
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2025

LEARNING-AUGMENTED SEARCH DATA STRUCTURES

Anonymous authors
Paper under double-blind review

ABSTRACT

We study the integration of machine learning advice to improve upon traditional
data structure designed for efficient search queries. Although there has been recent
effort in improving the performance of binary search trees using machine learning
advice, e.g., Lin et. al. (ICML 2022), the resulting constructions nevertheless suffer
from inherent weaknesses of binary search trees, such as complexity of maintaining
balance across multiple updates and the inability to handle partially-ordered or
high-dimensional datasets. For these reasons, we focus on skip lists and KD trees
in this work. Given access to a possibly erroneous oracle that outputs estimated
fractional frequencies for search queries on a set of items, we construct skip lists
and KD trees that provably provides the optimal expected search time, within nearly
a factor of two. In fact, our learning-augmented skip lists and KD trees are still
optimal up to a constant factor, even if the oracle is only accurate within a constant
factor. We also demonstrate robustness by showing that our data structures achieves
an expected search time that is within a constant factor of an oblivious skip list/KD
tree construction even when the predictions are arbitrarily incorrect. Finally, we
empirically show that our learning-augmented search data structures outperforms
their corresponding traditional analogs on both synthetic and real-world datasets.

1 INTRODUCTION

As efficient data management has become increasingly crucial, the integration of machine learning
(ML) has significantly improved the design and performance of traditional algorithms for many big
data applications. Kraska et al. (2018) first showed that ML could be incorporated to create data
structures that support faster look-up operations while also saving an order-of-magnitude of memory
compared to optimized data structures oblivious to such ML heuristics. Subsequently, learning-
augmented algorithms (Mitzenmacher & Vassilvitskii, 2020) have been shown to achieve provable
worst-case guarantees beyond the limitations of oblivious algorithms for a wide range of settings. For
example, ML predictions have been utilized to achieve more efficient data structures (Mitzenmacher,
2018; Lin et al., 2022), algorithms with faster runtimes (Dinitz et al., 2021; Chen et al., 2022c;
Davies et al., 2023), mechanisms with better accuracy-privacy tradeoffs (Khodak et al., 2023), online
algorithms with better performance than information-theoretic limits (Purohit et al., 2018; Gollapudi
& Panigrahi, 2019; Lattanzi et al., 2020; Wang et al., 2020; Wei & Zhang, 2020; Bamas et al., 2020;
Anand et al., 2020; Almanza et al., 2021; Anand et al., 2021; Im et al., 2021; Lykouris & Vassilvitskii,
2021; Aamand et al., 2022; Anand et al., 2022; Azar et al., 2022; Grigorescu et al., 2022; Khodak
et al., 2022; Jiang et al., 2022; Scully et al., 2022; Antoniadis et al., 2023b;a; Shin et al., 2023),
streaming algorithms with better accuracy-space tradeoffs (Hsu et al., 2019; Indyk et al., 2019;
Jiang et al., 2020; Chen et al., 2022b;a; Li et al., 2023), and polynomial-time algorithms beyond
hardness-of-approximation limits, e.g., NP-hardness (Ergun et al., 2022; Nguyen et al., 2023).

In this paper, we focus on the consolidation of ML advice to improve data structures for the fun-
damental problem of searching for elements among a large dataset. For this purpose, tree-based
structures stand out as a popular choice among other structures, particularly for their logarithmic
average performance. However, these structures often have weaknesses for specific use cases that
make them sub-optimal for various applications, which we now discuss.

Skip lists. One weakness of tree-based structures is that they need to be balanced for optimal
performance, and thus their effectiveness is often closely tied to the order of element insertions. For
example, the motivation of Lin et al. (2022) to study learning-augmented binary search trees noted that
although previous results already characterized the statically optimal tree if the underlying distribution

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2025

is known (Knuth, 1971; Mehlhorn, 1977), these methods do not handle dynamic insertion operations.
In contrast, skip lists, introduced by Pugh (1990a), maintain balance probabilistically, offering a
simpler implementation while delivering substantial speed enhancements (Pugh, 1990b). Skip lists
are generally built iteratively in levels. The bottom levels of the skip list is an ordinary-linked list, in
which the items of the dataset are organized in order. Each higher level serves to accelerate the search
for the lower levels, by storing only a subset of the items in the lower levels, also as an ordered link
list. Traditional skip lists are built by promoting each item in a level to a higher level randomly with a
fixed probability p ∈ (0, 1).

Querying for a target element begins at the first element in the highest level and continues by searching
along the linked list in the highest level until finding an item whose value is at least that of the target
element. If the found item is greater than the target element, the process is repeated after returning to
the previous element and dropping to a lower list. It can be shown that the expected number of steps
in the search is O

(
1
p log1/p n

)
so that p serves as a trade-off parameter between the search time and

the storage costs.

In many modern applications, skip lists are used because of their excellent search runtime and their
space efficiency. Skip lists are often preferred over binary search trees due to their simplicity of
implementation, their support for efficient range query, and their amenability to concurrent processes
(Shavit & Lotan, 2000; Lindén & Jonsson, 2013), high efficiency for dynamic datasets (Ge & Zdonik,
2008; Pittard & Tharp, 2010), network routing (Hu et al., 2003; Avin et al., 2020), and real-time
analytics (Basin et al., 2020; Zhou et al., 2023). Thus while binary search trees have been a long-
standing choice for querying ordered elements, skip lists offer a simpler, more efficient, and in some
cases, necessary alternative.

KD trees. Another weakness of tree-based data structures is that they generally require the data to
obey an absolute ordering. However, in many cases, e.g., geometric applications or multidimensional
data, the input points can only be partially ordered. Thus in 1975, KD trees, which stand for k-
dimensional trees, were proposed as a more efficient alternative to binary search trees for searching
in higher-dimensional spaces in procedures such as nearest neighbor search or ray tracing for
applications in computational geometry or computer vision. A KD tree works by picking a data point
and splitting along some spatial dimension to partition the space. This process is repeated until every
data point is included in the tree, creating a hierarchical tree structure that enables quick access to
specific data points or ranges within the dataset.

Skewed distributions. Traditional search data structures treat each element equally when promoting
the elements to higher levels. This balancing behavior facilitates good performance in expectation
when a query to the skip list is equally likely to be any dataset element. On the other hand, this
behavior may limit the performance of the data structure when the incoming queries are from an
unbalanced probability distribution.

Real-world applications can feature a diverse range of distribution patterns. One particularly common
distribution is the Zipfian distribution, which is a probability distribution that is a discrete counterpart
of the continuous Pareto distribution, and is characterized by the principle that a small number of
events occur very frequently, while a large number of events occur rarely.

In a Zipfian distribution, the frequency of an event N(k;α,N) is inversely proportional to its rank k,
raised to the power of α (where α is a positive parameter), in a dataset of N elements. In particular,
we have N(k;α,N) = 1/kα∑N

n=1(1/n
α)

. The value of α determines the steepness of the distribution so
that a smaller α value, i.e., closer to 0, makes it more uniform, while a larger α increases skewness.

Zipfian distributions provide a simple means for understanding phenomena in various fields involving
rank and frequency, ranging from linguistics to economics, and from urban studies to information tech-
nology. Indeed, they appear in many applications such as word frequencies in natural language (Wang
& Wang, 2016; Blocki et al., 2018), city populations (Gabaix, 1999; Vitanov & Ausloos, 2015),
biological cellular distributions (Lazzardi et al., 2023), income distribution (Sandmo, 2015), etc.

Unfortunately, although Zipfian distributions are common in practice, their properties are generally
not leveraged by traditional search data structures, which are oblivious to any information about
the query distributions. To improve this performance bottleneck, we propose the augmentation of
traditional skip lists and KD trees with “learned” advice, which (possibly erroneously) informs the

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2025

data structure in advance about some useful statistics on the incoming queries. Although we model
the data structure as having oracle access to the advice, in practice, such advice can often easily be
acquired from machine learning heuristics trained for these statistics.

1.1 OUR CONTRIBUTIONS

We propose the incorporation of ML advice into the design of skip lists and KD trees to improve upon
traditional data structure design. For ease of discussion in this section, we assume the items that may
appear either in the data set or the query set can be associated with an integer in [N] := {1, . . . , N},
which also in the case of high-dimensional data, may be associated with a k-dimensional point. We
allow the algorithm access to a possibly erroneous oracle that, for each i ∈ [N], outputs a quantity
pi, which should be interpreted as an estimation for the proportion of search queries that will be
made to the data structure for the item i. Hence, for each i ∈ [N], we assume that pi ∈ [0, 1]
and p1 + . . . + pn = 1. Note that these constraints can be easily enforced upon the oracle as a
pre-processing step prior to designing the skip list or KD tree data structure. We also assume that the
oracle is readily accessible so that there is no cost for each interaction with the oracle. Consequently,
we assume the algorithm has access to the predicted frequency pi by the oracle for all i ∈ [N]. On
the other hand, we view a sequence of queries as defining a probability distribution over the set of
queries, so that fi is the true proportion of queries to item i, for each i ∈ [N]. Although fi is the
ground truth, our algorithms only have access to pi, which may or may not accurately capture fi.

Consistency for accurate oracles. We introduce construction for a learning-augmented skip list
and KD trees, which gives expected search time at most 2C + 2

∑n
i=1 fi ·min

(
log 1

pi
, log n

)
, for

some constant C > 0. On the other hand, we show that any skip list or KD tree construction requires
an expected search time of at least the entropy H(f) of the probability vector f . We recall that the
entropy H(f) is defined as H(f) =

∑n
i=1 fi · log

1
fi

.

Thus, our results indicate that within nearly a factor of two, our learning-augmented search data
structures are optimal for any distribution of queries, provided that the oracle is perfectly accurate.
Moreover, even if the oracle on each estimated probability pi is only accurate up to a constant factor,
then our learning-augmented search data structures are still optimal, up to a constant factor.

Implications to Zipfian distributions. We describe the implications of our results to queries that
follow a Zipfian distribution; analogous results hold for other skewed distributions, e.g., the geometric
distribution. It is known that if the r-th most common query/item has proportion z

rs for some s > 1,
then the entropy of the corresponding probability vector is a constant. Consequently, if the set of
queries follows a Zipfian distribution and the oracle is approximately accurate within a constant
factor, then the expected search time for an item by our search data structures is only a constant,
independent of the total number of items, i.e., O (1). By comparison, a traditional skip list or KD
tree will have expected search time O (log n).

Robustness to erroneous oracles. So far, our discussions have centered around an oracle that either
produces estimated probabilities pi such that pi = fi or pi is within a constant factor of fi. However,
in some cases, the machine learning algorithm serving as the oracle can be completely wrong. In
particular, a model that is trained on a dataset before a distribution change, e.g., seasonal trends
or other temporal shifts, can produce wildly inaccurate predictions. We show that our search data
structures are robust to erroneous oracles. Specifically, we show that our algorithms achieve an
expected search time that is within a constant factor of an oblivious skip list or KD tree construction
when the predictions are incorrect. Therefore, our data structure achieves both consistency, i.e.,
good algorithmic performance when the oracle is accurate, and robustness, i.e., standard algorithmic
performance when the oracle is inaccurate.

Empirical evaluations. Finally, we analyze our learning-augmented search data structures list on
both synthetic and real-world datasets. Firstly, we compare the performance of traditional skip lists
with our learning-augmented skip lists on synthetically generated data following Zipfian distributions
with various tail parameters. The dataset is created using four distinct α values ranging from 1.01
to 2, along with a uniform dataset. During the assessment, we query a specified number of n items
selectively chosen based on their frequency weights. Our results match our theory, showing that
learning-augmented skip lists have faster query times, with an average speed-up factor ranging from
1.33 up to 7.76, depending on the different skewness parameters.

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2025

We then consider various datasets for internet traffic data, collected by AOL and by CAIDA, observed
over various durations. For each dataset, we split the overall observation time into an early period,
which serves as the training set for the oracle, and a later period, which serves as the query set for the
skip list. The oracle trained using the IP addresses in the early periods outputs the probability of the
appearance of a given node, and then the position of each node is determined.

Our learning-augmented skip list outperforms traditional skip lists with an average speed-up factor
of 1.45 for the AOL dataset and 1.63 for the CAIDA dataset. Moreover, the insertion time of our
learning-augmented skip list is comparable with that of traditional skip lists on both synthetic and
real-world datasets. We also observe that our history-based oracle demonstrates good robustness
against temporal change, with little shift in the dominant element set. The adopted datasets show that
the set of the top frequent elements does not change much across the time intervals in the datasets
used herein.

We similarly perform evaluations on our learning-augmented KD tree data structure. We evaluate our
KD tree data structure on Zipfian distributions with various tail parameters, and provide a heatmap of
average lookup times for elements. We find that for a large variety of Zipfian parameters, ourt method
is able to provides large improvements over traditional KD trees. We perform a similar experiment
under Zipfian distributions with added noise, and find our data structure still provides considerable
improvements in query time.

We additionally evaluate our method on point cloud samples taken from a 3D model. We bin these
samples in space, and create our learning-augmented KD tree on these binned samples. When
querying this tree with new binned point samples, we find a decrease in average query time as
compared to a traditional KD tree under the same conditions. In addition to this experiment,
we provide results on real world datasets of n-grams and neuron activation, and similarly find
improvements over traditional KD trees.

Concurrent and independent work. We mention that concurrent and independent of our work,
Zeynali et al. (2024) used similar techniques to achieve the same guarantees on the performance of
learning-augmented skip lists that are robust to erroneous predictions. However, they do not show
optimality for their learning-augmented skip lists and arguably perform less exhaustive empirical
evaluations. They also do not consider KD trees at all, which forms a significant portion of our
contribution, both theoretically and empirically.

Comparison to Lin et al. (2022). Our work was largely inspired by Lin et al. (2022), who observed
that classical literature characterizing statically optimal binary search trees (Knuth, 1971; Mehlhorn,
1977) no longer apply in the dynamic setting, as elements arrive iteratively over time. Thus, they
designed the construction of dynamic learning-augmented binary search trees (BSTs). Their analysis
for the expected search time utilized the notion of pivots within their trees and thus were somewhat
specialized to BSTs. Therefore, Lin et al. (2022) explicitly listed skip trees and advanced tree data
structures as interesting open directions. Qualitatively, our results are similar to Lin et al. (2022), as
are those of Zeynali et al. (2024). This is not quite altogether surprising because the main difference
between these data structures is not necessarily the search time, but the either the ease of construction
in the setting of skip lists, or the ability to handle multi-dimensional data in the setting of KD trees.

2 LEARNING-AUGMENTED SKIP LISTS

In this section, we describe our construction for a learning-augmented skip list and show various
consistency properties of the data structure. In particular, we show that up to a factor of two, our
algorithm is optimal, given a perfect oracle. More realistically, if the oracle provides a constant-factor
approximation to the probabilities of each element, our algorithm is still optimal up to a constant
factor.

We first describe our learning-augmented skip list, which utilizes predictions pi for each item i ∈ [n],
from an oracle. Similar to a traditional skip list, the bottom level of our skip list is an ordinary-linked
list that contains the sorted items of the dataset. As before, the purpose of each higher level is to
accelerate the search for an item, but the process for promoting an item from a lower level to a higher
level now utilizes the predictions. Whereas traditional skip lists promote each item in a level to a
higher level randomly with a fixed probability p ∈ (0, 1), we automatically promote the item i to
a level ℓ if its predicted frequency pi satisfies pi ≥ 2ℓ−1

n . Otherwise, we promote the item with

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2025

probability 1
2 . This adaptation ensures that items with high predicted query frequencies will be

promoted to higher levels of the skip list and thus be more likely to be found quickly.

It is worth addressing a number of other natural approaches and their shortcomings. For example,
one natural approach would be to use the “median” frequency across the items as a threshold to
promote elements to higher levels. However, this promotion scheme is not ideal because computing
the median frequency at each time would either require an additional data structure for fast update
time or increase the insertion time. A potential approach to resolve this issue would be to use a
separate threshold probability is set for each level so that only nodes with a probability higher than
the corresponding threshold are promoted to the next level. However, this approach seems to result in
an unnecessarily large number of created levels if some item appears with small probability, e.g., 1

2n .
We can thus first filters out the low-frequency elements and place them remain on the bottom level of
the skip list and then proceed with using a separate threshold probability for each level. Unfortunately,
this approach utterly fails to even match the search time performance of oblivious skip lists when the
distribution is uniform, because all items will be in the same level, resulting in an expected search
time of Ω(n). Hence, we ensure that each element still has a chance of being promoted to higher
levels even when their probability is less than the corresponding threshold.

We again emphasize that due to the dynamic nature of the updates, existing results on statically
optimal binary search trees (Knuth, 1971; Mehlhorn, 1977) do not apply, as observed by Lin et al.
(2022). We give the full details in Algorithm 1. For the sake of presentation, we focus on the
setting where the queries are made to items in the dataset. However, we remark that our results
generalize to the setting where queries can be made on the search space rather than the items in the
dataset, provided the oracle is also appropriately adjusted to estimate the query distribution, using the
approach we describe in Section 3.

Algorithm 1 Learning-augmented skip list

Require: Predicted frequencies p1, . . . , pn for each item in [n]
Ensure: Learning-augmented skip list

1: Insert all items at level 0
2: for each ℓ do
3: if there are no items at level ℓ− 1 then
4: return the skip list
5: else
6: for each i ∈ [n] do
7: if predicted frequency pi ≥ 2ℓ−1

n then
8: Insert i into level ℓ
9: else if i is in level ℓ− 1 then

10: Insert i into level ℓ with probability 1
2

We first show an upper bound on the expected search time of our learning-augmented skip-list.

Theorem 2.1. For each i ∈ [n], let fi and pi be the proportion of true and predicted queries to item
i. Then with probability at least 0.99 over the randomness of the construction of the skip list, the
expected search time over the choice of queries at most 20 + 2

∑n
i=1 fi ·min

(
log 1

pi
, log n

)
.

To achieve Theorem 2.1, we first show that each item i ∈ [n] must be contained at some level
max (0, 1 + ⌊log(npi)⌋), depending on the predicted frequency pi of the item. We also show that
with high probability, the total number of levels in the skip list is at most O (log n). This allows us
to upper bound the expected search time for item i by at most 2C + 2min

(
log 1

pi
, log n

)
. We can

then analyze the expected search time across the true probability distribution fi. Putting these steps
together, we obtain Theorem 2.1.

We also prove a lower bound on the expected search time of an item drawn from a probability
distribution f for any skip list.

Theorem 2.2. Given a random variable X ∈ [n] so that X = i with probability fi, let T (X) denote
the search time for X in a skip list. Then E [T (x)] ≥ H(f), where H(f) is the entropy of f .

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2025

Theorem 2.2 uses standard entropy arguments that have been previously used to lower bound the
optimal constructions of data structures such as Huffman codes. We next upper bound the entropy of
a probability vector that satisfies a Zipfian distribution with parameter s.
Lemma 2.3. Let s, z > 0 be fixed constants and let f be a frequency vector such that fi = z

is for all
i ∈ [n]. If s > 1, then H(f) = O (1) and otherwise if s ≤ 1, then H(f) ≤ log n.

By Theorem 2.1 and Lemma 2.3, we thus have the following corollary for the expected search time
of our learning-augmented skip list on a set of search queries that follows a Zipfian distribution.
Corollary 2.4. With high probability, the expected search time on a set of queries that follows a
Zipfian distribution with exponent s is at most O (1) for s > 1 and O (log n) for s ≤ 1.

Next, we show that our learning-augmented skip list construction is robust to somewhat inaccurate
oracles. Let f be the true-scaled frequency vector so that for each i ∈ [n], fi is the probability that a
random query corresponds to i. Let p be the predicted frequency vector, so that for each i ∈ [n], pi is
the predicted probability that a random query corresponds to i. For α, β ∈ (0, 1), we call an oracle
(α, β)-noisy if for all i ∈ [n], we have pi ≥ α · fi − β. Then we have the following guarantees for an
(α, β)-noisy oracle:
Lemma 2.5. Let α be a constant and β < α

4n . A learning-augmented skip list with a set of (α, β)-
noisy predictions has performance that matches that of a learning-augmented learned with a perfect
oracle, up to an additive constant.

To achieve Lemma 2.5, we parameterize our analysis in Theorem 2.1. Due to the guarantees of the
(α, β)-noisy oracles, we can write pi ≥ α

2 · fi, which allows us to express the search time log 1
pi

in
terms of the true entropy of the distribution and a small additive constant that stems from log 1

α . In
fact, we remark that even when the predictions are arbitrarily inaccurate, our learning-augmented
skip list still has expected query time O (log n), since the total number of levels is at most O (log n)
with high probability. Since the expected query list of an oblivious skip list is also O (log n), then the
expected query time of our learning-augmented skip list is within a constant multiplicative factor,
even with arbitrarily poor predictions.

3 LEARNING-AUGMENTED KD TREES

In this section we present details on our novel approach to KD tree construction. First, we present the
algorithm that constructs a learning-augmented KD tree. We focus on the setting where queries can
be made on the search space rather than the items in the dataset, which is much more interesting for
high-dimensional datasets, since even building a balanced tree on the search space could result in
prohibitively high query time, as the height of the tree would already be at least the dimension d.
Nevertheless, assuming that we have a query probability prediction pi for element i of our dataset,
the intuition of our method is straightforward. Whereas a learning-augmented binary search tree
would attempt to find a value such that the probability of a query being on either branch of the tree is
balanced, high-dimensional datasets do not have an absolute ordering. Thus, instead of relying on
standard techniques to determine the splitting point of our dataset, we find a specific dimension in
which there exists a balanced split such that the probability of a query being on either branch of the
tree is balanced. However, there can still be high frequency queries that are not in the dataset, which
can cause significantly high query time if not optimized. Hence, we also add to the tree construction
high frequency queries that are not data points, in order to reject these negative queries more quickly.

We prove the following guarantees on the performance of our learning-augmented KD tree, first
assuming that our oracle is perfect.
Theorem 3.1. Suppose [∆]d is the space of possible input points and queries. Let N = ∆d and
pi be the probability that a random query is made to i ∈ [N], given the natural mapping between
[N] and [∆]d. Let p = (p1, . . . , pN) ∈ RN be the probability vector and H(p) be its entropy.
Then given a set of n input points, the expected query time for the tree T created by Algorithm 3 is
O (min(H(p), log n)).

The analysis of Theorem 3.1 corresponding to our learning-augmented KD tree follows from a similar
structure as the proof of Theorem 2.1. However, the crucial difference is that the universe size is
now N , which is exponential in d. Thus constructions that consider distributions over all of [N] may

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2025

Algorithm 2 Learning-augmented KD tree construction

1: function BUILDNODE(x)
2: T ← ∅
3: if |x| = 1 then
4: T = x
5: return T
6: best← ∅
7: for each dimension i of x do
8: for each element x do
9: Compute the probability of points to the left of x on axis i

10: If the probability is closer to 0.5 than best, update best
11: T.axis = best.axis
12: T.left = BUILDNODE(x : x[axis] ≤ best.value)
13: T.right = BUILDNODE(x : x[axis] > best.value)
14: return T

Algorithm 3 Learning-augmented KD tree

1: function BUILD(dataset, queries)
2: datasetf ← {x ∈ dataset | x.prob > 1

n2 }
3: queriesf ← {x ∈ queries | x.prob > 1

n2 }
4: T ← BUILDNODE(datasetf ∪ queriesf)

5: Insert {x ∈ dataset | x.prob ≤ 1
n2 } into T using standard balanced KD tree construction

6: return T

suffer O (logN) = O (d log∆) query time, which can be prohibitively expensive for large d, e.g.,
high-dimensional data. Hence, our algorithm requires a bit more care in the truncation of queries with
low probability and instead, we build a balanced KD tree for any item with less than 1

n2 probability of
being queried, so that each of their query times is at most O (log n). We further remark this implies
robustness of our data structure to arbitrarily poor predictions, by a similar argument as in Section 2.

We next prove a lower bound on the expected search time of an item drawn from a probability
distribution f for any KD tree.
Theorem 3.2. Given a random variable X ∈ [n] so that X = i with probability fi, let D(X) denote
the depth for X in a learning-augmented KD tree. Then E [D(X)] ≥ H(f), where H(f) is the
entropy of f .

By Theorem 3.1 and Lemma 2.3, we thus have the following corollary for the expected query time on
our learning-augmented KD tree on a set of search queries that follows a Zipfian distribution.
Corollary 3.3. With high probability, the expected query time on a set of queries that follows a
Zipfian distribution with exponent s is at most O (1) for s > 1 and O (log n) for s ≤ 1.

Finally, we show near-optimality when given imperfect predictions from a (α, β)-noisy oracle:
Lemma 3.4. Let α be a constant and let β ≤ α

n2 . Then the query time for our learning-augmented
KD tree with (α, β)-noisy prediction matches the performance of a learning-augmented KD tree
constructed using a perfect oracle up to an additive constant.

4 EMPIRICAL EVALUATIONS

In this section, we describe a number of empirical evaluations demonstrating the efficiency of our
learning-augmented search data structures on both synthetic and real-world datasets. We provide
additional experiments in Appendix D.

Skip lists on CAIDA dataset. In the CAIDA datasets (CAIDA, 2016), the receiver IP addresses
from one minute of the internet flow data are extracted for testing, which contains over 650k unique
IP addresses of the 30 million queries. Given that the log-log plot of the frequency of all nodes in
the CAIDA datasets follows approximately a straight line in Figure 1, the CAIDA datasets can be

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2025

approximately characterized by an α factor of 1.37. The insertion time is similar between classic and
augmented skip lists, while Figure 2 shows that query time is almost halved when using the learning
augmented skip lists at different query sizes. These results assume that the predicted frequency
of all items in the query stream is accurate, i.e., the probability vector that is used to build the
skip list matches exactly the query stream. The speed-up between the query times of the largest
learning-augmented and the oblivious skip lists in Figure 2 is roughly 1.86×, which is surprisingly
and perhaps coincidentally close to our theoretical speed-up of roughly 1.81× on a Zipfian dataset
with exponent 1.37.

(a) CAIDA data distribution (b) Zipfian fit (α = 1.37)

Figure 1: CAIDA datasets distribution characterization in Figure 1a. The nearly straight-fitted curve
in Figure 1b implies that a Zipfian distribution with α = 1.37 is a good fit to the CAIDA dataset
distribution.

(a) Insert time on CAIDA (b) Query time on CAIDA

Figure 2: Comparison of insertion and query time on CAIDA for classic and learning-augmented skip
lists. This figure compares the insertion and query times under varying numbers of top frequently
accessed unique IPs between classic and augmented implementations. The horizontal axis in the
two subfigures depicts the same scheme of IP selection, represented in two different ways, e.g., the
top 29.9 million queries contain 665210 unique IPs, the next 29.5 million queries comprise 296384
unique IPs, etc.

Next, we demonstrate that our proposed algorithm still manages to outperform the classic skip list
even when temporal change exists in the probability vector by comparing the query time for the
same set of query elements with different probability vectors being used to guide the building of the
structure. For the skip list augmented by a noisy probability vector, the probability vector of elements
during a period of T1 is used as the predicted frequencies. The skip list being augmented by this
probability vector has its own set of elements to be organized into the target skip list. Suppose the
historic data from T1 contains a set of elements S1, and some future query stream contains a set of
elements S2. For each element in our target set S2, if the element is present in S1, then the occurrence
probability of this element from S1 will be used to build S2; otherwise, if the element has not shown
up during T1 (i.e., in S1), then we assume its probability to be 0. After this, the probability vector is
normalized to sum to 1, resulting in a predicted probability vector to be used to build a skip list based
on the historic element frequency. Since there is temporal changes in the frequency of elements being
queried, the predicted probability vector will show a discrepancy with the true probability vector.

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2025

The results are presented in Figure 3a and we show that even when the prediction is not perfect, the
augmented skip list still performs better than a conventional skip list.

(a) Robustness test on CAIDA datasets (b) Oracle credibility on CAIDA datasets

Figure 3: Robustness of our learning-augmented skip list to erroneous oracles. In Figure 3b, the
labels on the axis indicate the time stamp that the internet trace data is collected, e.g., 130100 means
the collection starts at 13:01:00 and lasts for 1 minute.

Figure 3a shows that the skip list with perfect learning shows the best performance, while the skip list
augmented with noisy learning performs very close to the scenario with perfect predictions. Moreover,
the closer the test data is to the reference data chronologically, the closer the noisy-augmented skip
list will perform to the perfect learning skip list. The CAIDA datasets used in this study contain 12
minutes of internet flow data, which totals around 444 million queries. The indices on the x-axis in
Figure 3a means:

• 10 2: the first 10 minutes of data are used to create the reference (i.e., oracle) and the last 2
minutes are used to build and test the total query time using the former as reference.

• 2 2: the 9th and 10th minutes data is used as reference and the last 2 minutes are used for
testing.

• 3 3: the 1st, 2nd and 3rd minutes of data are used to create reference and the 4th, 5th and
6th minutes of data are used for testing.

• 6 6: the first 6 minutes are used to create the reference and the last 6 minutes are used for
testing.

Further analysis of the temporal change of item frequency shows the reason behind the good perfor-
mance of the history-based oracle. Figure 3b shows the change of intersection index between any 2
given minutes among the 12 minutes of CAIDA data. The intersection index is defined as the ratio of
the number of shared queries to the total number of queries of any given 2 minutes of queries. Figure
3b shows that the number of intersects queries has decreased by about 6% after 12 minutes, which
indicates that the probability of the majority of the elements will be predicted with good accuracy,
resulting in good oracle performance.

KD trees on synthetic datasets. KD Trees are commonly used in the field of computer graphics, with
applications in collision detection, ray-tracing, and reconstruction. We first generate datasets of 212
points in 3-dimensional space, with frequencies given by a fixed Zipfian distribution with parameters
a = 5, b = 2 – parameters at which our method greatly outperforms a standard KD tree. In order
to simulate constructing the tree on noisy data, we multiply the ground truth query probabilities by
numbers sampled uniformly from 1 to M , and then add numbers uniformly sampled from 0 to A,
before renormalizing to form a valid probability distribution. We query the tree 214 times, with point
queries selected by the ground truth Zipfian distribution. We repeat this process 32 times, and report
the median of the average query depth across all runs in Figure 4. We find that our method continues
to outperform traditional KD trees under moderate amounts of noise, and at worst, performs on-par
with a traditional KD tree.

Next, we generate datasets of 212 points in 3-dimensional space, with frequencies given by a Zipfian
distribution with parameters a, b. In the left plot, we assign these Zipfian weights randomly. In
the right plot, however, we assign Zipfian weights with ranks decreasing with the distance to some

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2025

Figure 4: Query time comparison for standard and learning-augmented KD trees with various noise.

random data point. We then query the tree 214 times, with point queries selected by the same Zipfian
distribution. We repeat this process 32 times, and report the median of the average query depth across
all runs. We find that, when points frequencies are distributed smoothly over space, our method’s
performance increases on less skew distributions, as seen in this Figure 5.

Figure 5: Comparison of query time on learning-augmented KD trees with and without smooth spatial
distribution across various Zipfian parameters

KD trees on 3D point-cloud datasets. Finally, we evaluate our method on point cloud data generated
from the Stanford Lucy mesh (Stan), with dimensions ∼ 1000 × 500 × 1500. We first uniformly
sample 222 points along the mesh surface, and bin points with resolution 10, and assign lookup
frequencies by the number of bin occupants. This results in 32k bins. Note, the resulting frequency
distribution for binned cells is not highly skewed.

We then generate a new set of 216 surface samples on the mesh, binning them and assigning
frequencies in the same way. When looking up with the new samples, our method yields an average
query depth of 15.1, while a traditional KD tree yields an average lookup depth of 17.6.

REFERENCES

Anders Aamand, Justin Y. Chen, and Piotr Indyk. (optimal) online bipartite matching with degree
information. In Advances in Neural Information Processing Systems 35: Annual Conference on
Neural Information Processing Systems, NeurIPS, 2022.

Nir Ailon, Bernard Chazelle, Kenneth L. Clarkson, Ding Liu, Wolfgang Mulzer, and C. Seshadhri.
Self-improving algorithms. SIAM J. Comput., 40(2):350–375, 2011.

10

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2025

Laurence Aitchison, Nicola Corradi, and Peter E Latham. Zipf’s law arises naturally in structured,
high-dimensional data. arXiv preprint arXiv:1407.7135, 2014.

Brian Allen and J. Ian Munro. Self-organizing binary search trees. J. ACM, 25(4):526–535, 1978.

Matteo Almanza, Flavio Chierichetti, Silvio Lattanzi, Alessandro Panconesi, and Giuseppe Re. Online
facility location with multiple advice. In Advances in Neural Information Processing Systems 34:
Annual Conference on Neural Information Processing Systems, NeurIPS, pp. 4661–4673, 2021.

Keerti Anand, Rong Ge, and Debmalya Panigrahi. Customizing ML predictions for online algorithms.
In Proceedings of the 37th International Conference on Machine Learning, ICML, pp. 303–313,
2020.

Keerti Anand, Rong Ge, Amit Kumar, and Debmalya Panigrahi. A regression approach to learning-
augmented online algorithms. In Advances in Neural Information Processing Systems 34: Annual
Conference on Neural Information Processing Systems, NeurIPS, pp. 30504–30517, 2021.

Keerti Anand, Rong Ge, Amit Kumar, and Debmalya Panigrahi. Online algorithms with multiple
predictions. In International Conference on Machine Learning, ICML, pp. 582–598, 2022.

Antonios Antoniadis, Christian Coester, Marek Eliás, Adam Polak, and Bertrand Simon. Online
metric algorithms with untrusted predictions. ACM Trans. Algorithms, 19(2):19:1–19:34, 2023a.

Antonios Antoniadis, Themis Gouleakis, Pieter Kleer, and Pavel Kolev. Secretary and online matching
problems with machine learned advice. Discret. Optim., 48(Part 2):100778, 2023b.

Chen Avin, Iosif Salem, and Stefan Schmid. Working set theorems for routing in self-adjusting skip
list networks. In IEEE INFOCOM 2020-IEEE Conference on Computer Communications, pp.
2175–2184. IEEE, 2020.

Yossi Azar, Debmalya Panigrahi, and Noam Touitou. Online graph algorithms with predictions. In
Proceedings of the 2022 ACM-SIAM Symposium on Discrete Algorithms, SODA, pp. 35–66, 2022.

Étienne Bamas, Andreas Maggiori, and Ola Svensson. The primal-dual method for learning aug-
mented algorithms. In Advances in Neural Information Processing Systems 33: Annual Conference
on Neural Information Processing Systems, NeurIPS, 2020.

Dmitry Basin, Edward Bortnikov, Anastasia Braginsky, Guy Golan-Gueta, Eshcar Hillel, Idit Keidar,
and Moshe Sulamy. Kiwi: A key-value map for scalable real-time analytics. ACM Transactions on
Parallel Computing (TOPC), 7(3):1–28, 2020.

Jeremiah Blocki, Benjamin Harsha, and Samson Zhou. On the economics of offline password
cracking. In IEEE Symposium on Security and Privacy, SP, Proceedings, pp. 853–871. IEEE
Computer Society, 2018.

CAIDA. The caida ucsd anonymized internet traces. https://www.caida.org/catalog/
datasets/passive_dataset, 2016.

Xinyuan Cao, Jingbang Chen, Li Chen, Chris Lambert, Richard Peng, and Daniel Sleator. Learning-
augmented b-trees, 2023.

Lawrence Cayton and Sanjoy Dasgupta. A learning framework for nearest neighbor search. In
Advances in Neural Information Processing Systems 20, Proceedings of the Twenty-First Annual
Conference on Neural Information Processing Systems, pp. 233–240, 2007.

Justin Y. Chen, Talya Eden, Piotr Indyk, Honghao Lin, Shyam Narayanan, Ronitt Rubinfeld, Sandeep
Silwal, Tal Wagner, David P. Woodruff, and Michael Zhang. Triangle and four cycle counting with
predictions in graph streams. In The Tenth International Conference on Learning Representations,
ICLR, 2022a.

Justin Y. Chen, Piotr Indyk, and Tal Wagner. Streaming algorithms for support-aware histograms. In
International Conference on Machine Learning, ICML, pp. 3184–3203, 2022b.

11

https://www.caida.org/catalog/datasets/passive_dataset
https://www.caida.org/catalog/datasets/passive_dataset

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2025

Justin Y. Chen, Sandeep Silwal, Ali Vakilian, and Fred Zhang. Faster fundamental graph algorithms
via learned predictions. In International Conference on Machine Learning, ICML, pp. 3583–3602,
2022c.

Valentina Ciriani, Paolo Ferragina, Fabrizio Luccio, and S. Muthukrishnan. Static optimality theorem
for external memory string access. In 43rd Symposium on Foundations of Computer Science
(FOCS, Proceedings, pp. 219–227. IEEE Computer Society, 2002.

Thomas M Cover. Elements of information theory. John Wiley & Sons, 1999.

Sami Davies, Benjamin Moseley, Sergei Vassilvitskii, and Yuyan Wang. Predictive flows for faster
ford-fulkerson. In International Conference on Machine Learning, ICML, volume 202, pp. 7231–
7248, 2023.

Michael Dinitz, Sungjin Im, Thomas Lavastida, Benjamin Moseley, and Sergei Vassilvitskii. Faster
matchings via learned duals. In Advances in Neural Information Processing Systems 34: Annual
Conference on Neural Information Processing Systems, NeurIPS, pp. 10393–10406, 2021.

Jon C. Ergun, Zhili Feng, Sandeep Silwal, David P. Woodruff, and Samson Zhou. Learning-augmented
k-means clustering. In The Tenth International Conference on Learning Representations, ICLR,
2022.

C. Torgeson G. Pass, A. Chowdhury. 500k user session collection. https://www.kaggle.com/
datasets/dineshydv/aol-user-session-collection-500k, 2006.

Xavier Gabaix. Zipf’s law for cities: an explanation. The Quarterly journal of economics, 114(3):
739–767, 1999.

Tingjian Ge and Stan Zdonik. A skip-list approach for efficiently processing forecasting queries.
Proceedings of the VLDB Endowment, 1(1):984–995, 2008.

Sreenivas Gollapudi and Debmalya Panigrahi. Online algorithms for rent-or-buy with expert advice.
In Proceedings of the 36th International Conference on Machine Learning, ICML, pp. 2319–2327,
2019.

Goog. Google books n-gram frequency lists. https://github.com/orgtre/
google-books-ngram-frequency, 2022.

Google. Google ngram viewer. http://books.google.com/ngrams/datasets, 2012. URL http:
//books.google.com/ngrams/datasets.

Elena Grigorescu, Young-San Lin, Sandeep Silwal, Maoyuan Song, and Samson Zhou. Learning-
augmented algorithms for online linear and semidefinite programming. In Advances in Neural
Information Processing Systems 35: Annual Conference on Neural Information Processing Systems,
NeurIPS, 2022.

Chen-Yu Hsu, Piotr Indyk, Dina Katabi, and Ali Vakilian. Learning-based frequency estimation
algorithms. In 7th International Conference on Learning Representations, ICLR, 2019.

Yih-Chun Hu, Adrian Perrig, and David B Johnson. Efficient security mechanisms for routing
protocolsa. In Ndss, 2003.

David A Huffman. A method for the construction of minimum-redundancy codes. Proceedings of
the IRE, 40(9):1098–1101, 1952.

Sungjin Im, Ravi Kumar, Mahshid Montazer Qaem, and Manish Purohit. Online knapsack with
frequency predictions. In Advances in Neural Information Processing Systems 34: Annual
Conference on Neural Information Processing Systems, NeurIPS, pp. 2733–2743, 2021.

Piotr Indyk, Ali Vakilian, and Yang Yuan. Learning-based low-rank approximations. In Advances in
Neural Information Processing Systems 32: Annual Conference on Neural Information Processing
Systems 2019, NeurIPS, pp. 7400–7410, 2019.

12

https://www.kaggle.com/datasets/dineshydv/aol-user-session-collection-500k
https://www.kaggle.com/datasets/dineshydv/aol-user-session-collection-500k
https://github.com/orgtre/google-books-ngram-frequency
https://github.com/orgtre/google-books-ngram-frequency
http://books.google.com/ngrams/datasets
http://books.google.com/ngrams/datasets

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2025

Shaofeng H.-C. Jiang, Erzhi Liu, You Lyu, Zhihao Gavin Tang, and Yubo Zhang. Online facility
location with predictions. In The Tenth International Conference on Learning Representations,
ICLR, 2022.

Tanqiu Jiang, Yi Li, Honghao Lin, Yisong Ruan, and David P. Woodruff. Learning-augmented data
stream algorithms. In 8th International Conference on Learning Representations, ICLR, 2020.

Marek Karpinski, Lawrence L. Larmore, and Wojciech Rytter. Sequential and parallel subquadratic
work algorithms for constructing approximately optimal binary search trees. In Proceedings of the
Seventh Annual ACM-SIAM Symposium on Discrete Algorithms, pp. 36–41, 1996.

Mikhail Khodak, Kareem Amin, Travis Dick, and Sergei Vassilvitskii. Learning-augmented private
algorithms for multiple quantile release. In International Conference on Machine Learning, ICML
2023, pp. 16344–16376, 2023.

Misha Khodak, Maria-Florina Balcan, Ameet Talwalkar, and Sergei Vassilvitskii. Learning predic-
tions for algorithms with predictions. In Advances in Neural Information Processing Systems 35:
Annual Conference on Neural Information Processing Systems, NeurIPS, 2022.

Donald E. Knuth. Optimum binary search trees. Acta Informatica, 1:14–25, 1971.

Tim Kraska, Alex Beutel, Ed H. Chi, Jeffrey Dean, and Neoklis Polyzotis. The case for learned
index structures. In Proceedings of the 2018 International Conference on Management of Data,
SIGMOD Conference, pp. 489–504, 2018.

Silvio Lattanzi, Thomas Lavastida, Benjamin Moseley, and Sergei Vassilvitskii. Online scheduling
via learned weights. In Proceedings of the 2020 ACM-SIAM Symposium on Discrete Algorithms,
SODA, pp. 1859–1877, 2020.

Silvia Lazzardi, Filippo Valle, Andrea Mazzolini, Antonio Scialdone, Michele Caselle, and Matteo
Osella. Emergent statistical laws in single-cell transcriptomic data. Physical Review E, 107(4):
044403, 2023.

Yi Li, Honghao Lin, Simin Liu, Ali Vakilian, and David P. Woodruff. Learning the positions in
countsketch. In The Eleventh International Conference on Learning Representations, ICLR, 2023.

Honghao Lin, Tian Luo, and David P. Woodruff. Learning augmented binary search trees. In
International Conference on Machine Learning, ICML, pp. 13431–13440, 2022.

Jonatan Lindén and Bengt Jonsson. A skiplist-based concurrent priority queue with minimal memory
contention. In Principles of Distributed Systems: 17th International Conference, OPODIS 2013,
Nice, France, December 16-18, 2013. Proceedings 17, pp. 206–220. Springer, 2013.

Thodoris Lykouris and Sergei Vassilvitskii. Competitive caching with machine learned advice. J.
ACM, 68(4):24:1–24:25, 2021.

Kurt Mehlhorn. A best possible bound for the weighted path length of binary search trees. SIAM J.
Comput., 6(2):235–239, 1977.

Michael Mitzenmacher. A model for learned bloom filters and optimizing by sandwiching. In
Advances in Neural Information Processing Systems 31: Annual Conference on Neural Information
Processing Systems, NeurIPS, pp. 462–471, 2018.

Michael Mitzenmacher and Sergei Vassilvitskii. Algorithms with predictions. In Tim Roughgarden
(ed.), Beyond the Worst-Case Analysis of Algorithms, pp. 646–662. Cambridge University Press,
2020.

Thy Dinh Nguyen, Anamay Chaturvedi, and Huy L. Nguyen. Improved learning-augmented al-
gorithms for k-means and k-medians clustering. In The Eleventh International Conference on
Learning Representations, ICLR, 2023.

Jonathan J Pittard and Alan L Tharp. Simplified self-adapting skip lists. In International Conference
on Intelligent Data Engineering and Automated Learning, pp. 126–136. Springer, 2010.

13

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2025

William Pugh. Concurrent maintenance of skip lists. University of Maryland at College Park, 1990a.

William Pugh. Skip lists: A probabilistic alternative to balanced trees. Commun. ACM, 33(6):
668–676, jun 1990b. ISSN 0001-0782. doi: 10.1145/78973.78977. URL https://doi.org/
10.1145/78973.78977.

Manish Purohit, Zoya Svitkina, and Ravi Kumar. Improving online algorithms via ML predictions. In
Advances in Neural Information Processing Systems 31: Annual Conference on Neural Information
Processing Systems 2018, NeurIPS, pp. 9684–9693, 2018.

Agnar Sandmo. The principal problem in political economy: income distribution in the history of
economic thought. In Handbook of income distribution, volume 2, pp. 3–65. Elsevier, 2015.

Ziv Scully, Isaac Grosof, and Michael Mitzenmacher. Uniform bounds for scheduling with job
size estimates. In 13th Innovations in Theoretical Computer Science Conference, ITCS, pp.
114:1–114:30, 2022.

Claude Elwood Shannon. A mathematical theory of communication. ACM SIGMOBILE mobile
computing and communications review, 5(1):3–55, 2001.

Nir Shavit and Itay Lotan. Skiplist-based concurrent priority queues. In Proceedings 14th In-
ternational Parallel and Distributed Processing Symposium. IPDPS 2000, pp. 263–268. IEEE,
2000.

Yongho Shin, Changyeol Lee, Gukryeol Lee, and Hyung-Chan An. Improved learning-augmented
algorithms for the multi-option ski rental problem via best-possible competitive analysis. In
International Conference on Machine Learning, ICML, pp. 31539–31561, 2023.

Stan. The stanford 3d scanning repository, 1996. URL http://graphics.stanford.edu/
data/3Dscanrep/.

Nikolay K Vitanov and Marcel Ausloos. Test of two hypotheses explaining the size of populations in
a system of cities. Journal of Applied Statistics, 42(12):2686–2693, 2015.

Ding Wang and Ping Wang. On the implications of zipf’s law in passwords. In Computer Security -
ESORICS 2016 - 21st European Symposium on Research in Computer Security, Proceedings, Part
I, volume 9878 of Lecture Notes in Computer Science, pp. 111–131. Springer, 2016.

Shufan Wang, Jian Li, and Shiqiang Wang. Online algorithms for multi-shop ski rental with machine
learned advice. In Advances in Neural Information Processing Systems 33: Annual Conference on
Neural Information Processing Systems, NeurIPS, 2020.

Alexander Wei and Fred Zhang. Optimal robustness-consistency trade-offs for learning-augmented
online algorithms. In Advances in Neural Information Processing Systems 33: Annual Conference
on Neural Information Processing Systems, NeurIPS, 2020.

F Frances Yao. Speed-up in dynamic programming. SIAM Journal on Algebraic Discrete Methods, 3
(4):532–540, 1982.

Ali Zeynali, Shahin Kamali, and Mohammad Hajiesmaili. Robust learning-augmented dictionaries.
CoRR, abs/2402.09687, 2024.

Xuanhe Zhou, Cheng Chen, Kunyi Li, Bingsheng He, Mian Lu, Qiaosheng Liu, Wei Huang, Guoliang
Li, Zhao Zheng, and Yuqiang Chen. Febench: A benchmark for real-time relational data feature
extraction. Proceedings of the VLDB Endowment, 16(12):3597–3609, 2023.

14

https://doi.org/10.1145/78973.78977
https://doi.org/10.1145/78973.78977
http://graphics.stanford.edu/data/3Dscanrep/
http://graphics.stanford.edu/data/3Dscanrep/

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2025

A ADDITIONAL RELATED WORKS

In this section, we discuss a number of related works in addition to those mentioned in Section 1.
This paper builds upon the increasing body of research in learning-augmented algorithms, data-driven
algorithms, and algorithms with predictions. For example, learning-augmented algorithms have been
applied to a number of problems in the online setting, where the input arrives sequentially and the
goal is to achieve algorithmic performance competitive with the best solution in hindsight, i.e., an
algorithm that has the complete input on hand. Among the applications in the online model, learning-
augmented algorithms have been developed for ski rental problem and job scheduling (Purohit et al.,
2018), caching (Lykouris & Vassilvitskii, 2021), and matching (Antoniadis et al., 2023b). Learning-
augmented algorithms have also been used to improve the performance of specific data structures
such as Bloom filters (Mitzenmacher, 2018), index structures (Kraska et al., 2018), CountMin and
CountSketch (Hsu et al., 2019). Specifically, (Kraska et al., 2018) proposes substituting B-Trees (or
other index structures) with trained models for querying databases. In their approach, rather than
traversing the B-Tree to locate a record, they use a neural network to directly identify its position.
Our work differs in that we retain the desired data structures, i.e., skip lists and kd trees, and focus on
optimizing their structures to enable faster queries, which allows us to continue supporting standard
operations specific to the data structures such as traversal, order statistics, merging, and joining,
among others. Our work uses the frequency estimation oracle trained in (Hsu et al., 2019) on the
AOL search query dataset and the CAIDA IP traffic monitoring dataset.

Perhaps the works most closely related to ours in the area of learning-augmented algorithms are those
of (Lin et al., 2022; Cao et al., 2023; Zeynali et al., 2024). Lin et al. (2022) noted that traditional
theory on statically optimal binary search trees (Knuth, 1971; Mehlhorn, 1977) is no longer applicable
in dynamic settings, where elements are added incrementally over time. Hence, they developed
learning-augmented binary search trees (BSTs) and showed that their expected search time is near-
optimal. Cao et al. (2023) then extended these techniques to general search trees, allowing for nodes
with more than two children. Cao et al. (2023) also studied the setting where the predictions may be
updated, while ultimately still utilizing a data structure that requires rebalancing as data is dynamically
changing. Zeynali et al. (2024) also consider the performance of learning-augmented skip lists that
are robust to erroneous predictions; we elaborate more on the differences from Zeynali et al. (2024)
in Section 1.1. We also note that none of these works consider KD trees at all, which is an important
data structure with applications in computer vision and computational geometry, thus forming a basis
of our work. For a more comprehensive source of related works in learning-augmented algorithms,
see https://algorithms-with-predictions.github.io/.

Beyond the context of learning-augmented algorithms, there is a large body of works that study design
of data structures that are optimal for their inputs. For example, while standard binary search trees use
O (log n) query time, optimal static trees can be constructed using dynamic programming or efficient
greedy algorithms (Mehlhorn, 1977; Yao, 1982; Karpinski et al., 1996), given access frequencies.
However, the computational cost of these methods often exceeds the cost of directly querying the tree.
As a result, a key objective is to construct a tree whose cost is within a constant factor of the entropy
of the data. Several approaches have achieved this either for worst-case data (Mehlhorn, 1977) or
when the input follows particular distributions (Allen & Munro, 1978).

More recent works have considered using results from learning theory to estimate the query frequen-
cies, rather than assuming explicit access to their values. For example, Cayton & Dasgupta (2007)
studied how to obtain such an oracle for learning-augmented data structures. In particular, they study
generalization bounds in the context of learning theory, analyzing the number of samples from an
underlying distribution necessary to produce an oracle with a small error rate. On the other hand,
Ailon et al. (2011) studied algorithms for sorting and clustering that can improve their expected
performance given access to multiple instances sampled from a fixed distribution. Although the
high-level goal of improving algorithmic performance using auxiliary information is the same as
ours, the specifics of the paper seem quite different than ours, as the paper focuses on techniques
for sorting and clustering. Similarly, Ciriani et al. (2002) considers self-adjusting data structures,
including skip lists, which can dynamically change as the sequence of queries arrive. However, their
methods are catered specifically to the setting where there is access to the queries, whereas our data
structures must be constructed without such access and must therefore be able to handle erroneous
predictions.

15

https://algorithms-with-predictions.github.io/

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2025

B MISSING PROOFS FROM SECTION 2

In this section, we give the missing proofs from Section 2.

B.1 EXPECTED SEARCH TIME

We first show that each item is promoted to a higher level with probability at least 1
2 .

Lemma B.1. For each item i ∈ [n] at level ℓ, the probability that i is in level ℓ+ 1 is at least 1
2 .

Proof. Note that if pi ≥ 2ℓ

n , then i will be placed in level ℓ + 1. Otherwise, conditioned on the
item i ∈ [n] being at level ℓ, then Algorithm 1 places i at level ℓ+ 1 with probability 1

2 . Thus, the
probability that i is in level ℓ+ 1 is at least 1

2 .

We next upper bound the expected search time for any item at any fixed level, where the randomness
is over the construction of the skip list.

Lemma B.2. In expectation, the search time for item i ∈ [n] at level ℓ is at most 2.

Proof. Suppose item i ∈ [n] is in level ℓ. Let Sℓ
<i ⊆ [n] be the subset of items in level ℓ that are less

than i. Note that by Lemma B.1, each item of Sℓ
≤i is promoted to level ℓ+ 1 with probability at least

1
2 . Thus, the search time for item i at level ℓ is t if and only if the previous t items in Sℓ

≤i were all not
promoted, which can only happen with probability at most 1

2t . Hence, the expected search time T for
item i ∈ [n] at level ℓ is at most

E [T] ≤ 1 · 1
2
+ 2 · 1

22
+ . . .+ n · 1

2n
≤

∞∑
t=1

t

2t
≤ 2.

We now show that each item i must be contained at some level depending on the predicted frequency
pi of the item.

Lemma B.3. Each item i is included in level max (0, 1 + ⌊log(npi)⌋).

Proof. First, observe that all items are inserted at level 0. Next, note that Algorithm 1 inserts item
i into level ℓ if pi ≥ 2ℓ−1

n or equivalently log(npi) ≥ ℓ− 1. Thus, each item i is included in level
max (0, 1 + ⌊log(npi)⌋).

We next analyze the expected search time for each item i.

Lemma B.4. Suppose the total number of levels is at most C + log n for some constant C > 0. Then
the expected search time for item i is at most 2C + 2min

(
log 1

pi
, log n

)
.

Proof. By Lemma B.3, item i is included in level max (0, 1 + ⌊log(npi)⌋). By Lemma B.2 the
expected search time at each level is at most 2. Thus, in expectation, the total search time is at most
2(C + log n−max (0, 1 + ⌊log(npi)⌋)) ≤ 2C + 2min

(
log 1

pi
, log n

)
.

Finally, we analyze the expected search time across the true probability distribution fi.

Lemma B.5. Suppose the total number of levels is at most C + log n for some constant C > 0. For
each i ∈ [n], let fi be the proportion of queries to item i. Then the expected search time at most

2C + 2
∑n

i=1 fi ·min
(
log 1

pi
, log n

)
.

16

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2025

Proof. For each query, the probability that the query is item i is fi. Conditioned on the total number
of levels being at most C + log n, then by Lemma B.4, the expected search time for item i is at most
2C + 2max

(
log 1

pi
, log n

)
. Thus, the expected search time at most

2C(f1 + . . .+ fn) + 2f1 min

(
log

1

p1
, log n

)
+ . . .+ 2fn min

(
log

1

pn
, log n

)
= 2C + 2

n∑
i=1

fi min

(
log

1

pi
, log n

)
.

We now show that with high probability, the total number of levels in the skip list is at mostO (log n).

Lemma B.6. With probability at least 0.99, the total number of levels in the skip list is at most
10 + log n.

Proof. For each level ℓ, let nℓ be the number of items i ∈ [n] that are deterministically promoted to
exactly level ℓ, i.e., pi ∈

[
2ℓ−1
n , 2ℓ

n

)
. Note that for each fixed i ∈ [n], the highest level it remains is a

geometric random variable with parameter 1
2 , beyond the highest level at which it is deterministically

placed. This is because the item is promoted to each higher level with probability 1
2 . Hence with

probability 1− 1
2k

, i is not placed at least k levels above its highest deterministic placement. Therefore,
the probability that an item at level ℓ is placed at level 10 + log n is at most 2ℓ

1024n . Since no fixed
i will have predicted frequency more than 1, then no item will be deterministically placed at level
2 + log n. Hence by a union bound over all ℓ ∈ [2 + log n], the probability that an item is placed at
level 10 + log n is at most

2+logn∑
ℓ=0

nℓ · 2ℓ

1024n
.

On the other hand, we have
∑n

i=1 pi = 1, so that

2+logn∑
ℓ=0

nℓ · 2ℓ ≤ 2n.

Therefore, with probability at least 0.99, the total number of levels in the skip list is at most
10 + log n.

Thus, putting together Lemma B.5 and Lemma B.6, we get:

Theorem 2.1. For each i ∈ [n], let fi and pi be the proportion of true and predicted queries to item
i. Then with probability at least 0.99 over the randomness of the construction of the skip list, the
expected search time over the choice of queries at most 20 + 2

∑n
i=1 fi ·min

(
log 1

pi
, log n

)
.

B.2 NEAR-OPTIMALITY

We first recall the construction of a Huffman code, a type of variable-length code that is often used
for data compression. The encoding for a Huffman is known to be an optimal prefix code and can be
represented by a binary tree, which we call the Huffman tree (Huffman, 1952).

To construct a Huffman code, we first create a min-heap priority queue that initially contains all the
leaf nodes sorted by their frequencies, so that the least frequent items have the highest priority. The
algorithm then iteratively removes the two nodes with the lowest frequencies from the priority queue,
which become the left and right children of a new internal node that is created to represent the sum of
the frequencies of the two nodes. This internal node is then added back to the priority queue. This
process is continued until there only remains a single node left in the priority queue, which is then
the root of the Huffman tree.

17

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2025

A binary code is then assigned to the paths from the root to each leaf node in the Huffman tree, so
that each movement along a left edge in the tree corresponds to appending a 0 to the codeword, and
each movement along a right edge in the tree corresponds to appending a 1 to the codeword. Thus,
the resulting binary code for each item is the path from the root to the leaf node corresponding to the
item.

Huffman coding is a type of symbol-by-symbol coding, where each individual item is separately
encoded, as opposed to alternatives such as run-length encoding. It is known that Huffman coding
is optimal among symbol-by-symbol coding with a known input probability distribution (Huffman,
1952) and moreover, by Shannon’s source coding theorem, that the entropy of the probability
distribution is an upper bound on the expected length of a codeword of a symbol-by-symbol coding:

Theorem B.7 (Shannon’s source coding theorem). (Shannon, 2001) Given a random variable
X ∈ [n] so that X = i with probability fi, let L(X) denote the length of the codeword assigned to
X by a Huffman code. Then E [L(x)] ≥ H(f), where H(f) is the entropy of f .

We now prove our lower bound on the expected search time of an item drawn from a probability
distribution f .

Theorem 2.2. Given a random variable X ∈ [n] so that X = i with probability fi, let T (X) denote
the search time for X in a skip list. Then E [T (x)] ≥ H(f), where H(f) is the entropy of f .

Proof. Let L be a skip list. We build a symbol-by-symbol encoding using the search process in L.
We begin at the top level. At each step, we either terminate, move to the next item at the current
level, or move down to a lower level. Similar to the Huffman coding, we append a 0 to the codeword
when we move down to a lower level, and we append a 1 to the codeword when we move to the
next item at the current level. Now, the search time for an item x in L corresponds to the length
of the codeword of x in the symbol-by-symbol encoding. By Theorem B.7 and the optimality of
Huffman codes among symbol-by-symbol encodings, we have that E [T (x)] ≥ H(f), where f is the
probability distribution vector of x.

B.3 ZIPFIAN DISTRIBUTION

In this section, we briefly describe the implications of our data structure to Zipfian distributions.

We first recall the following entropy upper bound for a probability distribution with support at most
n.

Theorem B.8. (Cover, 1999) Let f be a probability distribution on a support of size [n]. Then
H(f) ≤ log n.

We can then upper bound the entropy of a probability vector that satisfies a Zipfian distribution with
parameter s.

Lemma 2.3. Let s, z > 0 be fixed constants and let f be a frequency vector such that fi = z
is for all

i ∈ [n]. If s > 1, then H(f) = O (1) and otherwise if s ≤ 1, then H(f) ≤ log n.

Proof. Since f is a probability distribution on the support of size [n], then by Theorem B.8, we have
that H(f) ≤ log n. Thus, it remains to consider the case where s > 1. Since z ≤ 1, we have

h(f) =

n∑
i=1

z

is
log

is

z

≤ s

n∑
i=1

log i

is
.

Note that there exists an integer γ > 0 such that for i > γ, we have log i
is < 1

i(s+1)/2 . Since s > 1,
then s+1

2 > 1 and thus
n∑

i=γ

1

i(s+1)/2
≤

∞∑
i=1

1

i(s+1)/2
= O (1) .

18

972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2025

Hence,

h(f) ≤ s

γ−1∑
i=1

log i

is
+ s

∞∑
γ

log i

is
= O (1) .

By Theorem 2.1 and Lemma 2.3, we have the following statement about the performance of our
learning-augmented skip list on a set of search queries that follows a Zipfian distribution.

Corollary 2.4. With high probability, the expected search time on a set of queries that follows a
Zipfian distribution with exponent s is at most O (1) for s > 1 and O (log n) for s ≤ 1.

B.4 NOISY ROBUSTNESS

In this section, we show that our learning-augmented skip list construction is robust to somewhat
inaccurate oracles. Let f be the true-scaled frequency vector so that for each i ∈ [n], fi is the
probability that a random query corresponds to i. Let p be the predicted frequency vector, so that for
each i ∈ [n], pi is the predicted probability that a random query corresponds to i. For α, β ∈ (0, 1),
we call an oracle (α, β)-noisy if for all i ∈ [n], we have pi ≥ α · fi − β.

Lemma 2.5. Let α be a constant and β < α
4n . A learning-augmented skip list with a set of (α, β)-

noisy predictions has performance that matches that of a learning-augmented learned with a perfect
oracle, up to an additive constant.

Proof. Suppose the total number of levels is at most C + log n for some constant C > 0. Note
that this occurs with a high probability for a learning-augmented skip list with a set of (α, β)-noisy
predictions. For each i ∈ [n], let fi be the proportion of queries to item i and let pi be the predicted
proportion of queries to item i. By Lemma B.5, the expected search time at most

2C + 2

n∑
i=1

fi ·min

(
log

1

pi
, log n

)
.

Since the oracle is (α, β)-noisy then we have pi ≥ α · fi − β for all i ∈ [n].

We first note that in the expected search time for i is proportional to min
(
log 1

fi
, log n

)
. Thus, for

expected search time for item i, it suffices to assume fi >
1
2n for all i.

Observe that for fi > 1
2n and β < α

4n , then pi ≥ α · fi − β implies

pi ≥ α · fi − β ≥ α · fi −
α

4n
≥ α

2
· fi.

Hence, we have 1
pi
≤ 2

α ·
1
fi

so that the expected search time for item i is at most

2C + 2 ·min

(
log

1

fi
+ log

2

α
, log n

)
.

Therefore, the expected search time is at most

2C + 2

n∑
i=1

fi ·min

(
log

1

pi
, log n

)
≤ 2C + 2

n∑
i=1

(
fi ·min

(
log

1

fi
, log n

)
+ fi · log

2

α

)

≤ 2C + 2 log
2

α
+ 2

n∑
i=1

fi ·min

(
log

1

fi
, log n

)
.

Since the perfect oracle would achieve runtime 2C +2
∑n

i=1 fi ·min
(
log 1

fi
, log n

)
, then it follows

that a learning-augmented skip list with a set of (α, β)-noisy predictions has performance that matches
that of a learning-augmented learned with a perfect oracle, up to an additive constant.

19

1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2025

C MISSING PROOFS FROM SECTION 3

First, we will show that the expected depth of a given query depends on the probability of that query,
and that high frequency queries must be found close to the root of our tree.

Lemma C.1. Suppose [∆]d is the space of possible input points and queries. Let N = ∆d and pi be
the probability that a random query is made to i ∈ [N], given the natural mapping between [N] and

[∆]d. Then the level at which i resides in the tree is at most O
(
log 1

pi

)
.

Proof. First, consider only the high-frequency query points and data points for which we base our
construction off.

In constructing the learning-augmented KD tree, we balance the contents of the children nodes such
that a query to that node has a probability of 1

2 of belonging to each of the children. Therefore, at a
depth of d, the probability of belonging to either child is 1

2d
. In particular, a query i with probability

pi at a depth d must satisfy pi >
1
2d

. Thus, we have that the depth of i is O
(
log 1

pi

)
, as desired.

Since the lowest probability of a high-frequency data point is 1
n2 , this tree must have a depth of at

most 2 log n.

Now, consider a low-frequency data point, which we add to the bottom of the tree. By construction,
the learned point of our tree has depth at most 2 log n. Then, when inserting the additional data points
as a balanced KD tree, we can accumulate at most an additional depth of log n. Note, p < 1

n2 implies

log n < log 1
p . Thus, this low-frequency data point will have a depth of at most 3 log n = O

(
log 1

p

)
,

as desired.

Similarly, if i is not a data point and is low frequency, we achieve the same bound of O
(
log 1

p

)
. In

this case, we simply terminate at a leaf node and determine that the desired query is not in the dataset.

In summary, any query which has high frequency can be found in O
(
log 1

p

)
time. Low-frequency

data points can similarly be found in O
(
log 1

p

)
time, and low frequency queries can be determined

to not exist in O
(
log 1

p

)
time.

Lemma C.2. Suppose [∆]d is the space of possible input points and queries. Let N = ∆d and pi be
the probability that a random query is made to i ∈ [N], given the natural mapping between [N] and
[∆]d. Then the level at which i resides in the tree is at most O (log n).

Proof. This follows directly from the analysis in Llemma C.1.

Now, we have demonstrated the the depth of a given query point i is bounded by both O (log n)

and O
(
log 1

pi

)
. Using this fact, we will now show that the expected query time of our algorithm is

bounded by both the entropy of the dataset H(p) in addition to log n.

We now analyze the performance of our learning-augmented KD tree.

Theorem 3.1. Suppose [∆]d is the space of possible input points and queries. Let N = ∆d and
pi be the probability that a random query is made to i ∈ [N], given the natural mapping between
[N] and [∆]d. Let p = (p1, . . . , pN) ∈ RN be the probability vector and H(p) be its entropy.
Then given a set of n input points, the expected query time for the tree T created by Algorithm 3 is
O (min(H(p), log n)).

Proof. Following C.1, the points i in [∆]d with non-negligible probability pi ≥ 1
n2 are guaranteed to

exist in the learning-augmented KD tree T with depth at most log 1
pi

. For points in the dataset [n]
with negligible probability, they exist in the tree and have depth in O (log n). For all other points not
contained in the KD tree, the query will terminate at a depth of O (log n).

20

1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

Under review as a conference paper at ICLR 2025

For any point i in [∆]d, the depth that a query to i will terminate in the tree is

Depth(i) = O
(
min

(
log

1

pi
, log n

))
. (1)

Then, the expected search time T is the expected depth of a given point,

E [T] =
∑

i∈[∆]d

pi ·Depth(i) =
∑

i∈[∆]d

pi ·O
(
min

(
log

1

pi
, log n

))
= O (min(H(p), log n)) . (2)

Thus, we have shown that the expected query time of our algorithm is bounded by the entropy of the
dataset. In particular, when the dataset has a highly skew distribution, H(p) can be far less than log n.

C.1 NEAR-OPTIMALITY

Near-optimality of our learning-augmented KD trees uses a similar argument to the proof of the
near-optimality of our learning-augmneted skip lists. In particular, we again utilize Shannon’s source
coding theorem from Theorem B.7. We then have the following:
Theorem 3.2. Given a random variable X ∈ [n] so that X = i with probability fi, let D(X) denote
the depth for X in a learning-augmented KD tree. Then E [D(X)] ≥ H(f), where H(f) is the
entropy of f .

Proof. In a learning-augmented KD tree, the search path to an element i can be encoded as a 0− 1
codeword, with entries indicating whether the lower or upper branch is taken at each node traversal.
Moreover, the length of this codeword in the symbol-by-symbol encoding corresponds to the depth
of element i. Then, by Theorem B.7 and the optimality of Huffman codes in symbol-by-symbol
encodings, we have that E [D(X)] ≥ H(f), as desired.

C.2 NOISY ROBUSTNESS

In this section, we analyze the performance of the learning-augmented KD tree under noisy data
conditions.

Previously, we analyzed the performance of the learning-augmented KD-tree assuming access to a
perfect prediction oracle.

Now we analyze the performance with a noisy oracle. That is, for each i ∈ [∆]d there is a true-scaled
frequency fi that the point will be queried and that pi is a prediction made by the noisy oracle.

First, we analyze the multiplicative robustness of the algorithm. In this case, the oracle predicts fi up
to some multiplicative constant α ∈ R+ such that fi = αpi.
Lemma C.3. Suppose [∆]d is the space of possible input points and queries. Let N = ∆d and pi be
the probability that a random query is made to i ∈ [N] during tree construction. Suppose during
runtime that the true probability of querying i is fi = αpi for some α ∈ R+. Then the level at which
i resides in the tree is at most O

(
log 1

fi
+ log 1

α

)
.

Proof. If α ≤ 1, this is immediate. If this is the case, in construction we expected i to be queried
more often than it actually is, so our construction placed the point i higher in the tree than is necessary.
Thus, the depth is at most the previously shown 1

pi
≤ 1

fi
.

Now, suppose α > 1. In this case, we must have placed i deeper in the tree than we should have, as
our construction frequency is less than the true query frequency. Then, as in C.1, the depth of i is
O
(
log 1

pi

)
. Now, we have that

O
(
log

1

pi

)
= O

(
log

α

fi

)
= O

(
log

1

fi
+ logα

)
. (3)

21

1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187

Under review as a conference paper at ICLR 2025

Having shown multiplicative robustness of the learning-augmented KD tree we next analyze the
additive-multiplicative robustness of the method. An oracle is (α, β)-noisy if the prediction satisfies
pi ≥ α fi − β for constants α, β ∈ (0, 1).
Lemma 3.4. Let α be a constant and let β ≤ α

n2 . Then the query time for our learning-augmented
KD tree with (α, β)-noisy prediction matches the performance of a learning-augmented KD tree
constructed using a perfect oracle up to an additive constant.

Proof. From Lemma C.1 we have that the depth of a point i in the learning-augmented KD tree is
O
(

1
pi

)
where pi is the predicted frequency of i.

Then, with an (α, β)-noisy oracle we have that the prediction is bounded from below by pi ≥ α fi−β.
As i is a point in the tree, we can assume that the true-scaled frequency fi has a lower-bound of 1/n2.

By choosing β ≤ α/n2 we ensure that the predicted pi is always nonnegative. Then, let β = α/2n2

pi ≥ α fi − β ≥ α fi −
α

2n2
≥ α

2
fi (4)

Then, applying Lemma C.1 again

O
(
log

1

pi

)
= O

(
log

2

αfi

)
= O

(
log

1

fi
+ log

1

α

)
. (5)

D ADDITIONAL EMPIRICAL EVALUATIONS

D.1 SKIP LISTS

In this section, we perform empirical evaluations comparing the performance of our learning-
augmented skip list to that of traditional skip lists, on both synthetic and real-world datasets. Firstly,
we compare the performance of traditional skip lists with our learning-augmented skip lists on
synthetically generated data following Zipfian distributions. The proposed learning-augmented skip
lists are evaluated empirically with both synthetic datasets and real-world internet flow datasets from
the Center for Applied Internet Data Analysis (CAIDA) and AOL. In the synthetic datasets, a diverse
range of element distributions, which are characterized by the skewness of the datasets, are evaluated
to assess the effectiveness of the learning augmentation. In the CAIDA datasets, the α factor is
calculated to reflect the skewness of the data distribution.

The metrics of performance evaluations include insertion time and query time, representing the total
time it takes to insert all elements in the query stream and the time it takes to find all elements in the
query stream using the data structure, respectively.

The computer used for benchmarking is a Lenovo Thinkpad P15 with an intel core i7-
11800H@2.3GHz, 64GB RAM, and 1TB of Solid State Drive. The tests were conducted in a
Ubuntu 22.04.3 LTS OS. GNOME version 42.9.

D.1.1 SYNTHETIC DATASETS

In the synthetic datasets, both the classic and augmented skip lists are tested against different element
counts and α values. In terms of the distribution of the synthetic datasets, the uniform distribution
and a Zipfian distribution of α between 1.01 and 2 with query counts up to 4 million are evaluated. It
is worth noting that the number of unique element queries could vary for the same query count at
different α values in the Zipfian distribution, which may affect the insertion time.

Table 1 shows the speed-up factor, defined as the time taken by the augmented skip list over the classic
skip list for the same query stream. We can observe a progressive improvement in the performance of
our augmented skip lists as the dataset skewness increases. It also suggests that our augmented skip
list will perform at least as good as the traditional skip list and will outperform a traditional skip list
by a factor of up to 7 times depending on the skewness of the datasets.

22

1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241

Under review as a conference paper at ICLR 2025

Table 1: Speed up factor of augmented skip list over classic skip list under different synthetic
distributions

Distribution
Query size of synthetic data (unit: thousand)

0.5 10 100 500 1000 1500 2000 2500 3000 3500 4000 Average

uniform 3.02 0.84 1.01 1.05 1.11 1.14 1.17 1.21 1.22 1.42 1.4 1.33
α=1.01 3.63 2.6 1.04 1.24 1.03 1.21 1.2 1.14 1.3 1.18 1.3 1.53
α=1.25 3.28 3.74 5.87 2.89 2.47 3.21 2.95 3.34 3.55 3.16 3.12 3.42
α=1.5 2.42 8.97 6.93 6.54 7.99 5.83 4.65 3.8 4.92 5.34 5.93 5.76
α=1.75 12.43 10.4 5.76 9.78 6.76 7.13 7.31 7.09 6.63 5.07 6.98 7.76
α=2 8.19 2.5 5.56 10.1 4.47 3.91 7.26 5.33 9.29 7.65 5.55 6.35

Table 2: Node count for each distribution configuration in the 4 million dataset

α Unique node count

1.01 2886467
1.25 259892
1.75 8386

2 2796

Figure 6 shows that the insertion time decreases with more skewed datasets for the same size of the
query stream. This is attributed to the reduced number of nodes in the datasets, as shown in Table 2.

The query time of augmented skip lists is also reduced greatly compared to the classic skip lists as
shown in Figure 7.

(a) Uniform Distribution (b) α = 1.25

(c) α = 1.5 (d) α = 2

Figure 6: Insertion time for synthetic datasets with a uniform distribution and under different α
values of the Zipfian distribution for both classic and augmented skip lists. This figure illustrates
the insertion time on the synthetic data for both the uniform distribution and the Zipfian distribution
at different α values. Generally, higher skewness of the datasets results in less insertion time when
using the augmented structure. The decrease in insertion time is proportional to the increase in the α
value, as a higher α value leads to a reduction in the number of unique nodes, as illustrated in Table 2.

In addition, we conduct experiments to compare the performance of standard binary
search trees and standard skip lists. In particular, we generate datasets of size n ∈
{5000, 10000, 15000, 20000, 25000, 30000, 35000, 40000, 45000, 50000, }. For each fixed value of
n, each element of the dataset is generated uniformly at random in [2n], i.e., uniformly at random
from {1, 2, . . . , 2n}. Because the dataset is generated uniformly at random, then learning-augmented
data structures will perform similar to oblivious data structures. We measure the construction time of

23

1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295

Under review as a conference paper at ICLR 2025

(a) Uniform Distribution (b) α = 1.25

(c) α = 1.5 (d) α = 2

Figure 7: Query time for synthetic datasets with a uniform distribution and under different α values
of the Zipfian distribution for both classic and augmented skip lists. This figure compares the query
time of the classic and augmented skip lists for both uniform distribution and Zipfian distribution at
various α values. Similar to insertion, the query time is significantly reduced under different query
sizes with the implemented augmentation. The performance enhancement is especially pronounced
for the high skewness of the dataset.

the data structures, based on the input dataset. Our results demonstrate that as expected, skip lists
perform significantly better than balanced binary search trees across all values of n, due to the latter’s
necessity of constantly rebalancing the data structure. In fact, skip lists performed almost 4× better
than BSTs in some cases, e.g., n = 20000. We illustrate our results in Figure 8.

D.1.2 AOL DATASET

The AOL dataset (G. Pass, 2006) features around 20M web queries collected from 650k users over
three months. The distribution of the queries is shown in Figure 9. The AOL dataset is a less skewed
dataset than CAIDA with an alpha value of 0.75.

Figure 9 shows the distribution of the AOL queries with an estimated alpha value of 0.75. The AOL
dataset resembles more to a slightly skewed uniform distribution with very few highly frequent items,
which accounts for a lower improvement as in the case of AOL shown in Figure 10. The total number
of queries for items with higher than 1000 frequency accounts for only 5% of the total number of
queries for the AOL datasets. The learning-augmented skip list still outperforms the traditional skip
list on this slightly skewed dataset. This result is also in line with the results from the synthetic data
shown in Table 1 where lower alpha values have resulted in a lower speedup factor.

D.2 KD TREES

For KD Trees, first describe our methodology for evaluating our data structure on synthetic data. We
then describe our empirical evaluations on real-world datasets.

The computer used for KD tree benchmarking is a desktop machine with an Intel Core i9-14900KF@
3200MHz, with 64GB RAM, and 2TB of Solid State Drive. The tests were conducted in Windows
10 Enterprise, version 10.0.19045 Build 19045.

24

1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349

Under review as a conference paper at ICLR 2025

Figure 8: BST vs skip list construction times

(a) AOL data distribution (b) Zipfian fit (α = 0.75)

Figure 9: AOL datasets distribution characterization. This figure illustrates how the α value of 0.75
is obtained for the AOL dataset. The AOL dataset shows a much smaller α value compared to the
CAIDA dataset so AOL almost resembles a uniform distribution despite very few high-frequency
nodes. This also explains why the performance of the augmented skip list is close to the classic
implementation.

D.2.1 SYNTHETIC DATASETS WITH PERFECT KNOWLEDGE

First, consider a dataset with a Zipfian distribution. In order to construct this dataset, we first
select n unique data points in [∆]d uniformly. We then generate Zipfian frequencies, fi ≈ 1

(i+b)a ,
and randomly pair the frequencies to the data points to serve as both the construction and query
frequencies. We construct either a traditional KD tree, or our learned KD tree on this dataset. Then,
we evaluate the performance of querying by sampling the known datapoints with probabilities given
by their Zipfian probabilities.

25

1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403

Under review as a conference paper at ICLR 2025

(a) Insert time on AOL (b) Query time on AOL

Figure 10: Insertion and query time on AOL of classic and augmented skip lists

In Table 3, we use a Zipfian distribution with parameters a = 1 and b = 2.7. This data demonstrates
that our method outperforms a traditional KD tree, given that the Zipfian distribution has the given
parameters. In Figure 11, we vary the Zipfian parameters of our dataset. As expected, our learned
KD tree performance increases with how skew the distribution is. Moreover, we find that our method
outperforms the traditional KD tree on all tested Zipfian distributions.

type dim const time avg query(s) avg query depth
traditional 1 1.267E-01 2.645E-05 1.330E+01
learned 1 2.387E-01 2.181E-05 1.086E+01
traditional 2 1.266E-01 2.709E-05 1.341E+01
learned 2 3.232E-01 2.221E-05 1.086E+01
traditional 3 1.253E-01 2.700E-05 1.334E+01
learned 3 3.981E-01 2.264E-05 1.097E+01
traditional 4 1.185E-01 2.724E-05 1.336E+01
learned 4 4.549E-01 2.256E-05 1.089E+01
traditional 5 1.300E-01 2.743E-05 1.336E+01
learned 5 5.286E-01 2.296E-05 1.096E+01
traditional 10 1.277E-01 2.896E-05 1.340E+01
learned 10 8.642E-01 2.403E-05 1.091E+01
traditional 20 1.295E-01 3.121E-05 1.344E+01
learned 20 1.543E+00 2.564E-05 1.085E+01
traditional 40 1.361E-01 3.558E-05 1.340E+01
learned 40 2.911E+00 2.902E-05 1.078E+01

Table 3: We construct and query KD trees with our method and with a traditional KD tree on synthetic
datasets of various dimensionality. We construct our tree on 10k points, and query 1M times. We find
that, independent of the data dimensionality, our method produces lower average query depths.

D.2.2 SYNTHETIC DATASETS WITH NOISY KNOWLEDGE

In reality, it is rarely the case that we have perfect knowledge in constructing a model. In order
to evaluate the performance of our method on noisy data, we create a synthetic dataset with noisy
training information.

As before, we generate world points and assign them Zipfian weights. When constructing the tree,
each weight us updated to be Mpi +A, where M and A are drawn from uniform distributions. This
new noisy distribution is normalized in order to form a valid probability distribution. Then, points are
queried many times with their ground truth Zipfian probabilities. For the fixed Zipfian distribution
with a = 5, b = 2, we plot the effects of different ranges of M and A to demonstrate the effect noise
has in Fig. 4. This figure demonstrates that, even with moderate amounts of noise, our method still
outperforms a traditional KD tree. Moreover, our method still remains on par with the traditional KD
tree when significant noise is present, due to our robustness guarantees.

26

1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457

Under review as a conference paper at ICLR 2025

Figure 11: We generate datasets of 212 points in 3-dimentional space, with frequencies given by
a Zipfian distribution with parameters a, b. We then query the tree 214 times, with point queries
selected by the same Zipfian distribution. We repeat this process 32 times, and report the median of
the average query depth across all runs. We find that our method is able to outperform the traditional
KD tree method across all tested Zipfian distributions. Moreover, our performances increases as a
increases and b decreases, making the Zipfian distribution most skew. Notably, when a = 0, all points
have uniform weights, at which point our method performs equivalently to the traditional KD tree.

D.2.3 REAL-WORLD DATASETS

In addition to evaluating our method on synthetic data, we also evaluate results on real-world data.

First, we consider n-grams in various languages. We test on a pre-processed subset of the Google
N-Gram dataset (Goog; Google, 2012).

In order to evaluate our method, we convert an n-gram to a vector in Zn with each entry indexing the
words in the n-gram. We construct the learning-augmented and traditional KD trees, and show the
performance of lookup with queries weighted by their ground truth frequency in Table 4. In all cases,
we find that the learning-augmented KD tree outperforms the traditional KD tree at average lookup
depth.

Additionally, we test our method on a dataset of neuron activity, as provided by Aitchison et al.
(2014), which has shown to be Zipfian. This dataset consists of vectors in {0, 1}30, indicating which
of 30 cells fire at agiven time. As in their work, we bin in 20ms increments when constructing these
vectors. We similarly ignore the time of observations, and build our learning-augmented KD tree with
frequencies given by the rate of appearance of vectors. We find that, when querying with probabilities
equivalent to the training distribution, a traditional KD tree has an average query depth of 23.7. Using
our learning-augmented KD tree, however, we are able to achieve an average query depth of 14.9.

27

1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511

Under review as a conference paper at ICLR 2025

Dataset Traditional Avg Query Depth Learned Avg Query Depth
2grams chinese simplified 14.8388 12.1144
2grams english-fiction 14.216 11.6232
2grams english 14.7253 11.6647
2grams french 14.5123 11.5999
2grams german 13.9473 11.7066
2grams hebrew 13.5322 12.0007
2grams italian 14.5231 11.8027
2grams russian 14.5769 11.8082
2grams spanish 15.1763 11.6582
3grams chinese simplified 12.343 11.4211
3grams english-fiction 13.5264 11.3183
3grams english 15.002 11.3632
3grams french 14.9235 11.3529
3grams german 14.129 11.4285
3grams hebrew 13.0887 9.6663
3grams italian 13.3839 11.3616
3grams russian 15.2475 11.1415
3grams spanish 15.3855 11.3635
4grams chinese simplified 11.5823 9.8661
4grams english-fiction 12.5141 9.7589
4grams english 13.4464 9.7793
4grams french 12.6383 9.835
4grams german 12.3911 9.8765
4grams hebrew 9.3198 7.4493
4grams italian 11.3456 9.6834
4grams russian 13.2406 9.6274
4grams spanish 12.9712 9.8191
5grams chinese simplified 11.5373 9.8982
5grams english-fiction 12.8027 9.8069
5grams english 12.5607 9.5967
5grams french 12.402 9.835
5grams german 11.6912 9.8432
5grams hebrew 7.097 6.2143
5grams italian 11.3061 9.7771
5grams russian 12.885 9.6805
5grams spanish 12.111 9.8079

Table 4: We construct traditional and learning-augmented KD trees for n-grams for various languages,
and of various lengths n. Our method outperforms a traditional KD tree in all cases.

28

	Introduction
	Our Contributions

	Learning-Augmented Skip Lists
	Learning-Augmented KD Trees
	Empirical Evaluations
	Additional Related Works
	Missing Proofs from Section 2
	Expected Search Time
	Near-Optimality
	Zipfian Distribution
	Noisy Robustness

	Missing Proofs from Section 3
	Near-Optimality
	Noisy Robustness

	Additional Empirical Evaluations
	Skip Lists
	Synthetic Datasets
	AOL Dataset

	KD Trees
	Synthetic Datasets with Perfect Knowledge
	Synthetic Datasets with Noisy Knowledge
	Real-World Datasets

