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ABSTRACT

We present a parameter-efficient method for continual video question-answering
(VidQA) learning. Our method, named DAM, uses Dynamic Adapter Merging to
address the issues of (i) catastrophic forgetting, (ii) the costly retraining of large
VidQA models on continually shifting distribution of training data, and (iii) han-
dling inputs from an unknown domain during test-time inference. Given a set of
different VidQA datasets, we sequentially train domain-specific adapters for each
VidQA dataset while freezing the parameters of a large pretrained video-language
backbone. During inference, given a video-question sample from an unknown
domain, our method first uses a non-parametric video-language router function
to compute a probability for each domain-specific adapter, reflecting how rele-
vant that adapter is to the current video-question input instance. Afterward, to
exploit beneficial cross-domain cues and reduce the impact of potentially incor-
rect router predictions, we dynamically merge the parameters of several highest-
scoring adapters for the final VidQA prediction. Despite the simplicity of our
approach, we demonstrate that it works well on continually streaming VidQA
datasets across 6 different domains. In particular, our model outperforms prior
prompt-based continual learning approaches by 9.1% while exhibiting 1.9% less
forgetting. The code and pretrained models will be publicly released.

1 INTRODUCTION

In recent years, Video Question-Answering (VidQA) has advanced significantly due to large-scale
video-language pretraining datasets (Sharma et al., 2018; Miech et al., 2019; Bain et al., 2021) and
the emergence of large video-language models (Yu et al., 2021; Yang et al., 2022; Cheng et al.,
2023). Modern VidQA models commonly follow the pretrain-finetune paradigm (Cheng et al.,
2023; Lei et al., 2021; Li et al., 2020; Miech et al., 2019; Sun et al., 2019). This involves initial
pretraining on extensive paired video-language data and subsequent fine-tuning on domain-specific
VidQA datasets. However, this approach necessitates managing numerous domain-specific fine-
tuned models, incurring substantial complexity and cost, especially for scenarios involving many
domains and datasets. Moreover, modern VidQA models often assume static conditions with fixed
training and testing datasets. However, real-world applications increasingly demand adaptability to
dynamic shifts in training data distribution. For instance, a VidQA model trained only on Instagram
videos may struggle when questioned about the recently released ”Barbie” movie (Fig. 1). This
difficulty arises due to domain disparities (Instagram vs. movies) and the temporal gap, as most
VidQA models were trained on data collected before 2023, the year of the “Barbie” movie’s release.

To address this issue, one could finetune a VidQA model every time new training data is added.
However, this is problematic for two main reasons. Firstly, it often leads to the model forgetting
previously learned information, a phenomenon known as catastrophic forgetting (McClelland et al.,
1995; McCloskey & Cohen, 1989). Secondly, fine-tuning an entire VidQA model, which can con-
tain billions of parameters, for each new dataset incurs substantial computational costs. It’s worth
noting that these computational challenges are exacerbated in the video domain due to the high-
dimensional nature of video data and the resource-intensive design of modern VidQA model archi-
tectures (Zellers et al., 2021; Fu et al., 2021; Li et al., 2023c; Wang et al., 2022a).

Motivated by these challenges, we delve into the domain of continual VidQA learning. Our specific
focus lies on tackling the rehearsal-free Domain-Incremental Learning (DIL) subproblem of con-
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Figure 1: Given a question about an Instagram video, a video question-answering (VidQA) model
trained only on Instagram videos will likely answer that question correctly. However, the same
VidQA model will fail to answer a question about a video clip from the “Barbie” movie due to (i)
disparities in video domains (Instagram vs. movies), and (ii) the fact that the model was trained
on videos collected before 2023, predating the release of the ”Barbie” movie. This highlights the
limitations of most modern VidQA models in adapting to the continually shifting data distributions.

tinual learning (Kirkpatrick et al., 2017; Wang et al., 2023). In DIL, the model must continuously
adapt to a sequence of datasets spanning different domains. During inference, given a sample from
an unknown domain, the model must discern the most relevant domain and provide a final output,
such as answering a video-related question. Recent DIL methods (Wang et al., 2022b;e; Douillard
et al., 2022; Smith et al., 2023a) have proposed techniques involving domain-specific prompts and
a router for prompt selection during inference. However, these methods exhibit suboptimal perfor-
mance when the router erroneously selects prompts. Additionally, these prior approaches are pri-
marily tailored for image classification tasks, characterized by relatively minor variations between
dataset domains, sizes, and other factors. In stark contrast, VidQA is a more formidable challenge,
requiring the model to comprehend both video and language. Furthermore, the DIL VidQA prob-
lem is even more challenging due to the disparities between dataset domains, question-answer pair
styles, dataset size imbalances, video durations, and more.

To overcome the limitations of previous Domain-Incremental Learning (DIL) approaches and ad-
dress the challenges of continual VidQA learning, we introduce DAM, a Dynamic Adapter Merging
scheme designed for parameter-efficient continual VidQA learning. Our model uses domain-specific
adapters and model merging techniques (Wortsman et al., 2022a; Matena & Raffel, 2022) to tackle
several critical issues: (i) mitigating catastrophic forgetting, (ii) reducing the substantial retraining
cost associated with modern VidQA models as training data evolves, and (iii) handling the chal-
lenge of unknown input domains during test-time inference. Given a sequence of VidQA datasets
from different domains, we begin by training a set of domain-specific adapters for each VidQA
dataset while freezing the parameters of a pretrained video-language backbone (e.g., CLIP (Rad-
ford et al., 2021) and DeBERTa (He et al., 2020)). During inference, we employ a non-parametric
video-language router to estimate probabilities for each domain-specific adapter. These probabilities
reflect the relevance of each adapter to that particular video-question input instance. Subsequently,
we utilize these adapter probabilities to select the most pertinent domain-specific adapters for each
video-question instance from an unknown domain. Our experiments reveal the inherent challenges
in domain prediction, where the router frequently generates inaccurate domain predictions, resulting
in suboptimal VidQA performance. To address this issue of potentially erroneous router predictions,
we introduce a dynamic parameter merging approach. Instead of relying on a single set of domain-
specific adapters, we dynamically merge the parameters of multiple sets of adapters with the highest
scores for the final VidQA prediction. This dynamic merging scheme not only mitigates the impact
of inaccurate router predictions but also facilitates the sharing of valuable VidQA cues across diverse
domains, thereby enhancing VidQA performance (refer to Sec. 4.4 for detailed experimentation).

In summary, our contributions are four-fold. Firstly, we are the first to explore domain-incremental
VidQA learning, particularly on large-scale models with billions of parameters. Secondly, we pro-
pose a novel technique, Dynamic Adapter Merging, which innovatively generates a personalized
expert model for each testing sample with minimal overhead. We also performed in-depth analyses
detailing how and when model merging can enhance the effectiveness of the router-based tech-
nique in the continual learning domain. Thirdly, compared to prior DIL methods, our proposed
DAM achieves 9.1% better results on sequentially-introduced VidQA datasets from 6 different do-
mains while exhibiting 1.9% less forgetting. Lastly, our method’s simplicity and adaptability make
it easy to integrate into other tasks (e.g. image question-answering.) and model merging community
To enable the community to develop models for this emerging research area of domain-incremental
VidQA learning, we will release our code and pretrained models.
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2 RELATED WORK

Video Question Answering (VidQA) represents a fundamental task in video-language understand-
ing, aiming to answer natural language questions based on given videos. Most commonly used
methods (Yang et al., 2022; Yu et al., 2023; Xiao et al., 2022; Cheng et al., 2023; Lei et al., 2021;
Li et al., 2020; Miech et al., 2019; Sun et al., 2019) construct video-language models (VLMs) with
transformer architecture (Xiao et al., 2022; Lei et al., 2021; Cheng et al., 2023) and large pre-trained
language models (Yang et al., 2022; Yu et al., 2023). FrozenBiLM (Yang et al., 2022) handles the
multimodal input using a pretrained bidirectional language model and casts VidQA as a masked
language modeling problem. SeViLA (Yu et al., 2023) is built upon a large image-language model,
BLIP-2 (Li et al., 2023b), and extends it to accommodate video input for VidQA. To our knowledge,
our work is the very first exploration of the domain-incremental VidQA learning problem.

Continual Learning (CL) focuses on developing frameworks that can continually learn new in-
formation from streaming training datasets. This is a fundamental challenge for many deep
learning methods due to catastrophic forgetting (McClelland et al., 1995). Continual learning
methods can be categorized into regularization-based approaches (Kirkpatrick et al., 2017; Li &
Hoiem, 2017), replay-based approaches (Cha et al., 2021a; Riemer et al., 2018), optimization-
based approaches (Lopez-Paz & Ranzato, 2017; Chaudhry et al., 2018) and representation-based
approaches (Gao et al., 2023; Foret et al., 2020; Ermis et al., 2022; Douillard et al., 2022).
Several recent CL approaches use pre-trained models for the vision-language domain, including
CLiMB (Srinivasan et al., 2022) for task-incremental learning, VQACL (Zhang et al., 2023) and CL-
CrossVQA (Zhang et al., 2022) for rehearsal-based Domain-Incremental Learning (DIL). Rehearsal-
based methods require storing some data of previously trained domains, which may not be realistic as
the data may be private or limited by intellectual property. In contrast, rehearsal-free CL approaches
(Li & Hoiem, 2017; Smith et al., 2023b; 2021) are learned without storing training data of previously
learned domains. Several recent prompt-based methods in this area such as L2P (Wang et al., 2022e),
DualPrompt (Wang et al., 2022d), S-Prompts (Wang et al., 2022b) and CODA-Prompt (Smith et al.,
2023a) employed visual prompts (Liu et al., 2023) prepended to a pre-trained transformer and ex-
tended prompt-based learning for continual learning scenarios. Compared to these prior image-level
approaches, we focus on rehearsal-free DIL for VidQA, which is more challenging as it typically
includes more diverse datasets from different domains. Furthermore, unlike prior prompt-based DIL
methods, we use dynamic model merging to alleviate the issues of inaccurate router predictions and
enable cross-domain knowledge sharing.

Model Merging aims to merge multiple domain models into a single model that can be used for
inference on these domains. For instance, the work in (Wortsman et al., 2022b; Ilharco et al., 2022b)
computes the merged weights as an element-wise arithmetic mean of the weights of all domain
models. Subsequently, several methods proposed to improve the performance of the model merging
using techniques such as Fisher Merging (Matena & Raffel, 2022), RegMean (Jin et al., 2022), Git
Re-Basin (Ainsworth et al., 2022), Task Arithmetic (Ilharco et al., 2022a) and TIES-Merging (Ya-
dav et al., 2023). Model merging has been applied to many scenarios, including federated learn-
ing (McMahan et al., 2017), improving out-of-domain generalization (Cha et al., 2021b), and im-
proving performance on a single target task (Gupta et al., 2020; Wortsman et al., 2022a). Recently,
(Guerrero-Peña et al., 2022) proposes a Sinkhorn re-basin network for replay-based class incremen-
tal continual learning but only experiments with small models (e.g., ResNet18 (He et al., 2016)) on
small datasets (e.g., CIFAR-100 (Krizhevsky et al., 2009)). In comparison, we adapt model merging
techniques to rehearsal-free domain-incremental VidQA learning on large-scale models.

3 DYNAMIC ADAPTER MERGING

We focus on rehearsal-free domain incremental learning (DIL) (Wang et al., 2022b;e), where the
model is sequentially trained on data from S distinct domains and is then required to generalize to
all S domains without forgetting previously acquired knowledge. Formally, let Ds = {xs

i , y
s
i }

Ns
i=1

represent the dataset for the current domain s, where xs
i , ysi , and Ns denote the input, target, and

number of samples, respectively. During the training on domain s, the model can only access the
data from this domain (i.e., no samples from previously encountered domains can be stored in the
memory, as opposed to replay-based approaches). During inference, the model predicts a test sample
xj without prior knowledge of which of the S domains the test sample belongs to.
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Figure 2: An overview of our Dynamic Adapter Merging (DAM) framework. (a) To train our model
in a domain-incremental continual learning setting, for each domain s, we first inject N domain-
specific adapters {A1

s, A
2
s, ...A

N
s } into the frozen video-language backbone. We then sequentially

train each domain-specific adapter on the data of its corresponding domain. After each sequential
round of training, the weights of subsequent adapter layers are initialized with the weights from
the domain-specific adapters that was trained last. (b) During inference, given an input video and
a text question, we use a non-parametric router function to predict the probability of each adapter
being relevant to that particular input instance. Afterward, we dynamically merge multiple domain-
specific adapters in parameter space to reduce the impact of incorrect router predictions and leverage
cross-domain VidQA cues. Finally, the merged adapter is used to make the final VidQA predictions.

Our proposed Dynamic Adapter Merging framework (DAM) consists of four main components: (i)
a frozen pretrained video-language backbone, (ii) continually learned domain-specific adapters, (iii)
a non-parametric video-language router that predicts probabilities for selecting the most relevant
adapters for a given test-time VidQA input instance, and (iv) a soft parameter-wise adapter merging
scheme. At a high level, given a frozen pretrained video-language backbone, for each domain s,
we first inject N domain-specific adapters into the frozen network. We then sequentially train each
domain-specific adapter on its corresponding domain while freezing the parameters of a pretrained
video-language backbone. Afterward, during inference, we use a non-parametric router to compute
probabilities indicating how relevant each adapter is to a given VidQA input instance. Lastly, we
dynamically merge all domain-specific adapters from all domains according to the router-predicted
probabilities and use the merged adapter to make a final VidQA prediction for that input instance.
In Fig. 2, we present a detailed overview of our approach.

3.1 CONTINUALLY LEARNED DOMAIN-SPECIFIC ADAPTERS

Given a VidQA model with a frozen video-language backbone and S continually streaming do-
mains, we incorporate a series of continually learned domain-specific adapters for each domain s
as shown in Fig. 2a. Specifically, for each domain s, we insert domain-specific adapters after the
Self-Attention and Feed-forward Network in each layer of our frozen video-language backbone. We
then train such domain-specific adapters continually on datasets from S domains. After each se-
quential round of training, the weights of the last-trained adapter layers serve as an initialization to
the adapter layers for a subsequent domain, which we refer to as a continual initialization scheme.

Different from recent DIL methods that aim to keep domain-specific modules (e.g., prompts) in-
dependent (Wang et al., 2022b) or even orthogonal (Smith et al., 2023a), our continually learned
domain-specific adapters are trained independently (i.e., previously trained adapters will not be up-
dated in subsequent rounds of training) but they also share information via weight inheritance due to
the continual weight initialization scheme. There are several benefits of such an approach. First, each
set of adapters is trained for a single domain without interfering with the adapters trained on other
domains. This prevents catastrophic forgetting as all the past information is preserved, and each
adapter can accurately learn representations specialized in its own domain. Second, these domain-
specific adapters contain less than 5% of the total parameters of the pretrained model, making the
continual learning process scalable and efficient, and also allowing us to integrate our approach with
large capacity VidQA models such as FrozenBiLM (Yang et al., 2022). Lastly, due to the continual
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initialization scheme (See Fig. 2), each continually learned adapter inherits knowledge from their
predecessor adapters (i.e., adapters that were trained before), which is helpful for the subsequent dy-
namic adapter merging scheme since it leads to a smoother parameter space for continually learned
adapters, and a reduction of the interference disagreements (Yadav et al., 2023; Jin et al., 2022).

3.2 NON-PARAMETRIC ROUTER FUNCTION

During inference, we use a non-parametric router to predict the probability of each adapter, estimat-
ing how relevant that adapter is to a given video-question input instance from an unknown domain.
Specifically, we first calculate the centroid cs of each domain-specific dataset Ds = {xs

i , y
s
i }

Ns
i=1 by

averaging all multimodal video-language features extracted by a pretrained model f :

cs =
1

Ns

Ns∑
i=1

f(xs
i ). (1)

Then, during inference, we calculate adapter-specific domain probabilities p ∈ RS by computing
the cosine similarity of f(x) and each centroid as:

ps =
exp(ls/τ)∑S
i=1 exp(li/τ)

, (2)

where ls = cos(f(x), cs) is the cosine similarity between a feature f(x) and a centroid cs, and
τ is the temperature hyper-parameter. Compared to prior DIL methods that use significantly more
complex router designs (Smith et al., 2023a; Wang et al., 2022e), our non-parametric router is much
simpler yet more effective, as we will show in our experiments. Furthermore, we found that joint
end-to-end trainable routers (Smith et al., 2023a) used in prior works often caused optimization
stability issues, whereas our simple router did not interfere with the continual learning process.

3.3 MERGING DOMAIN-SPECIFIC ADAPTERS

One key challenge in DIL is that the domain identity during test-time inference is unknown. As a
result, most recent DIL methods (Wang et al., 2022b;e) require a very accurate router function for
selecting which domain a given test sample is most relevant to. However, accurate domain prediction
is challenging and typically results in many incorrect predictions that dramatically impact the final
DIL performance. As a result, selecting only one domain-specific adapter corresponding to the
highest router-predicted probability typically leads to suboptimal VidQA performance, which we
demonstrate in our experimental analysis in in Sec. 4.3.

To address this issue, we propose dynamically merging multiple domain-specific adapters for each
test-time input instance (Fig. 2b). Our scheme for merging domain-specific adapters is implemented
via a simple instance-wise adapter weight merging using soft router-predicted probabilities. Note
that all domain-specific adapters share the same exact architecture, which enables elementwise-
merging of all adapters in their parameter space. Specifically, given domain-specific adapter weights
for all S domains: A = {A1, . . . , AS}, and input-specific router probabilities p ∈ RS , the merged
adapter weights AM are obtained as:

AM =

S∑
s=1

ps ∗As . (3)

In practice, we only keep the top-k adapters corresponding to the highest router probabilities and
set the other probabilities to 0. Our dynamic adapter merging scheme has several benefits. First, it
alleviates the impact of incorrect router predictions to improve performance in scenarios where the
router fails to produce accurate domain predictions. Second, dynamic adapter merging is a simple,
efficient, and effective technique that does not require additional learning processes or costly com-
putational overhead. Third, dynamic adapter merging leverages shared cues from different domains
for improved performance in the other domains. Lastly, we note that the commonly used static
merging methods (e.g., averaging the weights of all domain-specific models) fail to perform well
since the same merged model is used for every single test-time input instance. In comparison, dy-
namic adapter merging leverages a unique model for every test-time input instance with negligible
computational overhead, which improves the model’s expressivity and leads to better performance.
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Training Sequence: iVQA → MSVD → MSR-VTT → LSMDC → ActivityNet → TGIF

Method Downstream VidQA Accuracy (Forgetting) (%)

iVQA MSVD MSR-VTT LSMDC ActivityNet TGIF Avg.

Zero-Shot 26.8 33.0 15.0 51.5 25.5 41.9 32.3
Seq-FT 28.4 36.0 23.7 52.1 31.2 67.6 39.8

Multi-task Finetuned (Upper-Bounds)
Adapters 39.7 56.6 46.7 62.9 42.2 67.8 52.6
Prompt Tuning 35.0 49.0 37.1 57.4 33.9 59.2 45.3

Regularization-based methods
EwC 29.9 (-9.9) 39.3 (-15.5) 25.5 (-21.2) 54.9 (-8.1) 32.4 (-10.0) 67.5 (-0.5) 41.6 (-10.9)
LwF 28.3 (-11.5) 38.2 (-16.6) 25.8 (-20.9) 56.4 (-7.6) 33.6 (-8.8) 68.5 (+0.5) 41.8 (-10.7)

Model-merging methods
Average Merging 38.0 (-1.8) 45.7 (-9.1) 27.7 (-19.0) 54.5 (-8.5) 27.0 (-15.4) 56.6 (-11.4) 41.6 (-10.9)

Prompt-based methods
L2P 32.8 (-2.2) 43.3 (-5.7) 32.1 (-5.0) 54.8 (-3.6) 27.2 (-6.7) 54.4 (-4.8) 40.8 (-4.3)
CODA-Prompt 32.9 (-2.1) 44.8 (-4.2) 28.7 (-8.4) 50.7 (-6.7) 23.9 (-10.0) 54.7 (-4.5) 39.6 (-5.7)
S-Prompts 31.8 (-3.2) 45.5 (-4.5) 30.2 (-6.9) 54.9 (-2.5) 27.9 (-6.0) 56.1 (-3.1) 41.1 (-4.2)

DAM 39.1 (-0.7) 53.6 (-1.2) 42.2 (-4.5) 63.0 (0.0) 36.3 (-6.1) 66.8 (-1.2) 50.2 (-2.3)

Table 1: Comparison with state-of-the-art on Domain-Incremental VidQA Learning. We individu-
ally finetune the adapters and prompts on each dataset, establishing the upper bounds for continual
learning methods. We reimplement prior methods using our backbone, as they were not initially
designed for VidQA. All continual learning methods are trained sequentially from left to right in the
table. Final accuracy is evaluated using the checkpoint trained on the last dataset (TGIF). Our pro-
posed DAM outperforms the current state-of-the-art by 9.1% while exhibiting 1.9% less forgetting.

4 EXPERIMENTS

Datasets and Metrics. We perform experiments on 6 Video Question Answering (VidQA) datasets,
including iVQA (Yang et al., 2021), MSVD-QA (Xu et al., 2017), MSRVTT-QA (Xu et al., 2017),
LSMDC (Maharaj et al., 2017), ActivityNet-QA (Yu et al., 2019) and TGIF-QA (Jang et al., 2017).
LSMDC is video-conditioned fill-in-blank QA, while the other datasets are open-ended QA. We
view each dataset as a domain and perform our method on the Continual VidQA setting. Specif-
ically, we sequentially train our method on these domains and evaluate the final checkpoint on all
domains with domain identity unknown. Following (Wang et al., 2022c;b), we use the average
accuracy and forgetting as the evaluation metrics. Compared to continual learning in image classi-
fication tasks, our continual VidQA task poses greater challenges in three aspects: (i) It utilizes six
independent VidQA datasets collected at different times by various researchers, resulting in a larger
domain gap. (ii) Rather than dividing domain samples equally, the data scale of different domains
in our continual VidQA task varies significantly; the largest dataset (LSMDC) contains 48 times the
training samples of the smallest one (iVQA). This variability makes the learning process more de-
manding, yet more representative of real-world scenarios. (iii) VidQA is inherently a more intricate
task, necessitating not only visual and textual understanding but also cross-modal reasoning.

Baselines. For all of our continual learning baselines (including our approach), we use the state-of-
the-art VidQA model FrozenBiLM (Yang et al., 2022), implemented using CLIP ViT-L/14 (Radford
et al., 2021) and DeBERTa-V2-XL (He et al., 2020) video and language backbones and containing
1.2B parameters in total. As we are the first to explore DIL for VidQA to our knowledge, we
reimplement all the existing methods in our settings (see more details in Appendix A). For our
method DAM, we set the temperature τ to 0.01 and use k = 2 for adapter merging. To obtain
the upper bound baselines, we separately finetune and evaluate a domain-specific model on each
individual dataset (i.e., resulting in 6 domain-specific models for 6 VidQA datasets). For all prior
prompt-based approaches, we freeze the pretrained model and add L = 10 prompt tokens prepended
to their existing tokens as was done in (Wang et al., 2022b). In our comparisons, we include three
recent Prompt-based methods L2P (Wang et al., 2022e), CODA-Prompt (Smith et al., 2023a), and S-
Prompts (Wang et al., 2022b). We also include two regularization-based methods EwC (Kirkpatrick
et al., 2017) and LwF (Li & Hoiem, 2017), both of which, use the same set of adapters and pretrained
model as our approach. We report results averaged from 5 runs with different random seeds.
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Figure 3: We study our method’s performance on (a) in-domain data, (b) out-of-domain data, and
(c) all in-domain and out-of-domain data. We do so by varying the number of trained domains. Nor-
malized Accuracy on each domain is calculated as the model’s accuracy divided by the upper bound
on that particular domain. We conduct our experiments with 6 domains: iVQA, MSVD, MSR-
VTT, LSMDC, ActivityNet, and TGIF. When the number of trained domains is P , the remaining
6− P domains are served as out-of-distribution (OOD) domains. For comparison, we use the best-
performing prompt-based method, S-Prompts. Our proposed DAM outperforms the S-Prompts for
all numbers of trained domains on in- and out-of-domain data.

4.1 COMPARISON WITH STATE-OF-THE-ART

Tab. 1 compares our method and state-of-the-art Domain-Incremental Learning (DIL) approaches.
Our findings demonstrate that our proposed DAM scheme outperforms the leading DIL method,
S-Prompts, by a substantial margin of 9.1% in average accuracy while also exhibiting 1.9% less
forgetting. Among prompt-based methods, L2P, CODA-Prompt, and S-Prompts show reduced for-
getting compared to regularization-based methods EwC and LwF. However, these prompt-based
methods achieve even lower accuracy, primarily owing to the constraints of prompt-tuning. No-
tably, CODA-Prompt’s accuracy is on par or lower than L2P and S-Prompts, indicating that joint
optimization of the router and prompts is suboptimal for our VidQA task. These results show the
effectiveness of the proposed dynamic merging of the continually learned domain-specific adapters.

4.2 SCALING THE NUMBER OF DOMAINS

In this subsection, we examine the model’s performance as the number of trained domains pro-
gressively increases, focusing on both in-distribution and out-of-distribution (OOD) domains. Our
evaluation involves comparing our proposed DAM and the top-performing method, S-Prompts. We
conduct experiments on datasets spanning six domains: iVQA, MSVD, MSR-VTT, LSMDC, Activ-
ityNet, and TGIF. To ensure comparability across domains, we normalize accuracy for each domain
against its respective upper bound baseline (see above).

In Fig. 3, we delve into our method’s performance in relation to the number of trained domains.
Our observations reveal that DAM consistently surpasses S-Prompts when evaluated on both in-
distribution and out-of-distribution (OOD) domains across varying numbers of trained domains. For
in-distribution domains, DAM demonstrates a superiority ranging from 1.7% to 4.8% in normalized
accuracy as the number of trained domains increases from 2 to 6. This emphasizes the scalability of
our proposed DAM to effectively accommodate a larger number of domains. Across OOD domains,
DAM maintains its advantage by consistently outperforming S-Prompts by 2.9% to 7.1% (with an
average of 4.8%) for various numbers of trained domains, signifying enhanced OOD generalization
capability. When considering all domains, including in-distribution and OOD, DAM outperforms
S-Prompts by an average of 4.0%. Our DAM exhibits significant advantages over S-Prompts, show-
casing its robustness and adaptability in handling domain-incremental VidQA learning scenarios.

4.3 ANALYSIS OF THE ROUTER

To study the importance of the router, we experiment with several different router variants. Specif-
ically, we incorporate the router designs from prior methods: L2P (Wang et al., 2022e), S-
Prompts (Wang et al., 2022b) and CODA-Prompts (Smith et al., 2023a) into our DAM method.
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Method Router Learning Router Acc (%) VidQA Acc (%)

DAM

Random - 16.6 40.2
L2P’s joint 67.4 48.6
CODA-Prompts’ joint - 45.3
S-Prompts’ disjoint 76.4 49.7
Ours disjoint 79.1 50.2

Table 2: We study the effectiveness of different router functions. Specifically, we incorporate router
functions from several prior methods into our DAM method and measure our model’s performance
on the downstream VidQA task with each of these routers. We also measure the accuracy of each
router function for correctly classifying the domain of a given VidQA input instance. We cannot
calculate CODA-Prompts’ router’s accuracy as it does not explicitly predict the domain identity.
From these results, we observe that our non-parametric router function leads to the best downstream
VidQA performance despite the simplicity of its design.

Top-K MSVD MSR-VTT ActivityNet iVQA TGIF LSMDC

1 (no-merging) 49.0 40.4 37.4 37.5 66.3 62.9

2 53.6 42.2 36.3 (-1.1) 39.1 66.8 63.0
3 54.6 42.4 (+2.0) 34.0 39.3 67.0 (+0.7) 63.0
6 (merge all) 54.9 (+5.9) 41.9 33.0 39.6 (+2.1) 66.9 63.1 (+0.2)

Router Acc (%) 51.0 69.6 76.4 81.6 96.1 100

Table 3: We investigate the number of domain-specific adapters to merge for best performance. The
Top-K adapters are selected according to the highest router predicted probabilities. The first 4 rows
depict the downstream VidQA accuracy, whereas the last row is the router accuracy. We highlight
the largest accuracy gap between adapter merging and non-merging variants. Merging adapters is
typically useful when the router makes many incorrect predictions.

Our results in Tab. 2 reveal several interesting trends. First, we observe that higher router accuracy
typically leads to higher downstream VidQA accuracy, thus indicating the importance of an accurate
router function. Second, we notice that jointly training router and domain-specific modules as was
done in previous methods (L2P, CODA-Prompt) leads to worse downstream VidQA accuracy than
disjoint training (S-Prompts, Ours). Lastly, our results suggest that despite the simplicity of our
non-parametric router function, it produces the best performance.

4.4 ANALYSIS OF DYNAMIC ADAPTER MERGING
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Figure 4: We study the normalized
performance gain of dynamic adapter
merging as a function of router accu-
racy. Our results show that dynamic
adapter merging leads to a larger boost
when the router is inaccurate.

In this section, we analyze the effectiveness of dynamic
adapter merging. Specifically, in Tab. 3, we present a
comprehensive breakdown of downstream VidQA accu-
racy and the router’s accuracy on each dataset, consider-
ing various adapter merging variants. The table highlights
an intriguing trend: as the router’s accuracy decreases,
the benefits derived from model merging become more
pronounced. Specifically, when the router’s accuracy is
at 51.0% and 69.6%, adapter merging yields substantial
downstream accuracy improvements of 4.9% and 1.5%
on the MSVD and MSR-VTT datasets, respectively. In
contrast, when the router approaches near-perfect accu-
racy (as seen with a marginal 0.2% improvement on
LSMDC), the gains from adapter merging become less
significant. To further validate this observation, Fig. 4
provides insights into the average performance gain of
dynamic adapter merging over non-merging variants as
a function of router accuracy. The data points are gener-
ated by creating a series of routers manually, each predicting domain probabilities with a specified
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Method OK-VQA
(test)

aOK-VQA
(val)

GQA
(val)

VQAv2
(val) Avg.

Zero-Shot 40.7 35.7 44.0 63.1 45.9
Ind-FT w/ prompt 48.2 49.3 54.4 71.3 55.6
Ind-FT w/ adapter 49.2 51.8 58.7 76.2 58.8
S-Prompts 42.9 (-5.3) 46.1 (-2.2) 47.3 (-7.1) 65.3 (-6.0) 50.4 (-5.2)

DAM 45.1 (-4.1) 50.4 (-1.4) 54.1 (-4.6) 69.8 (-6.4) 54.8 (-4.0)

Table 4: We extend our proposed DAM method to continual visual question-answering (VQA) task,
utilizing the recent BLIP-2 model (Li et al., 2023b) as the visual-language backbone. We com-
pare the existing state-of-the-art method (S-Prompt) and our DAM with the individual fine-tuning
(Ind-FT) results using different parameter-efficient strategies (prompt and adapter). Our method
outperforms S-Prompts by 4.8% top-1 accuracy while exhibiting 1.2% less forgetting.

accuracy. The figure confirms the trend observed in Table 3, showcasing that adapter merging offers
a 30% relative improvement when the router’s accuracy drops to 0%.

Based on these results, we can conclude that our proposed adapter merging scheme is particularly
advantageous when dealing with many domains. In such complex scenarios, domain prediction
becomes notably challenging for the router. This observation aligns seamlessly with our earlier
findings (refer to Sec. 4.2), where our method consistently outperforms the previous state-of-the-art
to a greater extent when trained on a large number of domains. These collective findings underscore
the practical significance and scalability of our proposed approach in real-world domain-incremental
VidQA learning scenarios.

4.5 EXTENSION TO VISUAL QUESTION-ANSWERING

To show the flexibility of the proposed DAM approach, we extend it to a visual (image) question-
answering (VQA) task. We integrate our proposed DAM and the best performing prompt-based
baseline S-Prompts with the state-of-the-art VQA model, BLIP-2 (Li et al., 2023a), which uses
CLIP ViT-G/14 (Radford et al., 2021) and FlanT5-XL (Chung et al., 2022) as its vision-language
backbone and has 4.1B parameters in total. We then continually train both models on 4 mainstream
VQA datasets: OK-VQA (Marino et al., 2019), aOK-VQA (Schwenk et al., 2022), GQA (Hudson
& Manning, 2019) and VQAv2 (Goyal et al., 2017). The results are shown in Tab. 4. Our proposed
DAM outperforms S-Prompts by 4.4% with 1.2% less forgetting, thus, demonstrating the generality
of our approach beyond the video-level settings.

5 DISCUSSION AND CONCLUSION

In this work, we investigate rehearsal-free domain-incremental VidQA learning by combining con-
tinually learned domain-specific adapters and model merging techniques. We outperform existing
state-of-the-art by 9.1% with 1.9% less forgetting on a benchmark with six distinct video domains.
The proposed method DAM is simple and flexible, and we further extend it to visual question-
answering using a 4B parameter model BLIP-2, demonstrating our method’s generalization beyond
video-level scenarios. Despite effective results, we also observe a few limitations of our proposed
approach. Firstly, our approach employs a straightforward weighted averaging technique for merg-
ing adapter weights, leaving room for more advanced merging methods that could enhance knowl-
edge sharing among domains and further improve performance. Secondly, our validation encom-
passes a relatively small number of domains (six in our case), consistent with previous domain-
incremental learning research. It would be valuable to assess the effectiveness of our method and
existing domain-incremental learning methods across a more extensive domain spectrum, poten-
tially involving a substantial number of domains (e.g., 100). In future research, we aspire to extend
our approach to other tasks, including image classification and video classification. We believe that
our exploration and analysis of router and model merging techniques can serve as valuable insights
for both the model merging and continual learning communities, inspiring further advancements in
these domains.
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APPENDIX

In this appendix, we present the following:

A. Implementation Details.
B. Efficiency Analysis of Adapters.
C. DAM as a model merging technique.
D. Generalizability studies.
E. Additional ablations.
F. Comparison with In-Context Learning.
G. Dataset Descriptions.
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A IMPLEMENTATION DETAILS

Details of our DAM approach. Our choice for the VidQA model is FrozenBiLM (Yang et al.,
2022), a state-of-the-art (SOTA) model in the VidQA domain. To align with this model, we utilize a
vocabulary encompassing the 3635 most frequent answers. Adhering to the FrozenBiLM approach,
we integrate adapters into each layer of the DeBERTa-XL (He et al., 2020) language model, employ-
ing a downsampling rate of 8. The loss function is the same as the original FrozenBiLM model, i.e.,
the cross-entropy loss between the predicted tokens and ground-truth answer tokens. For the initial-
ization of domain-specific adapters during the commencement of continual learning (first domain),
we use the weights from FrozenBiLM, which is pre-trained on a substantial dataset comprising 10
million video-text pairs (WebVid10M (Bain et al., 2021)). In the training of domain-specific adapters
for each subsequent domain, we conduct 20 epochs of training with an initial learning rate of 5e−5.
The learning rate undergoes a linear warm-up for the first 2 epochs, followed by a linear decay to
0. Our proposed DAM introduces only two hyper-parameters. Specifically, we set the temperature
parameter (τ ) to 0.01 and employ a value of k = 2 for the adapter merging process.

Network Structures. The base model is FrozenBiLM Bain et al. (2021). The pretrained model f
(Sec. 3.2) is the pretrained FrozenBiLM except that we concat the averaged hidden states from the
4th last layer of the DeBERTa-XL and the averaged hidden states from the last layer of CLIP-L/14
as the output. Following (Yang et al., 2022; Houlsby et al., 2019; Yang et al., 2022), the adapters
in our approach consist of a downsampling and an upsampling linear layer, along with a residual
connection. The linear layers are set with an 8x downsample scale to intermediate hidden size and
the upsampler maps back to the original dimensionality.

Continual Learning Baselines. Since our work is the very first exploration of continual VidQA
learning, we implement a number of continual learning baselines (focused on image classification)
to VidQA task, including three recent Prompt-based methods L2P (Wang et al., 2022e), CODA-
Prompt (Smith et al., 2023a), and S-Prompts (Wang et al., 2022b)and two regularization-based
methods EwC (Kirkpatrick et al., 2017) and LwF (Li & Hoiem, 2017). For a fair comparison,
we use the same pretrained model and preserve most hyper-parameter settings with our approach.

• L2P (Wang et al., 2022e). For the prompt settings, we set the prompt length to 10 and the
size of the prompt pool to 6. The dimension of the prompt key is configured to be 3072,
matching the dimension of the router input feature in our method. The prompt dimension is
set to 1536, aligning with the input dimension of the frozen language model. We sweep the
learning rate between 1e − 2 and 1e − 5 with an interval of 3.33×. The best performance
is achieved with an initial learning rate 3e-3.

• CODA-Prompt (Smith et al., 2023a). For a fair comparison, we adopt the same prompt
settings as our L2P baseline for CODA-Prompt. Following Smith et al. (2023a), we apply
orthogonality initialization to initialize the prompts, their keys, and their attention matrices.
The dimension of prompt attention is set to 3072, consistent with the dimension of the
prompt key. For optimal performance, we configure the learning rate to 1e-3.

• S-Prompts (Wang et al., 2022b). We use exactly the same prompt settings as in our imple-
mentation for L2P. For their K-Means router, we set K = 3 as the number of centroids for
each domain and 1-first-nearest neighbor with the centroids to search for the best prompts.

• EwC (Kirkpatrick et al., 2017) and LwF (Li & Hoiem, 2017). We follow their original
implementations, except that the regularization is only applied to adapters as all the other
parameters are frozen. The same set of adapters are used for all the domains.

B EFFICIENCY ANALYSIS OF ADAPTERS

The adapters introduced in each domain contribute merely 2.5% of the pretrained model’s param-
eters (CLIP-L/14 + DeBerTa-V2-XLarge), totaling 30M parameters. With 10 domains, this results
in only a 25% increase in parameters, a reasonable augmentation given DAM’s robust performance.
In terms of computational cost, merging adapter parameters incurs just 0.09 GFLOPs (30M *(2k-
1), k=2 in our case), notably lower than the 162 GFLOPs required by CLIP-L/14 for a single image
processing. We appreciate the reviewer’s suggestion and will integrate this analysis into the revision.
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Method iVQA MSVD MSR-VTT LSMDC ActivityNet TGIF Avg.

Multi-task (upper-bound) 39.7 56.6 46.7 62.9 42.2 67.8 52.6

Avg. Merging 38.0 45.7 27.7 54.5 27.0 56.6 41.6
RegMean 36.6 49.7 32.5 54.0 27.7 57.8 43.1
DAM (Ours) 36.5 51.6 39.5 63.0 36.5 67.7 49.1

Table 5: Comparision with existing model merging techniques. All the methods merge the same set
of domain models that are individually finetuned on each dataset.

Method MSVD iVQA LSMDC ActivityNet AGQA Env-QA TrafficQA( 1
2

) Avg.

Upper-Bound 56.6 39.7 63.0 42.2 63.4 32.3 67.8 52.1
DAM 54.0 39.3 63.0 37.4 63.3 32.0 67.8 51.0

Router Acc. of DAM 60.7 83.7 100 78.4 99.9 99.2 99.7 88.7

Table 6: Domain-Incremental Learning (DIL) on 7 diverse domains.

C DAM AS A MODEL MERGING TECHNIQUE

The proposed method DAM can also be used as a model merging technique. The concept of dynamic
merging could be inspiring to the model merging community. As shown in Tab. 5, we compare DAM
with the other merging approaches, including average merging and RegMean Jin et al. (2022), while
all the approaches merge the same set of domain models that are individually finetuned on each
dataset. Unlike the other approaches, DAM determines the merging ratios for domain adapters based
on the input instance, and this flexibility makes DAM outperform RegMean by 6.0% and average
merging by 7.5% in average accuracy. The results show the potential of the proposed selective and
dynamic merging strategy to inspire model-merging communities.

D GENERALIZABILITY STUDIES

We showcase the generalizability of the proposed DAM by further experimenting with Domain-
Incremental Learning (DIL) on more diverse domains, as well as Class-Incremental Learning
(CIL) and Task-Incremental Learning (TIL) scenarios.

Domain-Incremental Learning on more diverse domains (DIL). We experiment on more di-
verse VidQA domains. This setup incorporates 4 originally benchmarked domains: social videos
(MSVD), instructional videos (iVQA), movie videos (LSMDC), and long activity videos (Activ-
ityNet). Additionally, we introduce 3 new domains: indoor human videos (AGQA), traffic videos
(TrafficQA), and virtual videos (Env-QA). Tab. 6 shows DAM’s answer prediction accuracy and the
router’s domain identity prediction accuracy. DAM only has -1.1% forgetting on this setting, which
is even 1.2% less than on our original 6-domain setting. This is because the router performs better
on the domains (e.g. AGQA, EnvQA, TrafficQA) that are significantly different from the others.
The proposed DAM is better at dealing with more diverse domains as they are easier to distinguish
by the router function.

Class-Incremental Learning (CIL). We treat each unique answer as a class and adhere to a pro-
tocol commonly employed in continual image classification (Wang et al., 2022e). Specifically, we
experiment on two settings:1) 10 tasks split from MSRVTT-QA with non-overlapping classes be-
tween tasks, and 2) 4-Datasets (iVQA, MSVD, LSMDC, ActivityNet), excluding samples with
overlapping answers across datasets. The results, presented in Tab. 7, indicate that DAM consis-
tently outperforms S-Prompts (Wang et al., 2022b), achieving 18.2% and 8.5% improvement on
average accuracy on MSRVTT-QA 10-tasks and 4-Datasets respectively. Note that S-Prompts is
compared with prompt-based multi-task finetuning when calculating the forgetting.

The CIL evaluation mimics the evaluation of the out-of-date issue as shown in Fig. 1. The old model
may not be able to answer questions in new tasks as they never see the classes in the new tasks
before, which is similar to the example in Fig. 1 that a VidModel trained in 2021 may struggle with
questions about the 2023 movie “Barbie”.
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MSRVTT-QA 10-tasks 4-Datasets
Method Average Acc. Forgetting Average Acc. Forgetting

Upper-Bound 47.3 - 51.6 -
S-Prompts 15.4 -23.5 42.2 -3.3
DAM (Ours) 33.6 -13.7 50.7 -0.9

Table 7: Class-Incremental Learning (CIL) on two settings:1) 10 tasks split from MSRVTT-QA, and
2) 4-Datasets (iVQA, MSVD, LSMDC, ActivityNet).

Method iVQA MSVD MSR-VTT LSMDC ActivityNet TGIF Avg.

Upper-Bound 39.7 56.6 46.7 62.9 42.2 67.8 52.6
DAM 39.8 54.8 46.7 63.0 42.4 68.0 52.5

Table 8: Application to Task-Incremental Learning (TIL).

Task-Incremental Learning (TIL). We treat each dataset as a task. Unlike DIL or CIL, TIL is
provided with task indexes for inference and thus DAM using task-specific adapters could overcome
forgetting, i.e. DAM will always use the adapters of the task that the testing instance belongs to.

E ADDITIONAL ABLATIONS

Order of domains. In Tab. 9, we study how the order of domains affects our model’s performance.
We randomly sample 5 domain orders and train our framework using those orders. Based on the
results in the table, we observe that the performance of our approach is quite stable across all 5
domain orders (50.56 ± 0.26%). This indicates our method is insensitive to the order of domains.

Effectiveness of continual initialization. In Section 3.1, we introduced a continual initialization
scheme for initializing a current domain-specific adapter using the weights of a previously learned
adapter. In Tab. 10, we validate the effectiveness of this scheme and show that it leads to a notable
1.1% average accuracy improvement. These improvements are particularly pronounced for the
domains that are trained first, such as iVQA and MSVD. We posit that the benefits of continual
initialization stem from the fact that the weights of continually learned adapters reside in a more
similar parameter space. This phenomenon contributes to reducing interference disagreements when
merging adapters, as discussed in Yadav et al. (2023).

Design choice of router function Besides the router function used by existing work, including
MLP-based learnable routers proposed by L2P and CODA-Prompts, as well as the KMeans-based
router employed in S-Prompts. We also tried more advanced router functions on the proposed
DAM framework. As shown in Tab. 11, their performance is only comparable to our router. Thus,
we keep our router simple but effective in the DAM approach..

Domain Order Avg. Acc (%)

V D T L A G 50.2
L T G D A V 50.8
V A D G T L 50.4
G T A V D L 50.9
V A G D T L 50.5

Table 9: Ablations on the order of domains. We randomly sampled 5 orders and obtained stable av-
erage accuracies (50.56±0.26%). V: iVQA; D: MSVD; T: MSR-VTT; L: LSMDC; A: ActivityNet;
G: TGIF.
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Method iVQA MSVD MSR-VTT LSMDC ActivityNet TGIF Avg.

DAM 39.1 53.6 42.2 63.0 36.3 66.8 50.2
w/o continual initialization 36.5 51.6 39.5 63.0 36.5 67.7 49.1

Table 10: DAM benefits from the proposed continual initialization.

Router iVQA MSVD MSR-VTT LSMDC ActivityNet TGIF Avg.

GMM 38.5 55.1 43.4 63.0 31.2 65.4 49.4
Learnable MLP 39.1 49.9 42.9 63.0 31.1 67.4 48.9
Ours (cos. sim.) 39.1 53.6 42.2 63.0 36.3 66.8 50.2

Table 11: Design choices of router function.

F COMPARISON WITH IN-CONTEXT LEARNING

Few-shot in-context learning (ICL) can be another approach to address catastrophic problem in
continual learning. We further experiment with the one-shot in-context learning using FrozenBiLM
and report the results below. The proposed DAM outperforms one-shot FrozenBiLM by 29.3% in
average accuracy. The inferior performance of one-shot ICL is because LLM with at least 6.7B
parameters begin to have in-context learning ability on multimodal tasks (Koh et al., 2023).

G DATASET DESCRIPTIONS

Video Question Answering(VidQA). We evaluate our model on 5 open-ended VidQA datasets
iVQA (Yang et al., 2021), MSVD-QA (Xu et al., 2017), MSRVTT-QA (Xu et al., 2017),
ActivityNet-QA (Yu et al., 2019) and TGIF-QA (Jang et al., 2017) and a video-conditioned fill-
in-the-blank dataset LSMDC-FiB (Maharaj et al., 2017).

• iVQA (Yang et al., 2021) is an open-ended VidQA dataset with reduced language biases
and high-quality redundant manual annotations. It contains 10K video clips and 10K ques-
tions, split into 6K/2K/2K for training/validation/testing.

• MSVD-QA (Xu et al., 2017) is an open-ended VidQA dataset based on Microsoft Research
Video Description Corpus (Chen & Dolan, 2011). It contains 1.8K video clips and 51K
question-answer pairs, split into 32K/6K/13K for training/validation/testing.

• MSRVTT-QA (Xu et al., 2017) is an open-ended VidQA dataset based on MSR-VTT
dataset (Xu et al., 2016). It contains 10K video clips and 243K question-answer pairs, split
into 158K/12K/73K for training/validation/testing.

• ActivityNet-QA (Yu et al., 2019) is an open-ended VidQA dataset based on long
videos (Caba Heilbron et al., 2015) (averaging 180 seconds) and human annotation. It
contains 5.8K video clips and 58K question-answer pairs, split into 32K/18K/8K for train-
ing/validation/testing.

• TGIF-QA (Jang et al., 2017) is an open-ended VidQA dataset based on the Tumblr GIF
(TGIF) dataset (Li et al., 2016). It contains 46K GIFs and 53K question-answer pairs, split
into 39K/13K for training/testing.

• LSMDC-FiB (Maharaj et al., 2017) is an open-ended video-conditioned fill-in-the-blank
task that consists of predicting masked words in sentences that describe short movie

Method iVQA MSVD MSR-VTT LSMDC ActivityNet TGIF Avg.

Zero-Shot 26.8 33.0 15.0 51.5 25.5 41.9 32.3
One-Shot ICL 17.9 22.5 9.7 34.5 17.8 23.1 20.9
Ours (cos. sim.) 39.1 53.6 42.2 63.0 36.3 66.8 50.2

Table 12: Comparison with few-shot in-context learning.
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clips (Rohrbach et al., 2015). It contains 119K video clips and 349K question-answer
pairs, split into 297K/22K/30K for training/validation/testing.

Visual Question Answering(VQA). Follow Li et al. (2023b), we evaluate our model on 4
mainstream VQA datasets: OK-VQA (Marino et al., 2019), aOK-VQA (Schwenk et al., 2022),
GQA (Hudson & Manning, 2019) and VQAv2 (Goyal et al., 2017).

• OK-VQA (Marino et al., 2019) is a knowledge-based visual question-answering bench-
mark with 14k images and 14k questions.

• aOK-VQA (Schwenk et al., 2022) is an augmented successor of OK-VQA (Marino et al.,
2019) and contains a diverse set of 25K questions requiring a broad base of commonsense
and world knowledge to answer.

• GQA (Hudson & Manning, 2019) is a large-scale visual question-answering dataset with
real images from the Visual Genome (Krishna et al., 2017) dataset and balanced question-
answer pairs.

• VQAv2 (Goyal et al., 2017) consists of 1.1M questions about COCO images (Chen et al.,
2015) each with 10 answers. It is the balanced version of the original VQA (Antol et al.,
2015) dataset.
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