal to ∂L

∂w . Assume that for
all w ∈ M such that ([W,R]L)(w) = 0, we have that (R[W,R]L)(w) = 0. Then the gradient
flow starting at any optimal point with respect to W is optimal with respect to W .

To help check when the assumption in Proposition 3.5 is satisfied, we provide an alternative form of
R[W,R]L(w) when [W,R]L(w) = 0.
Proposition 3.6. If at all optimal points in S = {(M ∂L

∂w )i ∂
∂wi ∈ X|M ∈ Rn×n,MT = −M} ,

M j
α

∂L
∂wk

∂L
∂wα

∂3L
∂wk∂wi∂wj

∂L
∂wi

= 0

for all anti-symmetric matrices M ∈ Rn×n, then the gradient flow starting at an optimal point in S
is optimal in S.

From Proposition 3.6, we see that R[W,R]L(w) is not automatically 0 when [W,R]L(w) = 0.
Therefore, even if the group is big enough to have its infinitesimal actions cover the tangent space
of the level set (Xg = X⊥), one teleportation does not guarantee that the gradient flow intersects
all future level sets at optimal points. However, for loss functions that satisfy the condition in
Proposition 3.5, teleporting once optimizes the entire trajectory. This is the case, for example, when

∂3L
∂wk∂wi∂wj

∂L
∂wα = ∂3L

∂wk∂wi∂wα
∂L
∂wj for all i, k, j, α (Proposition C.3). In particular, all quadratic

functions meet this condition.

4 TELEPORTATION FOR IMPROVING GENERALIZATION

Teleportation was originally proposed to speedup optimization. In this section, we explore the suit-
ability of teleportation for improving generalization, which is another important aspect of deep learn-
ing. We first review definitions of the sharpness of minima. Then, we introduce a novel notion of the
curvature of minima and discuss its implications on generalization. By observing how sharpness and
curvature of minima are correlated with generalization, we improve generalization by incorporating
sharpness and curvature into the objective for teleportation.

4.1 SHARPNESS OF MINIMA

Flat minima tend to generalize well (Hochreiter & Schmidhuber, 1997), typically characterized
by numerous small Hessian eigenvalues. Although Hessian-based sharpness metrics are known to
correlate well with generalization, they are expensive to compute and differentiate through. To
use sharpness as an objective in teleportation, we consider changes in the loss averaged over random
directions. LetD be a set of vectors drawn randomly from the unit sphere di ∼ {d ∈ Rn : ||d|| = 1},
and T a list of displacements tj ∈ R. Then, we have the following metric (Izmailov et al., 2018):

Sharpness: ϕ(w, T,D) =
1

|T ||D|
∑
t∈T

∑
d∈D

L(w + td). (4)
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4.2 CURVATURE OF MINIMA

w1

w 2

(w)

Figure 2: Gradient flow (L(w)) and a
curve on the minimum (γ). The curva-
ture of both curves may affect general-
ization.

At a minimum, the loss-invariant or flat directions are
zero eigenvectors of the Hessian. The curvature along
these directions does not directly affect Hessian-based
sharpness metrics. However, these curvatures may affect
generalization, by themselves or by correlating to the cur-
vature along non-flat directions. Unlike the curvature of
the loss (curve L(w) in Figure 2), the curvature of the
minima (curve γ) is less well studied. We provide a novel
method to quantify the curvature of the minima below.

Assume that the loss function L has a G symmetry. Con-
sider the curve γM : R × Rn −→ Rn where M ∈ Lie(G)
and γM (t,w) = exp (tM) ·w. Then γ(0,w) = w, and
every point on γM is in the minimum if w is a minimum.
Let γ′ = dγ

dt be the derivative of a curve γ. The curva-

ture of γ is κ(γ, t) = ∥T ′(t)∥
∥γ′(t)∥ , where T (t) = γ′(t)

∥γ′(t)∥ is
the unit tangent vector. We assume that the action map
is smooth, since calculating the curvature requires second
derivatives and optimizing the curvature via gradient descent requires third derivatives. For multi-
layer network with element-wise activations, we derive the group action, γ, and κ in Appendix D.

Since the minimum can have more than one dimension, we measure the curvature of a point w on
the minimum by averaging the curvature of k curves with randomly selected Lie algebra elements
Mi ∈ Lie(G). The resulting new metric is

Curvature: ψ(w, k) =
1

k

k∑
i=1

κ(γMi
(0,w), 0) . (5)

There are different ways to measure the curvature of a higher-dimensional manifold, such as using
the Gaussian curvature of 2D subspaces of the tangent space. However, our method of approximating
the mean curvature is easier to compute and suitable as a differentiable objective.

(a) (b) (c) (d)

Δℒ
#∗ Δℒ

#∗

ℒ ℒ

# #
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ℒ(&)

ℒ′(&)
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#" #"

!"#$(&∗, ("#) !"#$(&∗, ("#)
γ γ

&′&′

Figure 3: Illustration of the effect of sharpness (a,b) and curvature (c,d) of minima on generalization.
See Figure 2 for a 3D visualization of the curves L(w) and γ. When the loss landscape shifts due
to a change in data distribution, sharper minima have larger increase in loss. In the example shown,
minima with larger curvature moves further away from the shifted minima.

4.3 CORRELATION WITH GENERALIZATION

Generalization reflects how loss changes with shifts in data distribution. The sharpness of minima
is well known to be correlated with generalization. Figure 3(a)(b) visualizes an example of the shift
in loss landscape (L(w)), and the change of loss ∆L at a minimizer w∗ is large when the minimum
is sharp. The relation between the curvature of minimum and generalization is less well studied.
Figure 3(c)(d) shows one possible shift of the minimum (γ). Under this shifting, the minimizer with
a larger curvature becomes farther away from the shifted minimum. The curve on the minimum
can shift in other directions. Appendix E.2 provides analytical examples of the correlation between
curvature and expected distance between the old and shifted minimum.
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Table 1: Correlation with validation loss

sharpness (ϕ) curvature (ψ)

MNIST Fashion-MNIST CIFAR-10 MNIST Fashion-MNIST CIFAR-10

0.704 0.790 0.899 -0.050 -0.232 -0.167

We verify the correlation between sharpness, curvatures, and validation loss on MNIST (Deng,
2012), Fashion-MNIST (Xiao et al., 2017), and CIFAR-10 (Krizhevsky et al., 2009). On each
dataset, we train 100 three-layer neural networks with LeakyReLU using different initializations.
Details of the setup can be found in Appendix E.3.

Table 1 shows the Pearson correlation between validation loss and sharpness or curvature (scatter
plots in Figure 9 and 10 in the appendix). In all three datasets, sharpness has a strong positive
correlation with validation loss, meaning that the average change in loss under perturbations is a
good indicator of test performance. For the architecture we consider, the curvature of minima is
negatively correlated with the validation loss. We observe that the magnitudes of the curvatures are
small, which suggests that the minima are relatively flat.

4.4 TELEPORTATION FOR IMPROVING GENERALIZATION

To improve the generalization ability of the minimizer and to gain understanding of the curvature of
minima, we teleport parameters to regions with different sharpness and curvature. Multi-layer neural
networks have GL(R) symmetry between layers (Appendix D.1). We parametrize the group by its
Lie algebra T , and perform gradient ascent on T to maximize the gradient norm at the transformed
parameters |∇L|exp (T )·w|. Algorithm 2 in Appendix E.4 demonstrates how to increase curvature ψ
by teleporting two layers, with hidden dimension h, in an MLP. In experiments, we use an extended
version of the algorithm, which teleports all layers by optimizing on a list of T ’s concurrently.
During teleportation, we perform gradient descent on the group elements to change ϕ or ψ. Results
are averaged over 5 runs.

0 20 40
Epoch

1.4

1.7

2.0

Lo
ss

SGD
teleport(decrease )
teleport(increase )

0 20 40
Epoch

1.4

1.7

2.0

Lo
ss

SGD
teleport(decrease )
teleport(increase )

Figure 4: Changing sharpness (left) or curvature (right) using teleportation and its effect on gener-
alization on CIFAR-10. Solid line represents average test loss, and dashed line represent average
training loss. Teleporting to decrease sharpness improves validation loss slightly. Teleportation
changing curvatures has a more significant impact on generalization ability.

Figure 4 shows the training curve of SGD on CIFAR-10, with one teleportation at epoch 20. Similar
results for AdaGrad can be found in Appendix E.4. Teleporting to flatter points slightly improves
the validation loss, while teleporting to sharper points has no effect. Since the group action keeps
the loss invariant only on the batch of data used in teleportation, the errors incurred in teleportation
have a similar effect to a warm restart, which makes the effect of changing sharpness less clear.

Interestingly, by changing the curvature, teleportation is able to affect generalization. Teleporting to
points with larger curvatures helps find a minimum with lower validation loss, while teleporting to
points with smaller curvatures has the opposite effect. This suggests that at least locally, curvature
is correlated with generalization. Details of the experiment setup can be found in Appendix E.4.
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5 APPLICATIONS TO OTHER OPTIMIZATION ALGORITHMS

Having shown teleportation’s potential to improve optimization and generalization, we demonstrate
its wide applicability by integrating teleportation into different optimizers and meta-learning.

5.1 STANDARD OPTIMIZERS

Teleportation improves optimization not only for SGD. To show that teleportation works well with
other standard optimizers, we train a 3-layer neural network on MNIST using different optimizers
with and without teleportation. During training, we teleport once at the first epoch, using 8 mini-
batches of size 200. Details can be found in Appendix F.2.

Figure 5 shows that teleportation improves the convergence rate when using AdaGrad, SGD with
momentum, RMSProp, and Adam. The runtime for a teleportation is smaller than the time required
to train one epoch, hence teleportation improves convergence rate per epoch at almost no additional
cost of time (Figure 13 in the appendix).

0 10 20 30 40
Epoch

0.2

0.3

0.4

0.5

Lo
ss

Adagrad train
Adagrad test
Adagrad+teleport train
Adagrad_teleport test

0 10 20 30 40
Epoch

0.1

0.3

0.5
0.7

Lo
ss

momentum train
momentum test
momentum+teleport train
momentum_teleport test

0 10 20 30 40
Epoch

0.2

0.4

0.6
0.8

Lo
ss

RMSprop train
RMSprop test
RMSprop+teleport train
RMSprop_teleport test

0 10 20 30 40
Epoch

0.3

0.5
0.7
0.9

Lo
ss

Adam train
Adam test
Adam+teleport train
Adam_teleport test

Figure 5: Integrating teleportation with AdaGrad, momentum, RMSProp, and Adam improves the
convergence rate on MNIST. Solid line represents the average test loss, and dashed line represents
the average training loss. Shaded areas are 1 standard deviation of the test loss across 5 runs.

5.2 LEARNING TO TELEPORT

In optimization-based meta-learning, the parameter update rule or the hyperparameters are learned
using a meta-optimizer (Andrychowicz et al., 2016; Finn et al., 2017). Teleportation introduces an
additional degree of freedom in parameter updates. We augment existing meta-learning algorithms
by learning both the local update and teleportation. This allows us to teleport without implementing
the additional optimization step on groups, which reduces computation time.

Let wt ∈ Rd be the parameters at time t, and∇t = ∂L
∂w

∣∣
wt

be the gradient of the loss L. In gradient
descent, the update rule with learning rate η is

wt+1 = wt − η∇t.

In meta-learning (Andrychowicz et al., 2016), the update on wt is learned using a meta-learning
optimizer m, which takes ∇t as input. Here m is an LSTM model. Denote ht as the hidden state in
the LSTM and ϕ as the parameters in m. The update rule is

wt+1 = wt + ft[
ft
ht+1

]
= m(∇t, ht, ϕ).

Extending this approach beyond an additive update rule, we learn to teleport. LetG be a group whose
action on the parameter space leaves L invariant. We use two meta-learning optimizers m1,m2 to
learn the update direction ft ∈ Rd and the group element gt ∈ G:

wt+1 = gt · (wt + ft)[
ft

h1t+1

]
= m1(∇t, h1t , ϕ1),

[
gt

h2t+1

]
= m2(∇t, h2t , ϕ2).
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Experiment setup. We train and test on two-layer neural networks L(W1,W2) = ∥Y −
W2σ(W1X)∥2, where W2,W1, X, Y ∈ R20×20, and σ is the LeakyReLU function with slope co-
efficient 0.1. Both meta-optimizers are two-layer LSTMs with hidden dimension 300. We train the
meta-optimizers on multiple trajectories created with different initializations, each consisting of 100
steps of gradient descent on L with random X,Y and randomly initialized W ’s. We update the
parameters in m1 and m2 by unrolling every 10 steps. The learning rate for meta-optimizers are
10−4 for m1 and 10−3 for m2. We test the meta-optimizers using 5 trajectories not seen in training.

Algorithm 1 summarizes the training procedure. The vanilla gradient descent baseline (“GD”)
uses the largest learning rate that does not lead to divergence (3 × 10−4). The second baseline
(“LSTM(update)”) learns the update ft only and does not perform teleportation (gt = I, ∀t). The
third baseline (“LSTM(lr,tele)”) learns the group element gt and the learning rate used to perform
gradient descent instead of the update ft. We keep training until adding more training trajectories
does not improve convergence rate. We use 700 training trajectories for our approach, 600 for the
second baseline, and 30 for the third baseline.

Results. By learning both the local update ft and non-local transformation gt, our meta-optimizer
successfully learns to learn faster. Figure 6 shows the improvement of our approach from the previ-
ous meta-learning method, which only learns ft. Compared to the baselines, learning the two types
of updates together (“LSTM(update,tele)”) achieves better convergence rate than learning them sep-
arately. Additionally, learning the group element gt eliminates the need for performing gradient
ascent on the group manifold and reduces hyperparameter tuning for teleportation. As an example
of successful integration of teleportation into existing optimization algorithms, this toy experiment
demonstrates the flexibility and promising applications of teleportation.

Algorithm 1 Learning to teleport

Input: Loss function L, learning rate η, number of
epochs T , LSTM models m1,m2 with initial parameters
ϕ1, ϕ2, unroll step tunroll.
Output: Trained parameters ϕ1 and ϕ2.
for each training initialization do

for t = 1 to T do
ft, h1t+1 = m1(∇t, h1t , ϕ1)
gt, h2t+1 = m2(∇t, h2t , ϕ2)
w ← gt · (w + ft)
if t mod tunroll = 0 then

update ϕ1, ϕ2 by back-propogation from the accu-
mulated loss

∑t
i=t−tunroll

L(wi)
end if

end for
end for

0 10 20 30
Epoch

101

102

103

104

105
Lo

ss
GD
LSTM(lr,tele)
LSTM(update)
LSTM(update,tele)

Figure 6: Performance of the
trained meta-optimizer on the test
set. Learning both local update
ft and nonlocal transformation gt
results in better convergence rate
than learning only local updates or
learning only teleportation.

6 DISCUSSION

Teleportation is a powerful tool to search in the loss level sets for parameters with desired properties.
We provide theoretical guarantees that teleportation accelerates the convergence rate of SGD. Using
concepts in symmetry, we propose a novel notion of curvature and show that incorporating addi-
tional teleportation objectives such as changing the curvatures can be beneficial to generalization.
The close relationship between symmetry and optimization opens up a number of exciting opportu-
nities. Exploring other objectives in teleportation appears to be an interesting future direction. Other
possible applications include extending teleportation to different architectures, such as convolutional
or graph neural networks, and to different algorithms, such as sampling-based optimization.

The empirical results linking sharpness and curvatures to generalization are intriguing. However,
the theoretical origin of their relation remains unclear. In particular, a precise description of how the
loss landscape changes under distribution shifts is not known. More investigation of the correlation
between curvatures and generalization will help teleportation to further improve generalization and
take us a step closer to understanding the loss landscape.
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APPENDIX

This appendix contains proofs, experiment setups, as well as additional results and discussions.
Appendix A through C contain proofs for theoretical results in Section 3. Appendix D provides
details about curves induced by symmetry and the curvature of the minimum. Appendix E discusses
possible theoretical approaches to relate curvatures and generalization. This section also contains
experiment details on computing correlations and the algorithm that uses teleportation to change cur-
vature. Appendix F describes experiment setups and different strategies of integrating teleportation
into various optimization algorithms.

The code used for our experiments is available at: https://github.com/Rose-STL-Lab/
Teleportation-Optimization.

A TELEPORTATION AND SGD

This section includes a proof for Theorem 3.1. Additionally, we discuss the theorem’s implication
when the loss function is strictly convex.
Lemma A.1 (Descent Lemma). Let L(w, ξ) be a β–smooth function. It follows that

E
[
∥∇L(w, ξ)∥2

]
≤ 2β(L(w)− L(w∗)) + 2β(L(w∗)− E

[
inf
w
L(w, ξ)

]
). (6)

Proof. Since L(w, ξ) is smooth we have that

L(z, ξ)− L(w, ξ) ≤ ⟨∇L(w, ξ), z −w⟩+ β

2
∥z −w∥2, ∀z,w ∈ Rd. (7)

By inserting

z = w − 1

β
∇L(w, ξ)

into equation 7 we have that

L
(
w − (1/β)∇L(w, ξ), ξ

)
≤ L(w, ξ)− 1

2β
∥∇L(w, ξ)∥2. (8)

Re-arranging we have that

L(w∗, ξ)− L(w, ξ) = L(w∗, ξ)− inf
w
L(w, ξ) + inf

w
L(w, ξ)− L(w, ξ)

≤ L(w∗, ξ)− inf
w
L(w, ξ) + L

(
w − (1/β)∇L(w, ξ), ξ

)
− L(w, ξ)

equation 8

≤ L(w∗, ξ)− inf
w
L(w, ξ)− 1

2β
∥∇L(w, ξ)∥2,

where the first inequality follows because infw L(w, ξ) ≤ L(w, ξ),∀w. Re-arranging the above
and taking expectation gives

E
[
∥∇L(w, ξ)∥2

]
≤ 2E

[
β(L(w∗, ξ)− inf

w
L(w, ξ) + L(w, ξ)− L(w∗, ξ))

]
≤ 2βE

[
L(w∗, ξ)− inf

w
L(w, ξ) + L(w, ξ)− L(w∗, ξ)

]
≤ 2β(L(w)− L(w∗)) + 2β(L(w∗)− E

[
inf
w
L(w, ξ)

]
).

At each iteration t ∈ N+ in SGD, we choose a group element gt ∈ G and use teleportation before
each gradient step as follows

wt+1 = gt ·wt − η∇L(gt ·wt, ξt). (9)

Here η is a learning rate, ∇L(wt, ξt) is a gradient of L(wt, ξt) with respect to the parameters w,
and ξt ∼ D is a mini-batch of data sampled i.i.d at each iteration.
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Theorem 3.1. Let L(w, ξ) be β–smooth and let

σ2 def
= L(w∗)− E

[
inf
w
L(w, ξ)

]
.

Consider the iterates wt given by equation 1 where

gt ∈ argmax
g∈G
∥∇L(g ·wt)∥2. (10)

If η = 1
β
√
T−1

then

min
t=0,...,T−1

E
[
max
g∈G
∥∇L(g ·wt)∥2

]
≤ 2β√

T − 1
E
[
L(w0)− L(w∗)

]
+

βσ2

√
T − 1

. (11)

Proof. First note that if L(w, ξ) is β–smooth, then L(w) is also a β–smooth function, that is

L(z)− L(w)− ⟨∇L(w), z −w⟩ ≤ β

2
∥z −w∥2. (12)

Using equation 1 with z = wt+1 and w = gt ·wt, together with equation 12 and the fact that the
group action preserves loss, we have that

L(wt+1) ≤ L(gt ·wt) +
〈
∇L(gt ·wt),wt+1 − gt ·wt

〉
+
β

2
∥wt+1 − gt ·wt∥2 (13)

= L(wt)− ηt
〈
∇L(gt ·wt),∇L(gt ·wt, ξt)

〉
+
βη2t
2
∥∇L(gt ·wt, ξt)∥2. (14)

Taking expectation conditioned on wt, we have that

Et
[
L(wt+1)

]
≤ L(wt)− ηt∥∇L(gt ·wt)∥2 + βη2t

2
Et
[
∥∇L(gt ·wt, ξt)∥2

]
. (15)

Now since L(w, ξ) is β–smooth, from Lemma A.1 above we have that

E
[
∥∇L(w, ξ)∥2

]
≤ 2β(L(w)− L(w∗)) + 2β(L(w∗)− E

[
inf
w
L(w, ξ)

]
) (16)

Using equation 16 with w = gt ◦wt we have that

Et
[
L(wt+1)

]
≤ L(wt)− ηt∥∇L(gt ·wt)∥2

+ β2η2t

(
L(gt ·wt)− L(w∗) + L(w∗)− E

[
inf
w
L(w, ξ)

])
. (17)

Using that L(gt ·wt) = L(wt), taking full expectation and re-arranging terms gives

ηtE
[
∥∇L(gt ·wt)∥2

]
≤ (1 + β2η2t )E

[
L(wt)− L∗]− E

[
L(wt+1)− L∗]+ β2η2t σ

2. (18)

Now we use a re-weighting trick introduced in Stich (2019). Let αt > 0 be a sequence such that
αt(1+β

2η2t ) = αt−1. Consequently if α−1 = 1 then αt = (1+β2η2t )
−(t+1) . Multiplying by both

sides of equation 18 by αt thus gives

αtηtE
[
∥∇L(gt ·wt)∥2

]
≤ αt−1E

[
L(wt)− L∗]− αtE [L(wt+1)− L∗]+ αtβ

2η2t σ
2. (19)

Summing up from t = 0, . . . , T − 1, and using telescopic cancellation, gives
T−1∑
t=0

αtηtE
[
∥∇L(gt ·wt)∥2

]
≤ E

[
L(w0)− L∗]+ β2σ2

T−1∑
t=0

αtη
2
t (20)

Let A =
∑T−1
t=0 αtηt. Dividing both sides by A gives

min
t=0,...,T−1

E
[
∥∇L(gt ·wt)∥2

]
≤ 1∑T−1

t=0 αtηt

T−1∑
t=0

αtηt∥∇L(gt ·wt)∥2

≤
E
[
L(w0)− L∗]+ β2σ2

∑T−1
t=0 αtη

2
t∑T−1

t=0 αtηt
. (21)
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Finally, if ηt ≡ η then

T−1∑
t=0

αtηt = η

T−1∑
t=0

(1 + β2η2t )
−(t+1) =

η

1 + β2η2
1− (1 + β2η2)−T

1− (1 + β2η2)−1
(22)

=
1− (1 + β2η2)−T

β2η
(23)

To bound the term with the −T power, we use that

(1 + β2η2)−T ≤ 1

2
=⇒ log(2)

log(1 + β2η2)
≤ T.

To simplify the above expression we can use
x

1 + x
≤ log(1 + x) ≤ x, for x ≥ −1,

thus
log(2)

log(1 + β2η2)
≤ 1 + β2η2

β2η2
≤ T.

Using the above we have that

T−1∑
t=0

αtηt ≥
1

2β2η
, for T ≥ 1 + β2η2

β2η2

Using this lower bound in equation 21 gives

min
t=0,...,T−1

E
[
∥∇L(gt ·wt)∥2

]
≤ 2β2ηE

[
L(w0)− L∗]+ ηβ2σ2, for T ≥ 1 + β2η2

β2η2
.

Now note that

T ≥ 1 + β2η2

β2η2
⇔ β2η2(T − 1) ≥ 1⇔ η ≥ 1

β
√
(T − 1)

.

Thus finally setting η = 1
β
√
T−1

gives the result equation 2.

Proposition A.2. Assume that L : Rn −→ R is strictly convex and twice continuously differentiable.
Assume also that for any two points wa,wb ∈ Rn such that L(wa) = L(wb), there exists a g ∈ G
such that wa = g ·wb. At two points w1,w2 ∈ Rn, if maxg∈G∥∇L(g ·w1)∥2 = ∥∇L(w2)∥2, then
L(w1) ≤ L(w2).

Proof. Let S(x) = {w : L(w) = x} be the level sets of L, and X = {L(w) : w ∈ Rn}
be the image of L. Since G acts transitively on the level sets of L, maxg∈G∥∇L(g · w)∥2 =
maxw∈S(x)∥∇L(w)∥2. To simplify notation, we define a function F : X −→ R, F (x) =

maxw∈S(x)∥∇L(w)∥2. Since ∇L(w) is continuously differentiable, the directional derivative
of F is defined. Additionally, since L is continuous and its domain Rn is connected, its image
X is also connected. This means that for any w1,w2 ∈ Rn and min(L(w1),L(w2)) ≤ y ≤
max(L(w1),L(w2)), there exists a w3 ∈ Rn such that L(w3) = y.

Next, we show that F (·) is strictly increasing by contradiction.

Suppose that L(w1) < L(w2) and F (L(w1)) ≥ F (L(w2)). By the mean value theorem,
there exists a w3 such that L(w1) < L(w3) < L(w2) and the directional derivative of F
in the direction towards L(w2) is non-positive: ∂L(w2)−L(w3)F (L(w3)) ≤ 0. Let w∗

3 ∈
argmaxw∈S(L(w3))∥∇L(w)∥2 be a point that has the largest gradient norm in S(L(w3)). Then
at w∗

3 , ∥∇L∥2 cannot increase along the gradient direction. However, this means

∇L(w∗
3) ·

∂

∂w
∥∇L(w∗

3)∥2 = ∇L(w∗
3)
TH∇L(w∗

3) ≤ 0. (24)
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Since we assumed that L is convex and L(w∗
3) is not a minimum (L(w∗

3) > L(w1)), we have
that ∇L(w∗

3) ̸= 0. Therefore, equation 24 contradicts with L being strictly convex, and we have
F (L(w1)) < F (L(w2)).

We have shown that L(w1) < L(w2) implies F (L(w1)) < F (L(w2)). Taking the contraposi-
tive and switching w1 and w2, F (L(w1)) ≤ F (L(w2)) implies L(w1) ≤ L(w2). Equivalently,
maxg∈G∥∇L(g ·w1)∥2 ≤ maxg∈G∥∇L(g ·w2)∥2 implies that L(w1) ≤ L(w2).

Finally, since

max
g∈G
∥∇L(g ·w1)∥2 = ∥∇L(w2)∥2 ≤ max

g∈G
∥∇L(g ·w2)∥2, (25)

we have L(w1) ≤ L(w2).

B TELEPORTATION AND NEWTON’S METHOD

Lemma B.1 (One step of Newton’s Method). Let f(x) be a µ–strongly convex and L–smooth func-
tion, that is, we have a global lower bound on the Hessian given by

LI ⪰ ∇2f(x) ⪰ µI, ∀x ∈ Rn. (26)

Furthermore, if the Hessian is also G–Lipschitz

∥∇2f(x)−∇2f(y)∥ ≤ G∥x− y∥ (27)

then Newton’s method
xk+1 = xk − λk∇2f(xk)−1∇f(xk)

has a mixed linear and quadratic convergence according to

∥xk+1 − x∗∥ ≤ G

2µ
∥xk − x∗∥2 + |1− λk|

L

2µ
∥xk − x∗∥. (28)

Proof.

xk+1 − x∗ = xk − x∗ − λk∇2f(xk)−1
(
∇f(xk)−∇f(x∗)

)
= xk − x∗ − λk∇2f(xk)−1

∫ 1

s=0

∇2f(xk + s(x∗ − xk))(xk − x∗)ds (Mean value theorem)

= ∇2f(xk)−1

∫ 1

s=0

(
∇2f(xk)− λk∇2f(xk + s(x∗ − xk))

)
(xk − x∗)ds

= ∇2f(xk)−1

∫ 1

s=0

(
∇2f(xk)−∇2f(xk + s(x∗ − xk))

+(1− λk)∇2f(xk + s(x∗ − xk))
)
(xk − x∗)ds

Let δk := ∥xk+1 − x∗∥. Taking norms we have that

δk+1 ≤ ∥∇2f(xk)−1∥
∫ 1

s=0

(
∥∇2f(xk)−∇2f(xk + s(x∗ − xk))∥

+|1− λk∥∥∇2f(xk + s(x∗ − xk))∥
)
δkds

equation 27+equation 26

≤ G

µ

∫ 1

s=0

s∥xk − x∗∥2ds+ |1− λk|
L

µ

∫ 1

s=0

s∥xk − x∗∥ds

=
G

2µ
∥xk − x∗∥2 + |1− λk|

L

2µ
∥xk − x∗∥.

The assumptions on for this proof can be relaxed, since we only require the Hessian is Lipschitz and
lower bounded in a µ

2L–ball around x∗.
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Proposition 3.2 (Quadratic term in convergence rate). Let L be strictly convex and let w0 ∈ Rd.
Let

w′ ∈ argmax
w∈Rd

1

2
∥∇L(w)∥2 subject to L(w) = L(w0). (29)

If ∇L(w′) ̸= 0 then there exists λ0 such that

0 ≤ λ0 ≤ λmax(∇2L(w0))

and one step of gradient descent with learning rate γ > 0 gives

w1 = w′ − γ∇L(w′)

= w′ − γλ0∇2L(w′)−1∇L(w′). (30)

Consequently, letting w′ = g0 ◦ w0, and if γ ≤ 1
λ0

then under the assumptions of Lemma B.1 we
have that

∥w1 − w∗∥ ≤ G

2µ
∥g0 ◦ w0 − x∗∥2 + |1− γλ0|

L

2µ
∥g0 ◦ w0 − w∗∥.

Proof. The Lagrangian associated to equation 29 is given by

L(w, λ) =
1

2
∥∇L(w)∥2 + λ(L(w0)− L(w)).

Taking the derivative in w and setting it to zero gives

∇wL(w, λ0) = 0 =⇒ ∇2L(w)∇L(w)− λ0∇L(w) = 0. (31)

Re-arranging we have that
∇L(w) = λ0∇2L(w)−1∇L(w).

If ∇L(w′) ̸= 0 then from the above we have that

∥∇L(w)∥2 = λ0∇L(w)⊤∇2L(w)−1∇L(w) > 0.

Since ∇2L(w)−1 is positive definite we have that ∇L(w)⊤∇2L(w)−1∇L(w) ≥ 0, and conse-
quently λ0 > 0. Finally from equation 31 we have that λ0 is an eigenvalue of ∇2L(w) and thus it
must be smaller or equal to the largest eigenvalue of∇2L(w).

C IS ONE TELEPORTATION ENOUGH TO FIND THE OPTIMAL TRAJECTORY?

This section contains proofs for the results in Section 3.3. For readability, we repeat some of the
definitions here.

Consider the parameter spaceM = Rn. Let V : Rn −→ TRn be a vector field on Rn, where TRn
denotes the associated tangent bundle. We will write V = vi ∂

∂wi using the component functions
vi : Rn −→ R and coordinates wi.

Let L : M −→ R be a smooth loss function. Let G be a symmetry group of L, i.e. L(g · w) =
L(w) for all w ∈ M and g ∈ G. Let X be the set of all vector fields on M. Let R = ri ∂

∂wi ,
where ri = − ∂L

∂wi
, be the reverse gradient vector field. Let X⊥ = {A = ai ∂

∂wi ∈ X| ai ∈
C∞(M) and

∑
i a
i(w)ri(w) = 0,∀w ∈ M} be the set of vector fields orthogonal to R. If G is a

Lie group, the infinitesimal action of its Lie algebra g defines a set of vector fields Xg ⊆ X⊥.

A gradient flow is a curve γ : R −→ M where the velocity is the value of R at each point, i.e.
γ′(t) = Rγ(t) for all t ∈ R. The Lie bracket [A,R] defines the derivative of R with respect to
A. To simplify notation, we write ([W,R]L)(w) = 0 for a set of vector fields W ⊆ X when
([A,R]L)(w) = 0 for all A ∈W .

Proposition 3.4. A point w ∈M is optimal in a set of vector fieldsW if and only if [A,R]L(w) = 0
for all A ∈W .
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Proof. Note that AL = ai ∂L∂wi = 0. We have

[A,R]L = ARL −RAL = A

(
ri
∂L
∂wi

)
− 0 = −A

∥∥∥∥ ∂L∂w
∥∥∥∥2
2

= −Af. (32)

The result then follows from Definition 3.3.

Proposition 3.5. Let W ⊆ X⊥ be a set of vector fields that are orthogonal to the gradient of L. If
[A,R]L(w) = 0 for all A ∈ W implies that R([A,R]L)(w) = 0 for all A ∈ W , then the gradient
flow starting at an optimal point in W is optimal in W .

Proof. Consider the gradient flow γ that starts at an optimal point in W . The derivative of [A,R]L
along γ is

d

dt
[A,R]L(γ(t)) = γ′(t)([A,R]L)(γ(t)) = −R[A,R]L(γ(t)). (33)

Since γ(0) is an optimal point, [A,R]L(γ(0)) = 0 for all A ∈ W by Proposition 3.4. By assump-
tion, if [A,R]L(γ(t)) = 0 for all A ∈ W , then R([A,R]L)(γ(t)) = 0 for all A ∈ W . Therefore,
both the value and the derivative of [A,R]L stay 0 along γ. Since [A,R]L(γ(t)) = 0 for all t ∈ R,
γ is optimal in W .

To help check when Proposition 3.5 is satisfied, we provide an alternative form of R[A,R]L(w)
under the assumption that [A,R]L(w) = 0. We will use the following lemmas in the proof.
Lemma C.1. For two vectors v,w ∈ Rn, if vTw = 0 and w ̸= 0, then there exists an anti-
symmetric matrix M ∈ Rn×n such that v =Mw.

Proof. Let w0 = [1, 0, ..., 0]T ∈ Rn. Consider a list of n− 1 anti-symmetric matrices Mi ∈ Rn×n,
where

M k
ij =


−1, if j = 1 and k = i+ 1

1, if j = i+ 1 and k = 1

0, otherwise
(34)

In matrix form, the Mi’s are

M1 =


0 −1 0 ... 0
1 0 0 ... 0
0 0 0 ... 0

...
0 0 0 ... 0

 ,M2 =


0 0 −1 ... 0
0 0 0 ... 0
1 0 0 ... 0

...
0 0 0 ... 0

 , ...,Mn−1 =


0 0 0 ... −1
0 0 0 ... 0
0 0 0 ... 0

...
1 0 0 ... 0

 .
(35)

Since Mi’s are anti-symmetric, Miw0 is orthogonal to w0. The norm of Miw0 = ei+1 is 1.
Additionally, Miw0 is orthogonal to Mjw0 for i ̸= j:

(Miw0)
T (Mjw0) = eTi+1ej+1 = δij . (36)

Denote w⊥
0 = {x ∈ Rn : xTw0 = 0} as the orthogonal complement of w0. Then Miw0 forms a

basis of w⊥
0 . Next, we extend this to an arbitrary w ∈ Rn.

Let ŵ = w
∥w∥2

. Since ŵ has norm 1, there exists an orthogonal matrix R such that ŵ = Rw0. Let
M ′
i = RMiR

T . Then M ′
i is anti-symmetric:

(RMiR
T )T = RMT

i R
T = −RMiR

T . (37)

It follows that M ′
iŵ is orthogonal to ŵ. The norm of M ′

iŵ is ∥(RMiR
T )(Rw0)∥ = ∥RMiw0∥ =

∥Miw0∥ = 1. Additionally, M ′
iŵ is orthogonal to M ′

jŵ for i ̸= j:

(M ′
iŵ)T (M ′

jŵ) = (RMiR
TRw0)

T (RMjR
TRw0)

= wT
0 R

TRMT
i R

TRMjR
TRw0

= wT
0 M

T
i Mjw0

= δij . (38)
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Therefore, M ′
iŵ spans ŵ⊥ = w⊥. This means that any vector v ∈ w⊥ can be written as a linear

combination of M ′
iŵ. That is, there exists k1, ..., kn ∈ R, such that v =

∑
i ki(M

′
iŵ). To find the

anti-symmetric M that takes w to v, note that

v =

(∑
i

kiM
′
i

)
ŵ =

(
∥w∥−1

2

∑
i

kiM
′
i

)
w. (39)

Since the sum of anti-symmetric matrices is anti-symmetric, and the product of an anti-symmetric
matrix and a scalar is also anti-symmetric, ∥w∥−1

2

∑
i kiM

′
i is anti-symmetric.

Lemma C.2. Let v ∈ Rn be a nonzero vector. Then the two sets {Mv :M ∈ Rn×n,MT = −M}
and {w ∈ Rn : wTv = 0} are equal.

Proof. Let A = {Mv : M ∈ Rn×n,MT = M−1} and B = {w ∈ Rn : wTv = 0}. Since
(Mv)Tv = 0 for all anti-symmetric M , every element in A is in B. By Lemma C.1, every element
in B is in A. Therefore A = B.

Let S = {(M ∂L
∂w )i ∂

∂wi ∈ X| M ∈ Rn×n,MT = −M} be the set of vector fields constructed
by multiplying the gradient by an anti-symmetric matrix. Recall that R = − ∂L

∂wi

∂
∂wi is the reverse

gradient vector field, and X⊥ = {ai ∂
∂wi |

∑
i a
i(w)∂L(w)

∂wi = 0,∀w ∈ M} is the set of all vector
fields orthogonal to R. From Lemma C.2, we have S = X⊥. Therefore, a point w is an optimal
point in S if and only if w is an optimal point in X⊥.

We are now ready to prove the following proposition, which provides another way to check the
condition in Proposition 3.5.

Proposition 3.6. If at all optimal points in S,

M j
α

∂L
∂wk

∂L
∂wα

∂3L
∂wk∂wi∂wj

∂L
∂wi

= 0 (40)

for all anti-symmetric matrix M ∈ Rn×n, then the gradient flow starting at an optimal point in S is
optimal in S.

Proof. Expanding R[A,R]L, we have

R[A,R]L = R

(
A

(
ri
∂L
∂wi

)
− 0

)
= rk

∂

∂wk

(
aj

∂

∂wj

(
ri
∂L
∂wi

))
= rk

∂

∂wk

(
aj
(
∂ri

∂wj
∂L
∂wi

+ ri
∂

∂wj
∂L
∂wi

))
= −rk ∂

∂wk

(
aj
((

∂

∂wj
∂L
∂wi

)
∂L
∂wi

+
∂L
∂wi

∂

∂wj
∂L
∂wi

))
= −2rk ∂

∂wk

(
aj

∂2L
∂wi∂wj

∂L
∂wi

)
= −2rk

(
∂aj

∂wk
∂2L

∂wi∂wj
∂L
∂wi

+ aj
∂

∂wk

(
∂2L

∂wi∂wj
∂L
∂wi

))
= 2

∂L
∂wk

∂aj

∂wk
∂2L

∂wi∂wj
∂L
∂wi

+ 2
∂L
∂wk

aj
∂

∂wk

(
∂2L

∂wi∂wj
∂L
∂wi

)
(41)

Assume that w is an optimal point in S. By Lemma C.2, w is also an optimal point in X⊥. By
Lemma C.4 in Zhao et al. (2022), ∂L∂w is an eigenvector of ∂2L

∂wi∂wj . Therefore, ∂2L
∂wi∂wj

∂L
∂wi = λ ∂L

∂wj

for some λ ∈ C. Additionally, aj =M j
α
∂L
∂wα

and ∂aj

∂wk =M j
α

∂2L
∂wα∂wk . We are now ready to simplify

both terms in equation 41.
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For the first term in equation 41,

∂L
∂wk

∂aj

∂wk
∂2L

∂wi∂wj
∂L
∂wi

=
∂L
∂wk

M j
α

∂2L
∂wα∂wk

∂2L
∂wi∂wj

∂L
∂wi

=M j
α

(
∂2L

∂wα∂wk
∂L
∂wk

)(
∂2L

∂wi∂wj
∂L
∂wi

)
=M j

α

(
λ1

∂L
∂wα

)(
λ2

∂L
∂wj

)
= λ1λ2M

j
α

∂L
∂wα

∂L
∂wj

= 0 (42)

The last equality holds because M is anti-symmetric.

For the second term in equation 41,

∂L
∂wk

aj
∂

∂wk

(
∂2L

∂wi∂wj
∂L
∂wi

)
=

∂L
∂wk

aj
(

∂3L
∂wk∂wi∂wj

∂L
∂wi

+
∂2L

∂wi∂wj
∂2L

∂wk∂wi

)
=

∂L
∂wk

M j
α

∂L
∂wα

(
∂3L

∂wk∂wi∂wj
∂L
∂wi

+
∂2L

∂wi∂wj
∂2L

∂wk∂wi

)
=M j

α

∂L
∂wk

∂L
∂wα

∂3L
∂wk∂wi∂wj

∂L
∂wi

+ λ1λ2M
j
α

∂L
∂wα

∂L
∂wj

=M j
α

∂L
∂wk

∂L
∂wα

∂3L
∂wk∂wi∂wj

∂L
∂wi

(43)

In summary,

R[A,R]L = 2M j
α

∂L
∂wk

∂L
∂wα

∂3L
∂wk∂wi∂wj

∂L
∂wi

. (44)

Since we assumed that [A,R]L(w) = 0, when R[A,R]L(w) = 0 for all A ∈ S, the gradient flow
starting at an optimal point in S is optimal in S.

Proposition C.3. If ∂3L
∂wk∂wi∂wj

∂L
∂wα = ∂3L

∂wk∂wi∂wα
∂L
∂wj holds for all i, k, j, α, then

M j
α
∂L
∂wk

∂L
∂wα

∂3L
∂wk∂wi∂wj

∂L
∂wi = 0 holds for all anti-symmetric matrices M ∈ Rn×n.

Proof. If ∂3L
∂wk∂wi∂wj

∂L
∂wα = ∂3L

∂wk∂wi∂wα
∂L
∂wj for all i, k, j, α, then

M j
α

∂L
∂wk

∂L
∂wα

∂3L
∂wk∂wi∂wj

∂L
∂wi

=
∑

i,k,α<j

M j
α

∂L
∂wk

∂L
∂wα

∂3L
∂wk∂wi∂wj

∂L
∂wi

+
∑

i,k,α>j

M j
α

∂L
∂wk

∂L
∂wα

∂3L
∂wk∂wi∂wj

∂L
∂wi

=
∑

i,k,α<j

M j
α

∂L
∂wk

∂L
∂wα

∂3L
∂wk∂wi∂wj

∂L
∂wi

+
∑

i,k,j>α

Mα
j

∂L
∂wk

∂L
∂wj

∂3L
∂wk∂wi∂wα

∂L
∂wi

=
∑

i,k,α<j

M j
α

∂L
∂wk

∂L
∂wα

∂3L
∂wk∂wi∂wj

∂L
∂wi

+
∑

i,k,j>α

−M j
α

∂L
∂wk

∂L
∂wj

∂3L
∂wk∂wi∂wα

∂L
∂wi

=
∑

i,k,α<j

M j
α

∂L
∂wk

∂L
∂wi

(
∂L
∂wα

∂3L
∂wk∂wi∂wj

− ∂L
∂wj

∂3L
∂wk∂wi∂wα

)
= 0, (45)

where the first equality uses that the diagonal of an anti-symmetric matrix is 0, the second equality
swaps α and j in the second term, the third equality uses that M is anti-symmetric.
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Example (Quadratic function) Consider the quadratic function L(w) = 1
2w

TAw + bTw + c,
where A ∈ Rn×n is symmetric, b, c ∈ Rn, and w ∈ Rn. Two examples of quadratic functions are
the ellipse Le(w1, w2) =

1
2 (w

2
1 + λ2w2

2) and the Booth function Lb(w1, w2) = (w1 +2w2 − 7)2 +

(2w1+w2−5)2. Since the third derivative of L is 0, one teleportation guarantees optimal trajectory.

D GROUP ACTIONS AND CURVES ON MINIMA

D.1 GROUP ACTIONS FOR MLP

Consider a multi-layer neural network with elementwise activation function σ. The output of the
mth layer is hm = σ(Wmhm−1), where Wm ∈ Rdm×dm−1 is the weight, hm−1 ∈ Rdm−1×k is the
output of the m− 1th layer, and h0 ∈ Rd0×k is the data.

Assuming that σ (gmWm−1hm−2) is invertible, for gm ∈ GLdm−1
(R), the following transformation

is a loss-preserving group action:

gm ·Wk =

 Wmσ (Wm−1hm−2)σ (gmWm−1hm−2)
−1

k = m
gmWm−1 k = m− 1
Wk k ̸∈ {m,m− 1}

(46)

Usually, the assumption does not hold (Zhao et al., 2023). Hence the above transformation may not
preserve loss or be a valid group action. Nevertheless, we observe in practice that the change in the
loss value is often small after such transformations on parameters. We therefore refer to equation
(46) as an approximate symmetry and adopt it in the teleportation algorithm. Due to the possibility
that σ (gmWm−1hm−2) is not invertible, we use pseudoinverses in implementations.

D.2 CURVATURE

The curvature of a curve γ : R −→ Rn is κ(t) = ∥T ′(t)∥
∥γ′(t)∥ , where T (t) = γ′(t)

∥γ′(t)∥ is the unit tangent
vector. The curvature can be written as a function of γ′ and γ′′ (Aléssio, 2012; Shelekhov, 2021):

κ(t) =

[
∥γ′∥2∥γ′′∥2 − (γ′ · γ′′)2

] 1
2

∥γ′∥3
. (47)

D.3 THE DERIVATIVE OF CURVATURE

To compute the derivative of κ(t), we first list the derivatives of a few commonly used terms:
d

dt
∥γ′∥2 =

d

dt
(γ′1

2
+ γ′2

2
+ γ′3

2
+ ...) = 2γ′1γ

′′
1 + 2γ′2γ

′′
2 + 2γ′3γ

′′
3 + ... = 2γ′ · γ′′

d

dt
∥γ′′∥2 =

d

dt
(γ′′1

2
+ γ′′2

2
+ γ′′3

2
+ ...) = 2γ′′1 γ

′′′
1 + 2γ′′2 γ

′′′
2 + 2γ′′3 γ

′′′
3 + ... = 2γ′′ · γ′′′

d

dt
(γ′ · γ′′) = d

dt
(γ′1γ

′′
1 + γ′2γ

′′
2 + γ′3γ

′′
3 ...) = γ′1γ

′′′
1 + γ′′1 γ

′′
1 + ... = ∥γ′′∥2 + γ′ · γ′′′ (48)

The derivatives of the numerator and denominator of κ are:
d

dt

[
∥γ′∥2∥γ′′∥2 − (γ′ · γ′′)2

] 1
2 =

1

2

[
∥γ′∥2∥γ′′∥2 − (γ′ · γ′′)2

]− 1
2
d

dt

[
∥γ′∥2∥γ′′∥2 − (γ′ · γ′′)2

]
=

1

2

[
∥γ′∥2∥γ′′∥2 − (γ′ · γ′′)2

]− 1
2[

∥γ′∥2 d
dt
∥γ′′∥2 + ∥γ′′∥2 d

dt
∥γ′∥2 − 2(γ′ · γ′′) d

dt
(γ′ · γ′′)

]
=

1

2

[
∥γ′∥2∥γ′′∥2 − (γ′ · γ′′)2

]− 1
2[

2∥γ′∥2(γ′′ · γ′′′) + 2∥γ′′∥2(γ′ · γ′′)− 2(γ′ · γ′′)(∥γ′′∥2 + γ′ · γ′′′)
]

=
[
∥γ′∥2∥γ′′∥2 − (γ′ · γ′′)2

]− 1
2
[
∥γ′∥2(γ′′ · γ′′′)− (γ′ · γ′′)(γ′ · γ′′′)

]
,

(49)
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and

d

dt
∥γ′∥3 =

d

dt
(∥γ′∥2) 3

2 =
3

2
(∥γ′∥2) 1

2
d

dt
∥γ′∥2 =

3

2
(∥γ′∥2) 1

2 (2γ′ · γ′′) = 3∥γ′∥(γ′ · γ′′). (50)

Using the derivatives above, the derivative of κ is

κ′(t) =

[
d
dt

[
∥γ′∥2∥γ′′∥2 − (γ′ · γ′′)2

] 1
2

]
∥γ′∥3 −

[
∥γ′∥2∥γ′′∥2 − (γ′ · γ′′)2

] 1
2
[
d
dt∥γ

′∥3
]

∥γ′∥6

=

[
∥γ′∥2∥γ′′∥2 − (γ′ · γ′′)2

]− 1
2
[
∥γ′∥2(γ′′ · γ′′′)− (γ′ · γ′′)(γ′ · γ′′′)

]
∥γ′∥3

−
[
∥γ′∥2∥γ′′∥2 − (γ′ · γ′′)2

] 1
2 3∥γ′∥(γ′ · γ′′)

∥γ′∥6

=

[
∥γ′∥2∥γ′′∥2 − (γ′ · γ′′)2

]− 1
2
[
∥γ′∥2(γ′′ · γ′′′)− (γ′ · γ′′)(γ′ · γ′′′)

]
∥γ′∥2

−
[
∥γ′∥2∥γ′′∥2 − (γ′ · γ′′)2

] 1
2 3(γ′ · γ′′)

∥γ′∥5
.

(51)

D.4 THE DERIVATIVES OF CURVES ON MINIMA

Consider the curve γM : R× Rn −→ Rn where M ∈ Lie(G) and

γM (t,w) = exp (tM) ·w. (52)

In this section, we derive γ′, γ′′, and γ′′′, which are needed to compute the curvature κ(t) and its
derivative κ′(t). We are interested in κ and κ′ at w, or equivalently, at t = 0. To find the derivatives
of γ at t = 0, we write the group action in the following form:

γ(t) =

∞∑
n=0

f(n)

n!
tn. (53)

By the uniqueness of Taylor polynomial, the derivatives are γ(n)(0) = f(n). In the rest of this
subsection, we expand the group action to find f(n).

Consider two consecutive layers Uσ(V X) in a neural network, where U ∈ Rm×h, V ∈ Rh×n
are weights, X ∈ Rh×k is the output from the previous layer, and σ is an elementwise activation
function. Choosing G = GLh(R), one group action that leaves the output of these two layers
unchanged is:

g · (U, V,X) = (g · U, g · V, g ·X) = (Ug−1, σ−1(gσ(V X))X−1, X). (54)

Let

g = exp(tM) =

∞∑
k=0

1

k!
(tM)k, (55)

where M ∈ Lie(G) is in the Lie algebra of G. The action of g yields

g · (U, V,X) = (U exp(−tM), σ−1(exp(tM)σ(V X))X−1, X). (56)

Next, we expand γ(t) = g · (U, V ). The Taylor expansion for g · U is

U exp(−tM) = U

∞∑
k=0

1

k!
(−tM)k

= U − tUM +
t2

2!
UM2 − t3

3!
UM3 +O(t4). (57)
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The Taylor expansion for g · V is

σ−1(exp(tM)σ(V X))X−1

=σ−1

(( ∞∑
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1

k!
(tM)k

)
σ(V X)

)
X−1

=σ−1

(
σ(V X) +
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k=1

1

k!
(tM)kσ(V X)

)
X−1

=

σ−1(σ(V X)) +

∞∑
j=1

( ∞∑
k=1

1

k!
(tM)kσ(V X)

)⊙j

⊙ ∂jσ−1(A)

∂Aj

∣∣∣∣
A=σ(V X)

X−1

=V +

 ∞∑
j=1

( ∞∑
k=1

1

k!
(tM)kσ(V X)

)⊙j

⊙ ∂jσ−1(A)

∂Aj

∣∣∣∣
A=σ(V X)

X−1, (58)

where ⊙ denotes element-wise product: (A ⊙ B)mn = AmnBmn, and the superscript ⊙ denotes
elementwise power: (A⊙j)mn = (Amn)

j . The Taylor expansion is of each element individually,
because σ is element-wise.

Since our goal is to find the first 3 derivatives of γ, we are only interested in the terms up to t3.
Letting

∞∑
k=1

1

k!
(tM)k = tM + t2

M2

2
+ t3

M3

6
+O(t4) (59)

and considering only the j = 1, 2, 3 terms, we have
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⊙ 1
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Matching terms in equation 57 and equation 60 with equation 53, we have the expressions for γ′,
γ′′, and γ′′′. This allows us to compute the curvature and its derivative using equation 47 and
equation 51.

23



Published as a conference paper at ICLR 2024

E SHARPNESS, CURVATURES, AND THEIR RELATION TO GENERALIZATION

E.1 ALTERNATIVE DEFINITIONS OF SHARPNESS

A common definition of flat minimum is based on the number of eigenvalues of the Hessian which
are small. Minimizers with a large number of large eigenvalues tend to have worse generalization
ability (Keskar et al., 2017). Let λi(H)(w) be the ith largest eigenvalue of the Hessian of the loss
function evaluated at w. We can quantify the notion of sharpness by the number of eigenvalues
larger than a threshold ε ∈ R>0:

ϕ1(w, ε) = |{λi(H)(w) : λi > ε}| . (61)

A related sharpness metric uses the logarithm of the product of the k largest eigenvalues (Wu et al.,
2017),

ϕ2(w, k) =

k∑
i=1

log λi(H)(w). (62)

Both metrics require computing the eigenvalues of the Hessian. As a result, optimizing on these
metrics during teleportation is prohibitively expensive. Hence, in this paper we use the average
change in loss averaged over random directions (ϕ) as objective in generalization experiments.

E.2 MORE INTUITION ON CURVATURES AND GENERALIZATION

E.2.1 EXAMPLE: CURVATURE AFFECTS AVERAGE DISPLACEMENT OF MINIMA

Consider an optimization problem with two variables w1, w2 ∈ R. Assume that the minimum is
a curve γ : R → R2 in the two-dimensional parameter space. For a point w0 on γ, we estimate
its generalization ability by computing the expected distance between w0 and the new minimum
obtained by shifting γ.

We consider the following two curves as examples:

γ1 :R→ R2, t 7→ (t, k1t
2)

γ2 :[0, 2π]→ R2, θ 7→ (k2 cos(θ), k2 sin(θ) + k2), (63)

with k1, k2 ∈ R ̸=0. The curve γ1 is a parabola with curvature κ1 = 2k1 at w0 = (0, 0). The curve
γ2 is a circle, with curvature κ2 = 1

k2
at w0. Note that γ1 is the only polynomial approximation with

integer power (γ(t) = (t, k|t|n), n ∈ Z+) where the curvature at w0 depends on k. When n < 1,
the value of w0 is undefined. When n = 1, the first derivative at w0 is undefined. When n > 2,
κ(w0) = 0.

Assume that a distribution shift in data causes γ to shift by a distance r, and that the direction of the
shift is chosen uniformly at random over all possible directions. Viewing from the perspective of the
curve, this is equivalent to shifting w0 by distance r.

The distance between a point w and a curve γ is

dist(w, γ) = min
w′∈γ2

∥w′ −w∥2. (64)

Let Sr be the circle centered at the origin with radius r. The expected distance between the old
solution w0 and shifted curve is

Ew∈Sr
[dist(w, γ)] =

∫
Sr
dist(w, γ)ds∫

Sr
ds

=

∫ 2π

0
dist((r cos θ, r sin θ), γ)rdθ∫ 2π

0
rdθ

. (65)

In the limit of zero curvature, γ is a straight line γ(t) = (t, 0). In this case, the expected distance is

Ew∈Sr
[dist(w, γ)] =

∫ 2π

0
|r sin θ|rdθ
2πr

=
2r

π
≈ 0.637r. (66)
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Figure 7(b)(c) shows that the expected distance’s dependence on κ. Using both curves γ1 and γ2,
the generalization ability of w0 depends on the curvature at w0. However, the type of dependence
is affected by the type of curve used. In other words, the curvatures at points around w0 affect
how the curvature at w0 affects generalization. Therefore, from these results alone, one cannot
deduce whether minima with sharper curvatures generalize better or worse. To find a more definitive
relationship between curvature and generalization, further investigation on the type of curves on the
minimum is required.

We emphasize that this example only serves as an intuition for connecting curvature to generaliza-
tion. As a future direction, it would be interesting to consider different families of parametric curves,
higher dimensional parameter spaces, and deforming in addition to shifting the minima.
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Figure 7: (a) Illustration of the parameter space, the minimum (γ), and all shifts with distance r
(Sr). (b) Expected distance between w0 and the new minimum as a function of κ, for quadratic
approximation γ1. (c) Expected distance between w0 and the new minimum as a function of κ, for
constant curvature approximation γ2. The expected distance is scaled by r so that the curves can be
plotted together.

E.2.2 HIGHER DIMENSIONS

Figure 8 visualizes a curve obtained from a 2D minimum. However, it is not immediately clear what
curves look like on a higher-dimensional minimum. A possible way to extend previous analysis is
to consider sectional curvatures.

)*+*)(

Figure 8: Left: a 2D minima in a 3D parameter space. Right: a 2D subspace of the parameter space
and a curve on the minima (the intersection of the minima and the subspace).

E.3 COMPUTING CORRELATION TO GENERALIZATION

We generate the 100 different models used in Section 4.3 by training randomly initialized models.
For all three datasets (MNIST, FashionMNIST, and CIFAR-10), we train on 50,000 samples and test
on a different set of 10,000 samples. The labels for classification tasks belongs to 1 of 10 classes.

For a batch of flattened input data X ∈ Rd×20 and labels Y ∈ R20, the loss function is
L(W1,W2,W3, X, Y ) = CrossEntropy (W3σ(W2σ(W1X)), Y ), where W3 ∈ R10×h2 , W2 ∈
Rh2×h1 , W1 ∈ Rh1×d are the weight matrices, and σ is the LeakyReLU activation with slope
coefficient 0.1. For MNIST and Fashion-MNIST, d = 282, h1 = 16, and h2 = 10. For CIFAR-10,

25



Published as a conference paper at ICLR 2024

d = 323 × 3, h1 = 128, and h2 = 32. The learning rate for stochastic gradient descent is 0.01 for
MNIST and Fashion-MNIST, and 0.02 for CIFAR-10. We train each model using mini-batches of
size 20 for 40 epochs.

When computing the sharpness ϕ, we choose the displacement list T that gives the highest correla-
tion. The displacements used in this paper are T = 0.001, 0.011, 0.021, ..., 0.191 for MNIST, and
T = 0.001, 0.011, 0.021, ..., 0.191 for Fashion-MNIST and CIFAR-10. We evaluate the change in
loss over |D| = 200 random directions. For curvature ψ, we average over k = 1 curves generated
by random Lie algebras (invertible matrices in this case).

Figure 9 and 10 visualizes the correlation result in Table 1. Each point represents one model.
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Figure 9: Correlation between sharpness and validation loss on MNIST (left), Fashion-MNIST (mid-
dle), and CIFAR-10 (right). Sharpness and generalization are strongly correlated.
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Figure 10: Correlation between curvature and validation loss on MNIST (left), Fashion-MNIST
(middle), and CIFAR-10 (right). There is a weak negative correlation in all three datasets.

E.4 ADDITIONAL DETAILS FOR GENERALIZATION EXPERIMENTS

Algorithm 2 shows an example on how to perform a teleportation with an MLP.

Algorithm 2 Changing curvature using teleportation

Input: loss function L(w), parameters before teleportation w0, teleportation learning rate
ηteleport, number of teleportation steps nteleport.
Output: parameters after teleportation wnteleport

.
for t = 0 to nteleport − 1 do

initialize T = 0h×h
set w′

t = (Ih×h + T ) · wt
compute grad =

d|ψ(w′
t)|

dT
set Tt = ηteleport × grad
set wt+1 = (I + Tt) · wt

end for
Return wnteleport
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On CIFAR-10, we run SGD using the same three-layer architecture as in Section E.3, but with a
smaller hidden size h1 = 32 and h2 = 10. At epoch 20 which is close to convergence, we teleport
using 5 batches of data, each of size 2000. During each teleportation for ϕ, we perform 10 gradient
ascent (or descent) steps on the group element. During each teleportation for ψ, we perform 1
gradient ascent (or descent) step on the group element. The learning rate for the optimization on
group elements is 5× 10−2.

To investigate how teleportation affects generalization for other optimizers, we repeat the same
experiment but replace SGD with AdaGrad. Figure 11 shows the training curve of AdaGrad on
CIFAR-10, averaged across 5 runs. Similar to SGD, changing curvature via teleportation affects the
validation loss, while changing sharpness has negligible effects. Teleporting to points with larger
curvatures helps find minima with slightly lower validation loss. Teleporting to points with smaller
curvatures increases the gap between training and validation loss.
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Figure 11: Changing sharpness (left) or curvature (right) using teleportation and its effect on gener-
alizability of AdaGrad solutions on CIFAR-10. Solid line represents average test loss, and dashed
line represent average training loss.

F INTEGRATING TELEPORTATION WITH OTHER GRADIENT-BASED
ALGORITHMS

F.1 DIFFERENT METHODS OF INTEGRATING TELEPORTATION WITH MOMENTUM AND
ADAGRAD

Setup. We test teleportation with various algorithms using the a 3-layer neural network and mean
square error: minW1,W2,W3

∥Y −W3σ(W2σ(W1X))∥2, with data X ∈ R5×4, target Y ∈ R8×4,
and weight matrices W3 ∈ R8×7, W2 ∈ R7×6, and W1 ∈ R6×5. The activation function σ is
LeakyReLU with slope coefficient 0.1. Each element in the weight matrices is initialized uniformly
at random over [0, 1]. Data X,Y are randomly generated also from [0, 1].

Momentum. We compare three strategies of integrating teleportation with momentum: teleporting
both parameters and momentum, teleporting parameters but not momentum, and reset momentum
to 0 after a teleportation. In each run, we teleport once at epoch 5. Each strategy is repeated 5 times.

The training curves of teleporting momentum in different ways are similar (Figure 12a), possibly
because the momentum accumulated is small compared to the gradient right after teleportations. All
methods of teleporting momentum improves convergence, which means teleportation works well
with momentum.

AdaGrad. In AdaGrad, the rate of change in loss is

dL(w)

dt
=
∂L
∂w

T dw

dt
= −η∥∇L∥A, (67)

where η ∈ R is the learning rate, and ∥∇L∥A is the Mahalanobis norm with A = (εI +

diag(Gt+1))
− 1

2 . Previously, we optimize ∥∇L∥2 in teleportation. We compare that to optimiz-
ing ∥∇L∥A. Since the magnitude of A is different than 1, a different learning rate for the gradient
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ascent in teleportation is required. We choose the largest learning rate (with two significant figures)
that does not lead to divergence. The teleportation learning rates used are 1.2 × 10−5 for objective
maxg ∥∇L∥2 and 7.5× 10−3 for objective maxg ∥∇L∥A.

Teleporting using the group element that optimizes ∥∇L∥A has a slight advantage (Figure 12b).
Similar to the observations in Zhao et al. (2022), teleportation can be integrated into adaptive gradi-
ent descents.
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Figure 12: Comparison of different methods of integrating teleportation with momentum and Ada-
Grad.

F.2 ADDITIONAL DETAILS FOR EXPERIMENTS ON MNIST

We use a three-layer model and cross-entropy loss for classification with minibatches of size
20. For a batch of flattened input data X ∈ R282×20 and labels Y ∈ R20, the loss func-
tion is L(W1,W2,W3, X, Y ) = CrossEntropy (W3σ(W2σ(W1X)), Y ), where W3 ∈ R10×10,
W2 ∈ R10×16, W1 ∈ R16×282 are the weight matrices, and σ is the LeakyReLU activation with
slope coefficient 0.1. The learning rates are 10−4 for AdaGrad, and 5×10−2 for SGD with momen-
tum, RMSProp, and Adam. The learning rate for optimizing the group element in teleportation is
5× 10−2, and we perform 10 gradient ascent steps when teleporting using each mini-batch. We use
50,000 samples from training set for training, and 10,000 samples in the test set for testing.
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Figure 13: Runtime comparison for integrating teleportation into various algorithms. Solid line
represents average training loss, and dashed line represents average test loss. Shaded areas are
1 standard deviation of the test loss across 5 runs. The plots look almost identical to Figure 5,
indicating that the cost of teleportation is negligible compared to gradient descents.
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