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Abstract

Transfer learning enhances prediction accuracy on a target distribution by leverag-
ing data from a source distribution, demonstrating significant benefits in various
applications. This paper introduces a novel dissimilarity measure that utilizes vicin-
ity information, i.e., the local structure of data points, to analyze the excess error
in classification under covariate shift, a transfer learning setting where marginal
feature distributions differ but conditional label distributions remain the same. We
characterize the excess error using the proposed measure and demonstrate faster
or competitive convergence rates compared to previous techniques. Notably, our
approach is effective in the support non-containment assumption, which often
appears in real-world applications, holds. Our theoretical analysis bridges the gap
between current theoretical findings and empirical observations in transfer learning,
particularly in scenarios with significant differences between source and target
distributions.

1 Introduction

Transfer learning is a technique for enhancing prediction accuracy by utilizing a sample from a
distribution (source distribution), which is different from the distribution where predictions are
actually made (target distribution). Existing empirical studies of transfer learning have shown
significant accuracy improvements by leveraging a sample from the source distribution [4, 5, 8, 18,
19, 21, 24]. However, these findings are valid only for the datasets tested, leaving the effectiveness in
unexplored scenarios uncertain. Theoretical analysis, on the other hand, offers broader assurances of
these enhancements across various situations.

Our paper primarily focuses on theoretical analysis of classification under the covariate-shift [20]
environment. Covariate-shift refers to a scenario where, despite the relationships between features
and labels remaining consistent across source and target distributions, the marginal distributions of
features differ. A key property in characterizing the success of transfer learning under covariate-shift
is consistency with respect to the source sample size. A classification algorithm is deemed consistent
with respect to source sample size if its error rate decreases to the optimal one as the size of the source
sample increases indefinitely, highlighting the achievability of the optimal classifier by utilizing
the source sample. The main focus of our theoretical analyses is to validate source sample-size
consistency of the constructed classification algorithm under the covariate-shift.
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Several theoretical techniques have been developed to analyze classification error under the covariate-
shift setup; however, most of them lack the capability to validate source sample size consistency. For
example, many researchers have derived upper bounds on the generalization error using distance
measures between source and target distributions [1, 3, 14, 15, 17]. These techniques are applicable
to a broad range of situations since they do not make assumptions about the source and target
distributions. However, they might fail to validate source sample size consistency because the
distance measures used in these techniques may remain positive even when the source sample size
tends to infinity.

Only a few theoretical results can prove the achievability of source sample size consistency. One
notable result is the work by Pathak et al. [16], who deal with the nonparametric regression problem
under covariate-shift and analyze the regression error using the following dissimilarity measure. Let
P and Q be source and target distributions whose marginals for features are denoted as PX and QX ,
respectively. Let X be the universe of features equipped with a metric ρ. Given a level r > 0, their
dissimilarity measure is defined 2 as

∆PMW(P,Q; r) =

∫
X

1

PX(Bρ(x, r))
QX(dx), (1)

where Bρ(x, r) = {x′ ∈ X : ρ (x, x′) ≤ r} is the closed ball of radius r centered at x. We use the
notation B(x, r) when ρ is clear from the context. Pathak et al. [16] demonstrate that a consistent
regression algorithm exists if the dissimilarity measure in Eq (1) is less than a polynomial order of
r−1. This result can be readily extended to the classification case by utilizing the results of Galbraith
et al. [7] and Kpotufe et al. [12] (See Section 3).

One significant limitation of their techniques is the inability to prove source sample-size consistency
in situations where the support of the source distribution does not cotain that of the target distribution.
In such situations, their dissimilarity measure in Eq (1) becomes infinite because the probability
PX(B(x, r)) becomes zero for small r at points x that appear in the target distribution but not in the
source distribution. However, these situations are prevalent in real-world applications, and empirical
evidence indicates the effectiveness of transfer learning even under a support non-containment
environment. For instance, several researchers [10, 23, 25, 26] have demonstrated the success of their
methods on the Office-Home dataset [22], in which source and target datasets consist of images from
different domains, including artistic depictions, clipart images, images without backgrounds, and
real-world images. The appearances of images across different domains are considerably different,
suggesting non-containment of supports. Consequently, the current theoretical framework fails to
capture the success demonstrated in this example, revealing a gap between existing theoretical results
and real-world observations. This discrepancy highlights the need for a theoretical approach that
can account for the effectiveness of transfer learning in scenarios where the support containment
assumption does not hold.

Our dissimilarity measure and contributions. This study bridges this gap by introducing a
novel dissimilarity measure and characterizing the classification error under covariate-shift using the
proposed measure. Our dissimilarity measure is defined 3 as follows:

∆V(P,Q; r) =

∫
X

inf
x′∈V(x)

1

PX(B(x′, r))
QX(dx), (2)

where V(x) denotes the set of the vicinity surrounding the point x, whose rigorous definition will be
explored in Section 3. The only difference between Eq (2) and Eq (1) is that Eq (2) takes the infimum
over V(x) when evaluating the inverse probability, whereas Eq (1) evaluates the inverse probability
at x. By taking the infimum, we may avoid evaluating the inverse probability at points where the
probability PX(B(x, r)) becomes zero. This makes the resultant dissimilarity value finite even when
the support of the source distribution does not contain that of the target distribution.

The utility of our dissimilarity measure in Eq (2) is highlighted by the following contributions:

• We derive an upper bound on the excess error under covariate-shift and provide a characterization
of it via the dissimilarity measure in Eq (2). A notable insight from this characterization is the
existence of a classification algorithm that is consistent for the source sample size, which can
validate the source sample-size consistency even under the support non-containment environment:

2We interpret as ∆PMW(P,Q; r) = ∞ if QX(PX(B(X, r)) > 0) < 1.
3We interpret as ∆V(P,Q; r) = ∞ if QX(supx′∈V(X) PX(B(x′, r)) > 0) < 1.
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Theorem 1 (Informal). Under certain conditions, there exists a classification algorithm that is
consistent for the source sample size if ∆V(P,Q; r) is less than a polynomial order of r−1.
Theorem 1 provides the same characterization of the source sample size consistency as shown by
Pathak et al. [16], except it uses our dissimilarity measure ∆V instead of their measure ∆PMW.

• We propose novel notions of ∆-transfer-exponent and ∆-self-exponent for a dissimilarity measure
∆. These notions are a generalization of the concept of α-families provided by Pathak et al. [16].
Our notions of the ∆-transfer-exponent and ∆-self-exponent universally characterize the upper
bounds obtained by Pathak et al. [16], Kpotufe et al. [12], and our own work, thereby enabling a fair
comparison among these upper bounds. Indeed, we prove that an upper bound on the excess error
derived from our dissimilarity measure in Eq (2) always exhibits faster or competitive convergence
rates compared to the rates of the upper bounds obtained from the existing measures provided by
Pathak et al. [16] and Kpotufe et al. [12]. This improvement in convergence rates highlights the
advantage of incorporating vicinity information in the dissimilarity measure.

• We conducted experiments comparing our method with Pathak et al. [16]’s approach on synthetic
datasets with support non-containment setups. The results demonstrate the tightness of our derived
upper bound and showcase our method’s ability to achieve source sample-size consistency in the
support non-containment setting, a feat unattained by the existing method.

All the missing proofs can be found in Appendix C.

2 Preliminaries

Notations For a probability measure P and a positive integer k, let P k denote the k-fold product
measure of P . Given a probability measure P and a random variable X , we denote EP [X] as the
expectation of X under the distribution P . For an event E , we use 1{E} to denote the indicator
function. Given a metric space (X , ρ) and a radius r > 0, let denote the closed sphere centered at
x ∈ X with radius r as B(x, r) = {x′ ∈ X : ρ(x, x′) ≤ r}.

Classification under Covariate-shift Consider a classification problem under the covariate shift
setup. Let X be a random variable representing the input to a classifier, equipped with a compact
metric space (X , ρ) of diameter DX , and let Y be a random variable signifying the binary label,
i.e., with a universe of Y = {0, 1}. The learner has access to a sample composed of labeled data
from two distributions: the source distribution P and the target distribution Q. The labeled data
from the source and target distributions are denoted as (X,Y)P = {(Xi, Yi)}nPi=1 ∼ PnP and
(X,Y)Q = {(Xi, Yi)}

nP+nQ
i=nP+1 ∼ QnQ , respectively, where nP and nQ represent the source and

target sample sizes. Given the sample (X,Y) = (X,Y)P ∪ (X,Y)Q, the learner’s objective is to
construct a classifier h : X → Y that minimizes its error rate for the target distribution, defined as:

errQ(h) = EQ1{h(X) ̸= Y }.
For convenience, let XP be the support of PX , i.e., XP = {x ∈ X : PX(B(x, r)) > 0,∀r > 0}.
Define XQ similarly to XP .

Covariate-shift is a relationship between the source and target distributions, in which the marginal
distributions of the input X can differ between P and Q, whereas the distributions of the label
Y conditioned on the input X are identical. Let PX and QX be the marginal source and target
distributions of X , respectively. Let PY |X and QY |X be the source and target distributions of Y
conditioned on X , respectively. Then, covariate shift is rigorously defined as follows:
Definition 1 (Covariate-shift). The relationship between distributionP and distributionQ is covariate
shift if there exists a measurable function η : X → [0, 1], called a regression function, such that
PY |X(Y = 1|X) = QY |X(Y = 1|X) = η (X) PX - and QX -almost surely.

This definition indicates that, for example, traffic signs appearing in urban and rural areas may differ
(PX ̸= QX ), but their instructions are consistent regardless of the location (PY |X = QY |X ) in the
context of sign recognition in an automated driving system.

Excess Error The objective of our theoretical analyses is to elucidate the relationship between the
source and target sample sizes (nP and nQ) and the excess error. The excess error of a classifier h
is defined as the difference between the error of h and the error incurred by the Bayes classifier h∗.
The Bayes classifier, under the error metric errQ (h), is the classifier that minimizes errQ (h). The
formal definition of the excess error is as follows:

3



Definition 2 (excess error). The excess error of the classifier h for the distribution Q is given by:

EQ(h) = errQ(h)− errQ(h
∗).

As the excess error approaches 0, the classifier h approaches the performance of the ideal classifier.
Under our setup, the Bayes classifier can be expressed as h∗ (x) = 1{η(x) ≥ 1/2}.

Difficulty in Classification under Distribution Q For the purpose of our analyses, we introduce
the following common assumptions that stipulate the difficulty in classification under distribution Q.
Definition 3 (Smoothness). A regression function η is (Cα, α)-Hölder for α ∈ (0, 1] and Cα > 0 if
∀x, x′ ∈ X , |η(x)− η(x′)| ≤ Cα · ρ(x, x′)α.
Definition 4 (Tsybakov’s noise condition). A distribution Q satisfies Tsybakov’s noise condition with
parameters β > 0 and Cβ > 0 if ∀t ≥ 0, QX(0 < |η(X)− 1

2 | ≤ t) ≤ Cβt
β .

The smoothness condition in Definition 3 requires that the labels for similar inputs are likely to be
the same. The noise parameters determine the probability of observing a label with a large amount
of noise. It is worth noting that Galbraith et al. [7] and Kpotufe et al. [12] conducted their analyses
under the same assumptions. Similarly, Pathak et al. [16] employ assumptions regarding smoothness
and noise; however, their assumptions differ slightly from ours, as they address a different problem:
regression, while we focus on classification.

Our analyses will be conducted under the assumption that the target distribution satisfies both the
smoothness and noise conditions.
Definition 5 (STN(α, β)). A distribution Q is STN(α, β) if there exist some constants Cα > 0
and Cβ > 0 such that the regression function η is (Cα, α)-Hölder, and Q satisfies Tsybakov’s noise
condition with parameters β and Cβ .

3 Main Result

Our main result is a characterization of the excess error under the covariate-shift setup via our
dissimilarity measure in Eq (2), with an appropriate choice of the vicinity set function V(x). The
choice of the vicinity set function V is formally given as follows:

V(x) =
{
x′ ∈ X : 2Cαρ(x, x

′)α <

∣∣∣∣η(x)− 1

2

∣∣∣∣} ∪ {x}. (3)

The vicinity set V(x) is the (nearly-)largest open ball centered at x such that the labels of the Bayes
classifier evaluated at points within the ball are consistent. We can expect that these vicinity points
may share the same label information and thus are useful for predicting the label at x.

To characterize the excess error by some quantity of (P,Q), we generalize the notion of the α-family
proposed by Pathak et al. [16]. Specifically, we characterize the excess error by the following
quantities determined by a dissimilarity measure.
Definition 6 (∆-transfer-exponent). Given a dissimilarity measure ∆, a distribution pair (P,Q) has
a ∆-transfer-exponent of τ ∈ [0,∞] if there exists a constant C ≥ 1 such that

sup
0<r≤DX

(r/DX )
τ
∆(P,Q; r) ≤ C,

where 0 ·∆(P,Q; 0) = 0.
Definition 7 (∆-self-exponent). Given a dissimilarity measure ∆, a distribution Q has a ∆-self-
exponent of ψ ∈ (0,∞] if there exists a constant C ≥ 1 such that

sup
0<r≤DX

(r/DX )
ψ
∆(Q,Q; r) ≤ C.

Definition 6 and Definition 7 imply that the dissimilarities ∆(P,Q; r) and ∆(Q,Q; r) decrease
at a polynomial rate with respect to r−1, with exponents τ and ψ, respectively. In other words,
∆(P,Q; r) = O(r−τ ) and ∆(Q,Q; r) = O(r−ψ) for a decreasing r. It is worth noting that our
definitions of ∆-transfer-exponent and ∆-self-exponent are universal in the sense that we can exactly
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reproduce the quantities used in existing characterizations by choosing an appropriate dissimilarity
measure ∆, which will be discussed later.

As our characterization, we provide an upper bound on the excess error composed of the source and
target sample sizes as well as transfer- and self-exponents.
Theorem 2. Given α ∈ (0, 1], β > 0, and ψ ∈ (0,∞], suppose the target distribution Q is
STN(α, β) and has ∆V -self-exponent of ψ. Also, suppose (P,Q) has ∆V -transfer-exponent of τ for
some τ ∈ (0,∞]. Then, there exists a classification algorithm which produces a classifier ĥ such that
for all nP > 0 and nQ > 0,

E
[
EQ(ĥ)

]
≤ C


log(nP + nQ)

(
n

1+β
2+β+max{1,τ/α}
p + n

1+β
2+β+max{1,ψ/α}
Q

)−1

if α = τ or α = ψ,(
n

1+β
2+β+max{1,τ/α}
p + n

1+β
2+β+max{1,ψ/α} )

Q

)−1

otherwise ,

where C > 0 is some constant independent of nP and nQ.

The implications of Theorem 2 are as follows:

1. Theorem 2 directly establishes that the necessary condition for the existence of a source sample
size consistent classification algorithm is τ < ∞. In this case, the exponent of nP is non-zero,
indicating the algorithm’s consistency with respect to the source sample size.

2. In the non-transfer setting, the excess error decreases as the sample size increases, with an
exponent of − 1+β

2+β+d/α for d-dimensional input, i.e., X ⊂ Rd [2]. Our bound exhibits the same
characterization, except that the dimensionality d is replaced by the ∆V -transfer- or ∆V -self-
exponent, corresponding to nP or nQ, respectively. Indeed, the ∆V -self-exponent plays a role
similar to the dimensionality d, as it is smaller than d for X ⊂ Rd 4.

3. The ∆V -transfer- and ∆V -self-exponents characterize the dependency of the excess error on the
source and target sample sizes, respectively. Indeed, the convergence rate of the excess error for
nP (resp., nQ) becomes faster as the ∆V -transfer-exponent (resp., ∆V -self-exponent) decreases.

Comparisons with Pathak et al. [16] and Kpotufe et al. [12]. We explore the comparison with
the excess error upper bounds shown by Pathak et al. [16] and Kpotufe et al. [12]. As mentioned in
the introduction, Pathak et al. [16] provide a characterization of the excess error through ∆PMW in
Eq (1). We can reproduce the results of Kpotufe et al. [12] via the transfer- and self-exponents of the
following measures:

∆DM(Q,Q; r) = sup
x∈XQ

1

QX(B(x, r))
,∆BCN(Q,Q; r) = N (XQ, ρ, r),

∆KM(P,Q; r) = sup
x∈XQ

QX(B(x, r))

PX(B(x, r))
,

where N (XQ, ρ, r) denotes the r-covering number of the set XQ. Building upon the measures
∆PMW, ∆DM, ∆BCN, and ∆KM, their upper bounds are reproduced as follows:
Proposition 1 (Kpotufe et al. [12] and Pathak et al. [16]). Given α ∈ (0, 1] and β > 0, suppose the
target distribution Q is STN(α, β). For ψ ∈ (0,∞] and τ ∈ (0,∞], we suppose that the one of the
following conditions holds:

1. Q has the ∆PMW-self-exponent of ψ, and (P,Q) has ∆PMW-transfer-exponent of τ .
2. Q has the ∆DM- or ∆BCN-self-exponent of ψ, (P,Q) has ∆KM-transfer-exponent of τ − ψ, and
τ ≥ ψ.

Then, there exists an algorithm that exhibits the excess error upper bound obtained by Theorem 2.

Proposition 1 indicates that our bound in Theorem 2 coincides with theirs, except for using the self-
and transfer-exponents with their measures.

Next, we compare the self- and transfer-exponents between our and their measures.
4This discussion is valid only when X is bounded. Exploring the unbounded case is one of our future

directions.
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Figure 1: Excess error EQ vs. source sample size nP . The horizontal axis represents the source sample
size nP , and the vertical axis represents the excess error. Both axes are plotted on a logarithmic scale,
resulting in the slopes of the lines signifying the exponents of nP for each method. ”k-NN (our)“ and
”k-NN (PMW)“ denote the experimental results of k-NN classifiers with our and Pathak et al. [16]’s
parameter settings, respectively. For guidance, we also plot the lines, ”Bound (our)“ and ”Bound
(PMW)“, representing the upper bounds obtained by this paper and Pathak et al. [16], respectively.

Proposition 2. For any pair of distributions (P,Q), we have

τ∆V ≤τ∆PMW
≤τ∆KM

+min{ψ∆DM
, ψ∆BCN

},
ψ∆V ≤ψ∆PMW

≤ min{ψ∆DM
, ψ∆BCN

},

where τ∆ and ψ∆ denotes the minimum ∆-transfer- and ∆-self-exponents (P,Q) has.

Proposition 2 showcases that ∆V achieves the smallest transfer- and self-exponents, indicating that
our measure can provide faster rates than those obtained by the existing measures.

4 Experiment

To confirm the tightness of Theorem 2 and the source sample-size consistency under the support
non-containment environment, we carried out experiments on a synthetic dataset.

Data distribution. Let X = R. For τ > 0, PX has a density function proportional to (1− x2)−τ/2

supported on [− 8
1
α ·2−1

8
1
α ·2

, 8
1
α ·2−1

8
1
α ·2

]. QX is the uniform distribution over [−1, 1], indicating that

XQ ̸⊆ XP . Given α > 0, the regression function η is η(x) = 1
2 + 1

2 sgn(x)|x|
α. With this setup,

Q is STN(α, β) with β = 1/α. The self-exponents are equivalent, i.e., ψ∆V = ψ∆PMW = 1.
Due to the support non-containment, the ∆PMW-transfer-exponent is ∞. On the other hand, the
∆V -transfer-exponent is τ .

Setup. We evaluated the dependency of the source sample size nP on the excess error for k-NN
classifiers with our and Pathak et al. [16]’s parameter settings. Specifically, we fixed nQ = 10
and evaluated the excess errors with nP ∈ {28, 29, ..., 218}. We varied the parameters α and τ as
α ∈ { 1

2 ,
1
4} and τ ∈ {1, 2}. For each parameter, we report the average and the first and third quartiles

of the excess error over 10 runs. The detailed setup can be found in Appendix D.

Results. Figure 1 shows the log-log plots of the excess errors corresponding to the source sample
sizes for each α and τ . For both our and Pathak et al. [16]’s k-NN, the slopes of the excess errors
match the corresponding theoretical upper bounds for any parameter of α and τ , demonstrating the
tightness of the upper bounds across various situations. In Figure 1, the line representing Pathak
et al. [16]’s k-NN does not decrease, indicating a failure to achieve source sample-size consistency.
In contrast, our k-NN exhibits a decreasing excess error, signifying the successful achievement of
source sample-size consistency.

5 Conclusion

In this paper, we provide a novel analysis of excess error under the covariate-shift setup, demonstrating
the usefulness of our new dissimilarity measure that utilizes vicinity information. Unlike existing
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analyses, our results can validate the consistency of the source sample size under certain situations
where the support of the source sample does not contain that of the target distribution. We also
demonstrate that our dissimilarity measure can provide faster rates than those provided by existing
techniques, including [12, 16].

Border imacts and limitations There might be no additional societal impacts from those of
the standard classification, as our focus is to leverage the multiple samples following different
distributions to improve the classification accuracy.
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A Example

We demonstrate that, unlike existing measures, our dissimilarity measure can validate the source
sample size consistency even when XQ ̸⊆ XP . We provide a concrete example of P andQ to illustrate
this property. Consider the case where X = R. Suppose PX and QX are uniform distributions over
[− 7

8 ,
7
8 ] and [−1, 1], respectively, and the regression function is η (x) = 1

2x + 1
2 . It is clear that

XP ⊂ XQ, and hence XQ ̸⊆ XP . The self-exponents are equivalent, i.e., ψ∆V = ψ∆PMW = ψ∆DM =
ψ∆BCN

= 1. However, the probability PX(B(x, r)) takes zero at x ∈ [−1,− 7
8 − r) ∪ ( 78 + r, 1] for

a small r, causing the existing transfer-exponents to become infinite, i.e., τ∆PMW
= τ∆KM

= ∞. In
contrast, our measure satisfies τ∆V = 1 because V(x) ∩ [− 7

8 ,
7
8 ] is non-empty for any x ∈ [−1, 1],

and the probability PX(B(x, r)) is non-zero for any x ∈ [− 7
8 ,

7
8 ]. Consequently, our bound exhibits
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the rate of ln(nP + nQ)(n
1/2
P + n

1/2
Q )−1, as α = 1 and β = 1 in this case, achieving the source

sample size consistency.

B Analyses

To prove Theorem 2, we provide an upper bound on the excess error of a specific classification
algorithm, the k-nearest neighbor (k-NN) classifier proposed by Kpotufe et al. [12]. Given a point X
distributed according to QX for which the label will be predicted, the k-NN classifier first estimates
the regression function’s output at X , denoted as η(X), by computing the average of labels over the
k nearest neighbor points in (X,Y). The predicted label is then determined to be 1 if the estimated
value of η(X) is greater than 1/2 and 0 otherwise. Formally, let (X(1), Y(1)), ..., (X(k), Y(k)) be the k
nearest neighbors of X and their corresponding labels. The estimated regression function is given by
η̂k(X) = 1

k

∑k
i=1 Y(i), and the predicted label ĥk(X) is determined as ĥk(X) = 1{η̂k(X) ≥ 1/2}.

The goal of this section is to demonstrate that the upper bound shown in Theorem 2 is achievable by
the k-NN classifier with an appropriate choice of k.
Theorem 3. Under the same assumptions as in Theorem 2, the k-NN classifier with k =⌊
(n

1
2+β+max{1,τ/α}
P + n

1

2+β+max{1,ψ/α}
Q )2

⌋
achieves the excess error upper bound shown in Theorem 2.

The main challenge in proving Theorem 3 is linking the excess error of the k-NN classifier to the
minimum inverse probability that appears in our dissimilarity measure in Eq (2). To achieve this, we
derive an upper bound on the excess error of the k-NN classifier using the vicinity distance, defined
as, for z, x ∈ X ,

ρV(z, x) = inf
x′∈V(x)

ρ(z, x′).

The vicinity distance ρV characterizes the minimum inverse probability, as it can be rewritten as
infx′∈V(x) P

−1
X (B(x′, r)) = P−1

X (infx′∈V(x) ρ(X,x
′) ≤ r) = P−1

X (ρV(X,x) ≤ r). Therefore,
characterizing the excess error using ρV is crucial for revealing its connection to our dissimilarity
measure ∆V . The details of this analysis will be explored in the subsequent subsection.

B.1 Bounding Excess Error by Vicinity Distance

This subsection aims to derive an upper bound on the excess error of the k-NN classifier using the
vicinity distance ρV . We first employ two existing techniques from Kpotufe et al. [12]: an upper
bound on the excess error by the approximation error of η̂k and the concept of implicit 1-NNs. Then,
we show that the approximation error of η̂k is bounded above by the expected vicinity distance
between an implicit 1-NN and a point to be predicted.

Bounding via the approximation error of η̂k. We construct an upper bound on the excess error of
the k-NN classifier using the approximation error of the estimated regression function η̂k. Define
g(X) = |η(X) − 1

2 |. For a random variable Z (possibly) depending on X and (X,Y), define
Φ(Z) = 2E[g(X)1{Z ≥ g(X)}]. Then, we bound the excess error of ĥk as

E
[
EQ(ĥk)

]
≤ Φ(|η̂k(X)− η(X)|). (4)

Eq (4) indicates that a smaller approximation error results in a smaller excess error.

Implicit 1-NNs and implicit vicinity 1-NNs. Implicit 1-NNs, introduced by Györfi et al. [9], are
a crucial technique for analyzing the k-NN classifier. Given a point X to be predicted, the implicit
1-NNs in the transfer learning setup are the 1-NNs of X within k disjoint batches consisting of sub-
samples of (X,Y)P and (X,Y)Q with sizes ⌊nPk ⌋ and ⌊nQk ⌋, respectively. LetB1, ..., Bk be the sets
of Xi appearing in the ith batch. The ith implicit 1-NN is defined as X∗

i = argminX∗∈Bi ρ(X
∗, X)

for i = 1, ..., k. Implicit 1-NNs behave similarly to k-NNs but are mutually independent, allowing,
e.g., the use of concentration inequalities for independent random variables.

We also leverage the concept of implicit 1-NNs, but we employ the vicinity distance ρV instead of
using the standard distance ρ, which we refer to as implicit vicinity 1-NNs. With the same definition
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of batches B1, ..., Bk, the implicit vicinity 1-NNs are defined as X̃i = argminX∗∈Bi ρV(X
∗, X)

for i = 1, ..., k.

Bounding via ρV . We show an upper bound on the approximation error of η̂k using the vicinity
distance with the implicit vicinity 1-NNs, providing an upper bound on the excess error due to Eq (4).
Theorem 4. Given α ∈ (0, 1] and β > 0, suppose the target distribution Q is STN(α, β) with
constants Cα and Cβ . Then, there exist constant C > 0 and c > 0 (possibly) depending on α and β
such that for all k > 1 and for all t > 0, with probability, taken over the randomness of (X,Y), at
least 1− Ce−ckt

2

,

|η̂k(X)− η(X)| ≤ CαE
[
ραV

(
X̃1, X

)∣∣∣X]+ 1

2
g(X) + t,

almost surely for the randomness of X .

Kpotufe et al. [12] provide a similar bound to Theorem 4, but with the expected distance
CαE[ρα(X∗

1 , X)|X] instead of CαE[ραV(X̃
∗
1 , X)|X] + 1

2g(X). To achieve source sample-size
consistency, the expected distance needs to vanish as the source sample size tends to infinity. How-
ever, under source and target distributions without support containment, the distance ρ(X∗

1 , X) is
larger than a non-zero positive constant. In contrast, the vicinity distance ρV(X̃∗

1 , X) can vanish as it
takes the infimum over the vicinity set.

B.2 Bounding via Dissimilarity Measure

We now derive a high probability upper bound on the distance between the implicit (vicinity) 1-NN
and the point to be predicted. To obtain this upper bound, we utilize a part of the analysis conducted
by Pathak et al. [16].
Theorem 5. Given a distance ρ over X , define ∆(P,Q; r) =

∫
X

1
PX(Bρ(x,r))

Q(dx). Then, for t > 0,

E

[
1

{
min
X∗∈B1

ρ(X∗, X) > t

}]
≤ min

{
∆(P,Q; t)

⌊nP /k⌋
,
∆(Q,Q; t)

⌊nQ/k⌋

}
,

where the expectation is taken over the randomness of (X,Y) and X .

By applying Theorem 5 with ρ = ρV , we obtain a high probability upper bound on ρV
(
X̃∗

1 , X
)

using our dissimilarity measure ∆V . This result is essential for establishing the connection between
the excess error of the k-NN classifier and our dissimilarity measure.

B.3 Sketch Proof of Theorem 3

Theorem 3 is validated by combining Theorem 4, Theorem 5, and Eq (4). For simplicity, we only
prove the case where τ, ψ > α and left the other cases to Appendix C. For a constant ϵ > 0, define
A(ϵ,X) =

∫DX
ϵ

E[1{CαραV
(
X̃∗

1 , X
)

≥ t}|X]dt. Then, CαE
[
ραV(X̃

∗
1 , X)

∣∣∣X] ≤ ϵ + A(ϵ,X).
Hence, from Eq (4) and Theorem 4, there exists a random variable ξ ≥ 0 depending on (X,Y) and
X such that conditioned on X , ξ ≤ t with probability at least 1− Ce−ckt

2

, and

E
[
EQ(ĥk)

]
≤ Φ(2(ϵ+A(ϵ,X) + ξ)). (5)

Under the assumptions of ∆V -transfer- and ∆V -self-exponents, applying Theorem 5 and adopting an
approach similar to Kpotufe et al. [12], we obtain that for some constant C > 0,

E
[
EQ(ĥk)

]
≤ C

(
ϵ1+β +min

{
ϵ−

τ
α+1

⌊nP /k⌋
,
ϵ−

ψ
α+1

⌊nQ/k⌋

}
+ k−

1+β
2

)
, (6)

where the three terms in Eq (6) are bounds for the three terms in Eq (5), respectively. To achieve the

rate in Theorem 2, we set ϵ = cmin{⌊nPk ⌋−
1

β+ τ
α , ⌊nQk ⌋

− 1

β+
ψ
α } for some constant c > 0 and assign

k as specified in the theorem statement.
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C Missing Proofs

C.1 Proof of Proposition 1 and Theorem 3

With the choice of k shown in the statement of Theorem 3, there is a universal constant c > 0 such that
for nP ≥ c and nQ ≥ c, nP ≥ 2k and nQ ≥ 2k. We can verify the upper bound in Theorem 2 holds
when nP < c or nQ < c by adjusting the multiplicative constant, as the upper bound in Theorem 2 is
decreasing in nP and nQ. Therefore, we assume nP ≥ 2k and nQ ≥ 2k in the subsequent analyses.

The most parts of the proofs of Proposition 1 and Theorem 3 are overlapped. As a non-overlapped
part, we first demonstrate that in both cases of Proposition 1 and Theorem 3, we can validate that for
a distance ρ̄, which is either ρV or ρ, there exists a random variable ξ ≥ 0 depending on (X,Y) and
X such that conditioned on X , ξ ≤ t with probability at least 1− e−ckt

2

, and

E
[
EQ(ĥk)

]
≤ E

[
2g(X)1

{
g(X) ≤ C

(
CαE

[
min
X∗∈Bi

ρ̄α(X∗, X)

∣∣∣∣X]+ ξ

)}]
, (7)

where C > 0 is a universal constant.

To prove Eq (7) in the case of Proposition 1, we utilize the result by Kpotufe et al. [12]. Kpotufe
et al. [12] reveal that the approximation error of η̂k can be bounded above by the expected distance
between an implicit 1-NN and X .
Theorem 6 (Kpotufe et al. [12]). Given α ∈ (0, 1] and β > 0, suppose the target distribution Q
is STN(α, β) with constants Cα and Cβ . Then, there exist constants C > 0 and c > 0 (possibly)
depending on α and β such that with probability, taken over the randomness of (X,Y), at least
1− Ce−ckt

2

,

|η̂k(X)− η(X)| ≤ CαE[ρα(X∗
1 , X)|X] + t, (8)

almost surely for the randomness of X .

The expected distance E[ρα(X∗
1 , X)|X] in Eq (8) corresponds to the bias incurred by the k-NN

estimator η̂k.

From Eq (4) and Theorem 4, there exists a random variable ξ ≥ 0 depending on (X,Y) and X such
that conditioned on X , ξ ≤ t with probability at least 1− e−ckt

2

, and

E
[
EQ(ĥk)

]
≤ E

[
2g(X)1

{
1

2
g(X) ≤ CαE

[
ραV

(
X̃∗

1 , X
)∣∣∣X]+ ξ

}]
.

Similarly, from Eq (4) and Theorem 6, there exists a random variable ξ ≥ 0 depending on (X,Y)

and X such that conditioned on X , ξ ≤ t with probability at least 1− e−ckt
2

, and

E
[
EQ(ĥk)

]
≤ E[2g(X)1{g(X) ≤ CαE[ρα(X∗

1 , X)|X] + ξ}].

Consequently, Eq (7) is verified in both cases.

Universal analyses for proving Proposition 1 and Theorem 3. For a constant ϵ > 0, define

A(ϵ,X) =

∫ ∞

ϵ

E

[
1

{
Cα min

X∗∈Bi
ρ̄α(X∗, X) ≥ t

}∣∣∣∣X]dt.
Then, we have

E

[
Cα min

X∗∈Bi
ρ̄(X∗, X)

∣∣∣∣X] = ∫ ∞

0

E

[
1

{
Cα min

X∗∈Bi
ρ̄α(X∗, X) > t

}∣∣∣∣X]dt ≤ ϵ+A(ϵ,X).

Hence,

E
[
EQ(ĥk)

]
≤ E[2g(X)1{g(X) ≤ C(ϵ+A(ϵ,X) + ξ)}]. (9)

For any positive reals a and b1, ..., bm, we have

1

{
a ≤

m∑
i=1

bi

}
≤ 1

{
a ≤ m max

i=1,...,m
bi

}
≤

m∑
i=1

1{a ≤ mbi}. (10)
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Applying Eq (10) to Eq (9) yields

E
[
EQ(ĥk)

]
≤ E[2g(X)1{g(X) ≤ 3Cϵ}]

+E[2g(X)1{g(X) ≤ 3Cξ}] +E[2g(X)1{g(X) ≤ 3CA(ϵ,X)}]. (11)
We will provide upper bounds on the three terms in Eq (11).

First term in Eq (11). From Definition 4, we have

E[2g(X)1{g(X) ≤ 3Cϵ}] ≤ 6CϵQX(g(X) ≤ 3Cϵ) ≤ 2Cβ(3Cϵ)
1+β

. (12)

Second term in Eq (11). We utilize Lemma 4 of Kpotufe et al. [12].
Lemma 1 (Kpotufe et al. [12]). Let Z be a random variable depending on (X,Y) and X such that
for t > 0,

E[1{Z ≥ t}] ≤ Ce−ckt
2

,

for some constants C > 0 and c > 0. Then, we have

E[g(X)1{g(X) ≤ Z}] ≤ 3CCβ

(
1 + β

ck

) 1+β
2

.

Applying Lemma 1 yields

E[g(X)1{g(X) ≤ 3Cξ}] ≤ Ck−
1+β
2 , (13)

for some constant C > 0.

Third term in Eq (11). Let D̄X be the diameter of X with respect to ρ̄. Applying Theorem 5 to
the third term in Eq (11) yields

E[g(X)1{g(X) ≤ 3CA(ϵ,X)}] ≤ 3C

∫ D̄X

ϵ

min

{
∆V(P,Q; (t/Cα)

1/α)

⌊nP /k⌋
,
∆V(Q,Q; (t/Cα)

1/α)

⌊nQ/k⌋

}
dt.

(14)
Under the assumptions of ∆V -transfer-exponent and ∆V -self-exponent, Eq (14) is bounded above by

C

∫ D̄X

ϵ

min

{
t−

τ
α

⌊nP /k⌋
,
t−

ψ
α

⌊nQ/k⌋

}
dt.

We analyze the integration of t−γ for γ > 0, as exchanging the minimum and integral will give an
upper bound. Some elementary calculations give

∫ D̄X

ϵ

t−γdt =


1

1− γ

(
D̄1−γ

X − ϵ1−γ
)

if γ ̸= 1,

ln

(
D̄X

ϵ

)
if γ = 1.

Hence,

∫ D̄X

ϵ

t−γdt ≤


C

(
D̄X

ϵ

)γ−1

if γ > 1,

log

(
D̄X

ϵ

)
if γ = 1,

C if γ < 1.

for some constant C > 0. Consequentially, letting

uγ(x) =


x−(γ−1) if γ > 1,

log(1/x) if γ = 1,

1 if γ < 1,

,

for x > 0, Eq (14) is bounded above by

Cmin

u τα
(

ϵ
D̄X

)
⌊nP /k⌋

,
uψ
α

(
ϵ
D̄X

)
⌊nQ/k⌋

. (15)
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Rest of the proof. By combining Eqs (12), (13) and (15), we have

E
[
EQ(ĥk)

]
≤ C

ϵ1+β + k−
1+β
2 +min

u τα
(

ϵ
D̄X

)
⌊nP /k⌋

,
uψ
α

(
ϵ
D̄X

)
⌊nQ/k⌋


.

We can obtain the desired rate in Theorem 2 by setting

ϵ

D̄X
= cmin

{⌊nP
k

⌋− 1

β+max{1, τ
α} ,

⌊nQ
k

⌋− 1

β+max{1,
ψ
α}
}
,

for some constant c > 0 so that ϵ ≤ D̄X and assigning k as shown in the statement. Note that with k
shown in the statement, we have

max

{
n

2
2+β+max{1, τ

α
}

P , n

2

2+β+max{1, ψ
α

}

Q

}
≤ k ≤ 2max

{
n

2
2+β+max{1, τ

α
}

P , n

2

2+β+max{1, ψ
α

}

Q

}
. (16)

Assume τ ̸= α and ψ ̸= α. Then, assigning ϵ yields

E
[
EQ(ĥk)

]
≤ C

(
min

{⌊nP
k

⌋− 1+β

β+max{1, τ
α} ,

⌊nQ
k

⌋− 1+β

β+max{1,
ψ
α}
}

+ k−
1+β
2

+min

{⌊nP
k

⌋− 1+β

β+max{1, τ
α} ,

⌊nQ
k

⌋− 1+β

β+max{1,
ψ
α}
})

, (17)

where we use min{min{aα1 , bβ1}/aα2 ,min{aα1 , bβ1}/bβ2} ≤ min{aα1−α2 , bβ1−β2} for
a, b, α1, α2, β1, β2 > 0 to obtain the third term. From Eq (16) and the assumption of nP ≥ 2k and
nQ ≥ 2k, we have ⌊nP

k

⌋
≥cn

β+max{1, τ
α

}
2+β+max{1, τ

α
}

P

⌊nQ
k

⌋
≥cn

β+max{1, ψ
α

}

2+β+max{1, ψ
α

}

Q ,

for some constant c > 0. Substituting this and Eq (16) into Eq (17) yields the claim.

C.2 Proof of Proposition 2

Proof of Proposition 2. By definitions, for all P , Q, and r > 0,

∆V(P,Q; r) ≤ ∆PMW(P,Q; r),

which verifies the statement about the relationship between ∆V and ∆PMW. Also, by definitions, for
all Q and r > 0,

∆PMW(Q,Q; r) ≤ ∆DM(Q,Q; r),

by which we can verify the relationship between ψ∆PMW
and ψ∆DM

.

Consider a cover of XQ with N (XQ, ρ, r) balls of radius r
2 whose centers are x1, ..., xN (XQ,ρ, r2 ).

Then, we have

∆PMW(Q,Q; r) ≤
∑
i

∫
B(xi,

r
2 )

1

QX(B(x, r))
QX(dx)

≤
∑
i

∫
B(xi,

r
2 )

1

QX(B(xi,
r
2 ))

QX(dx)

≤N
(
XQ, ρ,

r

2

)
,

which yields ψ∆PMW
≤ ψ∆BCN

.
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Lastly, we prove the inequality τ∆PMW ≤ τ∆KM +min{ψ∆DM , ψ∆BCN}. Suppose ∆KM(P,Q; r) ≤
Cr−τ . Then, we have

∆PMW(Q,Q; r) =

∫
1

PX(B(x, r))
QX(dx)

≤Cr−τ
∫

1

QX(B(x, r))
QX(dx) = Cr−τ∆PMW(Q,Q; r),

which gives the desired inequality.

C.3 Proof of Theorem 4

Proof of Theorem 4. From the α-Hölder continuity assumption, we have, conditioned on X ,

|η̂(X)− η(X)| =

∣∣∣∣∣1k
k∑
i=1

Y(i) − η(X)

∣∣∣∣∣
≤

∣∣∣∣∣1k
k∑
i=1

(
Y(i) − η(X(i))

)∣∣∣∣∣+
∣∣∣∣∣1k

k∑
i=1

η(X(i))− η(X)

∣∣∣∣∣
≤

∣∣∣∣∣1k
k∑
i=1

(
Y(i) − η(X(i))

)∣∣∣∣∣+ Cα
k

k∑
i=1

ρα
(
X(i), X

)
. (18)

Applying the Hoeffding inequality into the first term in Eq (18) with conditioned on X1, ..., XnP+nQ

yields that the first term in Eq (18) is bounded above by t
2 with probability at least 1− 2e−kt

2/2.

Let us focus on the second term in Eq (18). For any distinct indices j1, ..., jk ∈ {1, ..., nP + nQ},
we have

1

k

k∑
i=1

ρα
(
X(i), X

)
≤ 1

k

k∑
i=1

ρα(Xji , X),

as X(1), ..., X(k) are the k-NNs of X . We set these indices as the indices of k-NNs in terms of the
vicinity distance ρV . Letting X̃(1), ..., X̃(k) be such k-NNs, we have

1

k

k∑
i=1

ρα
(
X(i), X

)
≤ 1

k

k∑
i=1

ρα
(
X̃(i), X

)
. (19)

In the same manner, Eq (19) is bounded above by the average distance of the implicit vicinity 1-NNs,
i.e.,

1

k

k∑
i=1

ρα
(
X̃(i), X

)
≤ 1

k

k∑
i=1

ρα
(
X̃∗
i , X

)
.

From the triangle inequality and the definition of the vicinity set in Eq (3), for any points X ′
i ∈ V(X),

we have

1

k

k∑
i=1

ρα
(
X̃∗
i , X

)
≤1

k

k∑
i=1

(
ρα
(
X̃∗
i , X

′
i

)
+ ρ(X ′

i, X)
)

≤1

k

k∑
i=1

(
ρα
(
X̃∗
i , X

′
i

)
+

1

2
g(X)

)
.

By the definition of the infimum, for any ϵ > 0, there exist X ′
i such that

1

k

k∑
i=1

(
ρα
(
X̃∗
i , X

′
i

)
+

1

2
g(X)

)
≤1

k

k∑
i=1

ραV

(
X̃∗
i , X

)
+ ϵ+

1

2
g(X).
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From the arbitrariness of ϵ > 0, we have

1

k

k∑
i=1

ρα
(
X̃∗
i , X

)
≤1

k

k∑
i=1

ραV

(
X̃∗
i , X

)
+

1

2
g(X). (20)

We now apply the Hoeffding inequality into the first term of Eq (20). Then, the first term of Eq (20)
is bounded above as

Cα
k

k∑
i=1

ραV

(
X̃∗
i , X

)
≤ CαE[ρα(X∗

1 , X)|X] +
t

2
, (21)

with probability at least 1 − 2e−kt
2/2CαDXα . The claim is verified by combining Eqs (18), (20)

and (21) and the union bound.

C.4 Proof of Theorem 5

Proof of Theorem 5. Remark that B1 contains the subsamples from (X,Y)P with the size ⌊nP /k⌋
and (X,Y)Q with the size ⌊nQ/k⌋. By the mutual independence among X1, ..., XnP+nQ , we have

E

[
1

{
min
X∗∈B1

ρ(X∗, X) > t

}
|X
]

=E[1{∀X∗ ∈ B1, ρ(X
∗, X) > t}|X]

=
∏

X∗∈B1

E[1{ρ(X∗, X) > t}|X]

=(1− PX(B(X, t)))⌊
nP
k ⌋(1−QX(B(X, t)))⌊

nQ
k ⌋

≤
(⌊nP

k

⌋
PX(B(X, t)) +

⌊nQ
k

⌋
QX(B(X, t))

)−1

,

where the last inequality follows from (1 − p)n(1 − q)m ≤ exp(−(np +mq)) ≤ (np +mq)−1.
Taking the expectation over X yields

E

[
1

{
min
X∗∈B1

ρ(X∗, X) > t

}]
≤E

[(⌊nP
k

⌋
PX(B(X, t)) +

⌊nQ
k

⌋
QX(B(X, t))

)−1
]

≤E

[
min

{
1

⌊nP /k⌋PX(B(X, t))
,

1

⌊nQ/k⌋QX(B(X, t))

}]
≤min

{
E

[
1

⌊nP /k⌋PX(B(X, t))

]
,E

[
1

⌊nQ/k⌋QX(B(X, t))

]}
,

which concludes the claim.

D Experiment Details

Detailed setup. We investigated the relationship between the source sample size nP and the excess
error for k-NN classifiers using our parameter settings and those of Pathak et al. [16]. The training
dataset was constructed by combining a sample from P with size nP and a sample from Q with
size nQ. We varied nP as nP ∈ {28, 29, ..., 218} while fixing nQ = 10. The test dataset, denoted as
(X ′

1, Y
′
1), ..., (X

′
m, Y

′
m), was sampled from Q with size m = 5000. The empirical excess error was

calculated using the following formula:

Etest,Q(ĥk) =
1

m

m∑
i=1

2g(X ′
i)1
{
ĥk(X

′
i) ̸= h(X ′

i)
}
.

We explored different parameter settings for α and τ , with α ∈ { 1
2 ,

1
4} and τ ∈ {1, 2}. For each

parameter combination, we reported the average, first quartile, and third quartile of the excess error
over 10 runs.
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Computational environment. All experiments were conducted on a machine equipped with an
Intel Core i7-1065G7 CPU @ 1.30GHz, 16GB RAM. The implementation was done using Python
3.8.10 and the scikit-learn library (version 0.0.post11) for the k-NN classifier.

Remark on results. For the guidelines representing the upper bounds shown in Figure 1, we
adjusted the multiplicative constant of the lines so that the point at nP = 28 matches the experimental
result of the corresponding k-NN at nP = 28. This adjustment helps to provide a clear visual
comparison between the theoretical upper bounds and the empirical results.

E Detailed Related Work

Theoretical works for covariate-shift typically provide upper bounds on the generalization error,
which is the difference between the empirical average and expected losses. These works establish
a connection between some divergence measure of the source and target distributions and the
generalization error. For instance, Ben-David et al. [3]’s analyses yield a generalization error bound
that includes the H∆H-divergence, a measure of the discrepancy between the source and target
distributions. Similarly, Park et al. [15] introduce the source-discrimination error, which can be
interpreted as a divergence between the source and target distributions, and provide a generalization
error bound that incorporates this term. Aminian et al. [1] employ the Kullback-Leibler (KL)
divergence between the source and target distributions to derive a generalization error bound under
covariate-shift. Their techniques are applicable to a broader range of situations, as they do not make
any assumptions about the source and target distributions. However, their approach may not be
capable of confirming the consistency of the source sample size because their divergence measures
remain positive even as the source sample size approaches infinity.

Several researchers leverage the likelihood ratio between the source and target distributions to derive
upper bounds on the excess error under the covariate-shift setup [6, 11, 13]. Their techniques can
confirm the source sample-size consistency of their algorithms, but under the assumption that the
learner has access to the likelihood ratio function. However, in real-world scenarios, the likelihood
ratio function needs to be estimated using the training sample, which may introduce an estimation
error. It is not certain that their methods exhibit the source sample-size consistency when employing
the empirical estimation of the likelihood ratio.

Several techniques can confirm the existence of the source sample-size consistent algorithm [7, 12,
16]. We explored the comparison between our results and those obtained by Kpotufe et al. [12] and
Pathak et al. [16] in Section 3 and demonstrated that our analysis always gives an upper bound with
faster or competitive rates in Proposition 2. Galbraith et al. [7] introduced an ”average” discrepancy to
more tightly capture the behavior of the excess error under covariate-shift in classification. However,
their technique does not account for the vicinity information and has the same limitations as the
techniques by Kpotufe et al. [12] and Pathak et al. [16], such as the inability to confirm the existence
of the source sample-size consistent algorithm under support non-containment situations.
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NeurIPS Paper Checklist

1. Claims
Question: Do the main claims made in the abstract and introduction accurately reflect the paper’s
contributions and scope?
Answer: [Yes]
Justification: The main contributions of the paper are clearly stated and discussed in both the
abstract and introduction.
Guidelines:
• The answer NA means that the abstract and introduction do not include the claims made in the

paper.
• The abstract and/or introduction should clearly state the claims made, including the contributions

made in the paper and important assumptions and limitations. A No or NA answer to this
question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how much the
results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals are not
attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]
Justification: Section 5
Guidelines:
• The answer NA means that the paper has no limitation while the answer No means that the

paper has limitations, but those are not discussed in the paper.
• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to violations of

these assumptions (e.g., independence assumptions, noiseless settings, model well-specification,
asymptotic approximations only holding locally). The authors should reflect on how these
assumptions might be violated in practice and what the implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was only tested
on a few datasets or with a few runs. In general, empirical results often depend on implicit
assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach. For
example, a facial recognition algorithm may perform poorly when image resolution is low or
images are taken in low lighting. Or a speech-to-text system might not be used reliably to
provide closed captions for online lectures because it fails to handle technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms and how
they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to address
problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by reviewers
as grounds for rejection, a worse outcome might be that reviewers discover limitations that
aren’t acknowledged in the paper. The authors should use their best judgment and recognize
that individual actions in favor of transparency play an important role in developing norms that
preserve the integrity of the community. Reviewers will be specifically instructed to not penalize
honesty concerning limitations.

3. Theory Assumptions and Proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and a
complete (and correct) proof?
Answer: [Yes]
Justification: All the assumptions are presented in the statement of each theorem, and the proofs
are provided in Appendix C.
Guidelines:
• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
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• The proofs can either appear in the main paper or the supplemental material, but if they appear
in the supplemental material, the authors are encouraged to provide a short proof sketch to
provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented by
formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.
4. Experimental Result Reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main experi-
mental results of the paper to the extent that it affects the main claims and/or conclusions of the
paper (regardless of whether the code and data are provided or not)?
Answer: [Yes]
Justification: The paper provides detailed information about the experimental setup, datasets, and
methodology in Appendix D.
Guidelines:
• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived well by the

reviewers: Making the paper reproducible is important, regardless of whether the code and data
are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken to make
their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways. For
example, if the contribution is a novel architecture, describing the architecture fully might
suffice, or if the contribution is a specific model and empirical evaluation, it may be necessary
to either make it possible for others to replicate the model with the same dataset, or provide
access to the model. In general. releasing code and data is often one good way to accomplish
this, but reproducibility can also be provided via detailed instructions for how to replicate the
results, access to a hosted model (e.g., in the case of a large language model), releasing of a
model checkpoint, or other means that are appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submissions
to provide some reasonable avenue for reproducibility, which may depend on the nature of the
contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how to

reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe the

architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should either

be a way to access this model for reproducing the results or a way to reproduce the model
(e.g., with an open-source dataset or instructions for how to construct the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case authors are
welcome to describe the particular way they provide for reproducibility. In the case of
closed-source models, it may be that access to the model is limited in some way (e.g.,
to registered users), but it should be possible for other researchers to have some path to
reproducing or verifying the results.

5. Open access to data and code
Question: Does the paper provide open access to the data and code, with sufficient instructions to
faithfully reproduce the main experimental results, as described in supplemental material?
Answer: [Yes]
Justification: We only use the synthetic data. The code will also be provided as supplementary
materials.
Guidelines:
• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/public/
guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be possible,
so “No” is an acceptable answer. Papers cannot be rejected simply for not including code, unless
this is central to the contribution (e.g., for a new open-source benchmark).

• The instructions should contain the exact command and environment needed to run to reproduce
the results. See the NeurIPS code and data submission guidelines (https://nips.cc/public/
guides/CodeSubmissionPolicy) for more details.

18

https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy


• The authors should provide instructions on data access and preparation, including how to access
the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new proposed
method and baselines. If only a subset of experiments are reproducible, they should state which
ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized versions (if
applicable).

• Providing as much information as possible in supplemental material (appended to the paper) is
recommended, but including URLs to data and code is permitted.

6. Experimental Setting/Details
Question: Does the paper specify all the training and test details (e.g., data splits, hyperparameters,
how they were chosen, type of optimizer, etc.) necessary to understand the results?
Answer: [Yes]
Justification: Appendix D
Guidelines:
• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail that is

necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental material.

7. Experiment Statistical Significance
Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?
Answer: [Yes]
Justification: Figure 1
Guidelines:
• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confidence

intervals, or statistical significance tests, at least for the experiments that support the main claims
of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for example,
train/test split, initialization, random drawing of some parameter, or overall run with given
experimental conditions).

• The method for calculating the error bars should be explained (closed form formula, call to a
library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error of the

mean.
• It is OK to report 1-sigma error bars, but one should state it. The authors should preferably

report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis of Normality of
errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or figures
symmetric error bars that would yield results that are out of range (e.g. negative error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how they were
calculated and reference the corresponding figures or tables in the text.

8. Experiments Compute Resources
Question: For each experiment, does the paper provide sufficient information on the computer
resources (type of compute workers, memory, time of execution) needed to reproduce the experi-
ments?
Answer: [Yes]
Justification: Appendix D
Guidelines:
• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster, or cloud

provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual experimental

runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute than the

experiments reported in the paper (e.g., preliminary or failed experiments that didn’t make it
into the paper).
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9. Code Of Ethics
Question: Does the research conducted in the paper conform, in every respect, with the NeurIPS
Code of Ethics https://neurips.cc/public/EthicsGuidelines?
Answer: [Yes]
Justification:
Guidelines:
• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a deviation

from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consideration due

to laws or regulations in their jurisdiction).
10. Broader Impacts

Question: Does the paper discuss both potential positive societal impacts and negative societal
impacts of the work performed?
Answer: [Yes]
Justification: Section 5
Guidelines:
• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal impact or

why the paper does not address societal impact.
• Examples of negative societal impacts include potential malicious or unintended uses (e.g.,

disinformation, generating fake profiles, surveillance), fairness considerations (e.g., deploy-
ment of technologies that could make decisions that unfairly impact specific groups), privacy
considerations, and security considerations.

• The conference expects that many papers will be foundational research and not tied to par-
ticular applications, let alone deployments. However, if there is a direct path to any negative
applications, the authors should point it out. For example, it is legitimate to point out that
an improvement in the quality of generative models could be used to generate deepfakes for
disinformation. On the other hand, it is not needed to point out that a generic algorithm for
optimizing neural networks could enable people to train models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is being used
as intended and functioning correctly, harms that could arise when the technology is being used
as intended but gives incorrect results, and harms following from (intentional or unintentional)
misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation strategies
(e.g., gated release of models, providing defenses in addition to attacks, mechanisms for
monitoring misuse, mechanisms to monitor how a system learns from feedback over time,
improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible release of
data or models that have a high risk for misuse (e.g., pretrained language models, image generators,
or scraped datasets)?
Answer: [NA]
Justification:
Guidelines:
• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with necessary

safeguards to allow for controlled use of the model, for example by requiring that users adhere
to usage guidelines or restrictions to access the model or implementing safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors should
describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do not require
this, but we encourage authors to take this into account and make a best faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in the
paper, properly credited and are the license and terms of use explicitly mentioned and properly
respected?
Answer: [NA]
Justification:
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Guidelines:
• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of service of

that source should be provided.
• If assets are released, the license, copyright information, and terms of use in the package should

be provided. For popular datasets, paperswithcode.com/datasets has curated licenses for
some datasets. Their licensing guide can help determine the license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of the derived
asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to the asset’s
creators.

13. New Assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?
Answer: [NA]
Justification:
Guidelines:
• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their sub-

missions via structured templates. This includes details about training, license, limitations,
etc.

• The paper should discuss whether and how consent was obtained from people whose asset is
used.

• At submission time, remember to anonymize your assets (if applicable). You can either create
an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and Research with Human Subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as well as
details about compensation (if any)?
Answer: [NA]
Justification:
Guidelines:
• The answer NA means that the paper does not involve crowdsourcing nor research with human

subjects.
• Including this information in the supplemental material is fine, but if the main contribution of

the paper involves human subjects, then as much detail as possible should be included in the
main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation, or other
labor should be paid at least the minimum wage in the country of the data collector.

15. Institutional Review Board (IRB) Approvals or Equivalent for Research with Human Sub-
jects
Question: Does the paper describe potential risks incurred by study participants, whether such
risks were disclosed to the subjects, and whether Institutional Review Board (IRB) approvals
(or an equivalent approval/review based on the requirements of your country or institution) were
obtained?
Answer: [NA]
Justification:
Guidelines:
• The answer NA means that the paper does not involve crowdsourcing nor research with human

subjects.
• Depending on the country in which research is conducted, IRB approval (or equivalent) may be

required for any human subjects research. If you obtained IRB approval, you should clearly
state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions and
locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the guidelines for
their institution.
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• For initial submissions, do not include any information that would break anonymity (if applica-
ble), such as the institution conducting the review.
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