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ABSTRACT

Chain-of-Thought (CoT) prompting has emerged as a powerful approach to en-
hancing the reasoning capabilities of Large Language Models (LLMs). However,
existing implementations, such as in-context learning and fine-tuning, remain
costly and inefficient. To improve CoT reasoning at a lower cost, and inspired
by the task vector paradigm, we introduce CoT Vectors, compact representations
that encode task-general, multi-step reasoning knowledge. Through experiments
with Extracted CoT Vectors, we observe pronounced layer-wise instability, man-
ifesting as a U-shaped performance curve that reflects a systematic three-stage
reasoning process in LLMs. To address this limitation, we propose Learnable
CoT Vectors, optimized under a teacher–student framework to provide more sta-
ble and robust guidance. Extensive evaluations across diverse benchmarks and
models demonstrate that CoT Vectors not only outperform existing baselines but
also achieve performance comparable to parameter-efficient fine-tuning methods,
while requiring fewer trainable parameters. Moreover, by treating CoT Vectors as
a probe, we uncover how their effectiveness varies due to latent space structure,
information density, acquisition mechanisms, and pre-training differences, offer-
ing new insights into the functional organization of multi-step reasoning in LLMs.
The source code will be released.

1 INTRODUCTION

Chain-of-Thought (CoT) prompting (Wei et al., 2022) has emerged as a powerful technique to un-
lock the complex reasoning capabilities of Large Language Models (LLMs) (Zhao et al., 2023). By
reasoning step-by-step, CoT enables models to decompose problems, mimic human-like logic, and
improve performance on several challenging tasks (Imani et al., 2023; Huang & Chang, 2022). How-
ever, how to effectively harness the power of CoT in practice remains an open problem. Existing
approaches generally fall into two categories: (1) In-Context Learning (ICL) (Brown et al., 2020)
with few-shot CoT examples, which can enhance reasoning, but it requires longer prompts and slows
inference; (2) Fine-tuning LLMs (Ziegler et al., 2019) with CoT-annotated data, which demands
large amounts of high-quality reasoning traces and computational resources, while often yielding
only limited improvements for models that already equipped with CoT abilities. These challenges
prompt a critical question: can we transfer the essence of CoT, i.e., the general “problem-solving
mindset” of a task, into LLMs in a way that is compact, reusable, and efficient?

Recent advances in Task Vectors (Ilharco et al., 2022) offer a promising direction. Task-specific
knowledge can be distilled into a compact vector, often represented as the difference in activa-
tions (Hendel et al., 2023; Todd et al., 2023; Liu et al., 2023) or parameters (Ortiz-Jimenez et al.,
2023b; Li et al., 2025) between fine-tuned and base models. Such vectors can steer model be-
havior toward new tasks without modifying model weights, thereby enabling parameter-efficient
adaptation. However, current applications of Task Vectors have been limited to simple adaptation
scenarios, leaving it unclear whether this paradigm can be extended to complex multi-step reasoning.

Through mathematical analysis, we observe that the effect of CoT can be formalized as a consistent
shift in the internal activations of model (He et al., 2021), suggesting that extending task vectors
to reasoning is both feasible and promising. In this work, we introduce CoT Vectors, task-general
reasoning representations that adapt the task vector framework to CoT reasoning. CoT Vectors
compactly encode the critical reasoning knowledge from a support set of (Question, CoT, Answer)
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CoT Thinking: ......The 
sequence of bids would be 
$200, $250, $300, $350, ... 

$12300 

&*%$# !

Answer

CoT 
Thinking

LLM

Q+CoTQ+CoTQ+CoT

Support Set

+

� CoT Vector

(a) Complex Reasoning (b) Fine-tuning (c) CoT Vector

Extracted Learnable

Q+CoTQ+CoTQ+CoT

Support Set

Question: Carmen wins the antique desk after outbidding 3 other people who each 
bid once, starting from a $200 opening bid with $50 increments. 

What does she pay?

Question: Carmen outbids three 
single bidders for a $200 desk with 

$50 increments—what does she pay?

CoT Thinking: Carmen 
and three rivals each bid 

once, pushing the price up: 
$200 → $250 → $300 → 

$350 → ... $12300 ......

The answer is: 12300 

CoT Thinking: Three rivals add 
3×$50=$150, Carmen counters 

with 3×$50=$150,
 so the desk costs 

$200+$150+$150=$500.

The answer is: 500 

LLM

Q+CoTQ+CoTQ+CoT

Support Set

CoT Thinking: Carmen makes 1 
opening plus 3 counter-bids, while 
the 3 rivals add 3 more, totaling 7 

bids. (7 – 1) × $50 + $200 = $500, 
so she pays $500.

The answer is: 500 

LLM

Question: Carmen outbids three 
single bidders for a $200 desk with 

$50 increments—what does she pay?

Question: Carmen outbids three 
single bidders for a $200 desk with 

$50 increments—what does she pay?

LLM

Frozen Trainable

LLM

Figure 1: Overview of our approach. (a) Standard LLM may struggle to produce a correct reasoning
chain for a complex problem. (b) Conventional fine-tuning adapt the model to such tasks by training
on a support set, but requires updating model parameters, incurring high computational cost. (c) Our
proposed CoT Vector leverages the support set to obtain a compact reasoning representation, which
can be injected into the forward process of model to guide reasoning efficiently.

triplets, and can be directly injected into the forward process during inference. This approach not
only enables portable reasoning enhancement without costly retraining or significant inference over-
head, but also offers a new probe into how LLMs internalize and apply CoT.

Specifically, we begin with Extracted CoT Vectors, directly derived from activation differences be-
tween reasoning and non-reasoning traces, in line with the traditional task vector approach in NLP.
Our studies reveal that Extracted CoT Vectors are effective but highly unstable across layers, with
a striking U-shaped performance curve. This pattern suggests a systematic functional organization
in LLMs, which we characterize as a three-stage reasoning process spanning perception, reasoning,
and expression. Shallow and deep layers show relatively consistent representations, whereas middle
layers contain highly variable, sample-specific structures that cause extracted vectors to fail.

To improve robustness, we introduce Learnable CoT Vectors, optimized via a teacher–student frame-
work. Mathematically inspired by the additive shift formalization of CoT, our method distills a more
robust and generalizable reasoning signal into a single, reusable vector. By actively learning reason-
ing knowledge rather than passively averaging activations, it achieves greater stability and stronger
performance, overcoming the layer-wise volatility of extracted vectors. We conduct a comprehen-
sive evaluation across various models and benchmarks, comparing extracted and learnable vectors
against baselines. Our analyses further elucidate the sources of variability in CoT Vector effective-
ness, highlighting how differences in acquisition mechanisms and model-specific latent structures
shaped during pre-training impact reasoning performance. This perspective offers a valuable lens
for understanding how LLMs organize and apply multi-step reasoning internally.

Overall, we summarize the main contributions of this work as follows:

• We introduce CoT Vectors, extending task vectors to multi-step reasoning. Experiments with
traditional extracted vectors uncover their layer-wise instability, which in turn reveals a systematic
three-stage reasoning process in LLMs.

• To address the limitations of extracted vectors, we propose novel Learnable CoT Vectors, op-
timized via a teacher–student framework, which provide more robust, stable, and task-general
reasoning representations.
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• We conduct a comprehensive evaluation across benchmarks and models. Using CoT Vectors as a
probe, we analyze their variability from multiple perspectives, including latent space structure, in-
formation density, acquisition mechanisms, and model pre-training differences, thereby providing
new insights into the mechanistic organization of reasoning in LLMs.

2 RELATED WORK

Enhancing Chain-of-Thought Reasoning in LLMs. Our work builds upon the foundational
paradigm of CoT prompting (Wei et al., 2022), which significantly improves reasoning perfor-
mance by eliciting step-by-step rationales. Numerous subsequent efforts have refined this idea
through improved prompting strategies (Kojima et al., 2022; Khot et al., 2022), search-based rea-
soning frameworks (Yao et al., 2023), program-aided execution (Gao et al., 2023), and iterative self-
refinement (Madaan et al., 2023). Another common strategy to improve performance is fine-tuning.
Typical approaches include Supervised Fine-tuning (SFT) on (Question, CoT, Answer) triplets, as
well as reinforcement learning techniques such as RLHF (Ouyang et al., 2022), PPO (Schulman
et al., 2017), and GRPO (Rafailov et al., 2023). While effective, these techniques often demand
substantial amounts of high-quality rationales, significant computational resources for training or
alignment, making them prohibitively expensive relative to the incremental gains.

A parallel line of work seeks to compress explicit reasoning steps into fewer, or even invisible,
latent representations, often referred to as Implicit CoT (Deng et al., 2023; 2024). These methods
aim to internalize the reasoning process to improve efficiency and performance. Some approaches
modify model architecture (Geiping et al., 2025) or use placeholder tokens in prompts (Pfau et al.,
2024) to extend latent reasoning depth, effectively condensing multi-step thinking into compressed
latent transitions that lead directly to answers. However, these methods typically require specialized
model modifications and carefully engineered training regimes involving intensive post-training of
model parameters (Hao et al., 2024; Shen et al., 2025; Cheng & Van Durme, 2024), which demand
substantial resources while often delivering only modest gains. In contrast, our approach keeps the
model architecture untouched: we distill reasoning into an external, plug-and-play CoT Vectors that
can be acquired and applied rapidly for new tasks, combining flexibility with strong performance.

Task vectors. Task vectors (Ilharco et al., 2022) have emerged as a compact representation of task-
specific knowledge, typically obtained either by computing weight differences between fine-tuned
and pre-trained models (Ortiz-Jimenez et al., 2023a; Li et al., 2025), or by capturing activation
differences induced by distinct input prompts (Liu et al., 2023; Todd et al., 2023; Hendel et al.,
2023). These vectors not only enable parameter-efficient task transfer but have also been leveraged
to provide preliminary insights into the internal mechanisms of LLMs (Yang et al., 2025). However,
existing studies largely focus on relatively simple scenarios such as classifications or in-context
learning, leaving the application of task vectors to complex multi-step reasoning underexplored.
Several recent preliminary study (Azizi et al., 2025; Tang et al., 2025; Zhang & Viteri) have tenta-
tively explored steering vectors in CoT, suggesting the feasibility of the paradigm. However, Azizi
et al. (2025) focuses on compressing CoT chains, while Tang et al. (2025) aims to stimulate longer
reasoning trajectories, both focusing on controlling CoT generation rather than capturing a task-
general reasoning pattern. Meanwhile, Zhang & Viteri remains limited to conventional extraction
techniques and offered only surface-level analysis. Our work moves substantially beyond this early
exploration. Instead of relying solely on a basic extraction method, we introduce a novel learnable
mechanism that actively optimizes CoT Vectors for better generalization and performance. Further-
more, our study provides a comprehensive analysis absent from prior work.

3 METHODOLOGY

We first formalize the concept of CoT Vectors in Section 3.1, deriving it from the mechanistic
effect of CoT reasoning on the model’s attention outputs. This formulation not only establishes the
feasibility of our approach but also provides the guiding principle for the subsequent development.
Building on this, we develop our two practical frameworks in Section 3.2 for acquiring CoT Vectors:
a non-parametric extraction method and a novel parametric learning-based method, along with how
to efficiently integrate the resulting vectors during inference to steer the model’s reasoning.

3



162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2026
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Figure 2: Methods for acquiring and applying CoT Vectors. (a) Extracted CoT Vector is obtained
by recording the activation gap at the k-th layer between inputs with and without CoT. (b) Learnable
CoT Vector is inserted into the k-th layer activations of a student sequence without CoT, and trained
by aligning the student’s final answer-token hidden states with those of a teacher sequence that
includes CoT. (c) At test time, CoT Vector is added to the activations at the k-th layer during each
forward pass of auto-regressive generation, guiding the reasoning process.

3.1 CONCEPTUALIZATION AND FORMALIZATION OF COT VECTOR

The effectiveness of CoT prompting highlights that inserting an explicit reasoning sequence between
the input question Q and the final answer A significantly enhances the model’s reasoning capability.
Our objective is to capture and quantify the effect of this reasoning process within the model.

In transformer-based language models, information flow is governed by self-attention. He et al.
(2021) suggest that the effect of input prefixes can be understood as shifts in the attention out-
puts. In the context of CoT, the CoT sequence can be viewed as a specialized prefix that modulates
the generation of answer tokens. When reasoning with CoT, the generation of an answer token
depends not only on the question tokens but also on the intermediate CoT tokens. For each an-
swer token a ∈ A, the single-head self-attention with and without the CoT sequence is denoted as
SA(a, [KQ,KC ,KA], [VQ, VC , VA]) and SA(a, [KQ,KA], [VQ, VA]) respectively, where the sub-
scripts Q, C, and A refer to the question, CoT, and answer. We then derive the following equation:

SA(a, [KQ,KC ,KA], [VQ,VC ,VA]) = SA(a, [KQ,KA], [VQ,VA])︸ ︷︷ ︸
Standard attention

(1)

+ µ · (SA(a, [KC ], [VC ])− SA(a, [KQ,KA], [VQ,VA]))︸ ︷︷ ︸
CoT shift

(2)

The introduction of CoT induces an additional term in the attention output, whose influence is quan-
tified by a scalar coefficient µ (see the supplementary material for the full derivation). This additional
contribution reflects precisely the knowledge injected by the CoT sequence. We formalize this effect
as a CoT Shift, and denote the corresponding representation as the CoT Vector v⃗CoT. Accordingly,
Equation 1 can be reformulated as

SA(a, [KQ,KC ,KA], [VQ,VC ,VA]) = SA(a, [KQ,KA], [VQ,VA]) + µ · v⃗CoT (3)

The CoT Vector serves as a compact representation of the reasoning knowledge compressed from
the CoT sequence. We hypothesize that, for tasks of the same type, the CoT Vectors derived from
individual examples reside in a continuous semantic space. The centroid of this space, which we call
the task-general CoT Vector, encodes the shared reasoning strategy for that task. For a new problem,
injecting v⃗CoT into the model’s forward pass, which reversely applies the Equation 3, can effectively
guide the model toward an appropriate reasoning trajectory and thereby improves task accuracy.

3.2 TASK-GENERAL COT VECTORS

To leverage the advantages of task-general CoT Vectors, we first acquire them from a support set
D. We propose two approaches for this acquisition: a traditional extraction-based method and a
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novel parametric learning-based method. Once obtained, the task-general vector is injected into the
model’s forward pass during inference to steer its reasoning process.

3.2.1 EXTRACTED COT VECTORS

Given a support set of pairs (Q,A) and triplets (Q,CoT, A), we define the Extracted CoT Vector
v⃗
(l)
CoT as the difference in model activations of answer token a at layer l between these inputs, as

shown in Figure 2 (a):

v⃗
(l)
CoT =

1

|A|
∑
a∈A

(
α

(l)
CoT(a)−α

(l)
Non-CoT(a)

)
(4)

where α(l)(a) is the hidden state of answer token a at layer l for the input and |A| denotes the total
number of answer tokens.

For each instance (Qi,CoTi, Ai), we compute an instance-specific CoT Vector v⃗CoT,i. A task-
general Extracted CoT Vector v⃗E is then obtained by averaging across all N support instances:

v⃗E =
1

N

N∑
i=1

v⃗CoT,i (5)

3.2.2 LEARNABLE COT VECTORS

Beyond extraction, we propose a novel parametric method that learns a task-general CoT Vector
through gradient-based optimization. As depicted in Figure 2 (b), v⃗L is initialized as learnable
parameters, added as a shift to the hidden state at a specific layer, and optimized on the support set
D to encode generalized reasoning knowledge. We adopt a teacher–student framework. For each
instance (Qi,CoTi, Ai), the teacher path processes the full triplet with frozen model parameters,
providing the supervisory signal. The student path, in contrast, only processes (Qi, Ai), while v⃗L
is injected to compensate for the missing CoT sequence. Through this process, v⃗L distills essential
reasoning signals from the teacher into a compact, transferable representation.

Throughout optimization, all original LLM parameters are kept frozen; only v⃗L are updated. The
training objective combines two components: Prediction loss (LCE) is the cross-entropy loss on the
student’s predicted answer tokens, ensuring that the injected vector guides the model toward correct
outputs. Representation alignment loss (LAlign) is the mean KL loss between hidden states of teacher
and student paths at the answer tokens, enforcing alignment of internal reasoning representations.
The final objective is:

L = LAlign + λ · LCE (6)

where λ is a hyperparameter balancing the two terms.

3.2.3 INTEGRATING THE COT VECTOR TO REASONING

At inference time, given a new question, task-general CoT Vector v⃗CoT obtained from the support
set at specific layer l, is then injected into the model at the same layer during every forward pass of
CoT thinking, as shown in Figure 2 (c).

α̃(l) = α(l) + µ(l) · v⃗(l)CoT (7)
For Extracted CoT vectors, µ is an explicitly defined constant scaling factor. For Learnable CoT
Vectors, however, µ is effectively internalized—since v⃗L is optimized end-to-end, the scaling factor
is absorbed into the vector during training rather than being maintained as a separate constant. This
integration incurs almost no additional overhead: it does not increase the input context length, and
the runtime cost is negligible since the operation reduces to a simple vector addition. As a result,
our approach provides an extremely efficient mechanism for enhancing reasoning in LLMs.

4 EXPERIMENTS

In this section, we first outline the setup and implementation details (Section 4.1). Next, we explore
the adaptation of task vectors to multi-step reasoning in LLMs by introducing and analyzing CoT
Vectors (Section 4.2). This investigation extends beyond mere performance evaluation, utilizing
CoT Vectors as a tool to probe the underlying functional mechanisms of reasoning within LLMs.

5
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4.1 SETUP AND IMPLEMENTATION DETAILS

Models and Datasets. We conduct experiments on two open-source LLMs: Qwen2.5-Math-
7B (Yang et al., 2024), a model fine-tuned for mathematical reasoning tasks, and LLaMA-3.1-8B-
Instruct (Grattafiori et al., 2024), an instruction-tuned model with broad domain coverage. We evalu-
ate our method on five benchmarks: GSM8K (Cobbe et al., 2021), MATH (Hendrycks et al., 2024),
MMLU-Pro (Wang et al., 2024), CommonsenseQA (Talmor et al., 2019), and StrategyQA (Geva
et al., 2021). GSM8K and MATH cover mathematical reasoning, MMLU-Pro spans diverse sub-
ject domains, and CommonsenseQA/StrategyQA focus on natural-language logical reasoning. For
MATH, we divide the dataset into two subsets based on difficulty: MATH-Easy (levels 1–3) and
MATH-Hard (levels 4–5), ensuring balanced difficulty in the support set. We sample 3,000 ex-
amples from GSM8K and the two MATH subsets as the support set. For MMLU-Pro, we use all
70 ground-truth annotated problems as the support set. For CommonsenseQA and StrategyQA, no
official CoT traces are provided, so we rely on model-generated CoT sequences instead.

Implementation Details. We use standard zero-shot CoT prompting as baseline, where the model
is instructed to “think step by step.” For CoT Vectors, both extracted and learnable variants are
implemented following the procedures described in Section 3. For extracted vectors, the scaling
factor µ is fixed at 1.0. For learnable vectors, the loss balancing factor λ in Eq. 6 is set to 0.5. We
select LoRA (Hu et al., 2022) as the representative parameter-efficient fine-tuning baseline, where
LoRA adapters are trained on (Q, CoT, A) triplets. Following common practice, we apply LoRA
to the projection matrices WQ, WK , WV , and WO in all attention layers.

4.2 EXPLORING COT VECTORS AND THE MECHANISM OF REASONING

This section explores the adaptation of task vectors to multi-step reasoning via CoT Vectors. Our
analysis begins with examining CoT Vectors obtained by the traditional extraction method, which
prove effective but highly unstable performance across layers. This instability reveals consistent
layer-wise patterns, uncovering a three-stage reasoning process in LLMs. Building upon these in-
sights, we introduce Learnable CoT Vectors that achieve greater stability and stronger performance.
We comprehensively evaluate both CoT Vectors against baseline and LoRA across two models and
four benchmarks, and interpret performance variations through analyses of latent space structure,
information density, acquisition mechanisms, and pre-training differences. Together, these studies
not only extend the task vector framework to reasoning, but also reveal new perspectives on the
underlying mechanisms of LLM reasoning.

4.2.1 THE THREE-STAGE REASONING PROCESS

To assess whether task vectors can be extended to reasoning, we first explore the applicability of
conventional extracted task vectors in CoT setting. Table 1 shows that Extracted CoT Vectors are
indeed effective, improving over the baseline by an average of 2.4 and 1.1 points on the two models
respectively and demonstrating the feasibility of task vectors in reasoning; however, their effective-
ness is highly unstable across different layers (Figure 3 (a)) with the layer-wise average performance
even falling below the baseline. Interestingly, this instability follows a non-random pattern. We ob-
serve a sawtooth U-shaped pattern: despite the fluctuations, the overall trend shows that performance
enhancements when vectors are injected into either the shallow and deep layers, whereas injections
into the middle layers yield minimal gains or even degrade performance. This contrasts with prior
task vector research on simpler tasks (Todd et al., 2023; Hendel et al., 2023), where middle-layer
interventions are typically most effective. This divergence suggests that the functional organization
of complex multi-step reasoning in LLMs differs fundamentally from that of simpler tasks, high-
lighting the unique mechanisms involved in complex reasoning.

This layer-wise variability naturally leads us to hypothesize that the underlying reasoning process in
LLMs may itself be structured in stages. Building on insights from prior work on layer specializa-
tion (Tenney et al., 2019; Chuang et al., 2023; Skean et al., 2025), we posit a three-stage organization
of perception, reasoning, and expression. In this view, Shallow layers primarily perform basic fea-
ture extraction and semantic encoding, producing more linear and unified representations. Middle
layers execute core reasoning process, leading to sample-specific, high-dimensional representations

6
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(b) Information Density of Each Layer

(c) Qwen2.5-Math-7B

(i) Shallow Layer (Layer 2)

(ii) Middle Layer (Layer 15)

(iii) Deep Layer (Layer 27)

(d) LLaMA3.1-8B-Instruct

(i) Shallow Layer (Layer 2)

(ii) Middle Layer (Layer 17)

(iii) Deep Layer (Layer 31)

(a) Layer-wise Results of Two LLMs 

Figure 3: (a) Layer-wise performance of two LLMs with both extracted and Learnable CoT Vectors,
averaged over four datasets. (b) Layer-wise information density curves of two LLMs, obtained via
PCA on 500 sampled instances across four datasets. Abbreviations: PC = principal component; var.
= variance; cum. = cumulative; dims = dimensions. (c–d) T-SNE visualizations of hidden states at
shallow, middle, and deep layers on GSM8K (500 samples) of two LLMs. Left: sample distributions
under non-CoT and baseline (with CoT) inputs. Right: same baseline with additional insertion of
Extracted and Learnable CoT Vectors. Color scheme is consistent across (a, c, d): orange = non-
CoT, blue = baseline, green = Extracted CoT Vector, red = Learnable CoT Vector.

with no dominant direction. Deep layers map internal reasoning states into surface-level linguistic
outputs, where the representations again become more unified.

To test this hypothesis, we conduct an information density analysis via PCA on hidden states from
500 randomly sampled instances (Figure 3 (b)). We observe that mid-layers require significantly
more principal components to explain the variance compared to shallow and deep layers, while the
variance explained by the top components drops sharply. This indicates higher representational com-
plexity and the absence of a dominant direction in mid-layers, ultimately delineating three distinct
stages across shallow, middle, and deep layers. Visualizing the latent space with t-SNE (Figures 3
(c-d)) further reveal that middle-layer activations with CoT (baseline) form dispersed, input-specific
clusters, reflecting a highly complex and non-linear structure that differs markedly from the non-CoT
distribution. In contrast, shallow and deep layers exhibit more uniform activations, supporting that
the middle layers serve as core stage for sample-specific reasoning. These findings explain why Ex-
tracted CoT Vectors fail in the middle layers: the mid-layer activations lack a coherent, task-general
direction, making it difficult to extract a compact and reusable CoT Vector.

Further cross-layer transfer experiments support this conclusion. In Table 2, injecting mid-layer vec-
tors into shallow layers degrades performance, whereas shallow-layer vectors improve performance
when injected into middle layers. This indicates that the failure of mid-layer injection stems not
from location, but from the intrinsically sample-specific and non-generalizable nature of mid-layer
representations, which are ill-suited for capturing a compact, task-wide reasoning direction.
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Table 1: Comprehensive evaluation results. MATH-E = MATH-Easy, MATH-H = MATH-Hard,
MMLU-P = MMLU-Pro, CSQA = CommonsenseQA, SQA = StrategyQA. Reported CoT Vector
results correspond to the best injection layer selected from layer-wise evaluation. We note that
extraction-based vectors are particularly dependent on this choice, whereas learnable vectors main-
tain more consistent performance across layers.

Model Method #Params GSM8K MATH-E MATH-H MMLU-P CSQA SQA Avg.

Qwen2.5-Math-7B

Baseline — 74.6 69.9 47.9 33.2 53.8 23.7 50.5

Extracted — 78.2 72.0 49.7 35.3 57.5 29.1 53.6
Learnable 3.6K(×1.0) 83.5 71.9 50.9 35.1 58.2 31.2 55.1

LoRA 10.0M(×2777.8) 79.0 70.4 48.2 33.8 58.0 31.2 53.4

LLaMA3.1-8B-Instruct

Baseline — 77.4 62.0 34.6 44.6 72.7 60.8 58.7

Extracted — 78.6 63.2 35.7 45.5 73.2 64.3 60.1
Learnable 4.2K(×1.0) 78.2 63.8 36.4 46.2 73.7 65.0 60.6

LoRA 13.6M(×3238.0) 78.6 63.5 36.3 45.5 73.6 64.8 60.4

Table 2: Cross-layer CoT Vector transfer results on Qwen-GSM8K. Performance when injecting
a CoT Vector extracted from a Source Layer (column) into a different Target Layer (row). The
diagonal shows baseline performance (source = target). ∆ indicates the absolute change from the
target layer’s baseline. Green arrows (↑) indicate improvement, red arrows (↓) indicate degradation.

Source: Shallow (L6) Source: Middle (L14)

Target Layer Accuracy ∆ Accuracy ∆

Shallow (Layer 6) 78.2 — 63.8 ↓14.4
Middle (Layer 14) 75.3 ↑9.0 66.3 —

4.2.2 LEARNABLE COT VECTORS

Learnable vs. Extracted CoT Vectors. Beyond the conventional extraction-based approach, we
further introduce novel Learnable CoT Vectors, optimized via a teacher-student architecture to distill
generalizable reasoning patterns. Experimental results reveal that the Learnable CoT Vector demon-
strates two clear advantages over its extracted counterpart: (i) higher overall performance across
benchmarks (Table 1), and (ii) significantly greater stability across layers with higher layer-wise
average accuracy (Figure 3 (a)). Unlike the sawtooth U-shaped curve observed for extracted vec-
tors, where gains concentrate in shallow and deep layers but diminish in the middle and with strong
fluctuations, the learnable vector peaks at the first layers and maintains a consistent plateau across
all subsequent layers. Consequently, while extracted vectors show noticeable drops at mid-layers
compared to baseline, learnable vectors consistently provide improvements across nearly all layers.

（a）Over-fit. Acc = 23.7 （b）Under-fit. Acc = 77.5

Figure 4: T-SNE visualization of over-fit and
under-fit Learnable CoT Vectors (Layer 30 of
LLaMA on GSM8K).

We attribute this divergence to the fundamental
nature of each vector type. The extracted vec-
tor is a descriptive statistic, passively record-
ing the average activation difference between
CoT and non-CoT forward passes. Its effi-
cacy is thus constrained by the representational
properties of the source layer: strong when
representations have clear dominant directions
(e.g., shallow and deep layers), but fragile when
such structure is absent. As a consequence, it
not only induces relatively mild shifts in latent
space (Figure 3 (c-d)) but also retains sample-
specific noise, leading to sharp volatility where
even adjacent layers at similar depths behave
inconsistently.

In contrast, learnable vectors are optimized via gradient descent to mimic the teacher model’s rea-
soning. This results in a more directional and aggressive shift in the latent space (Figure 3 (c-d)),
enabling it to overcome representational limitations of individual layers and avoid being intervened
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by sample-specific noise. Consequently, the learnable vector achieves stronger and more stable
performance across layers.

These differences have important practical implications. Extracted vectors suffer from high instabil-
ity, with the optimal injection layer varying across tasks and models (see Appendix for more details).
In real-world deployment, where ground truth is unavailable, such unpredictability severely limits
their usability. Learnable CoT Vectors, however, produce consistent gains across all layers, with
their strongest performance consistently emerging in the shallowest layers—often at the very first
layer. This stability permits simple and robust application: even on unseen tasks, injecting the vector
at the first layer suffices to achieve near-optimal performance.

However, the aggressive steering of Learnable CoT Vectors also brings risks. As visualized in Fig-
ure 4, vectors applied to middle or deep layers are prone to overfitting, over-steering the latent space
and collapsing diverse reasoning paths, which significantly degrades accuracy. This fragility stems
from the representational nature of these layers that mid-layer activations are heterogeneous and
sample-specific, while deep layers are closely tied to surface outputs, where even small perturba-
tions can destabilize generation. To mitigate this, we employ early stopping or reduced learning
rates, which produce mildly under-fitted vectors that still provide modest gains without catastrophic
collapse. These findings reinforce our earlier conclusion that shallow layers are the most suitable for
Learnable CoT Vectors, while mid and deep layers are less amenable to strong external guidance.

Learnable CoT Vectors vs. LoRA. From parameter-efficiency perspective, our Learnable CoT
Vector demonstrates advantages over LoRA fine-tuning. As illustrated in Table 1, it outperforms
LoRA on most datasets while requiring orders of magnitude fewer trainable parameters. We attribute
this to the fact that instruction-tuned LLMs already possess strong CoT priors, leaving limited room
for LoRA to improve. In contrast, our approach adds an external guidance signal that efficiently
steers the model’s latent reasoning without altering the model’s existing functional structure.

4.2.3 MODEL DIFFERENCES

As shown in Table 1, the effectiveness of CoT Vectors varies across models: Qwen benefits more
consistently and substantially from CoT Vector injection compared to LLaMA. For example, aver-
aged across benchmarks, Qwen gains up to 4 points over the baseline, whereas LLaMA yields a
more modest improvement of 1.5 points with Learnable CoT Vectors. We trace this discrepancy
to differences in the latent space structures of the two models throughout the three-stage reasoning
process. In Figure 3 (b), Qwen exhibits a more distinct three-stage reasoning pattern than LLaMA.
Notably, its top principal components explain more variance than those of LLaMA, suggesting a
lower information density and a more structured latent space with clearer principal directions. This
facilitates both extraction and optimization in capturing high-quality, task-general signals.

We conjecture that this structural disparity stems from differences in training data and procedures.
Qwen has undergone more domain-focused and standardized fine-tuning, whereas LLaMA has been
trained on broader and less curated corpora. As a result, Qwen demonstrate a more distinct func-
tional separation of layers. This structural clarity allows CoT Vectors to more easily capture task-
general reasoning directions. In summary, the performance gap highlights that the efficacy of CoT
Vectors is influenced by the inherent properties of the model’s representations. Models with more
structured latent spaces provide a more fertile ground for the CoT Vector intervention.

Source → Target Baseline Self Transferred

Cross-Model Transfer
Qwen2.5-Math-7B-Instruct → Qwen2.5-Math-7B 74.6 78.2 77.5

Cross-Dataset Transfer
GSM8K → MATH 47.9 49.7 48.6
MMLU-Pro → MATH 47.9 49.7 48.5

Table 3: Cross-model and Cross-dataset transfer results of CoT Vectors. Baseline refers to stan-
dard zero-shot CoT prompting. Self means applying the CoT Vector obtained from the same
model–dataset pair (no transfer). Transferred means applying a CoT Vector obtained from a dif-
ferent source model or dataset.
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4.2.4 CROSS-DATASET AND CROSS-MODEL TRANSFERABILITY

We investigate whether CoT Vectors acquired from one source (model or dataset) can be effectively
applied to another.

Cross-Model Transfer. As shown in Table 3, CoT Vectors gained from one model can be effec-
tively reused in another. The vectors obtained from more powerfully instruction-tuned variant of
the Qwen2.5 series (Qwen2.5-Math-7B-Instruct) consistently improve performance when applied
to Qwen2.5-Math-7B (74.6 → 77.5).

Cross-Dataset Transfer. Results in Table 3 further demonstrate transferability across datasets. 1)
In-domain: CoT Vectors obtained from the GSM8K dataset effectively enhance performance on the
MATH dataset (47.9 → 48.6). This confirms that the vector successfully captures a generalized
mathematical reasoning strategy rather than merely memorizing dataset-specific features. 2) Cross-
domain: vectors obtained from MMLU-Pro yield gains on MATH (47.9 → 48.5). This suggests
that the CoT Vector may encode a meta-reasoning capability—such as the ability to decompose
problems or follow logical steps—that is beneficial across distinct task domains.

These transferability experiments underscore a central claim of our work: the CoT Vector is not
merely a compressed set of features from a specific model or dataset, but a portable, generalizable
representation of a reasoning process that can be effectively applied in novel contexts.

4.2.5 ABLATION ON TRAINING SET SIZE FOR LEARNABLE COT VECTORS

We further conduct an ablation study on the size of the support set to compare the performance of
the Learnable CoT Vector and LoRA under different data regimes. As shown in Table 4, while both
methods benefit from larger support sets, the Learnable CoT Vector consistently outperforms LoRA
across all data scales. Notably, with a very small support set (e.g., 100 examples), the learnable CoT
Vector still yields noticeable improvements over the baseline, whereas LoRA offers only marginal
gains. This highlights the strong data efficiency of our approach. As the support set grows, Learnable
CoT Vector also demonstrates greater potential for performance improvement compared to LoRA.
These phenomena all indicate that our Learnable CoT Vectors provide a more effective and scalable
mechanism for enhancing reasoning performance than LoRA across diverse data conditions.

Table 4: Performance Comparison with Different Training Sample Sizes on Qwen-GSM8K.

Sample Size Baseline Learnable CoT Vector LoRA

100 74.6 78.2 76.0
500 74.6 79.0 77.9
1000 74.6 82.3 78.5
3000 74.6 83.5 79.0

Overall, our results confirm that CoT Vectors are a highly efficient and effective means of enhanc-
ing reasoning capabilities. However, directly applying traditional extraction methods to CoT still
presents challenges, particularly related to the internal mechanisms of LLM reasoning. Our newly
introduced Learnable CoT Vectors offer significant advantages in this domain. Due to space limita-
tions, further ablation studies and robustness analyses are provided in the supplementary material.

5 CONCLUSION

We have presented CoT Vectors, extending the task vector paradigm to multi-step reasoning in
LLMs. Our analyses uncover a consistent three-stage reasoning process and show that the newly
introduced Learnable CoT Vectors provide stronger and more stable gains than the traditional
extraction-based approach, while also offering multiple perspectives on why their effectiveness dif-
fers. These results demonstrate both the practical utility of CoT Vectors and their value as a probe
into the mechanisms and organization of multi-step reasoning in LLMs. However, performance
variability in intermediate layers highlights structural limitations, suggesting that task-level vectors
may not fully capture intra-task diversity. Future work could explore finer-grained or adaptive vec-
torization strategies to improve robustness and generalization.
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This work adheres to the ICLR Code of Ethics. Our study does not involve human subjects, per-
sonally identifiable information, or proprietary data. All datasets used, including GSM8K, MATH,
and MMLU-Pro, are publicly available. The proposed method, CoT Vectors, is a parameter-efficient
technique for steering the reasoning process of pre-trained large language models. It does not in-
troduce any new capabilities that could cause harm, nor does it enable misuse beyond the standard
capabilities of existing large language models. We are not aware of any potential risks related to bias,
fairness, or security that arise specifically from the method proposed. However, we acknowledge
that the effectiveness and potential output of CoT Vectors are dependent on the base model and the
support set data; as such, they may reflect or amplify biases present in these sources. No conflicts of
interest, legal compliance issues, or sponsorship-related influences are present in this work.

REPRODUCIBILITY STATEMENT

We have taken multiple steps to ensure the reproducibility of our work. All datasets used in our
experiments are publicly available and properly cited in the main text and appendix. Training con-
figurations, including hyperparameters, optimizers, and evaluation settings, are described in detail in
Section 4.1 and Appendix A.3. Theoretical claims, including the formalization of the CoT shift, are
formally derived in Section 3.1 and Appendix A.2. Experimental results include multiple models,
reasoning benchmarks, and various ablations to validate robustness in Section 4 and Appendix A.4-
A.5. We will release the full source code and pre-trained vectors upon publication to further support
reproducibility.
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