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Abstract

State-of-the-art machine learning weather forecasting systems, such as FuXi,
achieve skillful global predictions but at the cost of large model sizes and high
training demands. In this work, we investigate how far such architectures can be
reduced without significant loss of accuracy. Specifically, we compress FuXi-short
by replacing its 48 SwinTransformerV?2 blocks with only 6 (additionally evaluating
4- and 2-block variants), and probe two training strategies: (i) training the reduced
model from scratch, including an efficient one-step regression initialization to
quickly adapt the architecture to weather data, and (ii) block-wise distillation,
where each reduced block is trained to approximate every 8th block of the original
model using MSE loss. Despite the eightfold reduction in depth, accuracy on the
most critical variables remains effectively unchanged. For example, mean sea level
pressure RMSE increases by 0.026% relative to the mean and 1.95% relative to the
standard deviation, while temperature RMSE changes only by 0.068% and 0.87%,
respectively. Importantly, with one-eighth the depth, the model is substantially
faster to train, enabling more agile adaptation to changing climate data. These
results highlight the importance and limits of architectural compression of large
models where forecasting skill can be retained even under drastic reduction. In this
ongoing work we will quantify benefits of such approach, explore compression
strategies, and assess robustness across seasons and longer horizons.

1 Introduction

As climate change drives more extreme weather, forecasting systems must be updated rapidly and run
at high spatial resolution. Conventional numerical weather prediction (NWP) is extremely compute-
intensive, often requiring high-performance clusters and hours per run [1]]. In contrast, DL-based
models can leverage GPUs for much faster inference. In recent years a variety of such models has
been developed to more efficiently tackle the weather problem through employing advanced training
techniques and architectures, including CNNs [2]], GNNs [3} 14} S]], Transformers [6} 7, 18, 19, [10], and
hybrid models [[11]]. For example, Price et al. [12] show that an ensemble model (GenCast) produces
a 15-day global forecast (0.25° resolution) in on the order of 8 minutes. These speedups suggest DL
forecasting could support rapid forecast cycles, but training state-of-the-art models at scale remains
costly and time-consuming.

Recent DL weather systems have indeed achieved remarkable accuracy. For example, Chen et al.
introduced FuXi [13]], a cascaded Swin Transformer V2 model [[14]] delivering 15-day global forecasts
at 0.25° (6-hour steps). Its core architecture is a ”U-Transformer” with 48 sequential SwinV2
blocks, trained on 39 years of ERAS reanalysis data [[15]. In evaluation, FuXi’s forecasts match the
ECMWEF 15-day ensemble mean in skill and significantly extend deterministic forecast lead times.
However, achieving this performance is computationally intensive. Authors report roughly 30 hours
of pretraining on 8 A100 GPUs (plus days of fine-tuning) just to train FuXi-short. The substantial
compute demands of such models make frequent retraining or real-time updates nearly impractical.
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To address this, we investigate compressing a version of the FuXi model into a lightweight model
with minimal skill loss. We compress the FuXi-short (0-5 day) model from 48 blocks to 6,4,2 blocks
and compare their forecasts to FuXi-short on a set of key variables (2m temperature, humidity, MSLP,
wind and other parameters), and evaluate for that two distinct strategies. First, we train the 6-block
network from scratch, initializing its first layer by a one-step linear regression to mimic the teacher’s
one-step forecast. Second, we use block-wise distillation [16] where each student block is trained to
mimic the output of a corresponding teacher block, aligning for example student blocks 1-6 with
teacher blocks 8, 16, 24, 32, 40, 48, and using a mean-squared-error loss. This block-level supervision
is intended to transfer intermediate features from the teacher model. Training and evaluation are
performed on held-out ERAS data, the same reanalysis used to develop FuXi, providing us with the
direct comparison of the compressed model’s forecast skill to the FuXi-short teacher.

While reducing deep models for efficiency is a well-studied ML problem, common approaches mostly
include designing smaller architectures, pruning parameters, quantization, neural architecture search,
and knowledge distillation. In knowledge distillation (KD), a small student network is trained to
mimic a large teacher network’s behavior (e.g. matching its output logits or hidden-layer features).
Introduced by Hinton et al.[[17], KD enables deploying neural networks on resource-limited hardware
without major performance loss. In practice, KD is valued for significantly reducing inference cost
and model size while preserving accuracy.

Beyond matching only final outputs, layer-wise or block-wise distillation methods align intermediate
representations. Such techniques help bridge the capacity gap between deep teachers and shallow
students. For example, Wang et al.[18] propose Progressive Block-wise KD (PBKD), which gradually
replaces teacher subnetworks with student subnetworks block by block, aligning their features at each
stage. Blakeney et al.[19] describe a parallel block-level strategy where multiple layers are distilled
in parallel and then merged. These studies demonstrate that aligning student blocks to teacher blocks,
for example by minimizing an MSE on their outputs, can effectively compress deep transformer
models.

Weather forecasting has advanced rapidly using large ConvNets or Transformer models trained on
reanalysis data. Standard benchmarks, such as WeatherBench [20, 21]], use ERAS reanalysis as
ground truth. To date, most research has focused on maximizing accuracy of large models, with
little attention to compression. To our knowledge no prior work has distilled a global-scale weather
transformer into a much smaller model. This work bridges DL compression methods with weather
forecasting by applying block-distillation to the FuXi transformer, aiming to retain forecast skill
under aggressive model downscaling.

2 Methods

Data. We use the ERAS reanalysis dataset as the training (2016-2019 years) and evaluation source
(2020-2021 years). Input fields include total of 70 meteorological variables both at the surface and
within 13 different atmospheric layers. For consistency with FuXi, we use six-hourly data at 0.25°
horizontal resolution. The dataset is split into training, validation, and test periods by year, ensuring
no overlap in time between train and evaluation. All experiments are conducted using the same
preprocessing as in [[13] to allow direct comparison with FuXi-short.

Teacher model. Our teacher is the FuXi-short model [[13]], designed to forecast the 0-5 day horizon
using a Swin Transformer V2-based architecture with 48 sequential transformer blocks and total of
1556M parameters. It was pretrained on 39 years of ERAS and fine-tuned specifically for short-range
prediction. As reported, this model requires extensive compute for training (tens of GPU-days), but
serves as a high-skill reference and the source of intermediate features for distillation.

Student model. We construct a compressed 6-block student network, preserving FuXi’s input
and output structure but reducing depth from 48 to 6 Swin Transformer V2 blocks of total 640M
parameters (4-block with 470M and 2-block with 300M parameters, respectively). The channel
dimensions, embedding layers, and positional encodings are kept identical to the teacher. This allows
the student to operate as a drop-in replacement while being substantially smaller and faster to train,
while remaining architecturally compatible with FuXi.

Training strategies. We evaluate two approaches for training the student (Fig[I):
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Figure 1: Overview of the training pipeline. ERAS reanalysis fields are fed to three models: the
pretrained FuXi-short teacher (48 SwinTransformerV2 blocks, frozen), a compressed 6-block FuXi
student trained from scratch (optionally warm-started by a one-step regression), and a compressed
6-block student trained with block-wise distillation. Importantly, the distillation student receives
intermediate-feature supervision from the teacher (student blocks are aligned to every 8th teacher
block) via an MSE distillation loss, while both students are trained with an output forecast MSE. All
models produce single-step weather forecasts.

(i) Baseline training from scratch, where the student is initialized randomly, except for the input
projection layer, which is fitted via one-step linear regression to match the teacher’s immediate
forecast. The model is then trained end-to-end on ERAS5 with a latitude-weighted MSE loss on
forecast targets.

(ii) Block-wise distillation. In this setting, the student is trained not only on the forecast target but also
to mimic the teacher’s intermediate representations. Specifically, for 6-block-wise DistillFuxi version
we align each of the 6 student blocks with every 8th teacher block [1,2,3,4,5,6] <> [8,16,24,32,40,48],
where for each aligned pair, we minimize the MSE between the student and teacher block outputs
after layer normalization. Similar approach is used for 4- and 2-block-wise students. The overall
loss is a weighted sum £ = Lyorecast + ALlaistit, where X is dynamic weight gradually changing

B,H,W,C .
with training. The forecast loss is defined as Loreccast = pomavres oo @hwe(Y Ve —
b,h,w,c

Y bhwie)2 where B is the batch size, H, W are latitude and longitude grid points, and C represents
weather variables with latitude weights a;, and channel weights w.. The distillation loss is defined
L,B,Hemb ,Wemb,Cemb .
as Liistill = Fxfmyx Wy %o z b; wy (Y26 — y2o)2, where L is the

,b,h,w,c
number of aligned block pairs, Hemp, Wemp, Cemp are the dimensions of intermediate embeddings
in the teacher model, and w; are block-specific weights set to [1.0,0.8,0.6, 0.4, 1.0, 1.0].

Training setup. We optimize all models with AdamW using a learning rate 5e — 6. The distillation
loss weight decays as A\(k) = (e — 2) - 0.995%, where k is the iteration index. Unless specified,
hyperparameters match those of FuXi to ensure comparability.

Evaluation. We evaluate the student and teacher models on held-out ERAS data. Metrics include
root mean square error (RMSE) and mean absolute error (MAE). The FuXi-short teacher serves as
the skill reference.
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Figure 2: Spatial bias patterns in single-step forecasts on January 1, 2021 across three different
geographic regions (rows). The first column shows ERAS5 ground-truth fields, while the next three
columns depict the forecast bias (prediction minus ERAS) for the 48-block FuXi, the 6-block
FuXi, and the block-wise 6-block DistillFuXi. Negative and positive values indicate under- and
overestimation relative to ERAS, respectively.

Table 1: Comparison of single-step prediction performance between the full 48-block FuXi model
and a reduced 6-block FuXi, and its block-wise 6-block DistillFuXi variant. We report root mean
squared error and mean absolute error averaged over Jan 2021 on a set of key weather parameters.
For each parameter, the mean and standard deviation of the target values are also shown, providing a
reference scale to interpret relative error magnitudes. Lower RMSE/MAE indicates better accuracy.

Model/Parameter M MSLP T850 7850 7500 U1000 V1000

Parameter mean 278.21 100958.7 274.36 13739.4 54080.3 —0.034 0.186

STD 21.432 1328.67 15.709 1470.77 3365.26 6.031 5.208
RMSE

Full 48-block FuXi 1.867 73.124 0.899 49.794 52.994 0.844 0.972

6-block FuXi 2.089 108.372 1.154 71.337 86.233 1.928 2.215

Block-wise DistillFuXi  2.057 98.946 1.119 65.677 80.261 1.906 2.181
MAE

Full 48-block FuXi 0.920 42.113 0.499 29.436 30.999 0.468 0.538

6-block FuXi 0.965 60.818 0.645 40.932 48.223 1.004 1.139

Block-wise DistillFuXi  0.958 55.677 0.627 37.705 44.555 1.000 1.114
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3 Results and discussion

3.1 Forecast skill of distilled models

We begin by quantifying single-step forecast skill of the compressed students relative to the full
teacher. Table [T compares single-step RMSE and MAE (averaged over January 2021) for the full
48-block FuXi teacher, the 6-block forecast-only student (essentially it is a reduced 6-block FuXi),
and the 6-block block-wise student (Block-wise DistillFuXi). As expected, the teacher attains the
lowest errors, whereas DistillFuXi shows notable degradation. Importantly, adding block-wise
distillation reduces this gap for every one of the total 70 evaluated parameters, including key fields
such as MSLP and T2M in both RMSE and MAE metrics. However, relative to variability of each
field, the remaining differences are still small. For example accuracy on thermodynamic fields (T2M,
MSLP) degrades only by 0.9% and 1.9% of their STD, respectively, but larger for wind components.
Overall, these results demonstrate that block-wise distillation effectively transfers intermediate feature
knowledge from the teacher, substantially improving accuracy relative to a simple forecast-only
student without increasing model depth.

To examine where the student models lose skill and to diagnose spatial patterns behind the numeric
differences, we visualize bias maps. In Figure 2] we show ERAS5 truth and model bias maps (model -
ERAS) for 2-m temperature over Australia and North America and MSLP over Africa. Two clear
patterns are emerging here. First, the teacher tends to underestimate temperature while both students
tend to overestimate it, and second, for MSLP the teacher shows an ocean/land sign transition that
the students do not reproduce. Importantly, student biases concentrate at sharp spatial gradients,
especially sea—land transition zones, whereas the teacher’s errors are smoother and more spatially
coherent. We attribute this behavior to reduced capacity and receptive-field depth in the students
in addition to feature-level distillation. The deep teacher captures multi-scale context and surface-
coupling effects that produce smoother, state-dependent corrections, resulting in a more pronounced
ocean/land transition and milder regression toward the mean. In contrast, shallow students, even when
distilled, lack some high-frequency, long-range interactions, so residual errors tend to localize and
can flip sign (over/underestimate) near strong gradients. Block-wise MSE distillation also tends to
transfer lower-frequency features more readily than fine-scale corrections, which can lead to gradient-
localized bias. We expect that enhancing high-frequency or surface-conditioned losses, adding
projection heads or multi-scale distillation, or targeting anchors near gradient regions to recover
transition-zone structure while retaining the training-speed can strongly improve the compressed
models.

3.2 Robustness and generalization
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Figure 3: Daily-averaged RMSE over a one-year evaluation period for four models. Each panel
reports a different weather parameter. Lower RMSE indicates more accurate forecasts.

In Figure[3] we show the day-to-day evolution of single-step forecast errors over the 2020 test year,
providing insight into temporal variability and model stability beyond aggregate RMSE values. We
also include a 4-block distillation variant alongside the 6-block forecast-only and 6-block block-
wise students to probe how anchor count and placement affect stability. Although all student
models preserve mean single-step skill close to the teacher, they start to show larger daily RMSE
variability being noticeably more volatile and “’juggling” from day to day rather than smoothly
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following the teacher. This pattern suggests increasing capacity and representation mismatch. A
shallow student cannot fully reproduce the teacher’s richer features, and multiple intermediate-
matching terms can introduce competing gradients or transfer fine-grained teacher components that
are unhelpful for a single-step objective. In addition, these effects are amplified in weather forecasting
because atmospheric fields span many scales and include strong seasonal and surface-coupled signals.
MSLP and Z500 variables, dominated by large-scale synoptic structure, show little seasonal RMSE
modulation, while T2M is sensitive to surface processes and exhibits a mid-year RMSE rise for
the students. These observations point us to practical high-leverage strategies that can be useful,
including better-placed anchors, lightweight projection heads to align feature spaces, more tolerant
feature losses, and tuned distillation schedules.

3.3 Ablation study

Mean daily RMSE STD relative to Fuxi (%)
FuXi (baseline) -
6-block-wise DistilFiXi - ‘
6-block FuXi-
% 6-block const dist.loss - ‘
°
2 4-block-wise DistilFixi -
4-block FuXi- ‘
2-block FuXi -

2-block const dist.loss -

250
2100 -

Variables

Figure 4: Relative variability of student models compared to teacher FuXi, reported as the percentage
ratio of their standard deviations. Positive values indicate higher variability than FuXi, while negative
values correspond to smoother forecasts. Rows correspond to different models, and columns are
weather parameters.

We perform a compact ablation over seven different student variants: 6-, 4-, and 2-block compressed
FuXi (no distillation), plus 6- and 2-block DistillFuXi at constant distillation weight (A = be — 5),
and a 6-, 4-block-wise DistillFuXi, and compare each model to the FuXi teacher using the percentage
ratio of their per-variable standard deviations (Figured). The heatmap shows a clear pattern, where
block-wise distillation consistently reduces short-term variability relative to undistilled students, and
this stabilizing effect becomes more pronounced as student depth decreases (2-block distilled models
are the smoothest in many variables). In contrast, simple model compression without distillation
often produces an unbalanced profile, improving stability for large-scale geopotential (Z variables)
fields while increasing variability on small-scale-sensitive fields such as the wind components (V
variables). However, a few isolated variables (R variables) show unexpected negative ratios (student
smoother than teacher), probably related to preprocessing subtleties that we will investigate further.
Overall, the ablation supports our findings that block-wise distillation acts like a targeted regularizer
that guides low-capacity students toward the teacher’s useful representations, improving temporal
stability without sacrificing the efficiency gains of compression.

4 Conclusion and future directions

In this work we showed that a large FuXi-short weather forecasting transformer model can be
aggressively compressed from 48 SwinTransformerV?2 blocks down to a handful, while retaining most
single-step forecast skill on key variables. Block-wise distillation, in particular, consistently narrows
the gap to the teacher compared with a simply smaller student and acts as an effective, lightweight
regularizer for low-capacity models. At the same time, the experiments reveal a consistent caveat
that compression can increase short-term volatility in errors for some variables, especially those
tied to small-scale or surface-coupled processes. This trade-off between preserving mean skill and
reducing temporal stability in a few diagnostics highlights the limits of architectural compression
for climate-scale forecasting. Several directions follow naturally from this work. First, we will
quantify actual training and inference speed-ups (wall-clock, GPU-hours and energy) to translate
parameter reductions into operational cost estimates. Second, we plan to extend student models
to recursive multi-step forecasting and evaluate whether distillation benefits propagate or degrade
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under autoregressive rollout. Third, we will refine the distillation recipe by optimizing anchor
placement and per-block weights, by adding lightweight projection heads or tolerant feature losses,
and testing hybrid compression, for example pruning/quantization plus distillation. Fourth, we
will probe robustness under distribution shift for different years, extreme events, and climate-shift
scenarios, and investigate uncertainty quantification and ensembling as mitigations for day-to-day
volatility. Finally, by measuring compute and carbon footprints alongside accuracy, we aim to provide
practical guidance for deploying compact weather forecasting models in settings that require rapid
retraining or limited resources, for example operational centers, regional modeling, and on-premises
research clusters.
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