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Abstract

State-of-the-art machine learning weather forecasting systems, such as FuXi,1

achieve skillful global predictions but at the cost of large model sizes and high2

training demands. In this work, we investigate how far such architectures can be3

reduced without significant loss of accuracy. Specifically, we compress FuXi-short4

by replacing its 48 SwinTransformerV2 blocks with only 6 (additionally evaluating5

4- and 2-block variants), and probe two training strategies: (i) training the reduced6

model from scratch, including an efficient one-step regression initialization to7

quickly adapt the architecture to weather data, and (ii) block-wise distillation,8

where each reduced block is trained to approximate every 8th block of the original9

model using MSE loss. Despite the eightfold reduction in depth, accuracy on the10

most critical variables remains effectively unchanged. For example, mean sea level11

pressure RMSE increases by 0.026% relative to the mean and 1.95% relative to the12

standard deviation, while temperature RMSE changes only by 0.068% and 0.87%,13

respectively. Importantly, with one-eighth the depth, the model is substantially14

faster to train, enabling more agile adaptation to changing climate data. These15

results highlight the importance and limits of architectural compression of large16

models where forecasting skill can be retained even under drastic reduction. In this17

ongoing work we will quantify benefits of such approach, explore compression18

strategies, and assess robustness across seasons and longer horizons.19

1 Introduction20

As climate change drives more extreme weather, forecasting systems must be updated rapidly and run21

at high spatial resolution. Conventional numerical weather prediction (NWP) is extremely compute-22

intensive, often requiring high-performance clusters and hours per run [1]. In contrast, DL-based23

models can leverage GPUs for much faster inference. In recent years a variety of such models has24

been developed to more efficiently tackle the weather problem through employing advanced training25

techniques and architectures, including CNNs [2], GNNs [3, 4, 5], Transformers [6, 7, 8, 9, 10], and26

hybrid models [11]. For example, Price et al. [12] show that an ensemble model (GenCast) produces27

a 15-day global forecast (0.25◦ resolution) in on the order of 8 minutes. These speedups suggest DL28

forecasting could support rapid forecast cycles, but training state-of-the-art models at scale remains29

costly and time-consuming.30

Recent DL weather systems have indeed achieved remarkable accuracy. For example, Chen et al.31

introduced FuXi [13], a cascaded Swin Transformer V2 model [14] delivering 15-day global forecasts32

at 0.25° (6-hour steps). Its core architecture is a ”U-Transformer” with 48 sequential SwinV233

blocks, trained on 39 years of ERA5 reanalysis data [15]. In evaluation, FuXi’s forecasts match the34

ECMWF 15-day ensemble mean in skill and significantly extend deterministic forecast lead times.35

However, achieving this performance is computationally intensive. Authors report roughly 30 hours36

of pretraining on 8 A100 GPUs (plus days of fine-tuning) just to train FuXi-short. The substantial37

compute demands of such models make frequent retraining or real-time updates nearly impractical.38
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To address this, we investigate compressing a version of the FuXi model into a lightweight model39

with minimal skill loss. We compress the FuXi-short (0–5 day) model from 48 blocks to 6,4,2 blocks40

and compare their forecasts to FuXi-short on a set of key variables (2m temperature, humidity, MSLP,41

wind and other parameters), and evaluate for that two distinct strategies. First, we train the 6-block42

network from scratch, initializing its first layer by a one-step linear regression to mimic the teacher’s43

one-step forecast. Second, we use block-wise distillation [16] where each student block is trained to44

mimic the output of a corresponding teacher block, aligning for example student blocks 1–6 with45

teacher blocks 8, 16, 24, 32, 40, 48, and using a mean-squared-error loss. This block-level supervision46

is intended to transfer intermediate features from the teacher model. Training and evaluation are47

performed on held-out ERA5 data, the same reanalysis used to develop FuXi, providing us with the48

direct comparison of the compressed model’s forecast skill to the FuXi-short teacher.49

While reducing deep models for efficiency is a well-studied ML problem, common approaches mostly50

include designing smaller architectures, pruning parameters, quantization, neural architecture search,51

and knowledge distillation. In knowledge distillation (KD), a small student network is trained to52

mimic a large teacher network’s behavior (e.g. matching its output logits or hidden-layer features).53

Introduced by Hinton et al.[17], KD enables deploying neural networks on resource-limited hardware54

without major performance loss. In practice, KD is valued for significantly reducing inference cost55

and model size while preserving accuracy.56

Beyond matching only final outputs, layer-wise or block-wise distillation methods align intermediate57

representations. Such techniques help bridge the capacity gap between deep teachers and shallow58

students. For example, Wang et al.[18] propose Progressive Block-wise KD (PBKD), which gradually59

replaces teacher subnetworks with student subnetworks block by block, aligning their features at each60

stage. Blakeney et al.[19] describe a parallel block-level strategy where multiple layers are distilled61

in parallel and then merged. These studies demonstrate that aligning student blocks to teacher blocks,62

for example by minimizing an MSE on their outputs, can effectively compress deep transformer63

models.64

Weather forecasting has advanced rapidly using large ConvNets or Transformer models trained on65

reanalysis data. Standard benchmarks, such as WeatherBench [20, 21], use ERA5 reanalysis as66

ground truth. To date, most research has focused on maximizing accuracy of large models, with67

little attention to compression. To our knowledge no prior work has distilled a global-scale weather68

transformer into a much smaller model. This work bridges DL compression methods with weather69

forecasting by applying block-distillation to the FuXi transformer, aiming to retain forecast skill70

under aggressive model downscaling.71

2 Methods72

Data. We use the ERA5 reanalysis dataset as the training (2016-2019 years) and evaluation source73

(2020-2021 years). Input fields include total of 70 meteorological variables both at the surface and74

within 13 different atmospheric layers. For consistency with FuXi, we use six-hourly data at 0.25◦75

horizontal resolution. The dataset is split into training, validation, and test periods by year, ensuring76

no overlap in time between train and evaluation. All experiments are conducted using the same77

preprocessing as in [13] to allow direct comparison with FuXi-short.78

Teacher model. Our teacher is the FuXi-short model [13], designed to forecast the 0–5 day horizon79

using a Swin Transformer V2–based architecture with 48 sequential transformer blocks and total of80

1556M parameters. It was pretrained on 39 years of ERA5 and fine-tuned specifically for short-range81

prediction. As reported, this model requires extensive compute for training (tens of GPU-days), but82

serves as a high-skill reference and the source of intermediate features for distillation.83

Student model. We construct a compressed 6-block student network, preserving FuXi’s input84

and output structure but reducing depth from 48 to 6 Swin Transformer V2 blocks of total 640M85

parameters (4-block with 470M and 2-block with 300M parameters, respectively). The channel86

dimensions, embedding layers, and positional encodings are kept identical to the teacher. This allows87

the student to operate as a drop-in replacement while being substantially smaller and faster to train,88

while remaining architecturally compatible with FuXi.89

Training strategies. We evaluate two approaches for training the student (Fig.1):90
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Figure 1: Overview of the training pipeline. ERA5 reanalysis fields are fed to three models: the
pretrained FuXi-short teacher (48 SwinTransformerV2 blocks, frozen), a compressed 6-block FuXi
student trained from scratch (optionally warm-started by a one-step regression), and a compressed
6-block student trained with block-wise distillation. Importantly, the distillation student receives
intermediate-feature supervision from the teacher (student blocks are aligned to every 8th teacher
block) via an MSE distillation loss, while both students are trained with an output forecast MSE. All
models produce single-step weather forecasts.

(i) Baseline training from scratch, where the student is initialized randomly, except for the input91

projection layer, which is fitted via one-step linear regression to match the teacher’s immediate92

forecast. The model is then trained end-to-end on ERA5 with a latitude-weighted MSE loss on93

forecast targets.94

(ii) Block-wise distillation. In this setting, the student is trained not only on the forecast target but also95

to mimic the teacher’s intermediate representations. Specifically, for 6-block-wise DistillFuxi version96

we align each of the 6 student blocks with every 8th teacher block [1,2,3,4,5,6] ↔ [8,16,24,32,40,48],97

where for each aligned pair, we minimize the MSE between the student and teacher block outputs98

after layer normalization. Similar approach is used for 4- and 2-block-wise students. The overall99

loss is a weighted sum L = Lforecast + λLdistill, where λ is dynamic weight gradually changing100

with training. The forecast loss is defined as Lforecast = 1
B×H×W×C

B,H,W,C∑
b,h,w,c

ahwc(Ŷ
b,h,w,c −101

Y b,h,w,c)2, where B is the batch size, H,W are latitude and longitude grid points, and C represents102

weather variables with latitude weights ah and channel weights wc. The distillation loss is defined103

as Ldistill = 1
B×Hemb×Wemb×Cemb

L,B,Hemb,Wemb,Cemb∑
l,b,h,w,c

wl(Ŷ
b,h,w,c
emb − Y b,h,w,c

emb )2, where L is the104

number of aligned block pairs, Hemb,Wemb, Cemb are the dimensions of intermediate embeddings105

in the teacher model, and wl are block-specific weights set to [1.0, 0.8, 0.6, 0.4, 1.0, 1.0].106

Training setup. We optimize all models with AdamW using a learning rate 5e− 6. The distillation107

loss weight decays as λ(k) = (1e − 2) · 0.995k, where k is the iteration index. Unless specified,108

hyperparameters match those of FuXi to ensure comparability.109

Evaluation. We evaluate the student and teacher models on held-out ERA5 data. Metrics include110

root mean square error (RMSE) and mean absolute error (MAE). The FuXi-short teacher serves as111

the skill reference.112
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Figure 2: Spatial bias patterns in single-step forecasts on January 1, 2021 across three different
geographic regions (rows). The first column shows ERA5 ground-truth fields, while the next three
columns depict the forecast bias (prediction minus ERA5) for the 48-block FuXi, the 6-block
FuXi, and the block-wise 6-block DistillFuXi. Negative and positive values indicate under- and
overestimation relative to ERA5, respectively.

Table 1: Comparison of single-step prediction performance between the full 48-block FuXi model
and a reduced 6-block FuXi, and its block-wise 6-block DistillFuXi variant. We report root mean
squared error and mean absolute error averaged over Jan 2021 on a set of key weather parameters.
For each parameter, the mean and standard deviation of the target values are also shown, providing a
reference scale to interpret relative error magnitudes. Lower RMSE/MAE indicates better accuracy.

Model/Parameter T2M MSLP T850 Z850 Z500 U1000 V1000

Parameter mean 278.21 100958.7 274.36 13739.4 54080.3 −0.034 0.186
STD 21.432 1328.67 15.709 1470.77 3365.26 6.031 5.208

RMSE

Full 48-block FuXi 1.867 73.124 0.899 49.794 52.994 0.844 0.972
6-block FuXi 2.089 108.372 1.154 71.337 86.233 1.928 2.215
Block-wise DistillFuXi 2.057 98.946 1.119 65.677 80.261 1.906 2.181

MAE

Full 48-block FuXi 0.920 42.113 0.499 29.436 30.999 0.468 0.538
6-block FuXi 0.965 60.818 0.645 40.932 48.223 1.004 1.139
Block-wise DistillFuXi 0.958 55.677 0.627 37.705 44.555 1.000 1.114
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3 Results and discussion113

3.1 Forecast skill of distilled models114

We begin by quantifying single-step forecast skill of the compressed students relative to the full115

teacher. Table 1 compares single-step RMSE and MAE (averaged over January 2021) for the full116

48-block FuXi teacher, the 6-block forecast-only student (essentially it is a reduced 6-block FuXi),117

and the 6-block block-wise student (Block-wise DistillFuXi). As expected, the teacher attains the118

lowest errors, whereas DistillFuXi shows notable degradation. Importantly, adding block-wise119

distillation reduces this gap for every one of the total 70 evaluated parameters, including key fields120

such as MSLP and T2M in both RMSE and MAE metrics. However, relative to variability of each121

field, the remaining differences are still small. For example accuracy on thermodynamic fields (T2M,122

MSLP) degrades only by 0.9% and 1.9% of their STD, respectively, but larger for wind components.123

Overall, these results demonstrate that block-wise distillation effectively transfers intermediate feature124

knowledge from the teacher, substantially improving accuracy relative to a simple forecast-only125

student without increasing model depth.126

To examine where the student models lose skill and to diagnose spatial patterns behind the numeric127

differences, we visualize bias maps. In Figure 2 we show ERA5 truth and model bias maps (model -128

ERA5) for 2-m temperature over Australia and North America and MSLP over Africa. Two clear129

patterns are emerging here. First, the teacher tends to underestimate temperature while both students130

tend to overestimate it, and second, for MSLP the teacher shows an ocean/land sign transition that131

the students do not reproduce. Importantly, student biases concentrate at sharp spatial gradients,132

especially sea–land transition zones, whereas the teacher’s errors are smoother and more spatially133

coherent. We attribute this behavior to reduced capacity and receptive-field depth in the students134

in addition to feature-level distillation. The deep teacher captures multi-scale context and surface-135

coupling effects that produce smoother, state-dependent corrections, resulting in a more pronounced136

ocean/land transition and milder regression toward the mean. In contrast, shallow students, even when137

distilled, lack some high-frequency, long-range interactions, so residual errors tend to localize and138

can flip sign (over/underestimate) near strong gradients. Block-wise MSE distillation also tends to139

transfer lower-frequency features more readily than fine-scale corrections, which can lead to gradient-140

localized bias. We expect that enhancing high-frequency or surface-conditioned losses, adding141

projection heads or multi-scale distillation, or targeting anchors near gradient regions to recover142

transition-zone structure while retaining the training-speed can strongly improve the compressed143

models.144

3.2 Robustness and generalization145

Figure 3: Daily-averaged RMSE over a one-year evaluation period for four models. Each panel
reports a different weather parameter. Lower RMSE indicates more accurate forecasts.

In Figure 3, we show the day-to-day evolution of single-step forecast errors over the 2020 test year,146

providing insight into temporal variability and model stability beyond aggregate RMSE values. We147

also include a 4-block distillation variant alongside the 6-block forecast-only and 6-block block-148

wise students to probe how anchor count and placement affect stability. Although all student149

models preserve mean single-step skill close to the teacher, they start to show larger daily RMSE150

variability being noticeably more volatile and ”juggling” from day to day rather than smoothly151
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following the teacher. This pattern suggests increasing capacity and representation mismatch. A152

shallow student cannot fully reproduce the teacher’s richer features, and multiple intermediate-153

matching terms can introduce competing gradients or transfer fine-grained teacher components that154

are unhelpful for a single-step objective. In addition, these effects are amplified in weather forecasting155

because atmospheric fields span many scales and include strong seasonal and surface-coupled signals.156

MSLP and Z500 variables, dominated by large-scale synoptic structure, show little seasonal RMSE157

modulation, while T2M is sensitive to surface processes and exhibits a mid-year RMSE rise for158

the students. These observations point us to practical high-leverage strategies that can be useful,159

including better-placed anchors, lightweight projection heads to align feature spaces, more tolerant160

feature losses, and tuned distillation schedules.161

3.3 Ablation study162

Figure 4: Relative variability of student models compared to teacher FuXi, reported as the percentage
ratio of their standard deviations. Positive values indicate higher variability than FuXi, while negative
values correspond to smoother forecasts. Rows correspond to different models, and columns are
weather parameters.

We perform a compact ablation over seven different student variants: 6-, 4-, and 2-block compressed163

FuXi (no distillation), plus 6- and 2-block DistillFuXi at constant distillation weight (λ = 5e− 5),164

and a 6-, 4-block-wise DistillFuXi, and compare each model to the FuXi teacher using the percentage165

ratio of their per-variable standard deviations (Figure 4). The heatmap shows a clear pattern, where166

block-wise distillation consistently reduces short-term variability relative to undistilled students, and167

this stabilizing effect becomes more pronounced as student depth decreases (2-block distilled models168

are the smoothest in many variables). In contrast, simple model compression without distillation169

often produces an unbalanced profile, improving stability for large-scale geopotential (Z variables)170

fields while increasing variability on small-scale-sensitive fields such as the wind components (V171

variables). However, a few isolated variables (R variables) show unexpected negative ratios (student172

smoother than teacher), probably related to preprocessing subtleties that we will investigate further.173

Overall, the ablation supports our findings that block-wise distillation acts like a targeted regularizer174

that guides low-capacity students toward the teacher’s useful representations, improving temporal175

stability without sacrificing the efficiency gains of compression.176

4 Conclusion and future directions177

In this work we showed that a large FuXi-short weather forecasting transformer model can be178

aggressively compressed from 48 SwinTransformerV2 blocks down to a handful, while retaining most179

single-step forecast skill on key variables. Block-wise distillation, in particular, consistently narrows180

the gap to the teacher compared with a simply smaller student and acts as an effective, lightweight181

regularizer for low-capacity models. At the same time, the experiments reveal a consistent caveat182

that compression can increase short-term volatility in errors for some variables, especially those183

tied to small-scale or surface-coupled processes. This trade-off between preserving mean skill and184

reducing temporal stability in a few diagnostics highlights the limits of architectural compression185

for climate-scale forecasting. Several directions follow naturally from this work. First, we will186

quantify actual training and inference speed-ups (wall-clock, GPU-hours and energy) to translate187

parameter reductions into operational cost estimates. Second, we plan to extend student models188

to recursive multi-step forecasting and evaluate whether distillation benefits propagate or degrade189
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under autoregressive rollout. Third, we will refine the distillation recipe by optimizing anchor190

placement and per-block weights, by adding lightweight projection heads or tolerant feature losses,191

and testing hybrid compression, for example pruning/quantization plus distillation. Fourth, we192

will probe robustness under distribution shift for different years, extreme events, and climate-shift193

scenarios, and investigate uncertainty quantification and ensembling as mitigations for day-to-day194

volatility. Finally, by measuring compute and carbon footprints alongside accuracy, we aim to provide195

practical guidance for deploying compact weather forecasting models in settings that require rapid196

retraining or limited resources, for example operational centers, regional modeling, and on-premises197

research clusters.198
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