
Under review as a conference paper at ICLR 2022

WHY FLATNESS DOES AND DOES NOT CORRE-
LATE WITH GENERALIZATION FOR DEEP NEU-
RAL NETWORKS

Anonymous authors
Paper under double-blind review

ABSTRACT

The intuition that local flatness of the loss landscape is correlated with better
generalization for deep neural networks (DNNs) has been explored for decades,
spawning many different flatness measures. Recently, this link with generalization
has been called into question by a demonstration that many measures of flatness
are vulnerable to parameter re-scaling which arbitrarily changes their value without
changing neural network outputs. Here we show that, in addition, some popular
variants of SGD such as Adam and Entropy-SGD, can also break the flatness-
generalization correlation. As an alternative to flatness measures, we use a function
based picture and propose using the log of Bayesian prior upon initialization,
logP (f), as a predictor of the generalization when a DNN converges on function
f after training to zero error. The prior is directly proportional to the Bayesian
posterior for functions that give zero error on a training set. For the case of image
classification, we show that logP (f) is a significantly more robust predictor of
generalization than flatness measures are. Whilst local flatness measures fail under
parameter re-scaling, the prior/posterior, which is global quantity, remains invariant
under re-scaling. Moreover, the correlation with generalization as a function of
data complexity remains good for different variants of SGD.

1 INTRODUCTION

Among the most important theoretical questions in the field of deep learning are: 1) What charac-
terizes functions that exhibit good generalization?, and 2) Why do overparameterized deep neural
networks (DNNs) converge to this small subset of functions that do not overfit? Perhaps the most
popular hypothesis is that good generalization performance is linked to flat minima. In pioneering
works (Hinton & van Camp, 1993; Hochreiter & Schmidhuber, 1997), the minimum description
length (MDL) principle (Rissanen, 1978) was invoked to argue that since flatter minima require less
information to describe, they should generalize better than sharp minima. Most measures of flatness
approximate the local curvature of the loss surface, typically defining flatter minima to be those with
smaller values of the Hessian eigenvalues (Keskar et al., 2016; Wu et al., 2017; Zhang et al., 2018;
Sagun et al., 2016; Yao et al., 2018).

Another commonly held belief is that stochastic gradient descent (SGD) is itself biased towards
flatter minima, and that this inductive bias helps explain why DNNs generalize so well (Keskar et al.,
2016; Jastrzebski et al., 2018; Wu et al., 2017; Zhang et al., 2018; Yao et al., 2018; Wei & Schwab,
2019; Maddox et al., 2020). For example Keskar et al. (2016) developed a measure of flatness
that they found correlated with improved generalization performance when decreasing batch size,
suggesting that SGD is itself biased towards flatter minima. We note that others (Goyal et al., 2017;
Hoffer et al., 2017; Smith et al., 2017; Mingard et al., 2021a) have argued that the effect of batch size
can be compensated by changes in learning rate, complicating some conclusions from Keskar et al.
(2016). Nevertheless, the argument that SGD is somehow itself biased towards flat minima remains
widespread in the literature.

In an important critique of local flatness measures, Dinh et al. (2017) pointed out that DNNs with
ReLU activation can be re-parameterized through a simple parameter-rescaling transformation.

Tα : (w1,w2) 7→
(
αw1, α

−1w2

)
(1)

1

Under review as a conference paper at ICLR 2022

where w1 are the weights between an input layer and a single hidden layer, and w2 are the weights
between this hidden layer and the outputs. This transformation can be extended to any architecture
having at least one single rectified network layer. The function that the DNN represents, and thus
how it generalizes, is invariant under parameter-rescaling transformations, but the derivatives w.r.t.
parameters, and therefore many flatness measures used in the literature, can be changed arbitrarily.
Ergo, the correlation between flatness and generalization can be arbitrarily changed.

Several recent studies have attempted to find "scale invariant" flatness metrics (Petzka et al., 2019;
Rangamani et al., 2019; Tsuzuku et al., 2019). The main idea is to multiply layer-wise Hessian
eigenvalues by a factor of ‖wi‖2, which renders the metric immune to layer-wise re-parameterization.
While these new metrics look promising experimentally, they are only scale-invariant when the
scaling is layer-wise. Other methods of rescaling (e.g. neuron-wise rescaling) can still change the
metrics, so this general problem remains unsolved.

1.1 MAIN CONTRIBUTIONS

1. For a series of classic image classification tasks (MNIST and CIFAR-10) we show that
flatness measures change substantially as a function of epochs. Parameter re-scaling can
arbitrarily change flatness, but it quickly recovers to a more typical value under further
training. We also demonstrate that some variants of SGD exhibit significantly worse
correlation of flatness with generalization than found for vanilla SGD. In other words popular
measures of flatness sometimes do and sometimes do not correlate with generalization.
This mixed performance problematizes a widely held intuition that DNNs generalize well
fundamentally because SGD or its variants are themselves biased towards flat minima.

2. We next study the correlation of the Bayesian prior P (f) with the generalization performance
of a DNN that converges to that function f . This prior is the weighted probability of obtaining
function f upon random sampling of parameters. Motivated by a theoretical argument
derived from a non-uniform convergence generalization bound, we show empirically that
logP (f) correlates robustly with test error, even when local flatness measures miserably
fail, for example upon parameter re-scaling. For discrete input/output problems (such as
classification), P (f) can also be interpreted as the weighted "volume" of parameters that
map to f . Intuitively, we expect local flatness measures to typically be smaller (flatter)
for systems with larger volumes. Nevertheless, there may also be regions of parameter
space where local derivatives and flatness measures vary substantially, even if on average
they correlate with the volume. Thus flatness measures can be viewed as (imperfect) local
measures of a more robust predictor of generalization, the volume/prior P (f).

2 DEFINITIONS AND NOTATION

2.1 SUPERVISED LEARNING

For a typical supervised learning problem, the inputs live in an input domain X , and the outputs
belong to an output space Y . For a data distribution D on the set of input-output pairs X × Y , the
training set S is a sample of m input-output pairs sampled i.i.d. from D, S = {(xi, yi)}mi=1 ∼ Dm,
where xi ∈ X and yi ∈ Y . The output of a DNN on an input xi is denoted as ŷi. Typically a
DNN is parameterized by a vector w and trained by minimizing a loss function L : Y × Y → R,
which measures differences between the output ŷ ∈ Y and the ground truth output y ∈ Y , by
assigning a score L(ŷ, y) which is typically zero when they match, and positive when they don’t
match. Minimizing the loss typically involves using an optimization algorithm such as SGD on
a training set S. The generalization performance of the DNN, which is theoretically defined over
the underlying (typically unknown) data distribution D but is practically measured on a test set
E = {(x′i, y′i)}

|E|
i=1 ∼ D|E|. For classification problems, the generalization error is practically

measured as ε(E) = 1
|E|
∑
x′
i∈E

1[ŷi 6= y′i], where 1 is the standard indicator function which is one
when its input is true, and zero otherwise.

2

Under review as a conference paper at ICLR 2022

2.2 FLATNESS MEASURES

Perhaps the most natural way to measure the flatness of minima is to consider the eigenvalue distribu-
tion of the Hessian Hij = ∂2L(w)/∂wi∂wj once the learning process has converged (typically to a
zero training error solution). Here for simplicity we use L(w) instead of L(ŷ, y) as ŷ is parameterized
by w. Sharp minima are characterized by a significant number of large positive eigenvalues λi in
the Hessian, while flat minima are dominated by small eigenvalues. Some care must be used in
this interpretation because it is widely thought that DNNs converge to stationary points that are
not true minima, leading to negative eigenvalues and complicating their use in measures of flatness.
Typically, only a subset of the positive eigenvalues are used (Wu et al., 2017; Zhang et al., 2018).
Hessians are typically very expensive to calculate. For this reason, Keskar et al. (2016) introduced a
computationally more tractable measure called "sharpness":

Definition 2.1 (Sharpness). Given parameters w′ within a box in parameter space Cζ with sides of
length ζ > 0, centered around a minimum of interest at parameters w, the sharpness of the loss L(w)
at w is defined as:

sharpness :=
maxw′∈Cζ (L(w

′)− L(w))

1 + L(w)
× 100.

In the limit of small ζ, the sharpness relates to the spectral norm of the Hessian (Dinh et al., 2017):

sharpness ≈
∥∥∣∣(∇2L(w)

)∣∣∥∥
2
ζ2

2(1 + L(w))
× 100.

The general concept of flatness can be defined as 1/sharpness, and that is how we will interpret this
measure in the rest of this paper.

2.3 FUNCTIONS AND THE BAYESIAN PRIOR

We first clarify how we represent functions in the rest of paper using the notion of restriction of
functions. A more detailed explanation can be found in appendix C. Here we use binary classification
as an example:

Definition 2.2 (Restriction of functions to C). (Shalev-Shwartz & Ben-David, 2014) Consider a
parameterized supervised model, and let the input space be X and the output space be Y , noting
Y = {0, 1} in binary classification setting. The space of functions the model can express is a
(potentially uncountably infinite) set F ⊆ Y |X |. Let C = {c1, . . . , cm} ⊂ X . The restriction of F to
C is the set of functions from C to Y that can be derived from functions in F :

FC = {(f (c1) , . . . , f (cm)) : f ∈ F}

where we represent each function from C to Y as a vector in Y |C|.

For example, for binary classification, if we restrict the functions to S + E, then each function in
FS+E is represented as a binary string of length |S|+ |E|. In the rest of paper, we simply refer to
"functions" when we actually mean the restriction of functions to S + E, except for the Boolean
system in section 5.1 where no restriction is needed. See appendix C for a thorough explanation.

For discrete functions, we next define the prior probability P (f) as

Definition 2.3 (Prior of a function). Given a prior parameter distribution Pw(w) over the parameters,
the prior of function f can be defined as:

P (f) :=

∫
1[M(w) = f]Pw(w)dw. (2)

where 1 is an indicator function:1[arg] = 1 if its argument is true or 0 otherwise;M is the parameter-
function map whose formal definition is in appendix B. Note that P (f) could also be interpreted as a
weighted volume V (f) over parameter space. If Pw(w) is the distribution at initialization, the P (f)
is the prior probability of obtaining the function at initialization. We normally use this parameter
distribution when interpreting P (f).

3

Under review as a conference paper at ICLR 2022

Figure 1: Schematic loss landscape for three functions that have zero-error on the training set.
It illustrates how the relative sizes of the volumes of their basins of attraction VSGD(fi) correlate
with the volumes V (fi) (or equivalently their priors P (fi)) of the basins, and that, on average, larger
V (fi) or P (fi) implies flatter functions, even if flatness can vary locally. Note that the loss L(w) can
vary within a region where the DNN achieves zero classification error on S. A similar schematic plot
can be seen in (Mingard et al., 2021b), but here it is more clear that local flatness can be misleading.
Note the "error" means the classification error, which is different from the loss.

Remark. Definition 2.3 works in the situation where the spaceX and Y are discrete, where P (f) has a
prior probability mass interpretation. This is enough for most image classification tasks. Nevertheless,
we can easily extend this definition to the continuous setting, where we can also define a prior density
over functions upon random initialization, with the help of Gaussian Process (GP) (Rasmussen, 2003).
For the GP prior see appendix D. However, in this work, we focus exclusively on the classification
setting, with discrete inputs and outputs.

2.4 LINK BETWEEN THE PRIOR AND THE BAYESIAN POSTERIOR

Due to their high expressivity, DNNs are typically trained to zero training error on the training set
S. In this case the Bayesian picture simplifies because if functions are conditioned on zero error
on S, this leads to a simple 0-1 likelihood P (S|f), indicating whether the data is consistent with
the function. Bayesian inference can be used to calculate a Bayesian posterior probability PB(f |S)
for each f by conditioning on the data according to Bayes rule. Formally, if S = {(xi, yi)}mi=1
corresponds to the set of training pairs, then

PB(f |S) =
{
P (f)/P (S) if ∀i, f(xi) = yi
0 otherwise .

where P (f) is the Bayesian prior and P (S) is called the marginal likelihood or Bayesian evidence.
If we define, the training set neutral space NS as all parameters that lead to functions that give zero
training error on S, then P (S) =

∫
NS Pw(w)dw. In other words, it is the total prior probability

of all functions compatible with the training set S (Valle-Pérez et al., 2018; Mingard et al., 2021a).
Since P (S) is constant for a given S, PB(f |S) ∝ P (f) for all f consistent with that S.

3 THE CORRELATION BETWEEN THE PRIOR AND GENERALIZATION

This link between the prior and the posterior is important, because it was empirically found in an
extensive set of experiments by (Mingard et al., 2021a) that, for popular architectures and data sets,

PB(f |S) ≈ PSGD(f |S), (3)

where PSGD(f |S) is the probability that a DNN trained with SGD converges on function f , when
trained to zero error on S. In other words, to first order, SGD appears to find functions with a
probability predicted by the Bayesian posterior, and thus with probabilities directly proportional to
P (f). The authors traced this behaviour to the geometry of the loss landscape, as follows. Some
general observations from algorithmic information theory (AIT) (Valle-Pérez et al., 2018) as well

4

Under review as a conference paper at ICLR 2022

as direct calculations (Mingard et al., 2019) predict that the priors of functions should vary over
many orders of magnitude. When this is the case, it is reasonable to expect that the probabilities by
which an optimizer finds different functions is affected by these large differences. This is related
to a mechanism identified previously in evolutionary dynamics, where it is called the arrival of the
frequent (Schaper & Louis, 2014). We illustrate this principle in fig. 1 where we intuitively use the
language of "volumes". We expect that the relative sizes of the basins of attraction VSGD(f), defined
as the set of initial parameters for which a DNN converges to a certain function f , is proportional, to
first order, to those of the priors P (f) (or equivalently the "volumes"). To second order there are, of
course, many other features of a search method and a landscape that affect what functions a DNN
converges on, but when the volumes/priors vary by so many orders of magnitude then we expect that
to first order PSGD(f |S) ≈ PB(f |S) ∝ P (f) = V (f).

Given that the P (f) of a function helps predict how likely SGD is to converge on that function, we
can next ask how P (f) correlates with generalization. Perhaps the simplest argument is that if DNNs
trained to zero error are known to generalize well on unseen data, then the probability of converging
on functions that generalize well must be high. The P (f) of these functions must be larger than the
priors of functions that do not generalize well. Can we do better than this rather simplistic argument?
One way forward is empirical. Mingard et al. (2021a) showed that log (PB(f |S)) correlates quite
tightly with generalization error. These authors also made a theoretical argument based on the
Poisson-Binomial nature of the error distribution to explain this log-linear relationship, but this
approach needs further work.

One of the best overall performing predictors in the literature for generalization performance on
classification tasks is the marginal likelihood PAC-Bayes bound from Valle-Pérez et al. (2018);
Valle-Pérez & Louis (2020). It is non-vacuous, relatively tight, and can capture important trends in
generalization performance with training set size (learning curves), data complexity, and architecture
choice (see also (Liu et al., 2021)). However, the prediction uses the marginal likelihood P (S)
defined through a sum over all functions that produce zero error on the training set. Here we are
interested in the generalization properties of single functions. One way around is to use a simple
nonuniform bound which to the best of our knowledge was first published in McAllester (1998)
as a preliminary theory to the full PAC-Bayes theorems. For any countable function space F , any
distribution P̃ , and for any selection of a training set S of size m under probability distribution D, it
can be proven that for all functions f that give zero training error:

∀D,PS∼Dm
[
εS,E(f) ≤

ln 1
P̃ (f)

+ ln 1
δ

m

]
≥ 1− δ (4)

for δ ∈ (0, 1). Here we consider a space FS,E of functions with all possible outputs on the inputs of
a specific E and zero error on a specific S; εS,E(f) is the error measured on E + S, which as the
error on S is 0, equals the error on the test set E. This error will converge to the true generalization
error on all possible inputs as |E| increases. Valle-Pérez & Louis (2020) showed this bound has an
optimal average generalization error when P̃ (f) mimics the probability distribution over functions of
the learning algorithm. If PSGD(f) ≈ PB(f |S) ∝ P (f), then the best performance of the bound is
approximately when P̃ (f) in eq. (4) is the Bayesian prior P (f). Thus this upper bound on εS,E(f)
scales as − log (P (f)).

4 FLATNESS, PRIORS AND GENERALIZATION

The intuition that larger P (f) correlates with greater flatness is common in the literature, see
e.g. Hochreiter & Schmidhuber (1997); Wu et al. (2017), where the intuition is also expressed in
terms of volumes. If volume/P (f) correlates with generalization, we expect flatness should too.
Nevertheless, local flatness may still vary significantly across a volume. For example Izmailov et al.
(2018) show explicitly that even in the same basin of attraction, there can be flatter and sharper
regions. We illustrate this point schematically in fig. 1, where one function clearly has a larger volume
and on average smaller derivatives of the loss w.r.t. the parameters than the others, and so is flatter on
average. But, there are also local areas within the zero-error region where this correlation does not
hold. One of the main hypotheses we will test in this paper is that the correlation between flatness
and generalization can be broken even when the generalization-prior correlation remains robust.

5

Under review as a conference paper at ICLR 2022

Figure 2: The correlation between flatness and the Bayesian prior for the n = 7 Boolean
system. The functions are defined on the full space of 128 possible inputs. The priors P (f) are
shown for the 1000 most frequently found functions by SGD from random initialization for a two
hidden layer FCN, and correlate well with log(flatness). The function with the largest prior, which is
the most "flat" is the trivial one of all 0s or all 1s. An additional feature is two offset bands caused by
a discontinuity of Boolean functions. Most functions shown are mainly 0s or mainly 1s, and the two
bands correspond to different number of outliers (e.g. 1s when the majority is 0s).

5 EXPERIMENTAL RESULTS

5.1 PRIOR/VOLUME - FLATNESS CORRELATION FOR BOOLEAN SYSTEM

We first study a model system for Boolean functions of size n = 7, which is small enough to directly
measure the prior by sampling (Valle-Pérez et al., 2018). There are 27 = 128 possible binary inputs.
Since each input is mapped to a single binary output, there are 2128 = 3.4×1034 possible functions f .
It is only practically possible to sample the prior P (f) because it is highly biased (Valle-Pérez et al.,
2018; Mingard et al., 2019), meaning a subset of functions have priors much higher than average. For
a fully connected network (FCN) with two hidden layers of 40 ReLU units each (which was found to
be sufficiently expressive to represent almost all possible functions) we empirically determined P (f)
using 108 random samples of the weights w over an initial Gaussian parameter distribution Pw(w)
with standard deviation σw = 1.0 and σb = 0.1.

We also trained our network with SGD using the same initialization and recorded the top-1000
most commonly appearing output functions with zero training error on all 128 outputs, and then
evaluated the sharpness/flatness using definition 2.1 with an ε = 10−4. For the maximization
process in calculating sharpness/flatness, we ran SGD for 10 epochs and make sure the max value
ceases to change. As fig. 2 demonstrates, the flatness and prior correlate relatively well; fig. S8
in the appendix shows a very similar correlation for the spectral norm of the Hessian. Note that
since we are studying the function on the complete input space, it is not meaningful to speak of
correlation with generalization. However, since for this system the prior P (f) is known to correlate
with generalization (Mingard et al., 2021a), the correlation in fig. 2 also implies that these flatness
measures will correlate with generalization, at least for these high P (f) functions.

5.2 PRIORS, FLATNESS AND GENERALIZATION FOR MNIST AND CIFAR-10

We next study the correlation between generalization, flatness and logP (f) on the real world datasets
MNIST (LeCun et al., 1998) and CIFAR-10 (Krizhevsky et al., 2009). Because we need to run many
different experiments, and measurements of the prior and flatness are computationally expensive,
we simplify the problem by binarizing MNIST (one class is 0-4, the other is 5-9) and CIFAR-10
(we only study two categories out of ten: cars and cats). Also, our training sets are relatively small
(500/5000 for MNIST/CIFAR-10, respectively) but we have checked that our overall results are not
affected by these more computationally convenient choices. In appendix fig. S24 we show results for
MNIST with |S| = 10000.

We use two DNN architectures: a relatively small vanilla two hidden-layer FCN with 784 inputs
and 40 ReLU units in each hidden layer each, and also Resnet-50 (He et al., 2016), a 50-layer deep
convolutional neural network, which is much closer to a state of the art (SOTA) system.

6

Under review as a conference paper at ICLR 2022

(a) (b) (c)

(d) (e) (f)

Figure 3: The correlation between logP (f), sharpness and generalization accuracy on MNIST
and CIFAR-10. For MNIST |S|=500, |E|=1000; for CIFAR-10 |S|=5000, |E|=2000. The attack set
size |A| varies from 0 to |S| and generates functions with different generalization performance. (a)-(c)
depicts the correlation between generalization and logP (f) for FCN on MNIST, FCN on CIFAR-10
and Resnet-50 on CIFAR-10, respectively. (d)-(f) show the correlation between generalization and
flatness for FCN on MNIST, FCN on CIFAR-10, and Resnet50 on CIFAR-10, respectively. In this
experiment, all DNNs are trained with vanilla SGD.

We measure the flatness on cross-entropy (CE) loss at the epoch where SGD first obtains zero
training error. Because the Hessian is so expensive to calculate, we mainly use the sharpness/flatness
measure (definition 2.1) which is proportional to the Frobenius norm of the Hessian. The final error
is measured in the standard way, after applying a sigmoid to the last layer to binarize the outputs.

To measure the prior, we use the GPs to which these networks reduce in the limit of infinite width (Lee
et al., 2017; Matthews et al., 2018; Novak et al., 2018b). As demonstrated in Mingard et al. (2021a),
GPs can be used to approximate the Bayesian posteriors PB(f |S) for finite width networks. For
further details, we refer to the original papers above and to appendix D.

In order to generate functions f with zero error on the training set S, but with diverse generalization
performance, we use the attack-set trick from Wu et al. (2017). In addition to training on S, we add an
attack set A made up of incorrectly labelled data. We train on both S and A, so that the error on S is
zero but the generalization performance on a test set E is reduced. The larger A is w.r.t. S, the worse
the generalization performance. As can be seen in fig. 3(a)-(c), this process allows us to significantly
vary the generalization performance. The correlation between logP (f) and generalization error is
excellent over this range, as expected from our arguments in section 3.

Figs.3(d)-(f) show that the correlation between flatness and generalization is much more scattered
than for logP (f). In appendix G we also show the direct correlation between logP (f) and flatness
which closely resembles fig. 3(d)-(f) because V (f) and ε correlate so tightly.

5.3 THE EFFECT OF OPTIMIZER CHOICE ON FLATNESS

We then test the effect of changing the optimizer from the vanilla SGD we used in fig. 3. We use
Adam (Kingma & Ba, 2014), and entropy-SGD (Chaudhari et al., 2019) which includes an explicit
term to maximize the flatness. Both SGD variants show good optimization performance for the
standard default Tensorflow hyperparameters we use. Their generalization performance, however,
does not significantly vary from plain SGD, and this is reflected in the priors of the functions that
they find. More importantly, fig. 4 shows that the generalization-flatness correlation can be broken by

7

Under review as a conference paper at ICLR 2022

(a) (b) (c)

(d) (e) (f)

Figure 4: SGD-variants can break the flatness-generalization correlation, but not the logP (f)-
generalization correlation. The figures show generalization v.s. logP (f) or flatness for the FCN
trained on (a) and (d) – MNIST with Entropy-SGD; (b) and (e) – MNIST with Adam; (c) and (f) –
CIFAR-10 with Adam. for the same S and E as in fig. 3. Note that the correlation with the prior is
virtually identical to vanilla SGD, but that the correlation with flatness measures changes significantly.

using these optimizers, whereas the logP (f)-generalization correlation remains intact. A similar
breakdown of the correlation persists upon overtraining and can also be seen for flatness measures
that use Hessian eigenvalues (fig. S16 to fig. S21).

Changing optimizers or changing hyperparameters can, of course, alter the generalization perfor-
mance by small amounts, which may be critically important in practical applications. Nevertheless,
as demonstrated in Mingard et al. (2021a), the overall effect of hyperparameter or optimizer changes
is usually quite small on these scales. The large differences in flatness generated simply by changing
the optimizer suggests that flatness measures may not always reliably capture the effects of hyperpa-
rameter or optimizer changes. Note that we find less deterioration when comparing SGD to Adam for
Resnet50 on CIFAR-10, (fig. S22). The exact nature of these effects remains subtle.

5.4 TEMPORAL BEHAVIOR OF SHARPNESS AND logP (f)

In the experiments above, the flatness and logP (f) metrics are calculated at the epoch where the
system first reaches 100% training accuracy. In fig. 5, we measure the prior and the flatness for each
epoch for our FCN, trained on MNIST (with no attack set). Zero training error is reached at epoch
140, and we overtrain for a further 1000 epochs. From initialization, both the sharpness measure from
Definition 2.1, and logP (f) reduce until zero-training error is reached. Subsequently, logP (f) stays
constant, but the CE loss continues to decrease, as expected for such classification problems. This
leads to a reduction in the sharpness measure (greater flatness) even though the function, its prior, and
the training error don’t change. This demonstrates that flatness is a relative concept that depends, for
example, on the duration of training. In figs. S16 and S17 we show for an FCN on MNIST that the
quality of flatness-generalization correlations are largely unaffected by overtraining, for both SGD
and Adam respectively, even though the absolute values of the sharpness change substantially.

One of the strong critiques of flatness is that re-parameterizations such as the parameter-rescaling
transformation defined in eq. (1) can arbitrarily change local flatness measures (Dinh et al., 2017).
Fig. 5 shows that parameter-rescaling indeed leads to a spike in the sharpness measure (a strong
reduction in flatness). As demonstrated in the inset, the prior is initially invariant upon parameter-
rescaling because f(w) is unchanged. However, parameter-rescaling can drive the system to unusual

8

Under review as a conference paper at ICLR 2022

Figure 5: How flatness evolves with epochs. At each epoch we calculate the sharpness measure
from Definition 2.1 (sharpness is the inverse of flatness) and the prior for our FCN on MNIST with
|S| = 500. The green dashed line denotes epoch 140 where zero-training error is reached and post-
training starts. The red dashed line denotes epoch 639 where parameter-rescaling takes place with
α = 5.9. Upon parameter-rescaling, the sharpness increases markedly, but then quickly decreases
again. The inset shows that the prior is initially unchanged after parameter-rescaling. However, large
gradients mean that in subsequent SGD steps, the function (and its prior) changes, before recovering
to (nearly) the same function and logP (f).

parts of the volume with steep gradients in the loss function, which mean that SGD falls off the
zero training error manifold. logP (f) goes up because it is more likely to randomly fall onto large
V (f) functions. However, the system soon relaxes to essentially the same function and logP (f).
In fig. S11, we show that it is possible to obtain a spike in the sharpness measure without the
prior changing. In each case, the sharpness measure rapidly decays after the spike, suggesting that
parameter-rescaling brings the system into a parameter region that is "unnatural".

6 DISCUSSION AND FUTURE WORK

The notion that flatness correlates with generalization is widely believed in the community, but the
evidential basis for this hypothesis has always been mixed. Here we performed extensive empirical
work showing that flatness can indeed correlate with generalization. However, this correlation is not
always tight, and can be easily broken by changing the optimizer, or by parameter-rescaling. By
contrast, the P (f) which is directly proportional to the Bayesian posterior PB(f |S) for functions
that give zero error on the training set, is a much more robust predictor of generalization.

While the generalization performance of a DNN can be successfully predicted by the marginal
likelihood PAC-Bayes bound (Valle-Pérez et al., 2018; Valle-Pérez & Louis, 2020), no such tight
bound exists (to our knowledge) linking generalization and the Bayesian prior or posterior at the
level of individual functions. Further theoretical work in this direction is needed. Moreover, it
is natural to further extend current work towards linking flatness and the prior to other quantities
which correlate with generalization such as frequency (Rahaman et al., 2018; Xu et al., 2019), or the
sensitivity to changes in the inputs (Arpit et al., 2017; Novak et al., 2018a). Improvements to the
GP approximations we use are an important technical goal. P (f) can be expensive to calculate, so
finding reliable local approximations related to flatness may still be a worthy endeavour. Finally, our
main result – that logP (f) correlates so well with generalization – still requires a proper theoretical
underpinning, notwithstanding the bound in eq.(4). Such explanations will need to include not just
the networks and the algorithms, but also the data (Zdeborová, 2020). We refer readers to appendix A
for more discusion on related works.

9

Under review as a conference paper at ICLR 2022

REFERENCES

Mauricio A Alvarez, Lorenzo Rosasco, and Neil D Lawrence. Kernels for vector-valued functions: A review.
arXiv preprint arXiv:1106.6251, 2011.

Devansh Arpit, Stanisław Jastrzębski, Nicolas Ballas, David Krueger, Emmanuel Bengio, Maxinder S Kanwal,
Tegan Maharaj, Asja Fischer, Aaron Courville, Yoshua Bengio, et al. A closer look at memorization in deep
networks. arXiv preprint arXiv:1706.05394, 2017.

Peter L Bartlett, Dylan J Foster, and Matus J Telgarsky. Spectrally-normalized margin bounds for neural
networks. In Advances in Neural Information Processing Systems, pp. 6240–6249, 2017.

Leo Breiman. Reflections after refereeing papers for nips. In The Mathematics of Generalization, pp. 11–15.
Addison-Wesley, 1995.

Richard H Byrd, Peihuang Lu, Jorge Nocedal, and Ciyou Zhu. A limited memory algorithm for bound constrained
optimization. SIAM Journal on scientific computing, 16(5):1190–1208, 1995.

Pratik Chaudhari, Anna Choromanska, Stefano Soatto, Yann LeCun, Carlo Baldassi, Christian Borgs, Jennifer
Chayes, Levent Sagun, and Riccardo Zecchina. Entropy-sgd: Biasing gradient descent into wide valleys.
Journal of Statistical Mechanics: Theory and Experiment, 2019(12):124018, 2019.

Youngmin Cho and Lawrence Saul. Kernel methods for deep learning. Advances in neural information
processing systems, 22:342–350, 2009.

Giacomo De Palma, Bobak Toussi Kiani, and Seth Lloyd. Random deep neural networks are biased towards
simple functions. arXiv preprint arXiv:1812.10156, 2018.

Kamaludin Dingle, Steffen Schaper, and Ard A Louis. The structure of the genotype–phenotype map strongly
constrains the evolution of non-coding rna. Interface focus, 5(6):20150053, 2015.

Kamaludin Dingle, Chico Q Camargo, and Ard A Louis. Input–output maps are strongly biased towards simple
outputs. Nature Communications, 9(1):1–7, 2018.

Kamaludin Dingle, Guillermo Valle Pérez, and Ard A Louis. Generic predictions of output probability based on
complexities of inputs and outputs. Scientific Reports, 10(1):1–9, 2020.

Laurent Dinh, Razvan Pascanu, Samy Bengio, and Yoshua Bengio. Sharp minima can generalize for deep nets.
In Proceedings of the 34th International Conference on Machine Learning-Volume 70, pp. 1019–1028. JMLR.
org, 2017.

John Duchi, Elad Hazan, and Yoram Singer. Adaptive subgradient methods for online learning and stochastic
optimization. Journal of machine learning research, 12(Jul):2121–2159, 2011.

Gintare Karolina Dziugaite and Daniel M. Roy. Computing nonvacuous generalization bounds for deep
(stochastic) neural networks with many more parameters than training data. In Proceedings of the Thirty-Third
Conference on Uncertainty in Artificial Intelligence, UAI 2017, Sydney, Australia, August 11-15, 2017, 2017.
URL http://auai.org/uai2017/proceedings/papers/173.pdf.

Adrià Garriga-Alonso, Carl Edward Rasmussen, and Laurence Aitchison. Deep convolutional networks
as shallow gaussian processes. In International Conference on Learning Representations, 2019. URL
https://openreview.net/forum?id=Bklfsi0cKm.

Sebastian Goldt, Marc Mézard, Florent Krzakala, and Lenka Zdeborová. Modelling the influence of data
structure on learning in neural networks. arXiv preprint arXiv:1909.11500, 2019.

Priya Goyal, Piotr Dollár, Ross Girshick, Pieter Noordhuis, Lukasz Wesolowski, Aapo Kyrola, Andrew Tulloch,
Yangqing Jia, and Kaiming He. Accurate, large minibatch sgd: Training imagenet in 1 hour. arXiv preprint
arXiv:1706.02677, 2017.

Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for image recognition. In
Proceedings of the IEEE conference on computer vision and pattern recognition, pp. 770–778, 2016.

Geoffrey E Hinton and Drew van Camp. Keeping neural networks simple. In International Conference on
Artificial Neural Networks, pp. 11–18. Springer, 1993.

Sepp Hochreiter and Jürgen Schmidhuber. Flat minima. Neural Computation, 9(1):1–42, 1997.

10

http://auai.org/uai2017/proceedings/papers/173.pdf
https://openreview.net/forum?id=Bklfsi0cKm

Under review as a conference paper at ICLR 2022

Elad Hoffer, Itay Hubara, and Daniel Soudry. Train longer, generalize better: closing the generalization gap in
large batch training of neural networks. In Advances in neural information processing systems, pp. 1731–1741,
2017.

Sergey Ioffe and Christian Szegedy. Batch normalization: Accelerating deep network training by reducing
internal covariate shift. arXiv preprint arXiv:1502.03167, 2015.

Pavel Izmailov, Dmitrii Podoprikhin, Timur Garipov, Dmitry Vetrov, and Andrew Gordon Wilson. Averaging
weights leads to wider optima and better generalization. arXiv preprint arXiv:1803.05407, 2018.

Stanislaw Jastrzebski, Zachary Kenton, Devansh Arpit, Nicolas Ballas, Asja Fischer, Yoshua Bengio, and Amos J
Storkey. Finding flatter minima with sgd. In ICLR (Workshop), 2018.

Yiding Jiang, Dilip Krishnan, Hossein Mobahi, and Samy Bengio. Predicting the generalization gap in deep
networks with margin distributions. arXiv preprint arXiv:1810.00113, 2018.

Yiding Jiang, Behnam Neyshabur, Hossein Mobahi, Dilip Krishnan, and Samy Bengio. Fantastic generalization
measures and where to find them. arXiv preprint arXiv:1912.02178, 2019.

Nitish Shirish Keskar, Dheevatsa Mudigere, Jorge Nocedal, Mikhail Smelyanskiy, and Ping Tak Peter Tang. On
large-batch training for deep learning: Generalization gap and sharp minima. arXiv preprint arXiv:1609.04836,
2016.

Diederik P Kingma and Jimmy Ba. Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980,
2014.

Alex Krizhevsky, Geoffrey Hinton, et al. Learning multiple layers of features from tiny images. 2009.

Yann LeCun, Léon Bottou, Yoshua Bengio, and Patrick Haffner. Gradient-based learning applied to document
recognition. Proceedings of the IEEE, 86(11):2278–2324, 1998.

Jaehoon Lee, Yasaman Bahri, Roman Novak, Samuel S Schoenholz, Jeffrey Pennington, and Jascha Sohl-
Dickstein. Deep neural networks as gaussian processes. arXiv preprint arXiv:1711.00165, 2017.

L.A. Levin. Laws of information conservation (nongrowth) and aspects of the foundation of probability theory.
Problemy Peredachi Informatsii, 10(3):30–35, 1974.

M. Li and P.M.B. Vitanyi. An introduction to Kolmogorov complexity and its applications. Springer-Verlag New
York Inc, 2008.

Qianli Liao, Brando Miranda, Andrzej Banburski, Jack Hidary, and Tomaso Poggio. A surprising linear
relationship predicts test performance in deep networks. arXiv preprint arXiv:1807.09659, 2018.

Henry W Lin, Max Tegmark, and David Rolnick. Why does deep and cheap learning work so well? Journal of
Statistical Physics, 168(6):1223–1247, 2017.

Yang Liu, Jeremy Bernstein, Markus Meister, and Yisong Yue. Learning by turning: Neural architecture aware
optimisation. arXiv preprint arXiv:2102.07227, 2021.

David JC Mackay. Introduction to gaussian processes. NATO ASI series. Series F: computer and system sciences,
pp. 133–165, 1998.

Wesley J Maddox, Gregory Benton, and Andrew Gordon Wilson. Rethinking parameter counting in deep models:
Effective dimensionality revisited. arXiv preprint arXiv:2003.02139, 2020.

Susanna Manrubia, José A Cuesta, Jacobo Aguirre, Sebastian E Ahnert, Lee Altenberg, Alejandro V Cano,
Pablo Catalán, Ramon Diaz-Uriarte, Santiago F Elena, Juan Antonio García-Martín, et al. From genotypes
to organisms: State-of-the-art and perspectives of a cornerstone in evolutionary dynamics. arXiv preprint
arXiv:2002.00363, 2020.

Alexander G de G Matthews, Mark Rowland, Jiri Hron, Richard E Turner, and Zoubin Ghahramani. Gaussian
process behaviour in wide deep neural networks. arXiv preprint arXiv:1804.11271, 2018.

David A McAllester. Some pac-bayesian theorems. In Proceedings of the eleventh annual conference on
Computational learning theory, pp. 230–234. ACM, 1998.

Chris Mingard, Joar Skalse, Guillermo Valle-Pérez, David Martínez-Rubio, Vladimir Mikulik, and Ard A
Louis. Neural networks are a priori biased towards boolean functions with low entropy. arXiv preprint
arXiv:1909.11522, 2019.

11

Under review as a conference paper at ICLR 2022

Chris Mingard, Guillermo Valle-Pérez, Joar Skalse, and Ard A Louis. Is sgd a bayesian sampler? well, almost.
Journal of Machine Learning Research, 22(79):1–64, 2021a.

Chris Mingard, Guillermo Valle-Pérez, Joar Skalse, and Ard A Louis. Is sgd a bayesian sampler? well, almost.
Journal of Machine Learning Research, 22(79):1–64, 2021b.

Radford M Neal. Priors for infinite networks (tech. rep. no. crg-tr-94-1). University of Toronto, 1994.

Behnam Neyshabur, Srinadh Bhojanapalli, David McAllester, and Nathan Srebro. A pac-bayesian approach to
spectrally-normalized margin bounds for neural networks. arXiv preprint arXiv:1707.09564, 2017a.

Behnam Neyshabur, Srinadh Bhojanapalli, David McAllester, and Nati Srebro. Exploring generalization in deep
learning. In Advances in Neural Information Processing Systems, pp. 5949–5958, 2017b.

Roman Novak, Yasaman Bahri, Daniel A Abolafia, Jeffrey Pennington, and Jascha Sohl-Dickstein. Sensitivity
and generalization in neural networks: an empirical study. arXiv preprint arXiv:1802.08760, 2018a.

Roman Novak, Lechao Xiao, Jaehoon Lee, Yasaman Bahri, Greg Yang, Jiri Hron, Daniel A Abolafia, Jeffrey
Pennington, and Jascha Sohl-Dickstein. Bayesian deep convolutional networks with many channels are
gaussian processes. arXiv preprint arXiv:1810.05148, 2018b.

Henning Petzka, Linara Adilova, Michael Kamp, and Cristian Sminchisescu. A reparameterization-invariant
flatness measure for deep neural networks. arXiv preprint arXiv:1912.00058, 2019.

Nasim Rahaman, Aristide Baratin, Devansh Arpit, Felix Draxler, Min Lin, Fred A Hamprecht, Yoshua Bengio,
and Aaron Courville. On the spectral bias of neural networks. arXiv preprint arXiv:1806.08734, 2018.

Akshay Rangamani, Nam H Nguyen, Abhishek Kumar, Dzung Phan, Sang H Chin, and Trac D Tran. A scale
invariant flatness measure for deep network minima. arXiv preprint arXiv:1902.02434, 2019.

Carl Edward Rasmussen. Gaussian processes in machine learning. In Summer School on Machine Learning, pp.
63–71. Springer, 2003.

Jorma Rissanen. Modeling by shortest data description. Automatica, 14(5):465–471, 1978.

David E Rumelhart, Geoffrey E Hinton, and Ronald J Williams. Learning representations by back-propagating
errors. Nature, 323(6088):533–536, 1986.

Levent Sagun, Leon Bottou, and Yann LeCun. Eigenvalues of the hessian in deep learning: Singularity and
beyond. arXiv preprint arXiv:1611.07476, 2016.

Steffen Schaper and Ard A Louis. The arrival of the frequent: how bias in genotype-phenotype maps can steer
populations to local optima. PloS one, 9(2):e86635, 2014.

Shai Shalev-Shwartz and Shai Ben-David. Understanding machine learning: From theory to algorithms.
Cambridge university press, 2014.

Samuel L Smith, Pieter-Jan Kindermans, Chris Ying, and Quoc V Le. Don’t decay the learning rate, increase the
batch size. arXiv preprint arXiv:1711.00489, 2017.

Stefano Spigler, Mario Geiger, and Matthieu Wyart. Asymptotic learning curves of kernel methods: empirical
data vs teacher-student paradigm. arXiv preprint arXiv:1905.10843, 2019.

Mingyue Tan. Expectation propagation of gaussian process classification and its application to gene expression
analysis. 01 2008.

Tijmen Tieleman and Geoffrey Hinton. Lecture 6.5-rmsprop: Divide the gradient by a running average of its
recent magnitude. COURSERA: Neural networks for machine learning, 4(2):26–31, 2012.

Yusuke Tsuzuku, Issei Sato, and Masashi Sugiyama. Normalized flat minima: Exploring scale invariant definition
of flat minima for neural networks using pac-bayesian analysis. arXiv preprint arXiv:1901.04653, 2019.

Guillermo Valle-Pérez and Ard A Louis. Generalization bounds for deep learning. arXiv preprint
arXiv:2012.04115, 2020.

Guillermo Valle-Pérez, Chico Q Camargo, and Ard A Louis. Deep learning generalizes because the parameter-
function map is biased towards simple functions. arXiv preprint arXiv:1805.08522, 2018.

Mingwei Wei and David J Schwab. How noise affects the hessian spectrum in overparameterized neural networks.
arXiv preprint arXiv:1910.00195, 2019.

12

Under review as a conference paper at ICLR 2022

Lei Wu, Zhanxing Zhu, et al. Towards understanding generalization of deep learning: Perspective of loss
landscapes. arXiv preprint arXiv:1706.10239, 2017.

Zhi-Qin John Xu, Yaoyu Zhang, Tao Luo, Yanyang Xiao, and Zheng Ma. Frequency principle: Fourier analysis
sheds light on deep neural networks. arXiv preprint arXiv:1901.06523, 2019.

Greg Yang. Wide feedforward or recurrent neural networks of any architecture are gaussian processes. In H. Wal-
lach, H. Larochelle, A. Beygelzimer, F. d'Alché-Buc, E. Fox, and R. Garnett (eds.), Advances in Neural Infor-
mation Processing Systems, volume 32. Curran Associates, Inc., 2019. URL https://proceedings.
neurips.cc/paper/2019/file/5e69fda38cda2060819766569fd93aa5-Paper.pdf.

Greg Yang and Hadi Salman. A fine-grained spectral perspective on neural networks. arXiv preprint
arXiv:1907.10599, 2019.

Zhewei Yao, Amir Gholami, Qi Lei, Kurt Keutzer, and Michael W Mahoney. Hessian-based analysis of large
batch training and robustness to adversaries. In Advances in Neural Information Processing Systems, pp.
4949–4959, 2018.

Lenka Zdeborová. Understanding deep learning is also a job for physicists. Nature Physics, 16(6):602–604,
2020.

Chiyuan Zhang, Samy Bengio, Moritz Hardt, Benjamin Recht, and Oriol Vinyals. Understanding deep learning
requires rethinking generalization. arXiv preprint arXiv:1611.03530, 2016.

Yao Zhang, Andrew M Saxe, Madhu S Advani, and Alpha A Lee. Energy–entropy competition and the
effectiveness of stochastic gradient descent in machine learning. Molecular Physics, 116(21-22):3214–3223,
2018.

13

https://proceedings.neurips.cc/paper/2019/file/5e69fda38cda2060819766569fd93aa5-Paper.pdf
https://proceedings.neurips.cc/paper/2019/file/5e69fda38cda2060819766569fd93aa5-Paper.pdf

Under review as a conference paper at ICLR 2022

A MORE RELATED WORK

A.1 PRELIMINARIES: TWO KINDS OF QUESTIONS GENERALIZATION AND TWO TYPES OF
INDUCTIVE BIAS

In this supplementary section we expand on our briefer discussion of related work in the Introduction of the
main paper. The question of why and how DNNs generalize in the overparameterized regime has generated a
vast literature. To organize our discussion, we follow (Mingard et al., 2021a) and first distinguish two kinds of
questions about generalization in overparameterized DNNs:

1) The question of over-parameterized generalization: Why do DNNs generalize at all in the overparameter-
ized regime, where classical learning theory suggests they should heavily overfit.

2) The question of fine-tuned generalization: Given that a DNN already generalizes reasonably well, how can
detailed architecture choice, optimizer choice, and hyperparameter tuning further improve generalization?

Question 2) is the main focus of a large tranche of the literature on generalization, and for good reason. In order
to build SOTA DNNs, even a few percent accuracy improvement (taking image classification as an example)
is important in practice. Improved generalization performance can be achieved in many ways, including
local adjustments of the DNNs structure (e.g. convolutional layers, pooling layers, shortcut connections etc.),
hyperparameter tuning (learning rate, batch size etc.), or choosing different optimizers (e.g. vanilla SGD versus
entropySGD (Chaudhari et al., 2019) or Adam (Kingma & Ba, 2014). In this paper, however, we are primarily
interested in question 1). As pointed out, for example famously in Zhang et al. (2016), but also by many
researchers before that 1, DNNs can be proven to be highly expressive, so that the number of hypotheses that can
fit a training data set S, but generalize poorly, is typically many orders of magnitude larger than the number
that can actually generalize. And yet in practice DNNs do not tend to overfit much, and can generalize well,
which implies that DNNs must have some kind of inductive bias (Shalev-Shwartz & Ben-David, 2014) toward
hypotheses that generalize well on unseen data.

Following the framework of (Mingard et al., 2021a), we use the language of functions (rather than that of
hypotheses, see also appendix B.) to distinguish two major potential types of inductive bias.

A) The inductive bias upon upon random sampling of parameters over a parameter distribution Pw(w).
In other words, given a DNN architecture, loss function etc. and a measure over parameters Pw(w) (which can
be taken to be the initial parameter distribution for an optimizer, but is more general), this bias occurs when
certain types of functions more likely to appear upon random sampling of parameters than others. This inductive
bias can be expressed in terms of a prior over functions P (f), or in terms of a posterior PB(f |S) when the
functions are conditioned, for example, on obtaining zero error on training set S.

B) The inductive bias induced by optimizers during a training procedure. In other words, given an inductive
bias upon initialization (from A), does the training procedure induce a further inductive bias on what functions
a DNN expresses? One way of measuring this second form of inductive bias is to calculate the probability
Popt(f |S) that an DNN trained to zero error on training set S with optimizer opt (typically a variant of SGD)
expresses function f , and then compare it to the Bayesian posterior probability PB(f |S) that this function
obtains upon random sampling of parameters (Mingard et al., 2021a). In principle PB(f |S) expresses the
inductive bias of type A), so any differences between Popt(f |S) and PB(f |S) could be due to inductive biases
of type B).

These two sources of inductive bias can be relevant to both questions above about generalization. We emphasize
that our taxonomy of two questions about generalization, and two types of inductive bias is just one way of
parsing these issues. We make these first order distinctions to help clarify our discussion of the literature, and
are aware that there are other ways of teasing out these distinctions.

A.2 RELATED WORK ON FLATNESS

The concept "flatness" of the loss function of DNNs can be traced back to Hinton & van Camp (1993) and
Hochreiter & Schmidhuber (1997). Although these authors did not provide a completely formal mathematical
definition of flatness, Hochreiter & Schmidhuber (1997) described flat minima as "a large connected region
in parameter space where the loss remains approximately constant", which requires lower precision to specify
than sharp minima. They linked this idea to the minimum description length (MDL) principle (Rissanen, 1978),
which says that the best performing model is the one with shortest description length, to argue that flatter minima
should generalize better than sharp minima. More generally, flatness can be interpreted as a complexity control
of the hypotheses class introduced by algorithmic choices.

1For example, Leo Breiman, included the question of overparameterised generalization in DNN back in in
1995 as one of the main issues raised by his reflections on 20 years of refereeing for NEURIPS (Breiman, 1995)).

14

Under review as a conference paper at ICLR 2022

The first thing to note is that flatness is a property of the functions that a DNN converges on. In other words, the
basic argument above is that flatter functions will generalize better, which can be relevant to both questions 1)
and 2) above.

It is a different question to ask whether a certain way of finding functions (say by optimizing a DNN to zero
error on a training set) will generate an inductive bias towards flatter functions. In Hochreiter & Schmidhuber
(1997), the authors proposed an algorithm to bias towards flatter minima by minimizing the training loss while
maximizing the log volume of a connected region of the parameter space. This idea is similar to the recent
suggestion of entropy-SGD (Chaudhari et al., 2019), where the authors also introduced an extra regularization to
bias the optimizer into wider valleys by maximizing the "local entropy".

In an influential paper, Keskar et al. (2016) reported that the solutions found by SGD with small batch sizes
generalize better than those found with larger batch sizes, and showed that this behaviour correlated with a
measure of "sharpness" (sensitivity of the training loss to perturbations in the parameters). Sharpness can be
viewed as a measure which is the inverse of the flatness introduced by Hinton & van Camp (1993) and Hochreiter
& Schmidhuber (1997). This work helped to popularize the notion that SGD itself plays an important role in
providing inductive bias, since differences in generalization performance and in sharpness correlated with batch
size. In follow-on papers others have showed that the correlation with batch size is more complex, as some of
the improvements can be mimicked by changing learning rates or number of optimization steps for example, see
(Hoffer et al., 2017; Goyal et al., 2017; Smith et al., 2017; Neyshabur et al., 2017b). Nevertheless, these changes
in generalization as a function of optimizer hyperparameters are important things to understand because they are
fundamentally type B) inductive bias. Because the changes in generalization performance in these papers tend to
be relatively small, they mainly impinge on question 2) for fine-tuned generalization. Whether these observed
effects are relevant for question 1) is unclear from this literature.

Another strand of work on flatness has been through the lens of generalization bounds. For example, Neyshabur
et al. (2017b) showed that sharpness by itself is not sufficient for ensuring generalization, but can be combined,
through PAC-Bayes analysis, with the norm of the weights to obtain an appropriate complexity measure. The
connection between sharpness and the PAC-Bayes framework was also investigated by Dziugaite & Roy (2017),
who numerically optimized the overall PAC-Bayes generalization bound over a series of multivariate Gaussian
distributions (different choices of perturbations and priors) which describe the KL-divergence term appearing
in the second term in the combined generalization bound by Neyshabur et al. (2017b). For more discussion of
this literature on bounds and flatness, see also the recent review (Valle-Pérez & Louis, 2020). Rahaman et al.
(2018) also draw a connection to flatness through the lens of Fourier analysis, showing that DNNs typically learn
low frequency components faster than high frequency components. This frequency argument is related to the
input-output sensitivity picture, which is systematically investigated in Novak et al. (2018a).

There is also another wide-spread belief that SGD trained DNNs are implicitly biased towards having small
parameters norms or large margin, intuitively inspired by classical ridge regression and SVMs. Bartlett et al.
(2017) presented a margin-based generalization bound that depends on spectral and L2,1 norm of the layer-wise
weight matrices of DNNs. Neyshabur et al. (2017a) later proved a similar spectral-normalized margin bound
using PAC-Bayesian approach rather than the complex covering number argument used in Bartlett et al. (2017).
Liao et al. (2018) further strengthen the theoretical arguments that an appropriate measure of complexity for
DNNs should be based on a product norm by showing the linear relationship between training/testing CE loss of
normalized networks. Jiang et al. (2018) also empirically studied the role of margin bounds.

In a recent important large-scale empirical work on different complexity measures by Jiang et al. (2019),
40 different complexity measures are tested when varying 7 different hyperparameter types over two image
classification datasets. They do not introduce random labels so that data complexity is not thoroughly investigated.
Among these measures, the authors found that sharpness-based measures outperform their peers, and in particular
outperform norm-based measures. It is worth noting that their definition of "worst case" sharpness is similar
to definition 2.1 but normalized by weights, so they are not directly comparable. In fact, their definition of
worst case sharpness in the PAC-Bayes picture is more close to the works by Petzka et al. (2019); Rangamani
et al. (2019); Tsuzuku et al. (2019) which focus on finding scale-invariant flatness measure. Indeed enhanced
performance are reported in these works. However, these measures are only scale-invariant when the scaling is
layer-wise. Other methods of re-scaling (e.g. neuron-wise re-scaling) can still change the metrics. Moreover, the
scope of Jiang et al. (2019) is concentrated on the practical side (e.g. inductive bias of type B) and does not
consider data complexity, which we believe is a key ingredient to understanding the inductive bias needed to
explain question 1) on generalization.

Finally, in another influential paper, Dinh et al. (2017) showed that many measures of flatness, including the
sharpness used in Keskar et al. (2016), can be made to vary arbitrarily by re-scale parameters while keeping the
function unchanged. This work has called into question the use of local flatness measures as reliable guides to
generalization, and stimulated a lot of follow on studies, including the present paper where we explicitly study
how parameter-rescaling affects measures of flatness as a function of epochs.

15

Under review as a conference paper at ICLR 2022

A.3 RELATED WORK ON THE INFINITE-WIDTH LIMIT

A series of important recent extensions of the seminal proof in Neal (1994) - that a single-layer DNN with
random iid weights is equivalent to a GP (Mackay, 1998) in the infinite-width limit - to multiple layers and
architectures (NNGPs) have recently appeared (Lee et al., 2017; Matthews et al., 2018; Novak et al., 2018b;
Garriga-Alonso et al., 2019; Yang, 2019). These studies on NNGPs have used this correspondence to effectively
perform a very good approximation to exact Bayesian inference in DNNs. When they have compared NNGPs to
SGD-trained DNNs the generalization performances have generally shown a remarkably close agreement. These
facts require rethinking the role SGD plays in question 1) about generalization, given that NNGPs can already
generalize remarkably well without SGD at all.

A.4 RELATIONSHIP TO PREVIOUS PAPERS USING THE FUNCTION PICTURE

The work in this paper builds on a series of recent papers that have explored the function based picture in random
neural networks. We briefly review these works to clarify their connection to the current paper.

Firstly, in Valle-Pérez et al. (2018), the authors demonstrated empirically that upon random sampling of
parameters, DNNs are highly biased towards functions with low complexity. This behaviour does not depend
very much on Pw(w) for a range of initial distributions typically used in the literature. Note that this behaviour
does start to deviate from what was found in (Valle-Pérez et al., 2018), when the system enters a chaotic phase,
which can be reached with for tanh or erf non-linearities and for Pw(w) with a relatively large variance (Yang
& Salman, 2019). They show more specifically that the bias towards simple functions is consistent with the
"simplicity bias" from Dingle et al. (2018; 2020), which was inspired by the coding theorem from AIT (Li &
Vitanyi, 2008), first derived by Levin (1974) . The idea of simplicity bias in DNNs states that if the parameter-
function map is sufficiently biased, then the probability of the DNN producing a function f on input data drops
exponentially with increasing Kolmogorov complexity K(f) of the function f . In other words, high P (f)
functions have low K(f), and high K(f) functions have low P (f). A key insight from (Dingle et al., 2018;
2020) is that K(f) can be approximated by an appropriate measure K̃(f) and still be used to make predictions
on P (f), even if the true K(f) is formally incomputable. Recently Mingard et al. (2019) and De Palma et al.
(2018) gave two separate non-AIT based theoretical justifications for the existence of simplicity bias in DNNs. In
other words, this line of work suggests that DNNs have an intrinsic bias towards simple functions upon random
sampling of parameters, and in our taxonomy, that is bias of type A).

If simplicity bias in DNNs matches "natural" data distributions, then, at least upon random sampling of
parameters, this should help facilitate good generalization. Indeed, it has been shown that data such as MNIST
or CIFAR-10 is relatively simple (Lin et al., 2017; Goldt et al., 2019; Spigler et al., 2019), suggesting that an
inductive bias toward simplicity will assist with good generalization.

A second paper upon which the current one builds is (Mingard et al., 2021a), where extensive empirical test (for
a range of architectures (FCN, CNN, LSTM), datasets (MNIST, Fashion-MNIST, CIFAR-10, ionosphere, IMDb
moviereview dataset), and SGD variants (vanilla SGD, Adam, Adagrad, RMSprop, Adadelta), as well as for
different batch sizes and learning rates) were done of the hypothesis that:

Popt(f |S) ≈ PB(f |S). (5)

Here Popt(f |S) is the probability that an optimizer (SGD or one of its variants) converges upon a function f
after training to zero training error on a training set S. By training over many different parameter initializations,
Popt(f |S) can be calculated. Similarly, the Bayesian posterior probability PB(f |S) is defined as the probability
that upon random sampling of parameters, a DNN expresses function f , conditioned on zero error on S. The
functions were, as in the current paper, a restriction to a given training set S and test set E. Since the systems
always had zero error on the training set, functions could be compared by what they produced on the test set (for
example, the set of labels on the images for image classification). It was found that the hypothesis (A.4) held
remarkably well to first order, for a wide range of systems. At first sight this similarity is surprising, given that
the procedures to generate Popt(f |S) (training with an optimizer such as SGD) is completely different from
those for PB(f |S) (where GP techniques and direct sampling were used), which knows nothing of optimizers
at all. The fact that these two probabilities are so similar suggests that any inductive bias of type B), which
would be a bias beyond what is already present in PB(f |S), is relatively small. While this conclusion does
not imply that there are no induced biases of type B), and clearly there are since hyperparameter tuning affects
fine-tuned generalization, it does suggest that the main source of inductive bias needed to explain 1), the question
of why DNNs generalize in the first place, is found in the inductive biases of type A), which are already there
in PB(f |S). In (Mingard et al., 2021a), the authors propose that, for highly biased priors P (f), that SGD
is dominated by the large differences in basin size for the different functions f , and so finds functions with
probabilities dominated by the initial distribution. A similar effect was seen in evolutionary systems (Schaper &
Louis, 2014; Dingle et al., 2015) where it was called the arrival of the frequent.

16

Under review as a conference paper at ICLR 2022

In addition, in (Mingard et al., 2021a), the authors observed for one system that − log(PB(f |S)) scaled linearly
with the generalization error on E for a wide range of errors. This preliminary result provided inspiration for the
current paper where we directly study the correlation between the prior P (f) and the generalization error.

The third main function based paper that we build upon is (Valle-Pérez & Louis, 2020) which provides a
comprehensive analysis of generalization bounds. In particular, it studies in some detail the Marginal Likelihood
PAC-Bayes bound, first presented in Valle-Pérez et al. (2018), which is predicts a direct link between the
generalization error and the log of the marginal likelihood P (S). P (S) can be interpreted as the total prior
probability that a function is found with zero error on the training set S, upon random sampling of parameters of
the DNN. The performance of the bound was tested for challenges such as varying amounts of data complexity,
different kinds of architectures, and different amounts of training data (learning curves). For each challenge it
works remarkably well, and to our knowledge no other bound has been tested this comprehensively. Again, the
good performance of this bound, which is agnostic about optimizers, suggest that a large part of the answer to
question 1) can be found in the inductive bias of type A), e.g. that found upon initialization. The bound is not
accurate enough to explain smaller effects relevant for fine-tuning generalization, which can originate from other
sources such as a difference in optimizer hyperparameters. These conclusions are consistent with the different
approach in this paper, where we use the prior P (f) (which knows nothing about SGD) and show that it also
correlates with predicted test error for DNNS trained with SGD and its variants. We do propose a simpler bound
that is consistent with the observed scaling, but more work is needed to get anywhere near the rigour found in
(Valle-Pérez & Louis, 2020) for the full marginal likelihood bound.

Finally, we note that in all three of these papers, GPs are used to calculate marginal likelihoods, posteriors, and
priors. Technical details of how to use GPs can be found clearly explained there.

The current paper builds on this body of work and uses some of the techniques described therein, but it is distinct.
Firstly, our measurements on flatness are new, and our claim that the prior P (f) correlates with generalization,
while indirectly present in (Mingard et al., 2021a) was not developed there at all as that paper focuses on the
posterior PB(f |S), and did not use the attack set trick to vary functions that are consistent with S, and so is
tackling a different question (namely how much extra inductive bias comes from using SGD over the inductive
bias already present in the Bayesian posterior). The attack set trick means that P (S) does not change, while
clearly the generalization error (or expected test error) does change, so the marginal likelihood bound is not
predictive here.

B PARAMETER-FUNCTION MAP AND NEUTRAL SPACE

The link between the parameters of a DNN and the function it expresses is formally described by the parameter-
function map:
Definition B.1 (Parameter-function map). Consider the model defined in definition 2.2, if the model takes
parameters within a set W ⊆ Rn, then the parameter-function mapM is defined as

M : W → F
w 7→ fw.

where fw denotes the function parameterized by w.

The parameter-function map, introduced in (Valle-Pérez et al., 2018), serves as a bridge between a parameter
searching algorithm (e.g. SGD) and the behaviour of a DNN in function space. In this context we can also define
the:
Definition B.2 (Neutral space). For a model defined in Definition B.1, and a given function f , the neutral space
Nf ⊆W is defined as

Nf := {w ∈W :M(w) = f}.

The nomenclature comes from genotype-phenotype maps in the evolutionary literature (Manrubia et al., 2020),
where the space is typically discrete, and a neutral set refers to all genotypes that map to the same phenotype. In
this context, the Bayesian prior P (f) can be interpreted as the probabilistic volume of the corresponding neutral
space.

C CLARIFICATION ON DEFINITION OF FUNCTIONS AND PRIOR

The discussion of "functions" represented by DNNs can be confusing without careful definition. In fig. S6 we
list four different interpretations of "functions" commonly seen in literature which also are directly related to our
work. These interpretations cover both regression and classification settings. Let X be an arbitrary input domain
and Y be the output space. According to different interpretations of the function represented by a DNN, Y will
be different, for the same choice of X and DNN.

17

Under review as a conference paper at ICLR 2022

Figure S6: The diagram of different definitions for functions represented by DNNs.

Definition C.1 (fDNN). Consider a DNN whose input domain is X . Then fDNN belongs to a class of functions
FDNN which define the mapping between X to the pre-activation of the last layer of DNN, which lives in Rd:

fDNN ∈ FDNN : X → Rd

d is the width of the last layer of DNN.

In standard GP terminology, fDNN is also called latent function (Rasmussen, 2003). This is the function we care
about in regression problems.

In the context of supervised learning, we have to make some assumptions about the characteristics of FDNN,
as otherwise we would not know how to choose between functions which are all consistent with the training
sample but might have hugely different generalization ability. This kind of assumptions are called inductive
bias. One common approach of describing the inductive bias is to give a prior probability distribution to FDNN,
where higher probabilities are given to functions that we consider to be more likely. For DNNs, FDNN is a set of
functions over an (in general) uncountably infinite domain X . There are several approaches to define probability
distributions over such sets. GP represent one approach, which generalizes Gaussian distributions to function
spaces. If we ask only for the properties of the functions at a finite number of points, i.e. restriction of FDNN

to C : {c1, . . . , cm} ⊂ X (see definition 2.2), then inference with a GP, reduces to inference with a standard
multidimensional Gaussian distribution. This is an important property of GP called consistency, which helps in
making computations with GP feasible. As shown in appendix D, we can readily compute with this GP prior
over FDNN as long as it is restricted on a finite data set. Later in definition C.4 we will formally define the
restricted function fRES.

In classification tasks, we typically get a data sample from X × Y , where without loss of generality Y has the
form of Y = {1, . . . , k} where k is the number of classes. For simplicity, we further assume binary classification
where Y = {0, 1} Note in the scope of binary classification we have the last layer width of d = 1. To grant the
outputs of the function represented by a DNN a probability interpretation, we need the outputs lie in the interval
(0, 1). One way of doing so is to "squash" the outputs of fDNN to (0, 1) by using a final activation, typically a
logistic or sigmoid function λ(z) = (1 + exp(−z))−1. Subsequently we have the definition of fACT in fig. S6:
Definition C.2 (fACT). Consider the setting and fDNN defined in definition C.1 where d = 1, and a logistic
activation λ(z) = (1 + exp(−z))−1. Then fACT is defined as :

fACT := fDNN ◦ λ : X → (0, 1)

where ◦ denotes function composition. we also define the space of fACT as

FACT = {fACT for every fDNN ∈ FDNN}

In real life classification datasets, we typically do not have access to the probability of an input classified as
one certain label, but the labels instead. When we discuss functions represented by DNNs in classification, we

18

Under review as a conference paper at ICLR 2022

usually mean the coarse-grained version of fACT ∈ FACT, meaning we group all outputs to 1 if the probability
of predicting the inputs as being label "1" is greater or equal than 0.5, and 0 otherwise. Mathematically, we
define fLAB as:
Definition C.3 (fLAB). Consider the setting and fACT defined in definition C.2 and a threshold function

τ(z) =

{
1 if z ≥ 0.5

0 otherwise .

Then we define fLAB and the space FLAB as:

fLAB = fACT ◦ τ : X → {0, 1}
FLAB = {fLAB for every fACT ∈ FACT}

The definition C.3 allows us to describe the function represented by a DNN in binary classification as a binary
string consisting of "0" and "1", whose length is equal to the size of input domain set |X |. As explained earlier,
in classification we also want to put a prior over FLAB and use this prior as our belief about the task before
seeing any data.

Finally, as we mentioned above, to make computations tractable, we restrict the domain to a finite set of inputs.
We use the definition of restriction in definition 2.2 to formally define the "functions" we mean and practically
use in our paper:
Definition C.4 (fRES). Consider a DNN whose input domain is X with a last layer width d = 1 . Let
C = {c1, . . . , cm} ⊂ X be any finite subset of X with cardinality m ∈ N. The restriction of function
space F ∈ {FDNN,FLAB} to C is denoted as FC , and is defined as the space of all functions from C to Y
realizable by functions in F . We denote with fRES elements of their corresponding spaces of restricted functions.
Specifically, in regression:

fRES ∈ FCDNN : C → R
and in binary classification:

fRES ∈ FCLAB : C → {0, 1}

Note that in definition C.4 we only consider scalar outputs in the regression setting. For multiple-output functions,
one approach is to consider d GPs and compute the combined kernel (Alvarez et al., 2011).

In statistical learning theory, the function spaces FDNN and FLAB are also called hypotheses classes, with their
elements called hypotheses (Shalev-Shwartz & Ben-David, 2014). It is important to note that our definition
of prior and its calculation is based on the restriction of the hypotheses class to the concatenation of training
set and test set S + E. Mathematically, this means the prior of a function P (f) we calculated in the paper is
precisely P (fRES), except for the Boolean system in section 5.1, where the input domain X is discrete and small
enough to enumerate (this can also be thought of as the trivial restriction). As explained above, this restriction is
inevitable if we want to compute the prior over FDNN or FLAB. A simple example on MNIST (LeCun et al.,
1998) can also help to gain a intuition of the necessity of such restriction, where all inputs would include the
set of 28x28 integer matrices whose entries take values from 0-255, which gives 256784 possible inputs. This
indicates that for real-life data distributions the number of all possible inputs is hyper-astronomically large, if
not infinite. Nevertheless, In some cases, such as the Boolean system described in Valle-Pérez et al. (2018) and
treated in section 5.1, there is no need for such restriction because it is feasible to enumerate all possible inputs:
there are only 7 Boolean units which give 27 = 128 possible data sample. However, even in such cases, the
number of possible functions is still large (2128 ≈ 1038).

D GP APPROXIMATION OF THE PRIOR

In this section, we sketch out how we calculated the prior of a function P (f) (Valle-Pérez et al., 2018; Mingard
et al., 2021a). As in those papers, we use GP, which have been shown to be equivalent to DNNs in the limit of
infinite layer width (Neal, 1994; Lee et al., 2017; Matthews et al., 2018; Tan, 2008; Rasmussen, 2003). These
neural network GPs (NNGPs) have been shown to accurately approximate the prior over functions P (f) of
finite-width Bayesian DNNs (Valle-Pérez et al., 2018; Matthews et al., 2018; Mingard et al., 2021a).

For the NNGPs, a GP prior is placed on the pre-activations z of the last layer of the neural network (before
a final non-linearity, e.g. softmax, is applied), meaning that for any finite inputs set x = {x1, . . . , xm}, the
random output vector (pre-activations) z = [z (x1) , . . . , z (xm)]T has a Gaussian distribution. Note that in
this paper, the the last layer has a single activation since we only focus on binary classification. This setting is
corresponding to the definition of function restriction is definition C.4, with z ∈ Rm. Without loss of generality,
we can assume such a process has a zero mean. The prior probability of the outputs z can be calculated as:

P (z) =
1

(2π)
m
2 Σ

1
2

exp

(
−1

2
zTΣ−1z

)
(6)

19

Under review as a conference paper at ICLR 2022

Σ is the covariance matrix (often called kernel), whose entries are defined as Σ(xi, xj) ≡ E[z(xi), z(xj)]. Neal
(1994) gave the basic form of kernel Σ in single hidden layer case, where Σ depends on the variance of weights
and biases (σw and σb). In DNNs with multiple hidden layers, the kernel for layer l can be calculated recursively
by induction, assuming the layer l − 1 is a GP (Lee et al., 2017; Matthews et al., 2018). The kernel for fully
connected ReLU-activated networks has a well known arc-cosine kernel analytical form (Cho & Saul, 2009),
which we used in all FCNs in our work.

For ResNet50, the analytical form of GP kernel is intractable. Instead, we use a Monte Carlo empirical kernel
(Novak et al., 2018b), and apply one step of the fully connected GP recurrence relation (Lee et al., 2017), taking
advantage of the fact that the last layer of ResNet50 is fully connected. Mathematically, the empirical kernel can
be expressed as:

Σ̃ (xi, xj) :=
σ2
w

Mn

M∑
m=1

n∑
c=1

(
hL−1
wm (xi)

)
c

(
hL−1
wm (xj)

)
c

+ σ2
b (7)

where
(
hL−1
wm (x)

)
c

is the activation of c-th neuron in the last hidden layer (L is the total number of layers) for
the network parameterized by the m-th sampling of parameters wm, M is the number of total Monte Carlo
sampling, n is the width of the final hidden layer, and σw , σb are the weights and biases variance respectively. In
our experiments, M is set to be 0.1× (|S|+ |E|).

After calculating P (z) with the corresponding kernel, the prior over (coarse-grained) restriction of functions
P (f) can be calculated through likelihood P (f |z), which in our case is just a Heaviside function representing
a hard sign nonlinearity. As non-Gaussian likelihood produces an intractable P (f), we used Expectation
Propagation (EP) algorithm for the approximation of P (f) (Rasmussen, 2003). This same EP approximation
was used in Mingard et al. (2021a) where it is discussed further. We represent the function f by the input-output
pairs on the concatenation of training set and test set S + E.

E COMPARING FLATNESS METRICS

Figure S7: The direct correlation between sharpness and spectral norm of Hessian for the 1000 most
frequently found functions found after SGD runs for a two hidden layer FCN, in the n = 7 Boolean
system (Same system as in fig. 2) .

As mentioned in section 2.2 of the main text, the sharpness metric in definition 2.1 can be directly linked to
spectral norm of the Hessian by considering the second order Taylor expansion of L(w) around a critical point
in powers of ζ (Dinh et al., 2017). We empirically confirm this relationship by showing in fig. S7 the direct
correlation between sharpness and spectral norm of Hessian, as well as in fig. S8 the correlation between Hessian
spectral norm and prior in Boolean system described in section 5.1.

In addition to the spectral norm, another widely used flatness measure is the product of a subset of the positive
Hessian eigenvalues, typically say the product of the top-50 largest eigenvalues (Wu et al., 2017; Zhang et al.,
2018). We measured the correlation of these Hessian-based flatness metrics with sharpness as well as with
generalization for the FCN/MNIST system in fig. S9. Since they correlate well with the sharpness, these flatness
measures show very similar correlations with generalization as sharpness does in fig. 3 and fig. 4. In other words,
the Hessian-based flatness metrics also capture the loose correlation with generalization when the neural network
is trained by SGD and the deterioration of this correlation when we change the optimizer to Adam.

20

Under review as a conference paper at ICLR 2022

Figure S8: The correlation between prior and flatness in Boolean system where the flatness is
measured by spectral norm of Hessian, for the 1000 most frequently occurring functions found by
SGD runs with a two hidden layer FCN. The system is the same n = 7 Boolean system as in fig. 2
except that we use a different metric of flatness.

(a) (b) (c) (d)

(e) (f) (g) (h)

Figure S9: Two Hessian-based flatness metrics show analogous behavior to sharpness defined in
(definition 2.1). The architecture and dataset are FCN/MNIST, with training set size |S| = 500, and
test set size |E| = 1000; which are the same settings as fig. 3 (d) and fig. 4 (e). Optimizer: SGD (a)
- (b): The correlation between Hessian-based flatness metrics and generalization. (c) - (d): Sharpness
and Hessian-based flatness metrics correlate well with one another. Optimizer: Adam (e) - (f): The
correlation between Hessian-based flatness metrics and generalization breaks down, just as it does for
sharpness in fig. 4. (g) - (h): Sharpness and Hessian-based flatness metrics correlate well with one
another, even though they don’t correlate well with generalization.

Another detail worth noting is that Keskar et al. (2016) used the L-BFGS-B algorithm (Byrd et al., 1995) to
perform the maximization of L(w) in Cζ , which is the box boundary around the minimum of interest:

Cζ = {∆w ∈ Rn : −ζ (|wi|+ 1) ≤ ∆wi ≤ ζ (|wi|+ 1) ∀i ∈ {1, 2, · · · , n}} (8)

However, as a quasi-Newton method, L-BFGS-B is not scalable when there are tens of millions of parameters in
modern DNNs. To make Keskar-sharpness applicable for large DNNs (e.g. ResNet50), we use vanilla SGD
for the maximization instead. The hyperparameters for the sharpness calculation are listed in table 1. Note
that the entries batch size, learning rate and number of epochs all refer to the SGD optimizer which does the
maximization in the sharpness calculation process. The number of epochs is chosen such that the max value of

21

Under review as a conference paper at ICLR 2022

Table 1: Hyperparameters for sharpness calculation

DATA SET ARCHITECTURE BOX SIZE (ζ) BATCH SIZE LEARNING RATE NUMBER OF EPOCHS

BOOLEAN FCN 10−4 16 10−3 10
MNIST FCN 10−4 32 10−3 100
CIFAR10 FCN 10−5 128 5× 10−5 100
CIFAR10 RESNET50 10−5 128 100 100

loss function found at each maximization step converges. An example of the convergence of sharpness is shown
in fig. S10. As a check, we also compared our SGD-sharpness with the original L-BFGS-B-sharpness, finding
similar results.

Figure S10: The max value of loss function L(w) at each iteration in the process of maximization,
when calculating the sharpness using SGD instead of L-BFGS-B. The plot shows the max loss value
found by SGD in the box limit Cζ will converge after given number of epochs. For this plot the
hyperparameters are listed in the second line of table 1 (MNIST).

F IMPLEMENTING PARAMETER RE-SCALING

In this section we describe in detail how we implement the alpha scaling in DNNs first proposed by Dinh et al.
(2017). The widely used rectified linear activation (ReLU) function

φrect(x) = max(x, 0)

exhibits the so-called "non-negative homogeneity" property:

∀(z, α) ∈ R× R+, φrect(zα) = αφrect(z)

The action of a L-layered deep feed-forward neural network can be written as:

y = φrect (φrect (. . . φrect (x ·W1 + b1) . . .) ·WL−1 + bL−1) ·WL + bL

in which

• x is the input vector

• WL is the weight matrix of the L-th layer

• bL is the bias vector of the L-th layer

To simplify notation, we have not included the final activation function, which may take any form (softmax or
sigmoid etc.) without modification of the proceeding arguments. Generalizing the original arguments from Dinh
et al. (2017) slightly to include bias terms, we exploit the non-negative homogeneity of the ReLU function to
find that a so-called "α-scaling" of one of the layers will not change its behaviour. Explicitly applying this to the
i-th layer yields:

(φrect (x · αWi + αbi)) ·
1

α
Wi+1 = (φrect (x ·Wi + bi)) ·Wi+1 (9)

22

Under review as a conference paper at ICLR 2022

Figure S11: The effect of alpha scaling on prior and sharpness. At each epoch we calculate the
sharpness and the prior for our FCN on MNIST system with |S| = 500. The green dashed line
denotes where zero-training error is reached and post-training starts. The red dashed line denotes the
epoch where α-scaling takes place with α = 5.0. Here the value of α is not big enough to "knock" the
optimizer out of the neutral space, upon alpha scaling, in contrast to fig. 5. As expected, we observe
no change in prior upon alpha scaling (note that prior can change on overtraining if a slightly different
function is found by SGD). The sharpness shows a larger peak upon alpha-scaling, as expected. See
appendix H.

Clearly, the transformation described by (Wi, bi,Wi+1)→
(
αWi, αbi,

1
α
Wi+1

)
will lead to an observationally

equivalent network (that is, a network whose output is identical for any given input, even if the weight and bias
terms differ).

Since the α scaling transformation does not change the function, it does not change the prior of the function.
However, for large enough α, as shown for example in fig. 5, we see that SGD can be "knocked" out of the
current neutral space because of the large gradients that are induced by the α scaling. This typically leads to
the prior suddenly surging up, because the random nature of the perturbation means that the system is more
likely to land on large volume functions. However, we always observe that the prior then drops back down quite
quickly as SGD reaches zero training error again. On the other hand, as shown in fig. S11, when the value of α
is smaller it does not knock SGD out of the neutral space, and so the prior does not change at all. Nevertheless,
the sharpness still exhibits a strong spike due to the the alpha scaling.

Although not in the scope of this work, it is worth noting that the alpha scaling process in Convolutional Neural
Networks (CNNs) with batch normalization (Ioffe & Szegedy, 2015) layer(s) is somewhat different. Because
a batch normalization layer will eliminate all affine transformations applied on its inputs, one can arbitrarily
alpha scale the layers before a batch normalization layer without needing to of compensate in following layer,
provided the scaling is linear.

G FLATNESS AND PRIOR CORRELATION

In the main text, we showed the correlation of the Bayesian prior and of sharpness with generalization in fig. 3
and fig. 4. Here, in fig. S12, we show the direct correlation of the prior and sharpness. As expected from the
figures in the main text, sharpness correlates with prior roughly as it does with generalization - i.e. reasonably
for vanilla SGD but badly for entropy-SGD (Chaudhari et al., 2019) or Adam (Kingma & Ba, 2014). We note
that, as shown in fig. S9, sharpness also correlates relatively well with the spectral norm of the Hessian and log
product of its 50 largest eigenvalues for all the optimizers. So the correlation of flatness with prior/generalization
does not depend much on which particular flatness measure is used.

Overall, it is perhaps unsurprising that a local measure such as flatness varies in how well it approximates the
global prior. What is unexpected (at least to us) is that Adam and Entropy-SGD break the correlation for this
data set. In appendix J.2, we show that this correlation also breaks down for other more complex optimizers,
but, interestingly, not for full-batch SGD. Further empirical and theoretical work is needed to understand this
phenomenon. For example, is the optimizer dependence of the correlation between flatness and prior a general
property of the optimizer, or is it specific to certain architectures and datasets? One hint that these results
may have complex dependencies on architecture and dataset comes from our observation that for ResNet50 on

23

Under review as a conference paper at ICLR 2022

Cifar10, we see less difference between SGD and Adam than we see for the FCN on MNIST. More work is
needed here.

(a) (b) (c)

(d) (e) (f)

Figure S12: The direct correlation between prior P (f) and sharpness over different datasets and
optimizers. The correlation between prior and sharpness closely resembles the correlation between
sharpness and generalization, mainly because prior and generalization are very closely correlated, as
seen in our experiments (fig. 3, fig. 4).

H TEMPORAL BEHAVIOR OF SHARPNESS

When using sharpness in definition 2.1 as the metric of flatness, there are several caveats. First is the hyper-
parameters (see table 1): the value of sharpness is only meaningful under specified hyperparameters, and in
different experiments the sharpnesses are only comparable when the hyperparameters are the same. This renders
sharpness less convenient to use (but still much more efficient than Hessian calculation). Second is the time
evolving behavior of sharpness: For the classification problems we study, and for CE loss, it can continue to
change even when the function (and hence generalization) is unchanged.

Before reaching zero training error, gradients can be large, and the behavior of sharpness (definition 2.1) can be
unstable under changes of box size ζ. This effect is likely the cause of some unusual fluctuations in the sharpness
that can be observed in fig. 5 and fig. S11 around epoch 100. In fig. S13 we show that this artefact disappears for
larger ζ. Similarly, when the gradients are big (typical in training), sharpness may no longer link to spectral
norm of Hessian very well.

In fig. S14, we first train the FCN to zero error, then "alpha scale" after 500 epochs, and then keep post-training
for another 5000 epochs, much longer than in fig. 5. The behaviour of sharpness and prior upon "alpha scaling"
(not surprisingly) follows our discussion in section 5.4. What is interesting to see here is that after enough
overtraining, the effect of the alpha scaling spike appears to disappear, and the overall curve looks like a
continuation of the curve prior to alpha scaling. What this suggests is that alpha-scaling brings the system to an
area of parameter space that is somehow "unnatural". Again, this is a topic that deserves further investigation in
the future.

Finally, we show the temporal behavior of a Hessian-based flatness measure in fig. S15. Because of the large
memory cost when calculating the Hessian, we use a smaller FCN on MNIST, with the first hidden layer having
10 units. We find that the Hessian based flatness exhibit similar temporal behavior to sharpness.

24

Under review as a conference paper at ICLR 2022

(a) (b) (c)

Figure S13: Different temporal behavior of sharpness, prior and accuracy when using different
box size ζ. The dataset is MNIST with |S| = 500 and |E| = 100. The architecture is FCN. SGD
optimizer is used. Scaling parameter α = 5.0. Green and red dashed line denote reaching zero
training error and alpha scaling, respectively. (a) ζ = 10−3, (b) ζ = 10−4, (c) ζ = 10−5. While there
are quantitative differences between the values of ζ used, qualitatively we observe similar behaviour.

Figure S14: The temporal behavior of sharpness and prior after 5000 epochs of reaching zero training
error. The dataset is MNIST with |S| = 500 and |E| = 100. The architecture is FCN. SGD optimizer
is used. The magnitude of scaling α = 6.0.

I THE CORRELATION BETWEEN GENERALIZATION, PRIOR, AND SHARPNESS
UPON OVERTRAINING

As shown in fig. 5 of the main text, and further discussed in appendix H, flatness measures keep decreasing upon
overtraining even when the function itself does not change. In this section, we revisit the correlation between
prior, flatness and generalization at different numbers of overtraining epochs, i.e. after reaching zero training
error.As can be seen in fig. S16 to fig. S21, overtraining does not meaningfully affect the correlation between
sharpness, prior, and generalization we observed at the epoch where zero error is first reached in fig. 3 and fig. 4.
When the optimizer is SGD, the flatness, no matter if it is measured by sharpness or Hessian based metrics,
correlates well with prior and (hence) generalization across difference overtraining epochs; whereas when using
Adam, the poor correlation also persist in overtraining.

J FURTHER EXPERIMENTS

J.1 RESNET50 TRAINED WITH ADAM

When training ResNet50 on CIFAR-10, we use training set size |S| = 5000, attack set size |A| = 5000, test
set size |E| = 2000. In each experiment, we mix the whole training set with different size of subset of attack
set. The size of |A| ranges as (0, 500, 1000, 1500, ..., 5000). For each subset of attack set we sample 5 times.
When training ResNet50 with Adam, we empirically found it is hard to train the neural net to zero training error
with attack set size |A| > 2500. So we only show the results for those functions found with |A| ≤ 2500. In

25

Under review as a conference paper at ICLR 2022

Figure S15: The temporal behavior of one Hessian based flatness metric. The dataset is MNIST with
|S| = 500 and |E| = 100. The architecture is a smaller FCN (784-10-40-1), the optimizer is SGD.
The green dashed line denotes the epoch where the system reaches zero training error. No alpha
scaling is applied here. The Hessian based flatness metric shows similar temporal behaviour to the
sharpness measure.

fig. S22 we show the results of correlation between sharpness and prior with generalization with limited data.
The prior, as usual, correlates tightly with generalization, while the flatness-generalization correlation is much
more scattered, although it is slightly better than the correlation seen for the FCN on MNIST, and closer to the
behaviour we observed for SGD in the main text.

J.2 MORE SGD-VARIANT OPTIMIZERS

In fig. S23 we provide further empirical results for the impact of choice of optimizer on the sharpness-
generalization correlation by studying three common used SGD variants: Adagrad (Duchi et al., 2011),
Momentum (Rumelhart et al., 1986) (momentum=0.9) and RMSProp (Tieleman & Hinton, 2012), as well
as full batch gradient descent. Interestingly, full batch gradient descent (or simply gradient descent) shows
behaviour that is quite similar to vanilla SGD. By contrast, for the other three optimizers, the correlation between
sharpness and generalization breaks down, whereas the correlation between prior and generalization remains
intact, much as was observed in the main text for Adam and Entropy-SGD. .

J.3 LARGER TRAINING SET

In order to rule out any potential training size effect on our main argument of the flatness, prior and generalization
relationship, we further performed the experiments on MNIST with 10k training examples. Larger training sets
are hard because of the GP-EP calculation of the prior scales badly with size. The results are shown in fig. S24.
It is clear that the correlations between sharpness, prior and generalization follow the same pattern as we see in
fig. 3, in which there are only |S| = 500, |E| = 1000 images. If anything, the correlation with prior is tighter.

26

Under review as a conference paper at ICLR 2022

Figure S16: The correlation between sharpness, prior and generalization upon overtraining. The
dataset is MNIST (|S| = 500, |E| = 1000), the optimizer is SGD. For the range of (100-500)
overtraining epoch tested here, the overall values of sharpness drop with overtraining. By contrast,
the priors remain largely the same. For each quantity, the correlations remain remarkably similar with
overtraining.

27

Under review as a conference paper at ICLR 2022

Figure S17: The correlation between sharpness, prior and generalization when over-trained (keep
training after reaching zero training error). The dataset is MNIST (|S| = 500, |E| = 1000), the
optimizer is Adam. The correlations are similar across different overtraining epochs.

28

Under review as a conference paper at ICLR 2022

Figure S18: The correlation between Hessian spectral norm, prior and generalization when over-
trained (keep training after reaching zero training error). The dataset is MNIST (|S| = 500, |E| =
1000), the optimizer is SGD. The correlations are similar across different overtraining epochs.

29

Under review as a conference paper at ICLR 2022

Figure S19: The correlation between Hessian based flatness (product of the top 50 largest Hessian
eigenvalues), prior and generalization when over-trained (keep training after reaching zero training
error). The dataset is MNIST (|S| = 500, |E| = 1000), the optimizer is SGD. The correlations are
similar across different overtraining epochs.

30

Under review as a conference paper at ICLR 2022

Figure S20: The correlation between Hessian spectral norm, prior and generalization when over-
trained (keep training after reaching zero training error). The dataset is MNIST (|S| = 500, |E| =
1000), the optimizer is Adam. The correlations are similar across different overtraining epochs.

31

Under review as a conference paper at ICLR 2022

Figure S21: The correlation between Hessian based flatness (product of the top 50 largest Hessian
eigenvalues), prior and generalization when over-trained (keep training after reaching zero training
error). The dataset is MNIST (|S| = 500, |E| = 1000), the optimizer is Adam. The correlations are
similar across different overtraining epochs.

32

Under review as a conference paper at ICLR 2022

(a) (b)

Figure S22: The correlation between generalization and (a) sharpness (b) prior for ResNet50 with
|S| = 5000, |E| = 2000, and |A| ranging from 0 to 2500, all on CIFAR-10.

33

Under review as a conference paper at ICLR 2022

Figure S23: More results on the correlation between sharpness, prior and generalization when using
other SGD-variant optimizers. The dataset is MNIST, |S| = 500, |E| = 1000. The architecture is
FCN. The optimizers are full-batch gradient descent, Adagrad, Momentum (momentum=0.9) and
RMSProp. All correlations are measured upon reaching zero training error.

34

Under review as a conference paper at ICLR 2022

(a) (b) (c)

(d) (e) (f)

Figure S24: The correlation between sharpness, prior and generalization on MNIST with |S| =
10000, |E| = 1000. The attack set size ranges from 1000 to 9000. The architecture is FCN. (a)-(c):
The FCN is trained with SGD; (d)-(f): The FCN is trained with Adam.

35

	Introduction
	Main contributions

	Definitions and notation
	Supervised learning
	Flatness measures
	Functions and the Bayesian prior
	Link between the prior and the Bayesian posterior

	The correlation between the prior and generalization
	Flatness, priors and generalization
	Experimental Results
	Prior/volume - flatness correlation for Boolean system
	Priors, flatness and generalization for MNIST and CIFAR-10
	The effect of optimizer choice on flatness
	Temporal behavior of sharpness and logP(f)

	Discussion and future work
	More related work
	Preliminaries: two kinds of questions generalization and two types of inductive bias
	Related work on flatness
	Related work on the infinite-width limit
	Relationship to previous papers using the function picture

	Parameter-function map and neutral space
	Clarification on definition of functions and prior
	GP approximation of the prior
	Comparing flatness metrics
	Implementing parameter re-scaling
	Flatness and prior correlation
	Temporal behavior of sharpness
	The correlation between generalization, prior, and sharpness upon overtraining
	Further experiments
	ResNet50 trained with Adam
	More SGD-variant optimizers
	Larger training set

