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ABSTRACT

Interactive segmentation is the task of segmenting an object with the help of user
guidance. It is mostly used to create ground truth segmentation masks for object
instances more efficiently. Recently, the Segment Anything Model (SAM) has
been published to provide a foundation model for segmentation based on user-
generated prompts. Despite being trained on the largest instance segmentation
dataset to this date (SA-1B), we show that the model fails at the task of interactive
segmentation when confronted with situations that do not comport with the initial
training data. Such situations may however regularly occur when the model is
used in practice. To alleviate these problems, we use the information that becomes
available during the interaction to adapt the model to the dataset while being in
use. In order to not impede any real time experience desirable to the user, we
construct our method with the aim of minimizing computational overhead. In our
experiments we will demonstrate the efficacy of the proposed adaptation method
on twelve different datasets which are uncommon to SAM’s initial training data,
with four of them being medical segmentation datasets. With our method we
are able to cause reductions of up to 16.93 percentage points in the FR5(@85
metric, and reductions of up to 18.43 percentage points in the FR3o@90 metric.
Additionally, there is an improvement of up to 3.311 clicks in the NoC3,@90 on
ten out of twelve datasets.

1 INTRODUCTION

Many computer vision systems need object segmentation masks for single images as training mate-
rial. The development of such systems has especially been aided by the existence of large datasets
for regular consumer images, such as COCO (Lin et al., [2014) and ADE20k (Zhou et al., [2017).
Some segmentation tasks, however, need much more specific data. Example domains for such cases
are sports (Ludwig et al.| |2023ajb), agriculture (Roggiolani et al., |2023)), medical image segmenta-
tion (Jha et al., [2020), and robotic vision (Zhuang et al., 2023)).

The annotation of instance segmentation datasets usually incurs a high effort. Not only is there
a large cost associated for human annotators, but in some difficult cases the creation of a high
quality mask is a non-negligible problem. An example for this would be the annotation of mask
polygons, when the object edges are finely jagged. In consequence, this lead to the development
of interactive segmentation systems. Such systems receive a simple, low-effort user interaction to
create masks. This usually happens in iteratively interactive contexts: The human refines computed
masks by repeatedly interacting with the system, adding progressively more guiding interactions
while inspecting the mask. This process goes on until the user is satisfied with the quality of the
mask. In most cases, such interactions take the form of clicks, but scribbles, bounding boxes and
coarse masks constitute usable forms of user guidance as well. The class agnostic nature of this
task renders it viable for any kind of prompt. This property has been exploited to create a large
foundation model which is capable of performing interactive segmentation, the Segment Anything
model or SAM (Kirillov et al.l 2023). While SAM is trained on the large SA-1B dataset, which
has been published in conjunction with the model, a lot of practical scenarios require the creation
of datasets for very specific tasks. This is for example the case in smaller companies that seek to
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create datasets for the usage of in-house applications of computer vision, such as the automatization
of processes. Here, only a small set of objects might be interesting to annotate.

In our paper we are going to view SAM in the light of the interactive segmentation task on scenarios
which are considerably different from regular consumer images. This first and foremost means the
usage of appropriate metrics: The first one is the Number of Clicks (NoC) we need to annotated an
object mask, and the second one is the Failure Rate (FR) which tells us about the percentage of cases
in which we fail to do so with a reasonable number of clicks. Out of these two, we regard the failure
rate as the more crucial metric, since it informs us about the limits of the model’s segmentation
capabilities. Due to the difference of the test-time domains from the training domain, we are going
to look at possibilities for test-time adaptation with the aim of reducing the models failure rate during
usage.

Whilst the most straight-forward way of adapting a model would be fine-tuning, this strategy re-
quires a pre-existing annotated dataset in the target domain before the model can even be used. We,
however, constrain ourselves to techniques which only incur a negligible computational overhead,
while using the information that becomes available during the interaction. In addition to the user-
created clicks, which can be regarded as ground truth information for single pixels, we are going
to use a pruned version of the resulting mask. The model can thus be used directly, while getting
progressively better on the test-time domain. For the purpose of validating the techniques we are
going to adapt SAM to miscellaneous rare situations, as well as medical image segmentation tasks.
It should be noted that our method is not strictly dependent on SAM, and could be used for the
adaptation of other foundation models. Our contributions can be summarized as follows:

1. We explore the performance of SAM as an interactive segmentation model on a variety of
datasets which differ from regular consumer images.

2. We test the limit of SAM’s segmentation capabilites, and show that the model displays a
considerable failure rate on domains which are different from general consumer images.

3. We show possible adaptation schemes which lower the failure rate without incurring con-
siderable costs. The low memory overhead and fast adaptation render the usage of our
method effectively for free.

2 RELATED WORK

2.1 INTERACTIVE SEGMENTATION

Interactive Segmentation uses various kinds of user guidance, with clicks being the most popular
annotation mode. Maninis et al.| (2018)) use four extreme points of the objects surface as guidance
to segment the object. |Li et al.[(2018)) proposes to generate various segmentation masks and use a
network to choose the best among them. [Zhang et al.| (2020) combines bounding boxes with clicks
on the object surface as user input. |[Dupont et al.[|(2021)) use points at opposing sides of the object
as segmentation guidance. The work of |Sofiiuk et al.| (2022) explores various input and training
paradigms for interactive segmentation, whilst using the most recent mask as an additional form
of input. The general training scheme is applied to networks with ViT-based backbones in |[Liu
et al.[(2022)). Recently, [Kirillov et al.|(2023)) have proposed the so called Segment Anything model
(SAM) together with SA-1B, the largest interactive segmentation dataset to date containing over
1.1B segmentation masks. Due to the availability of the weights of the Segment Anything Model,
there have been various papers which fine-tune its weights in order to adapt the model to a specific
task. |Cheng et al.| (2023) and Wu et al.[(2023) adapt SAM to various medical image segmentation
tasks. Wang et al.|(2023) use a modified version of SAM for robotic surgery. In|Chen et al.|(2023)),
adapter layers are introduced at intermediate places in the SAM-Encoder in order to fine-tune SAM
to unusual image segmentation tasks. The method in|Ding et al.|(2023) adapts FastSAM (Zhao et al.,
2023) for the task of change detection in remote sensing. It should be noted that all aforementioned
methods require some additional fine-tuning on an existing annotated dataset in the target domain
before they can be used. In contrast to that, our method can be used directly and adapts the network
on-the-fly.
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2.2 TEST-TIME ADAPTATION

The field of test-time adaptation deals with techniques to improve the model while it is already in
use. Most of the existing methods are employed in contexts where there is no access to high-quality
pseudo-labels, as would be the case in interactive segmentation. The method proposed by Wang
et al.| (2020) leverages entropy-minimization to adapt the model. [Song et al. (2023) adds small
blocks to the adapted models in order to enable test-time adaptation on low memory devices while
using entropy-minimization as well. [Wang et al.| (2022)) use a consistency loss and a exponential
moving average, while stochastically restoring single weights to mitigate error accumulation. The
methods most strongly related to this paper, are methods which focus on the adaptation of interactive
segmentation models during usage. The most commonly exploited information in these methods
are the user generated clicks. Albeit very sparse, they provide immediately available ground truth
information. |[Kontogianni et al.| (2020), |Shi et al.| (2023)) and |Lenczner et al.| (2020) all exploit the
clicks which are available due to the user interaction. The authors of |[Wang et al.| (2018a) fine-
tune their model on the basis of scribbles. The work of |Hao et al.| (2022) is most similar to our
method, since the authors mention that they use intermediate masks, although they do not mention
any method avoiding erroneous masks or regions. In contrast to our method, they also introduce
additional modules to their model which requires an additional previous fine-tuning stage.

3 METHOD

3.1 PROBLEM STATEMENT

First, we will provide a precise description of the interactive segmentation problem. Afterwards, we
will briefly describe how we simulate the interaction in order to test such a system. Assume that
we have an image x € R¥*W >3 and wish to create a segmentation map m € {0, 1} which
delimits a desired area in said image. That is, every pixel belonging to the area in x is set to 1 in m,
and every other pixel to 0.

In order to create such an annotation, a user will repeatedly interact with a neural network fseg
by providing it with clicks that indicate pixels reliably belonging to the foreground or background
of the image. In each step ¢ the user will be shown the current estimation of the mask 1,
which only consists of background pixels in the beginning (¢ = 0). The user then chooses a falsely
labeled region from the mask and places a click p; on its surface. This p; is a triple (i, ji, l;) which
indicates a position (4, j) € {1, ..., H} x {1, ..., W} and, depending on the choice of the user, a label
I € {4, —} marking the position as foreground or background. The model fs, is then given m;_1,
all previous clicked pixels p1.; = {p1, ..., p+} and the image x in order to predict an improved mask
my = fSeg(wa Pi:t, mt71)~

Once the user regards the quality of the mask as satisfactory, the interaction stops by saving this
mask as mR® and the next image is annotated. It is to be noted that this result mask 7R might
still be partially erroneous if the user chooses to ignore falsely annotated parts.

When it comes to evaluating the quality of such systems, we do not usually have a user at our
disposal. Instead, we follow [Sofiiuk et al.| (2022) to simulate user interaction on images for which
we already have ground truth segmentation masks mST. At each iteration, we first compute the
false positive area mpp and the false negative area mpy. Then we compute the euclidean distance
transforms D(mgp) and D(mpy) of the respective error masks, and select the pixel with the largest
value on both distance transforms as a click. The label of the click depends on whether it has been
placed on mpp or mpy. We stop the interaction once the overlap of the proposed mask 1m; with the
ground truth mask mST exceeds a certain minimum IoU. This final mask will then be treated as the
result mask 1mRes,

3.2 FOUNDATION MODELS FOR INTERACTIVE SEGMENTATION

The so called Segment Anything Model (SAM) is a large foundation model for the general task
of promptable segmentation, which has been published in |Kirillov et al.[ (2023)) alongside the SA-
1B dataset. Promptable segmentation denotes the task of segmenting arbitrary object instances as
indicated by a user interaction, such as bounding boxes, text prompts or foreground/background
clicks, as well as previously available low-quality masks. The ability to improve upon previous
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Figure 1: A rough description of the SAM architecture and the information used as pseudo-labels.
Our method only adapts the mask-decoder which renders the computational effort of the backprop-
agation and optimization negligible. The usage of pseudo-labels is discussed in subsection [3.3]

masks and being guided by foreground/background clicks renders every promptable segmentation
model compatible with click-based interactive segmentation. In addition to that, SAM has been
pretrained on the SA-1B dataset, which contains 1.1B class-agnostic segmentation masks for 11M
images. This causes SAM to be an extraordinarily good model for segmentation of objects on
consumer images. Despite of this, there is still room for improvement when it comes to more
specific image domains and more obscure types of objects, as our experiments indicate.

The architecture of SAM itself is divided into three parts: An image encoder, a prompt encoder
and a mask decoder. The image encoder receives an image € R”>*W >3 and encodes it into a
feature map independently of any user interaction. The authors of SAM use a ViT backbone for this
task. The prompt encoder receives the prompt in the form of clicks, bounding boxes, and masks,
and encodes them into a form which is useful for the mask decoder. The mask decoder receives
the image features and the encoded prompts, and uses both to predict as segmentation mask for the
object indicated by the prompts. Figure [3.2] contains a rough visualization the SAM architecture.

The greatest benefit of this general architecture lies in the decoupling of the computation of prompt
embeddings and image features. The image only needs to be embedded once, while additional
interactions only require a reuse of the prompt encoder and mask decoder. As long as the latter
two networks are sufficiently light-weight, the user will be granted a real-time experience during the
interactive usage of the model.

3.3 ADAPTING THE MODEL DURING TEST-TIME

When performing interactive segmentation, we generally annotate a sequence of images instead of
just a single one. This opens up the possibility of exploiting information gathered from segmenting
previous images, in order to get better at segmenting future images. Similar to Kontogianni et al.
(2020) and [Lenczner et al.| (2020), we make use of the fact that each click on its own constitutes
a single reliably correct ground truth pixel. Since this piece of ground truth is available directly
after being entered by the user, we can already adapt the model while still annotating the image.
Additionally, we use the mask mR° which results after the user is done annotating the image. We
first subject the mask to multiple iterations of morphological erosion and then use this eroded mask

mFroded a5 a pseudo-label to adapt the model to the image domain.

When carrying out the adaptation, we only optimize the parameters of the decoder. A single execu-
tion of backpropagation and optimization with the Adam optimizer took 43.6 ms on a Nvidia V100
GPU vs. 13.1 ms for the corresponding forward pass, which is both much faster than a user could
even consciously react to the mask. Since the accompanying optimization takes less than four times
the time of the forward pass, the method doesn’t impede any potential real time usage.
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Immediately using Clicks for Adaptation.  As soon as the user makes a click p; = (i¢, js, l1),
we have ground truth information for a particular pixel at our disposal. We can use all clicks p;.; we

have received up until that point in order to create a sparse mask ;"™ with

1’ if (Za.]7+) € D1t
?Ezj;se = O, if (i,j, *) S (D)
—1, otherwise

where —1 marks unknown pixels. Let m, be the segmentation mask that has been computed after
that last click has been made. We then compute a sparse binary cross entropy loss

Sparse
225 Lmsmey Loc (M 575 i j)
L2X2¥]

i L o
SO 1 swee_o Loce(myP my )
,j m‘t{’iy‘j:O BCE tyi,g 0]

Zx7y ].mSparse.:io

tyi,g

Sparse
LSparse (mt ) mt) =

using m;™™ as the label mask. We then immediately carry out an optimization step, thus progres-

sively overfitting to the particular image as we continue annotating it. Note that this overfitting is
deliberate and has to be reversed after we are done with the image. In order to achieve this, we reset
the weights to their values before the image annotation, directly after we are done with the image.

Using all Clicks to adapt the Model to the Image Sequence.  While the last paragraph describes
a deliberate overfitting to the image, we also have the option to only carry out a single optimization
step after we finish annotating the image. When doing this, we use all clicks that have been accumu-
lated during the annotation of an image to create a single mSP**® per image. The mask is created in
the same fashion as before. This strategy adapts the model to the type of object and image domain
of the test set, whilst acting less destructive on the parameters.

Using the Resulting Mask to Adapt the Model to the Image Sequence. Once the user regards
the interactively created mask to be of sufficient quality, they stop the annotation and we obtain the
result mask mR* € {0,1}7*W. We can use this mask as a pseudo-label to adapt the model to
the image sequence. In order to circumvent erroneous regions we will prune mR® at the borders
between foreground and background. This is done by separating the foreground and background
masks, iteratively eroding both of them and uniting them again. Let mfS = mR® and mB® =
1 — mR® be the foreground and background masks, respectively. We define (1) to be a k-fold

application of morphological erosion as

7’(m) =m, 3)

0 1 0

Y (m) =~ (m)e |1 1 11, )
01 0

where © is the symbol for the erosion operation. Then mFG Eroded — ~k (1FG) apd yBG. Eroded —

7*(mBY) are the eroded background and foreground masks. We will unite the two, resulting in the
pruned pseudolabel mask mFoded with

1’ lf mfz, Eroded — 1
Eroded __ .¢  BG, Eroded __
m; ;o =40, if m; =1. 5
—1, otherwise

We will carry out a single optimization step using Lspars after annotating each image.

Using multiple decoders for Multiple Classes. All of the aforementioned adaptation will in-
evitably overfit the model to a particular domain or type of object. It is however noteworthy, that the
only part of the model to be adapted is the decoder. In cases where we want to annotate multiple
different classes, we use multiple copies of the original decoder. Each of the copies is separately
adapted to the respective object type or domain. We regard the memory overhead as negligible due
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Figure 2: Examples for the masks occurring during the interaction. The first row contains the ground
truth. The second row contains the annotated mask and the clicks. The third row contains examples
for the eroded result mask. Green, red and blue correspond to foreground, background and the
eroded area, respectively.

to the small amount of parameters of the decoder in comparison with the rest of the model. For
the version of SAM with the ViT-b backbone, we have 4.06M parameters for the decoder vs 89.7M
parameters for the rest of the model. For the versions with the ViT-1 and ViT-h backbones, the rest of
the model has 308.3M and 637M parameters respectively, while the decoder size remains the same.

4 EXPERIMENTS

4.1 EXPERIMENTAL SETTING

Implementation Details. During training we only adapt the decoder in order to minimize the
computational overhead of our method. We carry out all optimization with a sparse binary cross
entropy loss, as described in Section We use the Adam optimizer with a learning rate of 10~°.
The resolution of the input images is 1024 x 1024, which is a pre-existing property of SAM. All
experiments use the ViT-b backbone. Whenever we use erosion, we carry out the iterative erosion
with k& = 5 iterations.

Metrics. When testing an interactive segmentation system, we want to exceed a certain IoU thresh-
old T,y within n clicks. If the system is unable to do that, we consider the attempt at segmenting
the image a failure and use n as surrogate value for the number of clicks when computing the
NoC,,@Ty,y. The Number of Clicks (NoC,,@QTy,;) metric measures the average number of clicks on
the test set, while the Failure Rate (FR,,QTy,y) measures the percentage of images on which the seg-
mentation failed. Out of the two metrics we regard the failure rate as the more important one. While
having to add an additional click on some images during the annotation process incurs a higher time
effort, the failure rate measures the amount of images that cannot be segmented within a reasonable
number of clicks at all.

Adaptation Configurations. ~When it comes to the techniques we employ during the adaptation,
we can view them as configured in the following way:

Click Adaptation (CA): After each click, we can use all so far accumulated clicks to create a
sparse label mask, with which we optimize the model to overfit to the image. We call this process
Click Adaptation (CA). In Subsection [3.3| we mentioned that this deliberate overfitting necessitates
resetting the weight after each object, which we denote with an R for (R)eset in the tables. We may
however choose to not perform this reset, and adapt our model continually over all images. We
denote this by a C for (C)ontinual. No letter in the tables means that we do not use Click Adaptation
at all.
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Table 1: The results on datasets displaying rare objects types. NoC means the NoCy(@85 metric
and FR is the FRo(@85, describing the number of objects that could not be segmented after 20
clicks. For both metrics, a smaller value indicates a better performance. An explanation of the
configurations can be found in Section 4.1]

Configuration Rooftop DOORS TrashCan CAMO

CA | RM | CM || NoC FR NoC FR NoC FR NoC FR
4171 | 6.00 | 5.439 | 16.69 | 13.259 | 57.42 | 7.224 | 20.3

R E v 3.667 | 393 | 4877 | 1350 | 11.488 | 40.49 | 7.310 | 17.2
R 37755 | 393 | 5.149 | 12.25 | 11.847 | 3941 | 7.382 | 18.2
C 3.834 | 393 | 5222 | 1273 | 11.932 | 4142 | 7.212 | 17.1
E 3741 | 339 | 5.642 | 18.10 | 13.486 | 58.23 | 7.401 | 20.2

v 3915 | 4.62 | 5.154 | 1497 | 13.694 | 5947 | 7.278 | 194

R v 3707 | 3.70 | 5.326 | 12.83 | 11.796 | 40.38 | 7.402 | 17.0
R U v 3.693 | 3.00 | 4.861 | 12.64 | 16.041 | 64.49 | 12.764 | 45.8

Configuration ISTD LeafDisease PPDLS TimberSeg

CA | RM | CM || NoC FR NoC FR NoC FR NoC FR
11.584 | 40.68 | 14.624 | 62.07 | 6.239 | 23.76 | 11.564 | 48.50
R E v 10.392 | 31.13 | 14.595 | 60.71 | 6.250 | 20.04 | 10.497 | 39.67
R 10.932 | 34.66 | 14.665 | 61.05 | 6.267 | 19.25 | 11.080 | 42.26
C 10.896 | 33.91 | 14.631 | 60.71 | 6.218 | 19.43 | 10.661 | 40.73
E 11.295 | 38.80 | 14.690 | 61.05 | 5.955 | 21.42 | 10.745 | 43.32
v 11.596 | 41.73 | 14.517 | 60.54 | 5.988 | 21.56 | 10.933 | 43.92
R v 10.810 | 33.68 | 14.469 | 60.03 | 6.140 | 19.54 | 10.571 | 40.18
R U v 15.017 | 57.97 | 14918 | 62.41 | 14.387 | 49.40 | 16.710 | 74.76

Result Mask (RM): After being done with annotating an image, we can make use of the Result
Mask (RM). We could directly use the mask as a pseudolabel for optimization. We denote this
with a U for (U)ntreated in the tables. As we will show however, this mask may still be erroneous
and worsen our performance by subjecting our model to a partially false training signal. In order to
circumvent this problem we may prune the masks foreground and background area by using iterative
erosion. We denote this by an E for (E)rosion. No letter means that we do not make use of the result
mask.

Click Mask (CM): After the annotation, we can use the accumulated clicks to form a sparse Click
Mask (CM), with which we can perform a single optimization step. In each configuration in which
we do so, it is annotated by a checkmark (v').

Specifically, these descriptions imply that the table row containing no letter or checkmark means
that we are not performing any form of adaptation. This constitutes our baseline which is the regular
SAM architecture. Whenever we use the Result Mask and the Click Mask in the same configuration,
we just merge the two masks into a single mask. In all tables, the first line contains the baseline,
while the second line contains our complete method. Figure 2] shows some qualitative examples.

4.2 ADAPTATION TO RARE OBJECTS

We will adapt SAM during usage on various datasets providing examples for rather obscure and
uncommon situations. The Rooftop dataset (Sun et al., 2014) provides various remote sensing pho-
tos with annotated rooftops. The DOORS dataset (Pugliatti & Topputol |2022) has been created
for the segmentation of boulders. The TrashCan dataset (Hong et al.|,|2020) contains segmentation
masks for underwater waste objects. CAMO (Le et al., [2019; |Yan et al., [2021)) is a dataset for the
task of camouflaged object segmentation and ISTD (Wang et al,[2018b) for shadow segmentation.
Additionally, we have three datasets for agricultural applications: One dataset for leaf disease seg-
mentation (Alam, 2021), PPDLS (Minervini et al., 2016) for the segmentation of arabidopsis and
tobacco leafs, and TimberSeg (Fortin et al.,|2022) for the segmentation of logs in forestry work.

We are first going to look at NoCs(@85 and FR2y@85 metrics. According to Table |1} our method
reduces the FR on ISTD from 40.68 to 31.13, while reducing the NoC by more than one click.
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Table 2: The results on datasets displaying rare objects types. NoC means the NoC3y@90 metric
and FR is the FR37@90, describing the number of objects that could not be segmented after 30
clicks. For both metrics, a smaller value indicates a better performance. An explanation of the
configurations can be found in Section 4.1]

Configuration Rooftop DOORS TrashCan CAMO
CA | RM | CM || NoC FR NoC FR NoC FR NoC FR
9.979 | 22.63 | 13.870 | 37.77 | 23.281 | 72.49 | 13.870 | 34.1
R E v 8.891 | 18.21 | 13.163 | 33.62 | 20.527 | 54.06 | 13.488 | 28.3
R 8.961 | 18.24 | 14.996 | 36.30 | 20.979 | 53.86 | 13.719 | 29.6
C 9.358 | 19.86 | 14.623 | 35.35 | 21.032 | 53.40 | 13.573 | 29.1
E 9.321 | 19.63 | 14.965 | 42.47 | 23.700 | 73.30 | 14.082 | 33.0
v 9.314 | 19.40 | 13.629 | 35.96 | 23.976 | 74.27 | 14.063 | 33.6
R v 9.127 | 18.94 | 15.533 | 37.33 | 20.925 | 52.20 | 13.503 | 28.5
R U v 9.339 | 19.40 | 13.082 | 33.31 | 25.221 | 70.75 | 20.840 | 54.2
Configuration ISTD LeafDisease PPDLS TimberSeg
CA | RM | CM || NoC FR NoC FR NoC FR NoC FR
18.744 | 49.02 | 24.255 | 72.62 | 13.260 | 38.55 | 20.358 | 62.64
R E v 16.660 | 40.00 | 23.617 | 70.24 | 13.782 | 30.28 | 18.735 | 52.15
R 17.411 | 41.80 | 24.138 | 71.26 | 13.682 | 31.30 | 19.018 | 54.46
C 17.302 | 40.90 | 24.214 | 72.28 | 13.276 | 30.88 | 19.026 | 54.00
E 18.329 | 47.89 | 24.320 | 72.62 | 12.877 | 36.17 | 19.306 | 58.21
v 19.574 | 53.08 | 24.226 | 71.60 | 12.574 | 35.07 | 19.436 | 58.76
R v 17.217 | 41.35 | 24.153 | 72.11 | 13.447 | 31.22 | 18.874 | 53.49
R U v || 22.729 | 59.40 | 24.221 | 72.11 | 22.892 | 56.13 | 26.319 | 79.89

On TrashCan, our method even improves the FR from 57.42 to 40.49. It should also be noted
that the results imply that SAM is unable to segment over half of the objects in the TrashCan and
LeafDisease datasets to a satisfying degree. While our complete method slightly increases the NoC
on the CAMO and PPDLS datasets, it still lowers the FR which we regard as the more crucial metric.
In order to see the effect of using the untreated mask, we also run a version of our complete method
without pruning the mask by erosion. As it turns out, eroding the mask is important due to potential
erroneous areas at the edge of foreground and background area. The resulting false training signal
manages to increase the FR by even more than two times on CAMO.

In Table 2] where the model needs to achieve an IoU of 90 within 30 clicks, we see an exacerbation
of the problem SAM has with segmenting objects that are alien to its original training set. The FR
values of the unadapted SAM model are 72.49, 72.62 and 62.64 on TrashCan, LeafDisease, and
TimberSeg, respectively. This indicates that SAM is almost inept to segment these types of data to
an IoU of 90 with the actual object surface, which would be considered necessary when producing
annotations for new data. In the case of TrashCan and TimberSeg we manage to reduce the FR by
18.43 and 10.49 percentage points, respectively. The largest improvements regarding the NoC are
incurred on TrashCan with a reduction of 2.754 clicks. On PPDLS, we again have a reduction in
the FR for the cost of slightly higher NoC. It should be noted, that our complete method (CA =R,
RM =E, CM = V') reduces the failure rate in all cases, and thus widens the applicability of SAM for
uncommon domains.

4.3 RESULTS ON MEDICAL IMAGE SEGMENTATION

In order to investigate the efficacy of the adaptation method on medical image segmentation, we
consider four different datasets: Kvasirlnstrument (Jha et al., |2021) contains segmented images of
tools used in the gastrointestinal tract. CVCClinicDB (Bernal et al.,2015) and KvasirSeg (Jha et al.,
2020) are two datasets for the task of polyp segmentation, while the GlaS dataset (Sirinukunwattana
et al.,[2017;2015) provides data for the task of gland segmentation in colon histology.

The results for using our method on medical data generally comport with the results on other rare
objects. It is first to be noted that our complete method causes a reduction of the failure rate in
all cases. In Table [3| we see the complete method decreasing the FR on KvasirSeg from 2.7 to
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Table 3: The results medical datasets. NoC means the NoCo(@85 metric and FR is the FRo(@85,
describing the number of objects that could not be segmented after 20 clicks. For both metrics, a
smaller value indicates a better performance. An explanation of the configurations can be found in

Section 411
Configuration KvasirInstrument | CVCClinicDB GlaS KvasirSeg

CA | RM | CM || NoC FR NoC FR NoC FR NoC | FR
2.137 1.86 4935 | 8.17 7485 | 14.64 | 3.615 | 2.7

R E v 2.166 1.53 4551 | 5.56 | 6.759 | 1020 | 3.145 | 14
R 2.388 2.71 4.828 | 5.39 | 7.377 | 13.53 | 3314 | 1.1
C 2.239 2.37 4900 | 7.03 7.250 | 13.27 | 3352 | 1.2
E 2.136 1.69 4471 | 441 8.437 | 20.65 | 3.123 | 1.2

v 2.178 2.37 4.637 | 5.39 8.539 | 20.72 | 3.281 | 1.2

R v 2.305 2.37 4757 | 6.21 7.576 | 1529 | 3273 | 1.0
R U v 2.251 2.20 5.087 | 6.70 | 13.946 | 49.15 | 7.684 | 20.3

Table 4: The results medical datasets. NoC means the NoC3,@90 metric and FR is the FR3,@90,
describing the number of objects that could not be segmented after 30 clicks. For both metrics, a
smaller value indicates a better performance. An explanation of the configurations can be found in

Section .11

Configuration KvasirInstrument | CVCClinicDB GlaS KvasirSeg
CA | RM | CM || NoC FR NoC FR NoC FR NoC FR
3.651 4.75 10.301 | 19.61 | 14.995 | 3353 | 6378 | 5.8
R E v || 3.825 4.58 8.585 | 10.46 | 11.684 | 19.15 | 5.580 | 3.9
R 4.063 5.42 9.343 | 14.05 | 13.341 | 24.12 | 6.397 | 5.7
C 4.041 5.42 9.041 | 12.75 | 13.331 | 23.73 | 6.057 | 4.4
E 3.749 5.08 9.588 | 14.87 | 15.884 | 3549 | 5573 | 3.4
v 3.647 4.75 9.458 | 14.87 | 16.729 | 40.13 | 6.106 | 4.9
R v || 4.237 593 9.253 | 13.40 | 13.690 | 25.23 | 6.178 | 5.7
R U vl 4239 5.76 12.446 | 21.57 | 22.744 | 55.29 | 16.168 | 34.2

1.4, almost halving it. On GlaS, the FR is lowered from 14.64 to 10.20 and the NoC is lowered
from 7.485 to 6.759. On KvasirSeg and GlaS, the untreated result masks with a partially erroneous
signal causes the most damage. It increases the failure rate by 18.9 and 38.95 percentage points in
comparison to the full method with the eroded mask on each of the respective datasets. In Table
[l we can see a reduction in the FR by 14.38 percentage points, as well as a reduction in the NoC
by 3.311 clicks on GlaS. On CVCClinicDB the FR is lowered by 9.15 percentage points, while
the NoC is lowered by 1.716 clicks. On KvasirInstrument, the adaptation method causes a slightly
higher NoC, but still lowers the failure rate.

5 CONCLUSION

In out paper we applied the Segment Anything Model to uncommon situations. We did so for the
specific task of interactive segmentation and evaluated appropriate metrics: The Number of Clicks
(NoC) and the Failure Rate (FR). Despite the model being trained on the largest dataset for instance
masks to date, we see considerable problems when confronting the model with data that differs
from regular consumer images. In some situations the model failed to segment more than half of the
objects in the dataset, as reflected by the Failure Rate. This inability to segment certain objects poses
a crucial limit to the model. In order to alleviate this problem we propose a test time adaptation
method. All techniques are restricted to using information that occurs during usage and do not
require any previous fine-tuning on existing datasets. In addition to that, they only incur a minimal
computational overhead in order to not hamper any potentially required real-time capabilities. With
the help of our method we manage to lower the Failure Rate on twelve different datasets and lower
the NoC on ten of them. We thus conclude that the information available during test time provides a
useful tool when applying a foundation model such as SAM to uncommon domains.
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