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Abstract

Large language models (LLMs) have achieved remarkable results across diverse
downstream tasks, but their monolithic nature restricts scalability and efficiency
in complex problem-solving. While recent research explores multi-agent collab-
oration among LLMs, most approaches rely on static organizational structures
that struggle to adapt as task complexity and agent numbers grow, resulting in
coordination overhead and inefficiencies. To this end, we propose a puppeteer-style
paradigm for LLM-based multi-agent collaboration, where a centralized orchestra-
tor ("puppeteer") dynamically directs agents ("puppets") in response to evolving
task states. This orchestrator is trained via reinforcement learning to adaptively
sequence and prioritize agents, enabling flexible and evolvable collective reasoning.
Experiments on closed- and open-domain scenarios show that this method achieves
superior performance with reduced computational costs. Analyses further reveal
that the key improvements consistently stem from the emergence of more compact,
cyclic reasoning structures under the orchestrator’s evolution. Our code is available
athttps://github.com/OpenBMB/ChatDev/tree/puppeteer.
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Figure 1: Overview of the proposed multi-agent collaboration framework. A central policy ("pup-
peteer") dynamically orchestrates which agent ("puppet") should reason at each step based on the
evolving state of the task. As the task progresses, the orchestrator adaptively promotes more effective
agents while removing those that are less useful, analogous to a puppeteer learning to skillfully pull
or cut strings to direct a performance.
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1 Introduction

Large language models (LLMs) [69, 48, 28] have achieved remarkable advances across diverse natural
language processing tasks, demonstrating strong capabilities in planning [62, |57, 146]], reasoning [70}
53, 133]], and decision-making [31, 164, [1]. As the ambition to tackle ever more complex, multi-
faceted problems—such as tool-augmented inference [47} 51} 186, 155] and collaborative problem-
solving [42] 29/ [12] in open environments—continues to grow, the limitations of monolithic LLMs
are becoming increasingly apparent 71} 8} 9.

To address these challenges, recent research has drawn inspiration from human teamwork, exploring
multi-agent systems (MAS) comprising diverse LLM-based agents with specialized skills [45] 52],
personalized reasoning patterns [70, [76} 43], and external tool integrations [85}47]. However, many
existing approaches rely on predefined or statically generated agent topologies [61, 44] that lack
flexibility and scalability. This rigidity often leads to increased coordination overhead, degraded
system performance, and inefficiencies as the variety of tasks [81 23|] and the number of agents
scale [45]]. Especially in large-scale scenarios, the absence of principled and dynamic coordination
can further result in redundant computation [[77], ineffective communication [13]], and diminished
collective problem-solving effectiveness [6]

Can dynamicﬂ orchestration simultaneously maximize collaborative effectiveness and computational
efficiency? Answering this question is crucial for building scalable, robust, and practical collective
intelligence suitable for complex real-world settings. To this end, we propose a novel paradigm
for constructing flexible and continually evolving multi-agent system. Drawing inspiration from
puppet shows—where a central puppeteer skillfully directs multiple puppets behind the scenes—we
reconceptualize multi-agent collaboration as a reasoning process orchestrated by a centralized
puppeteer who dynamically selects and sequences agent activations based on evolving task states,
implicitly coordinating collaboration within the group. As tasks progress, the orchestrator learns
to prioritize effective agents and suppress less efficient ones, continually driving the system toward
higher overall performance and efficiency.

Specifically, our framework advances multi-agent reasoning by introducing two key innovations:
(i) Dynamic Orchestration: Moving beyond static collaboration patterns, we employ a dynamic
orchestrator that routing agents at each step based on the current contexts. This process is formulated
as a sequential decision problem, effectively yielding an implicit inference graph and supporting
flexible, scalable agent coordination. (ii) Adaptive Evolution: To maximize efficiency and minimize
redundancy, we employ reinforcement learning to continuously update the orchestrator’s policy by
leveraging feedback from completed tasks. Over time, the orchestrator learns to emphasize strong
agent trajectories and prune less effective ones, enabling the system to evolve toward greater efficiency
progressively.

Empirical results on both closed- and open-domain scenarios demonstrate that our approach consis-
tently yields more effective solutions while requiring less computational overhead. Analyses further
reveal that, although the evolved topologies are not fixed across different tasks, the key improvements
consistently stem from the emergence of more compact, cyclic reasoning structures.

2 Method

We propose a unified framework for multi-agent reasoning that organizes diverse LLM-based agents
via orchestrating their collaboration dynamically using a centralized policy, and continually optimizes
their collaboration process through reinforcement learning.

A LLM-based agent can be abstracted in its minimal form as a = (m, r,t), where m denotes the
foundation model, r represents the reasoning pattern or prompting strategy, and ¢ is the set of available
external tools. The agent space .4 enumerates all possible agents formed by combinations of these
components, i.e., A = {(m, r,t)}, encompassing both intrinsic and tool-augmented reasoning. Each
agent thus represents an atomic reasoning behavior participating in task solving.

'For example, mesh-structured multi-agent systems with 50 nodes can require up to 10 hours to develop
software comprising only a few hundred lines of code.
2This paper refers to the dynamic organizational structure during real-time reasoning.



For multi-agent collaboration, following [45]], a MAS is naturally formalized as a directed graph
G = (V,€&), where each node v € V corresponds to an agent a € A, and each directed edge
(vi,v;) € € encodes a dependency or information flow, conveying intermediate context from agent
a; to agent a;. Typically, this graph presents a single-source, single-sink configuration: the source
node represents the input task, while the sink node yields the unified task output (i.e., artifact). This
formalism underlies a unified and temporal modeling framework for LLM-based reasoning systems
and is analogous to a "graph-of-thought" [2]] that captures the deep thinking process.

2.1 Dynamic Orchestration

Centralized Puppeteer A challenge in multi-agent reasoning is achieving efficient orchestration
as task complexity and agent diversity increase. In previous approaches, each agent autonomously
selects collaborators, but this incurs coordination overhead and poor scalability, particularly as agents
increase or change [87,45]). Instead, inspired by centralized coordination (e.g., a puppeteer managing
multiple puppets), we model the system as driven by a centralized orchestrator. This orchestrator
dynamically selects which agents to activate in each step, based on the dynamic task state, and
delegates reasoning to the selected agents. Such centralization decouples agent selection from internal
agent behaviors, greatly enhancing adaptability and scalability without extensive parameter retraining.

Serialized Orchestration Another challenge stems from the combinatorially large space of possible
collaboration topologies among agents. Exhaustive search is infeasible, thus prior work focuses
only on canonical graphs (e.g., chains, trees, graphs) [76, (70, [2]. Instead, we propose to serialize the
collaborative reasoning process: rather than searching the entire topological space, the orchestrator
"unfolds" the graph into a reasoning sequence guided by a topological traversal strategy. By main-
taining a topological ordering, the reasoning steps follow the partial order implied by the problem
dependencies. It is important to note that although the orchestration of agents appears to be serialized
and "unfolded", when this episode is restored through folding, it can be reconstructed as a directed
graph (with agents as nodes and orchestration partial order relations as edges).

Building on the two concepts above, we formalize the multi-agent collaboration as a sequential
decision process governed by a centralized policy m. At each time step ¢, the orchestrator selects
a single agent a; € A to activate, conditioned on the current global system state S; and the task
specification 7. The global state S; consists of all relevant agent states and aggregated contextual
information up to step ¢:

ay ~ W(St,’r) = IP’(a | St,T) (1)
where the policy 7 is a function mapping the observable context—such as the current state and task
description—to a distribution over candidate agents [[73}[74] (e.g., via neural scoring, embedding-
based models, or Bradley-Terry style approaches [68]]).

Upon activation, agent a; receives its state s;(a;) (extracted from S;) and generates its output by a
generative reasoning mapping f,,, after which the system state is updated (P) as:

or = fa,(5t(ar),Se), Siy1 = P(Si, 01) 2

The process continues iteratively: at each step, the orchestrator observes the updated system state
St+1 and selects the next agent a1 to activate, again using the policy 7 conditioned only on S} 1
and 7. This sequential agent selection process explicitly satisfies the Markov property [17]:

P(ags1 | So, .o Se41,7) = Plagsr | Segr,7) (3

The process terminates when a stopping criterion is met (e.g., when the selected agent is a designated
terminator or when the task-solving resource is exhausted). At that point, a final aggregation function
F’,¢s combines all agent outputs across timesteps to yield the overall solution:

*

0" = Fagg({00,01,...,07}) = ®(St,07) 4)

where T denotes the total number of reasoning steps.

2.2 Adaptive Evolution

While dynamic orchestration enables flexible agents’ long-chain reasoning, naive implementations
may invoke redundant or unhelpful agents, resulting in unacceptable inefficiency. To address this,



thanks to the Markov property, a learnable policy is considered for continuously learning to make
agent selection decisions adaptively. After each reasoning episode, the system receives feedback
jointly evaluating solution quality and resource consumption, enabling the policy to learn which agent
is most valuable based on real-time task states.

Practically, this facilitates dynamic pruning of agents: the orchestration process adapts to increasingly
favor compact reasoning chains by reducing reliance on agents that offer little incremental gain or
incur excessive cost. Over time, the orchestrator policy evolves to organize more effective agent
sequences, balancing expressive collaboration with computational efficiency. Thus, the evolvable
puppeteer not only orchestrates agent collaboration, but also distills the reasoning process to its most
essential components, enabling robust and scalable performance.

Policy Optimization To systematically optimize both the effectiveness and efficiency of collabo-
ration, we employ REINFORCE [60]], a reinforcement learning (RL) technique, as our underlying
optimization framework [40, 31,173} 54]. By doing so, the orchestration policy learns from previous
executions, adaptively refining agent selection and pruning strategies to achieve more robust and
cost-efficient multi-agent reasoning.

Concretely, the optimization objective is to maximize the expected return over complete reasoning
trajectories, where the return reflects both overall effectiveness and inference efficiency:

N /T
1
J(0) = Er, [R(7)], VeJ(0) = v ; (t_zl Vo 10gﬂe(at|5t)> - R(1) ®)]
with R(7) denoting the total reward accrued for trajectory 7 = {Sy, ag, 00, S1, - . ., ST, ar,or}, and

o; the output generated by agent a; at state S;, NV is the sample size, and 7T is the total number of
steps in one trajectory. The orchestrator’s parameters 6 are updated iteratively via gradient ascent:
0 + 0 + aVyJ (), with learning rate . Through such RL-driven optimization, the orchestrator
leverages accumulated cross-task experience to refine agent selection, dynamically suppressing
unhelpful or costly agents and converging toward more compact, high-performing collaboration
structures.

Reward Design To effectively guide the orchestrator’s optimization, we design a reward function
that jointly accounts for both solution quality and computational efficiency. Upon completion of
each task trajectory, a terminal reward r is assigned: for tasks with ground-truth answers, r € {0,1}
indicates correctness; for open-ended tasks, r € [0, 1] quantifies answer quality. The overall reward
is defined recursively over time steps [39]. At the terminal state (¢ = T'), the cumulative reward
incorporates both solution quality and total computational cost:

r—A-Cp, ift="T t
Rt_{’y-Rt_,'_l—)\-Ct, 1ft<T’ Ct—F log(l“r@) (6)
where A controls the trade-off between accuracy and efficiency, v € (0, 1] is the discount factor. To
encourage economical reasoning, we penalize excessive computational expenditure. Specifically, for
each reasoning step ¢, we define a step-wise cost C; based on FLOPs or token-level metrics [S0],
denoted by F, and a step factor normalized by the maximum step budget ¢, i.e., /. This composite
reward formulation incentivizes the orchestrator to achieve correct and high-quality solutions while
minimizing unnecessary computation, ultimately driving the MAS to discover reasoning structures
that are both effective and cost-efficient.

3 Experiments

Datasets and Metrics To thoroughly assess our framework, we use a range of publicly available
and logically demanding datasets covering both closed- and open-domain reasoning tasks:

e Closed-domain Tasks: These tasks require precise, objective reasoning and unambiguous answers,
making them well-suited for evaluating core inference accuracy and mathematical rigor. GSM-
Hard| 18] features arithmetic problems involving unusually large numbers and complex multi-step
calculations, challenging models’ advanced mathematical reasoning and error-free execution.
MMLU-Prol6]]] is a comprehensive benchmark spanning diverse subjects and difficulty levels,



using multiple-choice questions to assess both factual knowledge and logical deduction. Both
benchmarks are designed to assess the model’s ability in mathematical and commonsense reasoning
and inference, with accuracy as the evaluation metric.

e Open-domain Tasks: These tasks are inherently creative and open-ended, requiring multi-
dimensional qualitative evaluation. They rigorously assess agents’ ability to integrate information,
understand context, and generate novel solutions. SRDD[44]] consists of real-world textual software
requirements and tasks agents with building the corresponding software, demanding proficiency in
requirement comprehension, system/design reasoning, code generation, and testing. Its official
evaluation metric combines completeness, executability, and consistency [44], reflecting the practi-
cal demands of real-world software development workflows. CommonGen-Hard[39] challenges
agents to generate coherent sentences that connect seemingly unrelated concepts, highlighting their
abilities in commonsense reasoning, contextual understanding, and creative expression. Evaluation
is based on an aggregate metric that incorporates grammar, relevance, logical consistency[32]], as
well as concept coverage [39], providing a nuanced assessment of generative quality.

Baselines To mitigate performance interference—where strong models may overshadow the con-
tributions of weaker ones—and to evaluate our method’s adaptability across agents with varying
capacities, we partition the agent pool based on the parameter scale of the underlying models. Specif-
ically, we define a Mimas subspace (smaller models: Qwen-2.5-7B, Qwen-2.5-14B, LLaMA-3.1-8B,
LLaMA-3.2-3B, Mistral-7B, Mistral-Nemo-12B) and a Titan subspace (larger models: GPT-4-Turbo,
GPT-40-Mini, Gemini-1.5-Pro, Gemini-1.5-Flash, Claude-3-Sonnet, Claude-3-Haiku, Qwen-2.5-72B,
LLaMA-3.1-405B), covering both closed- and open-source families. All experiments are performed
under both the Titan and Mimas subspace settings. To ensure the rigor and credibility of our experi-
mental study, we select a suite of representative and recent baselines that comprehensively span the
spectrum from straightforward LLM generation to advanced agentic paradigms:

o Pure Models: This category evaluates foundation models in the absence of explicit agent struc-
turing or workflow orchestration, serving as a baseline for generative inference performance.
For Mimas, competitive open-source models include LLaMA-3.1-8B, Mistral-Nemo-12B, and
Qwen—2.5-]4B For Titan, options such as LLaMA-3.1-405B, GPT-40-mini, and GPT-4-turbo are
considered.

o Single-Agent Methods: This category explores paradigms where reasoning is performed by a
single agent using a specific reasoning pattern or workflow. Self-refine[39] exemplifies iterative,
self-corrective reasoning within a feedback loop, whereas AFlow[81]] enhances agent reasoning
efficiency by utilizing Monte Carlo Tree Search to optimize code-represented agent workflows.

o Multi-Agent Methods: We benchmark against the latest multi-agent reasoning systems, show-
casing state-of-the-art capabilities in leveraging agent heterogeneity and dynamic collaboration.
MacNet [435]] orchestrates agents within topologically static directed acyclic graphs, facilitating
collective intelligence driven by one foundation model to enhance reasoning performance. EvoA-
gent [[18]] adopts evolutionary algorithms to automatically generate and optimize diverse multi-agent
systems, adaptively improving collaboration and performance without manual intervention.

Implementation Details Different agents are equipped with distinct reasoning patterns—such
as task decomposition, reflection, refinement, critique, modification, summarization, and termina-
tion—enabling flexible problem-solving [43| 21,182} 39]. External tools like WebViewer, WikiSearch,
BingSearch, arXivSearch, Code Interpreter, and File Reader are also integrated [47]. Dynamic
collaboration uses majority voting for output aggregation. The policy is initialized with a variant of
Llama—3.1ﬂ using default settings: episode length to 4, parallel exploration up to 3, A = 0.1, and
~v = 0.99. All baselines are rerun under identical settings.

3.1 Does Our Method Lead To Elevated Performance?

Many prior studies on multi-agent systems have employed the same base model to drive agent
behavior [44} 36| [87]. To enable a more meaningful comparison and account for model heterogeneity,
our method, referred to as Puppeteer, introduces two distinct configurations within each agent

3Other smaller-scale models in the same series (e.g., Qwen-2.0-7B) have also been experimentally validated,
and their performance is generally weaker than that of the larger-scale model within the same series.
4https ://huggingface.co/nvidia/Llama-3.1-Nemotron-70B-Reward-HF
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subspace: the Mono setting, wherein all agents are driven by the same model, and we use LLaMA-
3.1-405B for Titan subspace and LLaMA-3.1-8B for Mimas subspace, and the default setting, wherein
agents are driven by a diverse set of models. As Puppeteer undergoes online reinforcement learning,
we categorize its learning process into two distinct phases: an initial phase characterized by unrefined
behavior, and an evolved phase marked by reinforced performance.

Table 1: Performance comparison of different methods across various datasets in Titan and Mimas
subspaces respectively. For each dataset, the highest scores are highlighted in bold and the second-
highest are underlined.

Mimas GSM-Hard MMLU-Pro SRDD CommonGen-Hard AVG.

Llama-3.1-8B 0.00007 0.5250 0.4615" 0.69921 0.42141
Mistral-Nemo-12B 0.03501 0.45007 0.2097° 0.7146" 0.35231
Qwen-2.5-14B 0.0450" 0.3800" 0.5891F 0.5747" 0.3972F
Self-Refinep jama.3.1-88 0.4750 0.26007 0.54121 0.6018" 0.46951
AFIOW/ jama.3.1-88 0.29001 0.5000 0.6362" 0.7194 0.53641
MacNety jama-3.1-88 0.00007 0.20007 0.2017° 0.7434 0.28621
EvoAgent .. 1.8 0.12501 0.5000 0.25101 0.7167 0.39811

Initialized Evolved Initialized Evolved Initialized Evolved Initialized Evolved Initialized Evolved
Puppeteer-Monoy 1, 3 |55 0.2467 0.4800 0.4500 0.5200 0.6983 0.7249 0.6323 0.7341 0.5068 0.6147

Puppeteer 0.5600  0.5400 05700  0.6300  0.6653  0.6266 07139 07333  0.6273  0.6324
Titan GSM-Hard MMLU-Pro SRDD CommonGen-Hard AVG.
Llama-3.1-405B 0.13501 0.7600 0.6061" 0.8116" 0.5781%
GPT-40-Mini 0.1050" 0.5950" 0.68221 0.66917 0.5128"
GPT-4-Turbo 027501 0.6800 0.6244 0.7632" 05856
Self-Refiney jama.3.1-405B 0.5250 0.60007 0.6345" 0.70331 0.6157"
AFIOW] jama.3.1405B 0.54001 0.7500 0.6478" 0.8218 0.6899"
MacNet jama.3.1.4058 02905 0.4800 0.4228" 0.8817" 05187
EVOAZeNt . 3 14058 0.42507 0.54007 0.1730° 0.8599 0.49941

Initialized Evolved Initialized Evolved Initialized Evolved Initialized Evolved Initialized Evolved

Puppeteer-Monoy 3 14058~ 03400 0.6100  0.6910 07600  0.6264 07697 08111 08417 06671  0.7453
Puppeteer 0.6600 07000 07400  0.8300 06191 07637 07381 07987  0.6893  0.7731

As detailed in Table [T} Puppeteer consistently achieves superior average performance during the
evolved phase across all evaluated tasks, irrespective of domain type or model space size. Similarly,
Puppeteer-Mono demonstrates robust performance across both large- and small-scale models. These
results collectively underscore the exceptional capability of our centralized orchestrator in coordinat-
ing both heterogeneous and single-model-driven agents to form highly effective MAS, highlighting
its robustness in managing diverse agent configurations.

Compared to various agent workflows and multi-agent baselines using the same base model,
Puppeteer-Mono consistently outperforms competing methods across nearly all evaluated tasks.
This result highlights the efficacy of our centralized orchestrator in coordinating single-model-driven
agents with optimized reasoning strategies and strategic tool utilization, surpassing alternative frame-
works. It underscores that superior performance stems from sophisticated organizational design and
a context-aware, dynamically constructed multi-agent topology. Notably, despite Puppeteer-Mono
leveraging near-optimal models within its respective subspaces, Puppeteer consistently achieves
superior performance, likely benefiting from complementary interactions among heterogeneous
agents driven by diverse models. Additionally, the expanded space in Puppeteer enables broader
exploration of the solution landscape, thereby enhancing optimization opportunities.

To illustrate Puppeteer’s capability in organizing effective MAS, we compare performance between
the initial and evolved phases. The results show that continued optimization yields substantial
gains—for example, Puppeteer in the Titan subspace improves from 0.6893 to 0.7731 on average,
with a similar trend observed in the Mimas subspace. These findings highlight the critical role
of continual optimization in enhancing coordination and task specialization, and further suggest
promising directions for advancing beyond traditional, static agent paradigms toward more adaptive
and collaborative agent systems.

3.2 Does Performance Gain Come at the Expense of Efficiency?

Recent research in non-learnable multi-agent systems has highlighted a trade-off: performance gains
achieved through agent collaboration are often accompanied by increased overall token consump-



tion [[77,145]]. To investigate whether our approach exhibits a similar pattern, we visualize the average
token consumption and the number of orchestrated agents throughout the training process.

As shown in Figure 2] the token metric consistently de-
creases over the course of learning across almost all set- Token Count Evolution

— A-010

tings. This demonstrates that our system’s performance | =+

improvements do not come at the cost of increased compu-

tational overhead; on the contrary, our approach achieves ><b'/\\
simultaneous advances in both effectiveness and efficiency. N
This result is primarily attributed to our reward design, ™~
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to different application needs, with higher values of A indi-
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the Figure[3] Specifically, the reward is designed to encour- T T T e

age the orchestrator to: (i) prioritize agents that complete Figure 3: Token consumption and agent
tasks with reduced token usage while preserving perfor-  cqunt orchestrated in the Titan subspace
mance, and (ii) terminate reasoning early by invoking the 4, Puppeteer-Mono on MMLU-Pro.
Terminator agent, thereby fostering efficiency through the

exclusion of redundant or low-contributing agents. This

mechanism enables the orchestrator to optimize both overall performance and resource consumption.
In extreme cases, if the efficiency factor is entirely omitted from the reward design, the system
naturally degenerates into a traditional large-scale collaborative framework, albeit with potentially
further improvements in performance.

#Tokens

#Agents

More specifically, in the Titan setting, the number of active agents notably decreases over the course
of learning, suggesting that the orchestrator progressively learns to terminate the reasoning process
earlier for more efficient problem-solving. In contrast, in the Mimas setting (see Appendix for results),
the number of orchestrated agents remains relatively stable, indicating the orchestrator’s caution in
prematurely halting the reasoning process due to the comparatively limited capabilities of the agents.
In this case, reductions in token consumption are primarily achieved through the preferential selection
of lower-cost agents rather than shorter reasoning chains. This contrast between Titan and Mimas
arises from fundamental differences in agent capacity: Titan agents can solve tasks more efficiently,
enabling earlier stopping without quality loss, whereas Mimas agents often require longer, more
elaborate reasoning processes to ensure reliable completion.

3.3 How Does Organizational Topology Evolve During Reinforcement?

To elucidate the emergent organization of multi-agent collaboration, we systematically examine the
evolution of agent interaction topologies throughout the learning process. Multi-agent reasoning can
be abstractly modeled as dynamic orchestration governed by our centralized orchestrator, yet empirical
evidence reveals an untrained "initialized" MAS system often results in a highly sophisticated and
adaptive organizational structure. Instead of relying on a static structure, our Puppeteer dynamically
constructs intricate topological motifs—such as trees, graphs, and cycles—by selecting the next agent
to activate at each reasoning step based on the current reasoning state. Thus, the topology emerges
incrementally during reasoning, embodying a flexible, context-aware organizational paradigm.

GSM-Hard . MMLU-Pro .o CommonGen-Hard o SRDD
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Figure 2: Evolution of token consumption and the number of orchestrated agents per task along the
training process. Trends are fitted using LOWESS (Locally Weighted Scatterplot Smoothing) [14].
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Although the simplest form of multi-agent collaboration is often represented as a chain structure [44,
/0], the Puppeteer’s dynamic orchestration naturally fosters tree-structured interactions by enabling
the selection of one or multiple agents at each step. This mechanism supports branching behavior and
parallel pathways, thereby enhancing scalability as the number of agents grows. However, despite
an initial resemblance to tree-like expansion [76] driven by branching, the resulting topologies are
inherently graph-structured [45} 87, [2]]. This property arises from the flexible orchestration, which
permits repeated agent activations, leading to cycles and feedback loops. Moreover, cross-branch
connections emerge organically, underscoring the system’s capacity to generate rich, expressive, and
adaptive interaction patterns. Representative examples of these emergent motifs, including cycles,
backtracking, and cross-branch links, are illustrated in Figure E}

As the puppeteer evolves over time, its orchestrating behavior changes accordingly, leading to distinct
behaviors in the resulting MAS. Here, we present a specific sample, selected from both the initial and
evolved phases, to demonstrate the emerging optimization effects. As shown in Figure[5 the initial
phase features multiple disjoint chains, reflecting exploratory organization; after evolution, paths
become fewer and cycles appear, indicating more stable and coordinated interactions. Additionally,
the initial phase features two-agent communication with higher overhead; as evolution progresses,
the structure condenses to a single agent handling continuous reasoning, reflecting more efficient
coordination and decision-making.

Initial Initial
Evolved Evolved

Initial avg. = 1.0629 | Evolved &vg. = 1.4479 30 Initial avg. = 0.52 Initial avg= 1.17 Initial avg. = 0.17 Initiallavg. = 0.00
Evolved avg. = 0.62 Evolved avg.\= 1.40 Evolved avg. = 0.38 Evolved avg. = 0.06

cycle length=1  cycle length=2 cycle length=3 cycle length=4
(a) Graph Density Distribution (b) Cycle distribution

Figure 6: The compaction and cyclicality dynamics in the evolution of multi-agent organizational
structures.



Empirical observation reveals that Puppeteer’s dynamic orchestration—which fosters graph-structured
topologies with diverse inter-agent connections—gives rise to two key structural phenomena: com-
paction and cyclicality. The evolving interplay between densely clustered agents and frequent
communication cycles marks a significant transformation in multi-agent systems, shifting from
loosely organized, exploratory interactions to tightly coordinated, specialized collectives.

e Compaction. We observe a marked trend toward structural compaction over the course of learning
(Figure [6a). As optimization proceeds, graph density—quantifying the degree of inter-agent
connectivity—steadily increases, with organizational structure evolving toward highly interactive
and tightly coupled subnetworks. Communication becomes progressively concentrated among
a subset of recurrently active hub’ agents, forming dense subgraphs characterized by frequent
and focused information exchange. This phenomenon is particularly pronounced in the Titan
(large-model) subspace, where the orchestrator preferentially routes decisions through a small
cohort of strong agents, thereby intensifying iterative reasoning and collaborative consensus
formation. Ultimately, the system transitions from diffuse, exploratory interaction patterns to
highly synergistic and focused multi-agent reasoning.

e Cyclicality. In conjunction with compaction, we document a significant rise in cycle formation as
learning progresses (Figure[6b). Cyclic topologies—in which agents repeatedly revisit previous
collaborators via closed-loop routes—facilitate the re-circulation of intermediate results, mutual
verification, and continual refinement. Unlike strictly hierarchical or acyclic networks, this cyclical
structure supports recursive critique and sustained internal debate, much like what is seen in
reflexive multi-agent paradigms (e.g., Reflexion [54]). As cycles become more prevalent, the
system exhibits deeper internal feedback, more efficient reuse of information, and increased
resilience—hallmarks of mature, self-referential collaborative reasoning.

3.4 How to Further Use Hyperparameters to Control Performance and Efficiency?

While reward shaping provides a di-

rect mechanism for efficiency con-
trol, the collaboration structure it-
self is also crucial. As the or-
chestrator organizes agent collabo-
ration, upper-bound constraints on
topology—specifically, chain depth
and exploration width—are essential
to prevent unbounded scaling and inef-
ficiency. Depth refers to the length of
orchestrated agent chains, while width
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captures the number of parallel explo-
rations. As shown in Figure[7] there
is a clear non-monotonic relationship:
the default setting achieves the best
trade-off for our purposes, whereas
increasing depth or width leads to re-
dundancy, higher computational costs, and possible performance degradation. In general, enhancing
accuracy tends to increase token consumption, and vice versa, suggesting that carefully balancing
depth and width can help maintain both efficiency and effectiveness.

Figure 7: Impact of topology constraints on token consump-
tion and accuracy (WxDy denotes exploration with width x
and depth y; W4D2 is the default).

4 Related Work

The rapid advancement of LLMs [[69] 3} 48, 128} 131} 4] has spurred the development of autonomous
LLM-based agents [[71} 14942, 29, 72| |58]], which exhibit strong capabilities in planning 66} 21} [24],
memory [42, 25 41]], and tool usage [51}147, 5 [75]. These agents demonstrate growing proficiency
in addressing complex tasks [[19} 80, 44, 20| 62]], adapting to dynamic real-world environments [83,
38, [84]], and exhibiting human-like behaviors such as collaboration and decision-making [10} 42, [52]].
Given that a single LLM-based agent may struggle to handle the diverse and complex range of
real-world tasks [16, 29} 64], recent research has increasingly focused on constructing LLM-based
multi-agent systems [[11} 44, 22| 161} [12] for software development[44]} 22]], social simulation[42} 25],
medical treatment[61} 30|, scientific discovery [79].



Early MAS designs relied on fixed, handcrafted structures, e.g., mirroring software engineering
paradigms like waterfall models [42, 11} 144]]. These static approaches led to rigid coordination [87,
435]), limited workflow flexibility [23| [81], and suboptimal agent composition [[15} 42, 37 35]. To
address these issues, more adaptive orchestration methods have emerged: network-style organizations
dynamically select agents (Dylan [36]) as optimizable graphs enable prompt refinement and better
cooperation (GPT-Swarm [87]], MacNet [45]); and code-based representations allow modeling
of dynamic, task-specific processes. Recent approaches employ code-space search (ADAS [23],
AFlow [81]]) or train LLMs to generate MAS configurations on demand (MAS-GPT [77]). Beyond
LLM-based MAS, classical MARL (Multi Agent Reinforcement Learning) works [26} 165! 34, [63]]
have long explored coordination and role specialization, offering key inspirations for our RL-driven
orchestration in LLM-based multi-agent systems.

5 Conclusion

We proposed a novel framework for adaptive multi-agent LLM collaboration inspired by puppet
show orchestration, where a centralized, learnable "puppeteer” orchestrator dynamically activated
agents within a directed graph-of-thoughts. Unlike previous methods with static or manually designed
topologies, our approach incorporated context-sensitive orchestration and reinforcement learning-
driven policy adaptation, enabling more principled and efficient collaboration. Experiments on
diverse tasks showed that our method achieved superior solution quality and reduced computational
cost. Analyses further revealed that the orchestrator promoted compact, cyclic reasoning structures,
underpinning the performance improvements. We hope this work can constitute a valuable step
toward dynamic and scalable coordination in multi-agent collaboration.
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NeurlIPS Paper Checklist

1. Claims

Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?

Answer: [Yes]

Justification: The main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope.

Guidelines:

* The answer NA means that the abstract and introduction do not include the claims
made in the paper.

* The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

* The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

* It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]
Justification: The paper elaborates the limitations in section D}
Guidelines:

* The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

* The authors are encouraged to create a separate "Limitations" section in their paper.

* The paper should point out any strong assumptions and how robust the results are to
violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

* The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

* The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

* The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

* If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

* While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs

Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?

Answer: [NA]
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Justification: The paper does not include theoretical results.

Guidelines:

The answer NA means that the paper does not include theoretical results.

All the theorems, formulas, and proofs in the paper should be numbered and cross-
referenced.

All assumptions should be clearly stated or referenced in the statement of any theorems.
The proofs can either appear in the main paper or the supplemental material, but if
they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

Theorems and Lemmas that the proof relies upon should be properly referenced.

4. Experimental result reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes] .

Justification: The paper provide the method details in Method part.

Guidelines:

The answer NA means that the paper does not include experiments.
If the paper includes experiments, a No answer to this question will not be perceived
well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.
If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.
Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

While NeurIPS does not require releasing code, the conference does require all submis-

sions to provide some reasonable avenue for reproducibility, which may depend on the

nature of the contribution. For example

(a) If the contribution is primarily a new algorithm, the paper should make it clear how
to reproduce that algorithm.

(b) If the contribution is primarily a new model architecture, the paper should describe
the architecture clearly and fully.

(c) If the contribution is a new model (e.g., a large language model), then there should
either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code

Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?
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Answer: [Yes]

Justification: The code and data are provided in the supplementary materials under the file
name code.zip.

Guidelines:

* The answer NA means that paper does not include experiments requiring code.

* Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

* While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

¢ The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

 The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

* The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

* At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

* Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLSs to data and code is permitted.
6. Experimental setting/details

Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]
Justification: Details are listed in the method part.
Guidelines:

* The answer NA means that the paper does not include experiments.

* The experimental setting should be presented in the core of the paper to a level of detail
that is necessary to appreciate the results and make sense of them.

 The full details can be provided either with the code, in appendix, or as supplemental
material.
7. Experiment statistical significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [Yes]

Justification: We performed significance testing on the data presented in our table[I] and we
use the T symbol in the table to denote statistically significant results.

Guidelines:

* The answer NA means that the paper does not include experiments.

* The authors should answer "Yes" if the results are accompanied by error bars, confi-
dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

* The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

* The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

* The assumptions made should be given (e.g., Normally distributed errors).
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* It should be clear whether the error bar is the standard deviation or the standard error
of the mean.

* It is OK to report 1-sigma error bars, but one should state it. The authors should
preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

¢ For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

e If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

Experiments compute resources

Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?
Answer: [Yes]
Justification: The token cost is specifically discussed in Fig[2] and the full results are listed
in[A.1]
Guidelines:
* The answer NA means that the paper does not include experiments.
* The paper should indicate the type of compute workers CPU or GPU, internal cluster,
or cloud provider, including relevant memory and storage.
* The paper should provide the amount of compute required for each of the individual
experimental runs as well as estimate the total compute.
* The paper should disclose whether the full research project required more compute
than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

. Code of ethics

Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]

Justification: The research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics.

Guidelines:

¢ The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.

* If the authors answer No, they should explain the special circumstances that require a
deviation from the Code of Ethics.

 The authors should make sure to preserve anonymity (e.g., if there is a special consider-
ation due to laws or regulations in their jurisdiction).
Broader impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [NA]

Justification: This paper presents a technical contribution without immediate real-world
deployment, and thus discussion of societal impacts is not applicable at this stage.

Guidelines:

» The answer NA means that there is no societal impact of the work performed.

* If the authors answer NA or No, they should explain why their work has no societal
impact or why the paper does not address societal impact.

» Examples of negative societal impacts include potential malicious or unintended uses
(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.
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» The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

* The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

* If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

Safeguards

Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]
Justification: The paper has no such risks.
Guidelines:

» The answer NA means that the paper poses no such risks.

* Released models that have a high risk for misuse or dual-use should be released with
necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

 Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

* We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

Licenses for existing assets

Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]
Justification: The paper cites all the papers related.
Guidelines:

* The answer NA means that the paper does not use existing assets.

* The authors should cite the original paper that produced the code package or dataset.

 The authors should state which version of the asset is used and, if possible, include a
URL.

* The name of the license (e.g., CC-BY 4.0) should be included for each asset.

* For scraped data from a particular source (e.g., website), the copyright and terms of
service of that source should be provided.

 If assets are released, the license, copyright information, and terms of use in the
package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

* For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.
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* If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

New assets

Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [NA]
Justification: The paper does not release new assets.
Guidelines:

* The answer NA means that the paper does not release new assets.

» Researchers should communicate the details of the dataset/code/model as part of their
submissions via structured templates. This includes details about training, license,
limitations, etc.

* The paper should discuss whether and how consent was obtained from people whose
asset is used.

* At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.
Crowdsourcing and research with human subjects

Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer: [NA]
Justification: The paper does not involve crowdsourcing nor research with human subjects.
Guidelines:
* The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

* Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

* According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

Institutional review board (IRB) approvals or equivalent for research with human
subjects

Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?

Answer: [NA]
Justification: The paper does not involve crowdsourcing nor research with human subjects.
Guidelines:
* The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

* Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

* We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

* For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

Declaration of LLM usage
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Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.

Answer: [Yes]

Justification: The paper focuses on LLM-based agents, and the use of LLMs is clearly
described as an essential and original part of the core method.

Guidelines:

* The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

* Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM) for
what should or should not be described.
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Appendix

This appendix complements the main paper by presenting extended evaluation results, detailed
implementation configurations of the agents, and a discussion of current limitations.

A Supplementary Evaluation

A.1 Token Cost Analysis

As discussed in Section 3.2, we present here the full set of cost-related results under both the mono-
agent and multi-agent settings, covering the Titan and Mimas subspaces. While the main text only
reports the results for the multi setting on the Titan subspace, we provide here the remaining three
sets of results for completeness: (1) mono on Titan, (2) mono on Mimas, and (3) multi on Mimas.
These supplementary results allow for a more comprehensive comparison across different agent
configurations and subspace settings. As discussed in Section 3.2, we focus on two key metrics:
token consumption and the number of orchestrated agents per reasoning trajectory. While the multi
setting has already been analyzed in the main paper, here we focus on the mono setting.

In the Titan subspace, the observed reduction in token consumption across most tasks in Figure|[§]
can be primarily attributed to shorter reasoning paths. However, for GSM-hard tasks, the number of
agents involved remains relatively stable. This suggests that the cost reduction may stem not from
fewer agents but from selecting agents that are prompted with fewer tokens, or from utilizing more
concise prompts for the same agents. In the Mimas space, token consumption in Figure [8|decreases
for certain tasks, while for others, no consistent downward trend is observed. This can be attributed
to the fact that, under the mono-agent setting, all agents share the same base model, making it more
challenging to identify agents that are significantly more token-efficient.

A.2 Performance-Cost Trade-off Improvement

To demonstrate the overall improvement in reasoning performance along with the associated reduction
in token consumption—both attributed to the effectiveness of our reward design—we track the

P score for each sample throughout the entire optimization process. This score is defined
as the ratio between task performance (e.g., accuracy or success rate) and token cost, serving as a

comprehensive indicator that jointly reflects solution quality and reasoning efficiency.

In the evaluation presented in the main paper, we divide the optimization trajectory into two phases:
the initial phase and the evolved phase. This division is introduced solely for evaluation convenience,
and does not correspond to any intrinsic change in model behavior. In practice, the online optimization
process exhibits a generally monotonic upward trend in pe'ﬁ;;%, apart from minor fluctuations
caused by the stochastic nature of model generation. This consistent improvement further substantiates
the effectiveness of our reinforcement learning approach and the benefits of our reward shaping

strategy under both mono-agent and multi-agent settings.

Across most tasks, from Figure[9] we observe a clear upward trend in the performance/cost score,
indicating that the optimization process leads to both better solutions and more efficient use of tokens.
This improvement reflects the ability of the system to identify more suitable agent organizations and
reasoning pathways over time. In some cases, the score increases steadily throughout the process,
suggesting a smooth convergence toward optimal or near-optimal multi-agent coordination strategies.
In other cases, the score initially drops before rising again, which implies that the optimization
process explores some less effective multi-agent configurations in early stages but is ultimately able
to recover and identify improved structures through continued exploration. This pattern highlights
the importance of allowing sufficient exploration in the early optimization phase.

However, for a small subset of tasks, the score does not show a significant upward trend throughout
the optimization. We consider two possible reasons for this. First, the number of optimization samples
used in our current experiments is limited to 200, which may not be sufficient to fully explore the
search space or discover high-quality MAS configurations, especially for tasks with more complex
reasoning requirements. Second, the current hyperparameter settings, such as the maximum length
of agent sequence allowed, may not be well-suited for tasks involving weaker base models. In such
cases, achieving high performance may require larger MAS configurations or higher upper bounds on
relevant parameters to allow for more extensive coordination and tool usage.
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Multi-base in Titan Subspace
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Figure 8: Evolution of token consumption and the number of orchestrated agents per task for all
settings. Trends are fitted using LOWESS (Locally Weighted Scatterplot Smoothing).
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Performance-Cost Trade-off Evolution — Puppeteer_mono under Titan Space
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Figure 9: Performance—Cost curves representing the ratio between task performance and token cost
per agent chain across different subspaces and variants of Puppeteer. Trend lines are smoothed
using LOWESS (Locally Weighted Scatterplot Smoothing).

These observations suggest that while our reward design provides strong guidance for optimizing
agent behavior and token efficiency, further gains may be achieved by increasing the optimization
budget or dynamically adapting hyperparameters based on task difficulty or model capability.

A.3 Emergent Patterns in MAS Behavior

To further illustrate the behavioral diversity and coordination capabilities of our multi-agent system
(MAS), we present visualizations of several representative MAS trajectories guided by the puppeteer.
As shown in the figure, these trajectories reveal a variety of emergent patterns, including both
previously validated structures and novel organizational behaviors that arise from agent interactions.

The visualizations in Figure [I0] highlight how the policy organizes into distinct formations and
adapt agents dynamically in response to high-level guidance. These patterns not only reflect the
effectiveness of the puppeteer in orchestrating agent collaboration, but also demonstrate the capacity
of the system to generalize and generate new behaviors beyond those explicitly encoded in the training
process. Such structural emergence further underscores the interpretability and robustness of our
MAS design.
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Figure 10: Examples of MAS behavior patterns under the puppeteer’s guidance.

A.4 Generalization to Embodied Environments

While our main experiments focus on tasks such as reasoning, coding, and writing—which do not
involve interaction with external environments—we further demonstrate the applicability of our
framework to embodied tasks. These tasks require agents to interact with dynamic environments
and perform sequences of actions based on real-time feedback, thus posing additional challenges in
planning, reasoning, and decision-making.

To showcase this capability, we employ ALFWorld [56] as the testbed. ALFWorld integrates a
simulated embodied environment with natural language interfaces, making it a suitable benchmark
that bridges textual reasoning with embodied interaction. In this setting, we configure the agent chain
with a maximum length of 50, as embodied tasks typically require multiple steps to complete. We also
limit the number of exploration trajectories to 1, due to environment constraints: execution cannot be
parallelized, and only one admissible action is allowed per step. This experiment is conducted under
the mono setting, where all agents share the same model backbone (GPT-40-mini).

To illustrate how our system operates in embodied settings, we provide a case study visualization
using frames saved from the THOR environment (as shown in Figure[TT). This example showcases
the step-by-step execution of a single task by the agent chain. The successful application of our
framework in this setting not only underscores its flexibility across diverse task types, but also
demonstrates its extensibility to interactive environments, confirming its potential for integration into
broader embodied agent systems that require real-time perception, planning, and execution.
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Figure 11: The figures illustrate the implementation process of the task “look for the remote control
under the floor lamp.”

B Agent Implementation Details

B.1 Agent Configuration

We organize all agent actions into two categories: Tool-use Agent and Reasoning
Agent [211[43]] as seen in Table[2] For tool-use agents, their actions involve interacting with external
environments, such as querying the web or invoking a code interpreter. In contrast, reasoning
patterns reflect the internal cognitive processes of LLMs. Drawing inspiration from prior studies
on human reasoning strategies [7, 27, 21]), we revisit how humans approach complex reasoning
tasks. In practice, individuals adopt diverse strategies: some decompose problems into sub-questions,
others solve them directly, and some reframe the problem to emphasize critical constraints. More
importantly, humans dynamically adapt their strategies based on the evolving context and problem
state. Motivated by these observations, we accordingly design a set of specialized reasoning agents to
emulate diverse human strategies. Each agent is equipped with a distinct cognitive role, contributing
to a collaborative and adaptive reasoning process.

B.2 Agent Prompts

In a multi-agent system, to motivate each agent to act in the desired manner, we define its role through
a role prompt and combine it with an action prompt to guide the agent in using tools or following
specific reasoning patterns. As inllustrated in Fig[T2]and Fig[I3] role-conditioned prompts specify
the agent’s identity, domain expertise, and intended responsibilities, guiding the behavior of different
agents. And we have designed a set of structured prompts to guide the behavior of our prompt-based
agent system, which can be categorized into two major types: tool-augmented action prompts and
reasoning-mode prompts. Each prompt specifies a well-defined agent action, accompanied by a
template for language model invocation.
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Table 2: Agent Tool-Use and Reasoning Patterns

Category Name

read_file
search_arxiv
search_bing
access_website
run_python

Tool-Use

reasoning
critique
reflect
question
summarize
conclude
modify
planning

Reasoning Patterns

Tool-augmented action prompts in Fig|14]are designed to determine the parameters required for
invoking external tools through the agent’s environment interface. The goal of these prompts is not
to execute the tool directly but to generate structured output that specifies the parameters for tool
invocation. For example, such prompts may guide the generation of a search query (e.g., a paper title
or keyword) when retrieving academic papers from arXiv search_arxiv, or determine the URL to
be accessed when invoking a web tool access_website. These prompts enable the agent to interface
with external systems in a modular and verifiable way by generating the precise input needed to
trigger tool execution.

Reasoning-patterns prompts in Fig 15| and Fig [16| focus on internal cognitive processes, such
as planning, reasoning, critique, reflection, or sub-question generation. These prompts do not
rely on external tools but activate structured thinking patterns within the model, enabling complex
problem-solving and decision-making through purely generative means.

C Computational Resources

Resource Specification

GPU NVIDIA A800, 8 GPUs used

Peak GPU Memory Usage 28.8-78.4 GB per GPU

Training Time 2-6 hours

Variation Source Benchmark differences and task complexity

Table 3: Computational resources used for orchestrator training.

The table (Table [3)) details the average computational resources used for orchestrator training. It
is important to note that accurately measuring training costs is non-trivial. Our orchestrator is
trained online, with parameter updates interleaved with multi-agent inference, making it difficult
to isolate GPU hours solely for training. Moreover, several baselines (e.g., AFlow) rely on LLM-
based inference-time search to construct workflows, whereas our method uses online gradient-based
optimization. Since these involve fundamentally different resource modalities, direct comparisons of
computational cost are not appropriate.

D Limitations

Our work introduces a centralized mechanism, the Puppeteer, to organize and optimize multi-agent
systems (MAS), progressively improving reasoning performance, and efficiency. However, several
limitations remain. The Puppeteer’s optimization currently depends on coarse-grained rewards based
only on final outputs and token usage, lacking informative intermediate feedback. Incorporating fine-
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grained supervision, such as step-level correctness, could enhance optimization efficiency. Moreover,
the framework assumes a fixed set of agents and tools, limiting adaptability and responsiveness to task
variations. Enabling dynamic agent or tool modification during inference would improve flexibility
and robustness. Finally, occasional mis-coordination or deceptive agreement among agents suggests
the need for more robust interaction protocols and incentive designs. Future efforts may focus on
reward shaping and adaptive mechanisms to refine both orchestration and agent-level behaviors,
allowing the Puppeteer to make more context-aware and efficient decisions.
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Figure 12: Tool-use Agent Role Prompts

FileAgent: You are an expert in file handling. Responsible for reading files and extracting
relevant information (read_file).

ArxivAgent

ArxivAgent: You are an expert in academic research. Responsible for searching relevant
papers on arXiv (search_arxiv).

BingAgent

BingAgent: You are an expert in web search. Responsible for retrieving information via
Bing (search_bing).

WebsiteAgent

WebsiteAgent: You are an expert in accessing and parsing websites. Responsible for
extracting data from specific URLs (access_website).

PythonAgent

PythonAgent: You are an expert in Python programming. Responsible for executing Python
code and returning results (run_python).




Figure 13: Reasoning Agent Role Prompts

PlannerAgent

PlannerAgent: You are an expert in task decomposition and planning. Responsible for
generating structured plans to solve complex tasks (planning).

ReasoningAgent

ReasoningAgent: You are an expert in logical reasoning. Responsible for synthesizing
solutions to sub-problems (reasoning).

CriticAgent

CriticAgent: You are an expert in critique and verification. Responsible for identifying flaws
and providing feedback on prior reasoning (critique).

ReflectAgent

ReflectAgent: You are an expert in metacognitive reflection. Responsible for analyzing the
overall reasoning trajectory and proposing improvements (reflect).

QuestionAgent

QuestionAgent: You are an expert in problem decomposition. Responsible for generating
clarifying or follow-up sub-questions (question).

SummarizerAgent

SummarizerAgent: You are an expert in summarization. Responsible for generating concise
summaries of intermediate results (summarize).

ConcluderAgent

ConcluderAgent: You are an expert in synthesis. Responsible for producing the final
conclusions based on collective reasoning outcomes (conclude).

ModifierAgent

ModifierAgent: You are an expert in error analysis and correction. Responsible for identify-
ing errors and revising prior outputs accordingly (modify).
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Figure 14: Tool-use Prompts

search_arxiv

You have chosen to search for academic papers on arXiv. Please provide specific terms related
to academic research, such as the title of a paper, keywords, or topics in fields like physics,
mathematics, computer science, or machine learning. Return in json format. Example:
{"action": "search_arxiv", "parameter": "quantum computing"}

search wiki

You have chosen to search for information on Wikipedia. Please provide specific terms like
a concept, name, event, or technical term for best results. Return in json format. Example:
{"action": "search_wiki"”, "parameter”: "Albert Einstein"}

search_bing

You have chosen to search for information using Bing. Please provide descriptive phrases or
keywords related to your query, including concepts, names, events, or specific questions to
get a broad range of results, including news, articles, and websites. Return in json format.
Example: {"action”: "search_bing”, "parameter”: "latest advancements in
AI"}

access_website

You have chosen to access a website. Please provide the URL you want to access or the
URL most relevant to the current question. Return in json format. Example: {"action”:
"access_website"”, "parameter”: "https://www.example.com”}

run_python

You have chosen to write and run Python code. Please write generic Python code in the
parameter to solve this type of problems using only standard python libraries. Make sure
you use the print function for all output when relevant. Return in json format. Example:
{"action”": "run_python", "parameter”: "print(’Hello, World!’)"}

read_file

You have chosen to read a file. Please provide the filename you want to read. Return in json
format. Example: {"action”: "read_file”, "parameter"”: "data.txt"}
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Figure 15: Reasoning-pattern Prompts (Part 1)

planning

Decompose the question and plan the next steps to address the question. You should complete
your planning using the following template:

REASONING RESULT: [YOUR REASONING RESULT]. *Your previous reasoning was:
0%

Your planning should include:

reasoning

Now, you need to continue the reasoning to get closer to the correct answer. You should finish
your reasoning with the following template:

REASONING RESULT: [YOUR REASONING RESULT].

Finish your answer with:

FINAL ANSWER: [YOUR FINAL ANSWER]. *Your previous reasoning was: {}.*

You need to follow the direction of the reasoning path and go forward:

critique

You need to critique the previous reasoning. Complete your reasoning using:
REASONING RESULT: [YOUR REASONING RESULT].

Conclude with:

FINAL ANSWER: [YOUR FINAL ANSWER]. *Your previous reasoning was: {}.*
Consider the following when critiquing: 1. Plausibility:

reflect

You will be provided with a previous reasoning attempt where you had access to relevant
context and were tasked with answering a question. The attempt was unsuccessful either due
to an incorrect answer or a phrasing mismatch with the answer key.

In a few sentences, diagnose the potential cause of failure or discrepancy, and outline a new,
concise, high-level plan to prevent the same issue. Use complete sentences.

Reflect on the current state of the task and propose the next steps.

Conclude with:

REASONING RESULT: [YOUR REASONING RESULT].

FINAL ANSWER: [YOUR FINAL ANSWER]. *Your previous reasoning was: {}.*

question

Your task is to propose the next sub-question along with its answer. Ensure it logically follows
from the previous reasoning and addresses any gaps.

Provide a well-reasoned answer, supported by evidence or logical arguments.

Conclude with:

REASONING RESULT: [YOUR REASONING RESULT].

FINAL ANSWER: [YOUR FINAL ANSWER]. *Your previous reasoning was: {}.*
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Figure 16: Reasoning-pattern Prompts (Part 2)

summarize

You need to summarize previous results and provide some intermediate conclusions.
Finish your reasoning with:

REASONING RESULT: [YOUR REASONING RESULT].

Then:

FINAL ANSWER: [YOUR FINAL ANSWER]. *Your previous reasoning was: {}.*
Summarize the reasoning paths and provide a final conclusion.

conclude

You need to conclude the task and provide a final answer.

Finish with:

REASONING RESULT: [YOUR REASONING RESULT].

Then:

FINAL ANSWER: [YOUR FINAL ANSWER]. *Your previous reasoning was: {}.*

modify

You need to identify and correct errors in the previous reasoning.

Use this template:

REASONING RESULT: [Clearly state: 1. Which part of the previous reasoning
was incorrect 2. Why it was incorrect 3. What is the correct understanding].
Then:

FINAL ANSWER: [Provide the complete corrected answer]. *Your previous
reasoning was: {}.*

Please explicitly point out and correct any errors, misconceptions, or inaccuracies.
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