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ABSTRACT

We study the integration of machine learning advice to improve upon traditional
data structure designed for efficient search queries. Although there has been recent
effort in improving the performance of binary search trees using machine learning
advice, e.g., Lin et. al. (ICML 2022), the resulting constructions nevertheless suffer
from inherent weaknesses of binary search trees, such as complexity of maintaining
balance across multiple updates and the inability to handle partially-ordered or
high-dimensional datasets. For these reasons, we focus on skip lists and KD trees
in this work. Given access to a possibly erroneous oracle that outputs estimated
fractional frequencies for search queries on a set of items, we construct skip lists
and KD trees that provably provides the optimal expected search time, within nearly
a factor of two. In fact, our learning-augmented skip lists and KD trees are still
optimal up to a constant factor, even if the oracle is only accurate within a constant
factor. We also demonstrate robustness by showing that our data structures achieves
an expected search time that is within a constant factor of an oblivious skip list/KD
tree construction even when the predictions are arbitrarily incorrect. Finally, we
empirically show that our learning-augmented search data structures outperforms
their corresponding traditional analogs on both synthetic and real-world datasets.

1 INTRODUCTION

As efficient data management has become increasingly crucial, the integration of machine learning
(ML) has significantly improved the design and performance of traditional algorithms for many big
data applications. Kraska et al. (2018) first showed that ML could be incorporated to create data
structures that support faster look-up operations while also saving an order-of-magnitude of memory
compared to optimized data structures oblivious to such ML heuristics. Subsequently, learning-
augmented algorithms (Mitzenmacher & Vassilvitskii, 2020) have been shown to achieve provable
worst-case guarantees beyond the limitations of oblivious algorithms for a wide range of settings. For
example, ML predictions have been utilized to achieve more efficient data structures (Mitzenmacher,
2018; Lin et al., 2022), algorithms with faster runtimes (Dinitz et al., 2021; Chen et al., 2022c;
Davies et al., 2023), mechanisms with better accuracy-privacy tradeoffs (Khodak et al., 2023), online
algorithms with better performance than information-theoretic limits (Purohit et al., 2018; Gollapudi
& Panigrahi, 2019; Lattanzi et al., 2020; Wang et al., 2020; Wei & Zhang, 2020; Bamas et al., 2020;
Anand et al., 2020; Almanza et al., 2021; Anand et al., 2021; Im et al., 2021; Lykouris & Vassilvitskii,
2021; Aamand et al., 2022; Anand et al., 2022; Azar et al., 2022; Grigorescu et al., 2022; Khodak
et al., 2022; Jiang et al., 2022; Scully et al., 2022; Antoniadis et al., 2023b;a; Shin et al., 2023),
streaming algorithms with better accuracy-space tradeoffs (Hsu et al., 2019; Indyk et al., 2019;
Jiang et al., 2020; Chen et al., 2022b;a; Li et al., 2023), and polynomial-time algorithms beyond
hardness-of-approximation limits, e.g., NP-hardness (Ergun et al., 2022; Nguyen et al., 2023).

In this paper, we focus on the consolidation of ML advice to improve data structures for the fun-
damental problem of searching for elements among a large dataset. For this purpose, tree-based
structures stand out as a popular choice among other structures, particularly for their logarithmic
average performance. However, these structures often have weaknesses for specific use cases that
make them sub-optimal for various applications, which we now discuss.

Skip lists. One weakness of tree-based structures is that they need to be balanced for optimal
performance, and thus their effectiveness is often closely tied to the order of element insertions. For
example, the motivation of Lin et al. (2022) to study learning-augmented binary search trees noted that
although previous results already characterized the statically optimal tree if the underlying distribution
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is known (Knuth, 1971; Mehlhorn, 1977), these methods do not handle dynamic insertion operations.
In contrast, skip lists, introduced by Pugh (1990a), maintain balance probabilistically, offering a
simpler implementation while delivering substantial speed enhancements (Pugh, 1990b). Skip lists
are generally built iteratively in levels. The bottom levels of the skip list is an ordinary-linked list, in
which the items of the dataset are organized in order. Each higher level serves to accelerate the search
for the lower levels, by storing only a subset of the items in the lower levels, also as an ordered link
list. Traditional skip lists are built by promoting each item in a level to a higher level randomly with a
fixed probability p ∈ (0, 1).

Querying for a target element begins at the first element in the highest level and continues by searching
along the linked list in the highest level until finding an item whose value is at least that of the target
element. If the found item is greater than the target element, the process is repeated after returning to
the previous element and dropping to a lower list. It can be shown that the expected number of steps
in the search is O

(
1
p log1/p n

)
so that p serves as a trade-off parameter between the search time and

the storage costs.

In many modern applications, skip lists are used because of their excellent search runtime and their
space efficiency. Skip lists are often preferred over binary search trees due to their simplicity of
implementation, their support for efficient range query, and their amenability to concurrent processes
(Shavit & Lotan, 2000; Lindén & Jonsson, 2013), high efficiency for dynamic datasets (Ge & Zdonik,
2008; Pittard & Tharp, 2010), network routing (Hu et al., 2003; Avin et al., 2020), and real-time
analytics (Basin et al., 2020; Zhou et al., 2023). Thus while binary search trees have been a long-
standing choice for querying ordered elements, skip lists offer a simpler, more efficient, and in some
cases, necessary alternative.

KD trees. Another weakness of tree-based data structures is that they generally require the data to
obey an absolute ordering. However, in many cases, e.g., geometric applications or multidimensional
data, the input points can only be partially ordered. Thus in 1975, KD trees, which stand for k-
dimensional trees, were proposed as a more efficient alternative to binary search trees for searching
in higher-dimensional spaces in procedures such as nearest neighbor search or ray tracing for
applications in computational geometry or computer vision. A KD tree works by picking a data point
and splitting along some spatial dimension to partition the space. This process is repeated until every
data point is included in the tree, creating a hierarchical tree structure that enables quick access to
specific data points or ranges within the dataset.

Skewed distributions. Traditional search data structures treat each element equally when promoting
the elements to higher levels. This balancing behavior facilitates good performance in expectation
when a query to the skip list is equally likely to be any dataset element. On the other hand, this
behavior may limit the performance of the data structure when the incoming queries are from an
unbalanced probability distribution.

Real-world applications can feature a diverse range of distribution patterns. One particularly common
distribution is the Zipfian distribution, which is a probability distribution that is a discrete counterpart
of the continuous Pareto distribution, and is characterized by the principle that a small number of
events occur very frequently, while a large number of events occur rarely.

In a Zipfian distribution, the frequency of an event N(k;α,N) is inversely proportional to its rank k,
raised to the power of α (where α is a positive parameter), in a dataset of N elements. In particular,
we have N(k;α,N) = 1/kα∑N

n=1(1/n
α)

. The value of α determines the steepness of the distribution so
that a smaller α value, i.e., closer to 0, makes it more uniform, while a larger α increases skewness.

Zipfian distributions provide a simple means for understanding phenomena in various fields involving
rank and frequency, ranging from linguistics to economics, and from urban studies to information tech-
nology. Indeed, they appear in many applications such as word frequencies in natural language (Wang
& Wang, 2016; Blocki et al., 2018), city populations (Gabaix, 1999; Vitanov & Ausloos, 2015),
biological cellular distributions (Lazzardi et al., 2023), income distribution (Sandmo, 2015), etc.

Unfortunately, although Zipfian distributions are common in practice, their properties are generally
not leveraged by traditional search data structures, which are oblivious to any information about
the query distributions. To improve this performance bottleneck, we propose the augmentation of
traditional skip lists and KD trees with “learned” advice, which (possibly erroneously) informs the
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data structure in advance about some useful statistics on the incoming queries. Although we model
the data structure as having oracle access to the advice, in practice, such advice can often easily be
acquired from machine learning heuristics trained for these statistics.

1.1 OUR CONTRIBUTIONS

We propose the incorporation of ML advice into the design of skip lists and KD trees to improve upon
traditional data structure design. For ease of discussion in this section, we assume the items that may
appear either in the data set or the query set can be associated with an integer in [N ] := {1, . . . , N},
which also in the case of high-dimensional data, may be associated with a k-dimensional point. We
allow the algorithm access to a possibly erroneous oracle that, for each i ∈ [N ], outputs a quantity
pi, which should be interpreted as an estimation for the proportion of search queries that will be
made to the data structure for the item i. Hence, for each i ∈ [N ], we assume that pi ∈ [0, 1]
and p1 + . . . + pn = 1. Note that these constraints can be easily enforced upon the oracle as a
pre-processing step prior to designing the skip list or KD tree data structure. We also assume that the
oracle is readily accessible so that there is no cost for each interaction with the oracle. Consequently,
we assume the algorithm has access to the predicted frequency pi by the oracle for all i ∈ [N ]. On
the other hand, we view a sequence of queries as defining a probability distribution over the set of
queries, so that fi is the true proportion of queries to item i, for each i ∈ [N ]. Although fi is the
ground truth, our algorithms only have access to pi, which may or may not accurately capture fi.

Consistency for accurate oracles. We introduce construction for a learning-augmented skip list
and KD trees, which gives expected search time at most 2C + 2

∑n
i=1 fi ·min

(
log 1

pi
, log n

)
, for

some constant C > 0. On the other hand, we show that any skip list or KD tree construction requires
an expected search time of at least the entropy H(f) of the probability vector f . We recall that the
entropy H(f) is defined as H(f) =

∑n
i=1 fi · log

1
fi

.

Thus, our results indicate that within nearly a factor of two, our learning-augmented search data
structures are optimal for any distribution of queries, provided that the oracle is perfectly accurate.
Moreover, even if the oracle on each estimated probability pi is only accurate up to a constant factor,
then our learning-augmented search data structures are still optimal, up to a constant factor.

Implications to Zipfian distributions. We describe the implications of our results to queries that
follow a Zipfian distribution; analogous results hold for other skewed distributions, e.g., the geometric
distribution. It is known that if the r-th most common query/item has proportion z

rs for some s > 1,
then the entropy of the corresponding probability vector is a constant. Consequently, if the set of
queries follows a Zipfian distribution and the oracle is approximately accurate within a constant
factor, then the expected search time for an item by our search data structures is only a constant,
independent of the total number of items, i.e., O (1). By comparison, a traditional skip list or KD
tree will have expected search time O (log n).

Robustness to erroneous oracles. So far, our discussions have centered around an oracle that either
produces estimated probabilities pi such that pi = fi or pi is within a constant factor of fi. However,
in some cases, the machine learning algorithm serving as the oracle can be completely wrong. In
particular, a model that is trained on a dataset before a distribution change, e.g., seasonal trends
or other temporal shifts, can produce wildly inaccurate predictions. We show that our search data
structures are robust to erroneous oracles. Specifically, we show that our algorithms achieve an
expected search time that is within a constant factor of an oblivious skip list or KD tree construction
when the predictions are incorrect. Therefore, our data structure achieves both consistency, i.e.,
good algorithmic performance when the oracle is accurate, and robustness, i.e., standard algorithmic
performance when the oracle is inaccurate.

Empirical evaluations. Finally, we analyze our learning-augmented search data structures list on
both synthetic and real-world datasets. Firstly, we compare the performance of traditional skip lists
with our learning-augmented skip lists on synthetically generated data following Zipfian distributions
with various tail parameters. The dataset is created using four distinct α values ranging from 1.01
to 2, along with a uniform dataset. During the assessment, we query a specified number of n items
selectively chosen based on their frequency weights. Our results match our theory, showing that
learning-augmented skip lists have faster query times, with an average speed-up factor ranging from
1.33 up to 7.76, depending on the different skewness parameters.
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We then consider various datasets for internet traffic data, collected by AOL and by CAIDA, observed
over various durations. For each dataset, we split the overall observation time into an early period,
which serves as the training set for the oracle, and a later period, which serves as the query set for the
skip list. The oracle trained using the IP addresses in the early periods outputs the probability of the
appearance of a given node, and then the position of each node is determined.

Our learning-augmented skip list outperforms traditional skip lists with an average speed-up factor
of 1.45 for the AOL dataset and 1.63 for the CAIDA dataset. Moreover, the insertion time of our
learning-augmented skip list is comparable with that of traditional skip lists on both synthetic and
real-world datasets. We also observe that our history-based oracle demonstrates good robustness
against temporal change, with little shift in the dominant element set. The adopted datasets show that
the set of the top frequent elements does not change much across the time intervals in the datasets
used herein.

We similarly perform evaluations on our learning-augmented KD tree data structure. We evaluate our
KD tree data structure on Zipfian distributions with various tail parameters, and provide a heatmap of
average lookup times for elements. We find that for a large variety of Zipfian parameters, ourt method
is able to provides large improvements over traditional KD trees. We perform a similar experiment
under Zipfian distributions with added noise, and find our data structure still provides considerable
improvements in query time.

We additionally evaluate our method on point cloud samples taken from a 3D model. We bin these
samples in space, and create our learning-augmented KD tree on these binned samples. When
querying this tree with new binned point samples, we find a decrease in average query time as
compared to a traditional KD tree under the same conditions. In addition to this experiment,
we provide results on real world datasets of n-grams and neuron activation, and similarly find
improvements over traditional KD trees.

Concurrent and independent work. We mention that concurrent and independent of our work,
Zeynali et al. (2024) used similar techniques to achieve the same guarantees on the performance of
learning-augmented skip lists that are robust to erroneous predictions. However, they do not show
optimality for their learning-augmented skip lists and arguably perform less exhaustive empirical
evaluations. They also do not consider KD trees at all, which forms a significant portion of our
contribution, both theoretically and empirically.

Comparison to Lin et al. (2022). Our work was largely inspired by Lin et al. (2022), who observed
that classical literature characterizing statically optimal binary search trees (Knuth, 1971; Mehlhorn,
1977) no longer apply in the dynamic setting, as elements arrive iteratively over time. Thus, they
designed the construction of dynamic learning-augmented binary search trees (BSTs). Their analysis
for the expected search time utilized the notion of pivots within their trees and thus were somewhat
specialized to BSTs. Therefore, Lin et al. (2022) explicitly listed skip trees and advanced tree data
structures as interesting open directions. Qualitatively, our results are similar to Lin et al. (2022), as
are those of Zeynali et al. (2024). This is not quite altogether surprising because the main difference
between these data structures is not necessarily the search time, but the either the ease of construction
in the setting of skip lists, or the ability to handle multi-dimensional data in the setting of KD trees.

2 LEARNING-AUGMENTED SKIP LISTS

In this section, we describe our construction for a learning-augmented skip list and show various
consistency properties of the data structure. In particular, we show that up to a factor of two, our
algorithm is optimal, given a perfect oracle. More realistically, if the oracle provides a constant-factor
approximation to the probabilities of each element, our algorithm is still optimal up to a constant
factor.

We first describe our learning-augmented skip list, which utilizes predictions pi for each item i ∈ [n],
from an oracle. Similar to a traditional skip list, the bottom level of our skip list is an ordinary-linked
list that contains the sorted items of the dataset. As before, the purpose of each higher level is to
accelerate the search for an item, but the process for promoting an item from a lower level to a higher
level now utilizes the predictions. Whereas traditional skip lists promote each item in a level to a
higher level randomly with a fixed probability p ∈ (0, 1), we automatically promote the item i to
a level ℓ if its predicted frequency pi satisfies pi ≥ 2ℓ−1

n . Otherwise, we promote the item with
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probability 1
2 . This adaptation ensures that items with high predicted query frequencies will be

promoted to higher levels of the skip list and thus be more likely to be found quickly.

It is worth addressing a number of other natural approaches and their shortcomings. For example,
one natural approach would be to use the “median” frequency across the items as a threshold to
promote elements to higher levels. However, this promotion scheme is not ideal because computing
the median frequency at each time would either require an additional data structure for fast update
time or increase the insertion time. A potential approach to resolve this issue would be to use a
separate threshold probability is set for each level so that only nodes with a probability higher than
the corresponding threshold are promoted to the next level. However, this approach seems to result in
an unnecessarily large number of created levels if some item appears with small probability, e.g., 1

2n .
We can thus first filters out the low-frequency elements and place them remain on the bottom level of
the skip list and then proceed with using a separate threshold probability for each level. Unfortunately,
this approach utterly fails to even match the search time performance of oblivious skip lists when the
distribution is uniform, because all items will be in the same level, resulting in an expected search
time of Ω(n). Hence, we ensure that each element still has a chance of being promoted to higher
levels even when their probability is less than the corresponding threshold.

We again emphasize that due to the dynamic nature of the updates, existing results on statically
optimal binary search trees (Knuth, 1971; Mehlhorn, 1977) do not apply, as observed by Lin et al.
(2022). We give the full details in Algorithm 1. For the sake of presentation, we focus on the
setting where the queries are made to items in the dataset. However, we remark that our results
generalize to the setting where queries can be made on the search space rather than the items in the
dataset, provided the oracle is also appropriately adjusted to estimate the query distribution, using the
approach we describe in Section 3.

Algorithm 1 Learning-augmented skip list

Require: Predicted frequencies p1, . . . , pn for each item in [n]
Ensure: Learning-augmented skip list

1: Insert all items at level 0
2: for each ℓ do
3: if there are no items at level ℓ− 1 then
4: return the skip list
5: else
6: for each i ∈ [n] do
7: if predicted frequency pi ≥ 2ℓ−1

n then
8: Insert i into level ℓ
9: else if i is in level ℓ− 1 then

10: Insert i into level ℓ with probability 1
2

We first show an upper bound on the expected search time of our learning-augmented skip-list.

Theorem 2.1. For each i ∈ [n], let fi and pi be the proportion of true and predicted queries to item
i. Then with probability at least 0.99 over the randomness of the construction of the skip list, the
expected search time over the choice of queries at most 20 + 2

∑n
i=1 fi ·min

(
log 1

pi
, log n

)
.

To achieve Theorem 2.1, we first show that each item i ∈ [n] must be contained at some level
max (0, 1 + ⌊log(npi)⌋), depending on the predicted frequency pi of the item. We also show that
with high probability, the total number of levels in the skip list is at most O (log n). This allows us
to upper bound the expected search time for item i by at most 2C + 2min

(
log 1

pi
, log n

)
. We can

then analyze the expected search time across the true probability distribution fi. Putting these steps
together, we obtain Theorem 2.1.

We also prove a lower bound on the expected search time of an item drawn from a probability
distribution f for any skip list.

Theorem 2.2. Given a random variable X ∈ [n] so that X = i with probability fi, let T (X) denote
the search time for X in a skip list. Then E [T (x)] ≥ H(f), where H(f) is the entropy of f .
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Theorem 2.2 uses standard entropy arguments that have been previously used to lower bound the
optimal constructions of data structures such as Huffman codes. We next upper bound the entropy of
a probability vector that satisfies a Zipfian distribution with parameter s.
Lemma 2.3. Let s, z > 0 be fixed constants and let f be a frequency vector such that fi = z

is for all
i ∈ [n]. If s > 1, then H(f) = O (1) and otherwise if s ≤ 1, then H(f) ≤ log n.

By Theorem 2.1 and Lemma 2.3, we thus have the following corollary for the expected search time
of our learning-augmented skip list on a set of search queries that follows a Zipfian distribution.
Corollary 2.4. With high probability, the expected search time on a set of queries that follows a
Zipfian distribution with exponent s is at most O (1) for s > 1 and O (log n) for s ≤ 1.

Next, we show that our learning-augmented skip list construction is robust to somewhat inaccurate
oracles. Let f be the true-scaled frequency vector so that for each i ∈ [n], fi is the probability that a
random query corresponds to i. Let p be the predicted frequency vector, so that for each i ∈ [n], pi is
the predicted probability that a random query corresponds to i. For α, β ∈ (0, 1), we call an oracle
(α, β)-noisy if for all i ∈ [n], we have pi ≥ α · fi − β. Then we have the following guarantees for an
(α, β)-noisy oracle:
Lemma 2.5. Let α be a constant and β < α

4n . A learning-augmented skip list with a set of (α, β)-
noisy predictions has performance that matches that of a learning-augmented learned with a perfect
oracle, up to an additive constant.

To achieve Lemma 2.5, we parameterize our analysis in Theorem 2.1. Due to the guarantees of the
(α, β)-noisy oracles, we can write pi ≥ α

2 · fi, which allows us to express the search time log 1
pi

in
terms of the true entropy of the distribution and a small additive constant that stems from log 1

α . In
fact, we remark that even when the predictions are arbitrarily inaccurate, our learning-augmented
skip list still has expected query time O (log n), since the total number of levels is at most O (log n)
with high probability. Since the expected query list of an oblivious skip list is also O (log n), then the
expected query time of our learning-augmented skip list is within a constant multiplicative factor,
even with arbitrarily poor predictions.

3 LEARNING-AUGMENTED KD TREES

In this section we present details on our novel approach to KD tree construction. First, we present the
algorithm that constructs a learning-augmented KD tree. We focus on the setting where queries can
be made on the search space rather than the items in the dataset, which is much more interesting for
high-dimensional datasets, since even building a balanced tree on the search space could result in
prohibitively high query time, as the height of the tree would already be at least the dimension d.
Nevertheless, assuming that we have a query probability prediction pi for element i of our dataset,
the intuition of our method is straightforward. Whereas a learning-augmented binary search tree
would attempt to find a value such that the probability of a query being on either branch of the tree is
balanced, high-dimensional datasets do not have an absolute ordering. Thus, instead of relying on
standard techniques to determine the splitting point of our dataset, we find a specific dimension in
which there exists a balanced split such that the probability of a query being on either branch of the
tree is balanced. However, there can still be high frequency queries that are not in the dataset, which
can cause significantly high query time if not optimized. Hence, we also add to the tree construction
high frequency queries that are not data points, in order to reject these negative queries more quickly.

We prove the following guarantees on the performance of our learning-augmented KD tree, first
assuming that our oracle is perfect.
Theorem 3.1. Suppose [∆]d is the space of possible input points and queries. Let N = ∆d and
pi be the probability that a random query is made to i ∈ [N ], given the natural mapping between
[N ] and [∆]d. Let p = (p1, . . . , pN ) ∈ RN be the probability vector and H(p) be its entropy.
Then given a set of n input points, the expected query time for the tree T created by Algorithm 3 is
O (min(H(p), log n)).

The analysis of Theorem 3.1 corresponding to our learning-augmented KD tree follows from a similar
structure as the proof of Theorem 2.1. However, the crucial difference is that the universe size is
now N , which is exponential in d. Thus constructions that consider distributions over all of [N ] may

6
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Algorithm 2 Learning-augmented KD tree construction

1: function BUILDNODE(x)
2: T ← ∅
3: if |x| = 1 then
4: T = x
5: return T
6: best← ∅
7: for each dimension i of x do
8: for each element x do
9: Compute the probability of points to the left of x on axis i

10: If the probability is closer to 0.5 than best, update best
11: T.axis = best.axis
12: T.left = BUILDNODE(x : x[axis] ≤ best.value)
13: T.right = BUILDNODE(x : x[axis] > best.value)
14: return T

Algorithm 3 Learning-augmented KD tree

1: function BUILD(dataset, queries)
2: datasetf ← {x ∈ dataset | x.prob > 1

n2 }
3: queriesf ← {x ∈ queries | x.prob > 1

n2 }
4: T ← BUILDNODE(datasetf ∪ queriesf )

5: Insert {x ∈ dataset | x.prob ≤ 1
n2 } into T using standard balanced KD tree construction

6: return T

suffer O (logN) = O (d log∆) query time, which can be prohibitively expensive for large d, e.g.,
high-dimensional data. Hence, our algorithm requires a bit more care in the truncation of queries with
low probability and instead, we build a balanced KD tree for any item with less than 1

n2 probability of
being queried, so that each of their query times is at most O (log n). We further remark this implies
robustness of our data structure to arbitrarily poor predictions, by a similar argument as in Section 2.

We next prove a lower bound on the expected search time of an item drawn from a probability
distribution f for any KD tree.
Theorem 3.2. Given a random variable X ∈ [n] so that X = i with probability fi, let D(X) denote
the depth for X in a learning-augmented KD tree. Then E [D(X)] ≥ H(f), where H(f) is the
entropy of f .

By Theorem 3.1 and Lemma 2.3, we thus have the following corollary for the expected query time on
our learning-augmented KD tree on a set of search queries that follows a Zipfian distribution.
Corollary 3.3. With high probability, the expected query time on a set of queries that follows a
Zipfian distribution with exponent s is at most O (1) for s > 1 and O (log n) for s ≤ 1.

Finally, we show near-optimality when given imperfect predictions from a (α, β)-noisy oracle:
Lemma 3.4. Let α be a constant and let β ≤ α

n2 . Then the query time for our learning-augmented
KD tree with (α, β)-noisy prediction matches the performance of a learning-augmented KD tree
constructed using a perfect oracle up to an additive constant.

4 EMPIRICAL EVALUATIONS

In this section, we describe a number of empirical evaluations demonstrating the efficiency of our
learning-augmented search data structures on both synthetic and real-world datasets. We provide
additional experiments in Appendix D.

Skip lists on CAIDA dataset. In the CAIDA datasets (CAIDA, 2016), the receiver IP addresses
from one minute of the internet flow data are extracted for testing, which contains over 650k unique
IP addresses of the 30 million queries. Given that the log-log plot of the frequency of all nodes in
the CAIDA datasets follows approximately a straight line in Figure 1, the CAIDA datasets can be
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approximately characterized by an α factor of 1.37. The insertion time is similar between classic and
augmented skip lists, while Figure 2 shows that query time is almost halved when using the learning
augmented skip lists at different query sizes. These results assume that the predicted frequency
of all items in the query stream is accurate, i.e., the probability vector that is used to build the
skip list matches exactly the query stream. The speed-up between the query times of the largest
learning-augmented and the oblivious skip lists in Figure 2 is roughly 1.86×, which is surprisingly
and perhaps coincidentally close to our theoretical speed-up of roughly 1.81× on a Zipfian dataset
with exponent 1.37.

(a) CAIDA data distribution (b) Zipfian fit (α = 1.37)

Figure 1: CAIDA datasets distribution characterization in Figure 1a. The nearly straight-fitted curve
in Figure 1b implies that a Zipfian distribution with α = 1.37 is a good fit to the CAIDA dataset
distribution.

(a) Insert time on CAIDA (b) Query time on CAIDA

Figure 2: Comparison of insertion and query time on CAIDA for classic and learning-augmented skip
lists. This figure compares the insertion and query times under varying numbers of top frequently
accessed unique IPs between classic and augmented implementations. The horizontal axis in the
two subfigures depicts the same scheme of IP selection, represented in two different ways, e.g., the
top 29.9 million queries contain 665210 unique IPs, the next 29.5 million queries comprise 296384
unique IPs, etc.

Next, we demonstrate that our proposed algorithm still manages to outperform the classic skip list
even when temporal change exists in the probability vector by comparing the query time for the
same set of query elements with different probability vectors being used to guide the building of the
structure. For the skip list augmented by a noisy probability vector, the probability vector of elements
during a period of T1 is used as the predicted frequencies. The skip list being augmented by this
probability vector has its own set of elements to be organized into the target skip list. Suppose the
historic data from T1 contains a set of elements S1, and some future query stream contains a set of
elements S2. For each element in our target set S2, if the element is present in S1, then the occurrence
probability of this element from S1 will be used to build S2; otherwise, if the element has not shown
up during T1 (i.e., in S1), then we assume its probability to be 0. After this, the probability vector is
normalized to sum to 1, resulting in a predicted probability vector to be used to build a skip list based
on the historic element frequency. Since there is temporal changes in the frequency of elements being
queried, the predicted probability vector will show a discrepancy with the true probability vector.
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The results are presented in Figure 3a and we show that even when the prediction is not perfect, the
augmented skip list still performs better than a conventional skip list.

(a) Robustness test on CAIDA datasets (b) Oracle credibility on CAIDA datasets

Figure 3: Robustness of our learning-augmented skip list to erroneous oracles. In Figure 3b, the
labels on the axis indicate the time stamp that the internet trace data is collected, e.g., 130100 means
the collection starts at 13:01:00 and lasts for 1 minute.

Figure 3a shows that the skip list with perfect learning shows the best performance, while the skip list
augmented with noisy learning performs very close to the scenario with perfect predictions. Moreover,
the closer the test data is to the reference data chronologically, the closer the noisy-augmented skip
list will perform to the perfect learning skip list. The CAIDA datasets used in this study contain 12
minutes of internet flow data, which totals around 444 million queries. The indices on the x-axis in
Figure 3a means:

• 10 2: the first 10 minutes of data are used to create the reference (i.e., oracle) and the last 2
minutes are used to build and test the total query time using the former as reference.

• 2 2: the 9th and 10th minutes data is used as reference and the last 2 minutes are used for
testing.

• 3 3: the 1st, 2nd and 3rd minutes of data are used to create reference and the 4th, 5th and
6th minutes of data are used for testing.

• 6 6: the first 6 minutes are used to create the reference and the last 6 minutes are used for
testing.

Further analysis of the temporal change of item frequency shows the reason behind the good perfor-
mance of the history-based oracle. Figure 3b shows the change of intersection index between any 2
given minutes among the 12 minutes of CAIDA data. The intersection index is defined as the ratio of
the number of shared queries to the total number of queries of any given 2 minutes of queries. Figure
3b shows that the number of intersects queries has decreased by about 6% after 12 minutes, which
indicates that the probability of the majority of the elements will be predicted with good accuracy,
resulting in good oracle performance.

KD trees on synthetic datasets. KD Trees are commonly used in the field of computer graphics, with
applications in collision detection, ray-tracing, and reconstruction. We first generate datasets of 212
points in 3-dimensional space, with frequencies given by a fixed Zipfian distribution with parameters
a = 5, b = 2 – parameters at which our method greatly outperforms a standard KD tree. In order
to simulate constructing the tree on noisy data, we multiply the ground truth query probabilities by
numbers sampled uniformly from 1 to M , and then add numbers uniformly sampled from 0 to A,
before renormalizing to form a valid probability distribution. We query the tree 214 times, with point
queries selected by the ground truth Zipfian distribution. We repeat this process 32 times, and report
the median of the average query depth across all runs in Figure 4. We find that our method continues
to outperform traditional KD trees under moderate amounts of noise, and at worst, performs on-par
with a traditional KD tree.

Next, we generate datasets of 212 points in 3-dimensional space, with frequencies given by a Zipfian
distribution with parameters a, b. In the left plot, we assign these Zipfian weights randomly. In
the right plot, however, we assign Zipfian weights with ranks decreasing with the distance to some
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Figure 4: Query time comparison for standard and learning-augmented KD trees with various noise.

random data point. We then query the tree 214 times, with point queries selected by the same Zipfian
distribution. We repeat this process 32 times, and report the median of the average query depth across
all runs. We find that, when points frequencies are distributed smoothly over space, our method’s
performance increases on less skew distributions, as seen in this Figure 5.

Figure 5: Comparison of query time on learning-augmented KD trees with and without smooth spatial
distribution across various Zipfian parameters

KD trees on 3D point-cloud datasets. Finally, we evaluate our method on point cloud data generated
from the Stanford Lucy mesh (Stan), with dimensions ∼ 1000 × 500 × 1500. We first uniformly
sample 222 points along the mesh surface, and bin points with resolution 10, and assign lookup
frequencies by the number of bin occupants. This results in 32k bins. Note, the resulting frequency
distribution for binned cells is not highly skewed.

We then generate a new set of 216 surface samples on the mesh, binning them and assigning
frequencies in the same way. When looking up with the new samples, our method yields an average
query depth of 15.1, while a traditional KD tree yields an average lookup depth of 17.6.
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A ADDITIONAL RELATED WORKS

In this section, we discuss a number of related works in addition to those mentioned in Section 1.
This paper builds upon the increasing body of research in learning-augmented algorithms, data-driven
algorithms, and algorithms with predictions. For example, learning-augmented algorithms have been
applied to a number of problems in the online setting, where the input arrives sequentially and the
goal is to achieve algorithmic performance competitive with the best solution in hindsight, i.e., an
algorithm that has the complete input on hand. Among the applications in the online model, learning-
augmented algorithms have been developed for ski rental problem and job scheduling (Purohit et al.,
2018), caching (Lykouris & Vassilvitskii, 2021), and matching (Antoniadis et al., 2023b). Learning-
augmented algorithms have also been used to improve the performance of specific data structures
such as Bloom filters (Mitzenmacher, 2018), index structures (Kraska et al., 2018), CountMin and
CountSketch (Hsu et al., 2019). Specifically, (Kraska et al., 2018) proposes substituting B-Trees (or
other index structures) with trained models for querying databases. In their approach, rather than
traversing the B-Tree to locate a record, they use a neural network to directly identify its position.
Our work differs in that we retain the desired data structures, i.e., skip lists and kd trees, and focus on
optimizing their structures to enable faster queries, which allows us to continue supporting standard
operations specific to the data structures such as traversal, order statistics, merging, and joining,
among others. Our work uses the frequency estimation oracle trained in (Hsu et al., 2019) on the
AOL search query dataset and the CAIDA IP traffic monitoring dataset.

Perhaps the works most closely related to ours in the area of learning-augmented algorithms are those
of (Lin et al., 2022; Cao et al., 2023; Zeynali et al., 2024). Lin et al. (2022) noted that traditional
theory on statically optimal binary search trees (Knuth, 1971; Mehlhorn, 1977) is no longer applicable
in dynamic settings, where elements are added incrementally over time. Hence, they developed
learning-augmented binary search trees (BSTs) and showed that their expected search time is near-
optimal. Cao et al. (2023) then extended these techniques to general search trees, allowing for nodes
with more than two children. Cao et al. (2023) also studied the setting where the predictions may be
updated, while ultimately still utilizing a data structure that requires rebalancing as data is dynamically
changing. Zeynali et al. (2024) also consider the performance of learning-augmented skip lists that
are robust to erroneous predictions; we elaborate more on the differences from Zeynali et al. (2024)
in Section 1.1. We also note that none of these works consider KD trees at all, which is an important
data structure with applications in computer vision and computational geometry, thus forming a basis
of our work. For a more comprehensive source of related works in learning-augmented algorithms,
see https://algorithms-with-predictions.github.io/.

Beyond the context of learning-augmented algorithms, there is a large body of works that study design
of data structures that are optimal for their inputs. For example, while standard binary search trees use
O (log n) query time, optimal static trees can be constructed using dynamic programming or efficient
greedy algorithms (Mehlhorn, 1977; Yao, 1982; Karpinski et al., 1996), given access frequencies.
However, the computational cost of these methods often exceeds the cost of directly querying the tree.
As a result, a key objective is to construct a tree whose cost is within a constant factor of the entropy
of the data. Several approaches have achieved this either for worst-case data (Mehlhorn, 1977) or
when the input follows particular distributions (Allen & Munro, 1978).

More recent works have considered using results from learning theory to estimate the query frequen-
cies, rather than assuming explicit access to their values. For example, Cayton & Dasgupta (2007)
studied how to obtain such an oracle for learning-augmented data structures. In particular, they study
generalization bounds in the context of learning theory, analyzing the number of samples from an
underlying distribution necessary to produce an oracle with a small error rate. On the other hand,
Ailon et al. (2011) studied algorithms for sorting and clustering that can improve their expected
performance given access to multiple instances sampled from a fixed distribution. Although the
high-level goal of improving algorithmic performance using auxiliary information is the same as
ours, the specifics of the paper seem quite different than ours, as the paper focuses on techniques
for sorting and clustering. Similarly, Ciriani et al. (2002) considers self-adjusting data structures,
including skip lists, which can dynamically change as the sequence of queries arrive. However, their
methods are catered specifically to the setting where there is access to the queries, whereas our data
structures must be constructed without such access and must therefore be able to handle erroneous
predictions.
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B MISSING PROOFS FROM SECTION 2

In this section, we give the missing proofs from Section 2.

B.1 EXPECTED SEARCH TIME

We first show that each item is promoted to a higher level with probability at least 1
2 .

Lemma B.1. For each item i ∈ [n] at level ℓ, the probability that i is in level ℓ+ 1 is at least 1
2 .

Proof. Note that if pi ≥ 2ℓ

n , then i will be placed in level ℓ + 1. Otherwise, conditioned on the
item i ∈ [n] being at level ℓ, then Algorithm 1 places i at level ℓ+ 1 with probability 1

2 . Thus, the
probability that i is in level ℓ+ 1 is at least 1

2 .

We next upper bound the expected search time for any item at any fixed level, where the randomness
is over the construction of the skip list.

Lemma B.2. In expectation, the search time for item i ∈ [n] at level ℓ is at most 2.

Proof. Suppose item i ∈ [n] is in level ℓ. Let Sℓ
<i ⊆ [n] be the subset of items in level ℓ that are less

than i. Note that by Lemma B.1, each item of Sℓ
≤i is promoted to level ℓ+ 1 with probability at least

1
2 . Thus, the search time for item i at level ℓ is t if and only if the previous t items in Sℓ

≤i were all not
promoted, which can only happen with probability at most 1

2t . Hence, the expected search time T for
item i ∈ [n] at level ℓ is at most

E [T ] ≤ 1 · 1
2
+ 2 · 1

22
+ . . .+ n · 1

2n
≤

∞∑
t=1

t

2t
≤ 2.

We now show that each item i must be contained at some level depending on the predicted frequency
pi of the item.

Lemma B.3. Each item i is included in level max (0, 1 + ⌊log(npi)⌋).

Proof. First, observe that all items are inserted at level 0. Next, note that Algorithm 1 inserts item
i into level ℓ if pi ≥ 2ℓ−1

n or equivalently log(npi) ≥ ℓ− 1. Thus, each item i is included in level
max (0, 1 + ⌊log(npi)⌋).

We next analyze the expected search time for each item i.

Lemma B.4. Suppose the total number of levels is at most C + log n for some constant C > 0. Then
the expected search time for item i is at most 2C + 2min

(
log 1

pi
, log n

)
.

Proof. By Lemma B.3, item i is included in level max (0, 1 + ⌊log(npi)⌋). By Lemma B.2 the
expected search time at each level is at most 2. Thus, in expectation, the total search time is at most
2(C + log n−max (0, 1 + ⌊log(npi)⌋)) ≤ 2C + 2min

(
log 1

pi
, log n

)
.

Finally, we analyze the expected search time across the true probability distribution fi.

Lemma B.5. Suppose the total number of levels is at most C + log n for some constant C > 0. For
each i ∈ [n], let fi be the proportion of queries to item i. Then the expected search time at most

2C + 2
∑n

i=1 fi ·min
(
log 1

pi
, log n

)
.
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Proof. For each query, the probability that the query is item i is fi. Conditioned on the total number
of levels being at most C + log n, then by Lemma B.4, the expected search time for item i is at most
2C + 2max

(
log 1

pi
, log n

)
. Thus, the expected search time at most

2C(f1 + . . .+ fn) + 2f1 min

(
log

1

p1
, log n

)
+ . . .+ 2fn min

(
log

1

pn
, log n

)
= 2C + 2

n∑
i=1

fi min

(
log

1

pi
, log n

)
.

We now show that with high probability, the total number of levels in the skip list is at mostO (log n).

Lemma B.6. With probability at least 0.99, the total number of levels in the skip list is at most
10 + log n.

Proof. For each level ℓ, let nℓ be the number of items i ∈ [n] that are deterministically promoted to
exactly level ℓ, i.e., pi ∈

[
2ℓ−1
n , 2ℓ

n

)
. Note that for each fixed i ∈ [n], the highest level it remains is a

geometric random variable with parameter 1
2 , beyond the highest level at which it is deterministically

placed. This is because the item is promoted to each higher level with probability 1
2 . Hence with

probability 1− 1
2k

, i is not placed at least k levels above its highest deterministic placement. Therefore,
the probability that an item at level ℓ is placed at level 10 + log n is at most 2ℓ

1024n . Since no fixed
i will have predicted frequency more than 1, then no item will be deterministically placed at level
2 + log n. Hence by a union bound over all ℓ ∈ [2 + log n], the probability that an item is placed at
level 10 + log n is at most

2+logn∑
ℓ=0

nℓ · 2ℓ

1024n
.

On the other hand, we have
∑n

i=1 pi = 1, so that

2+logn∑
ℓ=0

nℓ · 2ℓ ≤ 2n.

Therefore, with probability at least 0.99, the total number of levels in the skip list is at most
10 + log n.

Thus, putting together Lemma B.5 and Lemma B.6, we get:

Theorem 2.1. For each i ∈ [n], let fi and pi be the proportion of true and predicted queries to item
i. Then with probability at least 0.99 over the randomness of the construction of the skip list, the
expected search time over the choice of queries at most 20 + 2

∑n
i=1 fi ·min

(
log 1

pi
, log n

)
.

B.2 NEAR-OPTIMALITY

We first recall the construction of a Huffman code, a type of variable-length code that is often used
for data compression. The encoding for a Huffman is known to be an optimal prefix code and can be
represented by a binary tree, which we call the Huffman tree (Huffman, 1952).

To construct a Huffman code, we first create a min-heap priority queue that initially contains all the
leaf nodes sorted by their frequencies, so that the least frequent items have the highest priority. The
algorithm then iteratively removes the two nodes with the lowest frequencies from the priority queue,
which become the left and right children of a new internal node that is created to represent the sum of
the frequencies of the two nodes. This internal node is then added back to the priority queue. This
process is continued until there only remains a single node left in the priority queue, which is then
the root of the Huffman tree.
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A binary code is then assigned to the paths from the root to each leaf node in the Huffman tree, so
that each movement along a left edge in the tree corresponds to appending a 0 to the codeword, and
each movement along a right edge in the tree corresponds to appending a 1 to the codeword. Thus,
the resulting binary code for each item is the path from the root to the leaf node corresponding to the
item.

Huffman coding is a type of symbol-by-symbol coding, where each individual item is separately
encoded, as opposed to alternatives such as run-length encoding. It is known that Huffman coding
is optimal among symbol-by-symbol coding with a known input probability distribution (Huffman,
1952) and moreover, by Shannon’s source coding theorem, that the entropy of the probability
distribution is an upper bound on the expected length of a codeword of a symbol-by-symbol coding:

Theorem B.7 (Shannon’s source coding theorem). (Shannon, 2001) Given a random variable
X ∈ [n] so that X = i with probability fi, let L(X) denote the length of the codeword assigned to
X by a Huffman code. Then E [L(x)] ≥ H(f), where H(f) is the entropy of f .

We now prove our lower bound on the expected search time of an item drawn from a probability
distribution f .

Theorem 2.2. Given a random variable X ∈ [n] so that X = i with probability fi, let T (X) denote
the search time for X in a skip list. Then E [T (x)] ≥ H(f), where H(f) is the entropy of f .

Proof. Let L be a skip list. We build a symbol-by-symbol encoding using the search process in L.
We begin at the top level. At each step, we either terminate, move to the next item at the current
level, or move down to a lower level. Similar to the Huffman coding, we append a 0 to the codeword
when we move down to a lower level, and we append a 1 to the codeword when we move to the
next item at the current level. Now, the search time for an item x in L corresponds to the length
of the codeword of x in the symbol-by-symbol encoding. By Theorem B.7 and the optimality of
Huffman codes among symbol-by-symbol encodings, we have that E [T (x)] ≥ H(f), where f is the
probability distribution vector of x.

B.3 ZIPFIAN DISTRIBUTION

In this section, we briefly describe the implications of our data structure to Zipfian distributions.

We first recall the following entropy upper bound for a probability distribution with support at most
n.

Theorem B.8. (Cover, 1999) Let f be a probability distribution on a support of size [n]. Then
H(f) ≤ log n.

We can then upper bound the entropy of a probability vector that satisfies a Zipfian distribution with
parameter s.

Lemma 2.3. Let s, z > 0 be fixed constants and let f be a frequency vector such that fi = z
is for all

i ∈ [n]. If s > 1, then H(f) = O (1) and otherwise if s ≤ 1, then H(f) ≤ log n.

Proof. Since f is a probability distribution on the support of size [n], then by Theorem B.8, we have
that H(f) ≤ log n. Thus, it remains to consider the case where s > 1. Since z ≤ 1, we have

h(f) =

n∑
i=1

z

is
log

is

z

≤ s

n∑
i=1

log i

is
.

Note that there exists an integer γ > 0 such that for i > γ, we have log i
is < 1

i(s+1)/2 . Since s > 1,
then s+1

2 > 1 and thus
n∑

i=γ

1

i(s+1)/2
≤

∞∑
i=1

1

i(s+1)/2
= O (1) .
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Hence,

h(f) ≤ s

γ−1∑
i=1

log i

is
+ s

∞∑
γ

log i

is
= O (1) .

By Theorem 2.1 and Lemma 2.3, we have the following statement about the performance of our
learning-augmented skip list on a set of search queries that follows a Zipfian distribution.

Corollary 2.4. With high probability, the expected search time on a set of queries that follows a
Zipfian distribution with exponent s is at most O (1) for s > 1 and O (log n) for s ≤ 1.

B.4 NOISY ROBUSTNESS

In this section, we show that our learning-augmented skip list construction is robust to somewhat
inaccurate oracles. Let f be the true-scaled frequency vector so that for each i ∈ [n], fi is the
probability that a random query corresponds to i. Let p be the predicted frequency vector, so that for
each i ∈ [n], pi is the predicted probability that a random query corresponds to i. For α, β ∈ (0, 1),
we call an oracle (α, β)-noisy if for all i ∈ [n], we have pi ≥ α · fi − β.

Lemma 2.5. Let α be a constant and β < α
4n . A learning-augmented skip list with a set of (α, β)-

noisy predictions has performance that matches that of a learning-augmented learned with a perfect
oracle, up to an additive constant.

Proof. Suppose the total number of levels is at most C + log n for some constant C > 0. Note
that this occurs with a high probability for a learning-augmented skip list with a set of (α, β)-noisy
predictions. For each i ∈ [n], let fi be the proportion of queries to item i and let pi be the predicted
proportion of queries to item i. By Lemma B.5, the expected search time at most

2C + 2

n∑
i=1

fi ·min

(
log

1

pi
, log n

)
.

Since the oracle is (α, β)-noisy then we have pi ≥ α · fi − β for all i ∈ [n].

We first note that in the expected search time for i is proportional to min
(
log 1

fi
, log n

)
. Thus, for

expected search time for item i, it suffices to assume fi >
1
2n for all i.

Observe that for fi > 1
2n and β < α

4n , then pi ≥ α · fi − β implies

pi ≥ α · fi − β ≥ α · fi −
α

4n
≥ α

2
· fi.

Hence, we have 1
pi
≤ 2

α ·
1
fi

so that the expected search time for item i is at most

2C + 2 ·min

(
log

1

fi
+ log

2

α
, log n

)
.

Therefore, the expected search time is at most

2C + 2

n∑
i=1

fi ·min

(
log

1

pi
, log n

)
≤ 2C + 2

n∑
i=1

(
fi ·min

(
log

1

fi
, log n

)
+ fi · log

2

α

)

≤ 2C + 2 log
2

α
+ 2

n∑
i=1

fi ·min

(
log

1

fi
, log n

)
.

Since the perfect oracle would achieve runtime 2C +2
∑n

i=1 fi ·min
(
log 1

fi
, log n

)
, then it follows

that a learning-augmented skip list with a set of (α, β)-noisy predictions has performance that matches
that of a learning-augmented learned with a perfect oracle, up to an additive constant.

19



1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2025

C MISSING PROOFS FROM SECTION 3

First, we will show that the expected depth of a given query depends on the probability of that query,
and that high frequency queries must be found close to the root of our tree.

Lemma C.1. Suppose [∆]d is the space of possible input points and queries. Let N = ∆d and pi be
the probability that a random query is made to i ∈ [N ], given the natural mapping between [N ] and

[∆]d. Then the level at which i resides in the tree is at most O
(
log 1

pi

)
.

Proof. First, consider only the high-frequency query points and data points for which we base our
construction off.

In constructing the learning-augmented KD tree, we balance the contents of the children nodes such
that a query to that node has a probability of 1

2 of belonging to each of the children. Therefore, at a
depth of d, the probability of belonging to either child is 1

2d
. In particular, a query i with probability

pi at a depth d must satisfy pi >
1
2d

. Thus, we have that the depth of i is O
(
log 1

pi

)
, as desired.

Since the lowest probability of a high-frequency data point is 1
n2 , this tree must have a depth of at

most 2 log n.

Now, consider a low-frequency data point, which we add to the bottom of the tree. By construction,
the learned point of our tree has depth at most 2 log n. Then, when inserting the additional data points
as a balanced KD tree, we can accumulate at most an additional depth of log n. Note, p < 1

n2 implies

log n < log 1
p . Thus, this low-frequency data point will have a depth of at most 3 log n = O

(
log 1

p

)
,

as desired.

Similarly, if i is not a data point and is low frequency, we achieve the same bound of O
(
log 1

p

)
. In

this case, we simply terminate at a leaf node and determine that the desired query is not in the dataset.

In summary, any query which has high frequency can be found in O
(
log 1

p

)
time. Low-frequency

data points can similarly be found in O
(
log 1

p

)
time, and low frequency queries can be determined

to not exist in O
(
log 1

p

)
time.

Lemma C.2. Suppose [∆]d is the space of possible input points and queries. Let N = ∆d and pi be
the probability that a random query is made to i ∈ [N ], given the natural mapping between [N ] and
[∆]d. Then the level at which i resides in the tree is at most O (log n).

Proof. This follows directly from the analysis in Llemma C.1.

Now, we have demonstrated the the depth of a given query point i is bounded by both O (log n)

and O
(
log 1

pi

)
. Using this fact, we will now show that the expected query time of our algorithm is

bounded by both the entropy of the dataset H(p) in addition to log n.

We now analyze the performance of our learning-augmented KD tree.

Theorem 3.1. Suppose [∆]d is the space of possible input points and queries. Let N = ∆d and
pi be the probability that a random query is made to i ∈ [N ], given the natural mapping between
[N ] and [∆]d. Let p = (p1, . . . , pN ) ∈ RN be the probability vector and H(p) be its entropy.
Then given a set of n input points, the expected query time for the tree T created by Algorithm 3 is
O (min(H(p), log n)).

Proof. Following C.1, the points i in [∆]d with non-negligible probability pi ≥ 1
n2 are guaranteed to

exist in the learning-augmented KD tree T with depth at most log 1
pi

. For points in the dataset [n]
with negligible probability, they exist in the tree and have depth in O (log n). For all other points not
contained in the KD tree, the query will terminate at a depth of O (log n).
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For any point i in [∆]d, the depth that a query to i will terminate in the tree is

Depth(i) = O
(
min

(
log

1

pi
, log n

))
. (1)

Then, the expected search time T is the expected depth of a given point,

E [T ] =
∑

i∈[∆]d

pi ·Depth(i) =
∑

i∈[∆]d

pi ·O
(
min

(
log

1

pi
, log n

))
= O (min(H(p), log n)) . (2)

Thus, we have shown that the expected query time of our algorithm is bounded by the entropy of the
dataset. In particular, when the dataset has a highly skew distribution, H(p) can be far less than log n.

C.1 NEAR-OPTIMALITY

Near-optimality of our learning-augmented KD trees uses a similar argument to the proof of the
near-optimality of our learning-augmneted skip lists. In particular, we again utilize Shannon’s source
coding theorem from Theorem B.7. We then have the following:
Theorem 3.2. Given a random variable X ∈ [n] so that X = i with probability fi, let D(X) denote
the depth for X in a learning-augmented KD tree. Then E [D(X)] ≥ H(f), where H(f) is the
entropy of f .

Proof. In a learning-augmented KD tree, the search path to an element i can be encoded as a 0− 1
codeword, with entries indicating whether the lower or upper branch is taken at each node traversal.
Moreover, the length of this codeword in the symbol-by-symbol encoding corresponds to the depth
of element i. Then, by Theorem B.7 and the optimality of Huffman codes in symbol-by-symbol
encodings, we have that E [D(X)] ≥ H(f), as desired.

C.2 NOISY ROBUSTNESS

In this section, we analyze the performance of the learning-augmented KD tree under noisy data
conditions.

Previously, we analyzed the performance of the learning-augmented KD-tree assuming access to a
perfect prediction oracle.

Now we analyze the performance with a noisy oracle. That is, for each i ∈ [∆]d there is a true-scaled
frequency fi that the point will be queried and that pi is a prediction made by the noisy oracle.

First, we analyze the multiplicative robustness of the algorithm. In this case, the oracle predicts fi up
to some multiplicative constant α ∈ R+ such that fi = αpi.
Lemma C.3. Suppose [∆]d is the space of possible input points and queries. Let N = ∆d and pi be
the probability that a random query is made to i ∈ [N ] during tree construction. Suppose during
runtime that the true probability of querying i is fi = αpi for some α ∈ R+. Then the level at which
i resides in the tree is at most O

(
log 1

fi
+ log 1

α

)
.

Proof. If α ≤ 1, this is immediate. If this is the case, in construction we expected i to be queried
more often than it actually is, so our construction placed the point i higher in the tree than is necessary.
Thus, the depth is at most the previously shown 1

pi
≤ 1

fi
.

Now, suppose α > 1. In this case, we must have placed i deeper in the tree than we should have, as
our construction frequency is less than the true query frequency. Then, as in C.1, the depth of i is
O
(
log 1

pi

)
. Now, we have that

O
(
log

1

pi

)
= O

(
log

α

fi

)
= O

(
log

1

fi
+ logα

)
. (3)
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Having shown multiplicative robustness of the learning-augmented KD tree we next analyze the
additive-multiplicative robustness of the method. An oracle is (α, β)-noisy if the prediction satisfies
pi ≥ α fi − β for constants α, β ∈ (0, 1).
Lemma 3.4. Let α be a constant and let β ≤ α

n2 . Then the query time for our learning-augmented
KD tree with (α, β)-noisy prediction matches the performance of a learning-augmented KD tree
constructed using a perfect oracle up to an additive constant.

Proof. From Lemma C.1 we have that the depth of a point i in the learning-augmented KD tree is
O
(

1
pi

)
where pi is the predicted frequency of i.

Then, with an (α, β)-noisy oracle we have that the prediction is bounded from below by pi ≥ α fi−β.
As i is a point in the tree, we can assume that the true-scaled frequency fi has a lower-bound of 1/n2.

By choosing β ≤ α/n2 we ensure that the predicted pi is always nonnegative. Then, let β = α/2n2

pi ≥ α fi − β ≥ α fi −
α

2n2
≥ α

2
fi (4)

Then, applying Lemma C.1 again

O
(
log

1

pi

)
= O

(
log

2

αfi

)
= O

(
log

1

fi
+ log

1

α

)
. (5)

D ADDITIONAL EMPIRICAL EVALUATIONS

D.1 SKIP LISTS

In this section, we perform empirical evaluations comparing the performance of our learning-
augmented skip list to that of traditional skip lists, on both synthetic and real-world datasets. Firstly,
we compare the performance of traditional skip lists with our learning-augmented skip lists on
synthetically generated data following Zipfian distributions. The proposed learning-augmented skip
lists are evaluated empirically with both synthetic datasets and real-world internet flow datasets from
the Center for Applied Internet Data Analysis (CAIDA) and AOL. In the synthetic datasets, a diverse
range of element distributions, which are characterized by the skewness of the datasets, are evaluated
to assess the effectiveness of the learning augmentation. In the CAIDA datasets, the α factor is
calculated to reflect the skewness of the data distribution.

The metrics of performance evaluations include insertion time and query time, representing the total
time it takes to insert all elements in the query stream and the time it takes to find all elements in the
query stream using the data structure, respectively.

The computer used for benchmarking is a Lenovo Thinkpad P15 with an intel core i7-
11800H@2.3GHz, 64GB RAM, and 1TB of Solid State Drive. The tests were conducted in a
Ubuntu 22.04.3 LTS OS. GNOME version 42.9.

D.1.1 SYNTHETIC DATASETS

In the synthetic datasets, both the classic and augmented skip lists are tested against different element
counts and α values. In terms of the distribution of the synthetic datasets, the uniform distribution
and a Zipfian distribution of α between 1.01 and 2 with query counts up to 4 million are evaluated. It
is worth noting that the number of unique element queries could vary for the same query count at
different α values in the Zipfian distribution, which may affect the insertion time.

Table 1 shows the speed-up factor, defined as the time taken by the augmented skip list over the classic
skip list for the same query stream. We can observe a progressive improvement in the performance of
our augmented skip lists as the dataset skewness increases. It also suggests that our augmented skip
list will perform at least as good as the traditional skip list and will outperform a traditional skip list
by a factor of up to 7 times depending on the skewness of the datasets.
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Table 1: Speed up factor of augmented skip list over classic skip list under different synthetic
distributions

Distribution
Query size of synthetic data (unit: thousand)

0.5 10 100 500 1000 1500 2000 2500 3000 3500 4000 Average

uniform 3.02 0.84 1.01 1.05 1.11 1.14 1.17 1.21 1.22 1.42 1.4 1.33
α=1.01 3.63 2.6 1.04 1.24 1.03 1.21 1.2 1.14 1.3 1.18 1.3 1.53
α=1.25 3.28 3.74 5.87 2.89 2.47 3.21 2.95 3.34 3.55 3.16 3.12 3.42
α=1.5 2.42 8.97 6.93 6.54 7.99 5.83 4.65 3.8 4.92 5.34 5.93 5.76
α=1.75 12.43 10.4 5.76 9.78 6.76 7.13 7.31 7.09 6.63 5.07 6.98 7.76
α=2 8.19 2.5 5.56 10.1 4.47 3.91 7.26 5.33 9.29 7.65 5.55 6.35

Table 2: Node count for each distribution configuration in the 4 million dataset

α Unique node count

1.01 2886467
1.25 259892
1.75 8386

2 2796

Figure 6 shows that the insertion time decreases with more skewed datasets for the same size of the
query stream. This is attributed to the reduced number of nodes in the datasets, as shown in Table 2.

The query time of augmented skip lists is also reduced greatly compared to the classic skip lists as
shown in Figure 7.

(a) Uniform Distribution (b) α = 1.25

(c) α = 1.5 (d) α = 2

Figure 6: Insertion time for synthetic datasets with a uniform distribution and under different α
values of the Zipfian distribution for both classic and augmented skip lists. This figure illustrates
the insertion time on the synthetic data for both the uniform distribution and the Zipfian distribution
at different α values. Generally, higher skewness of the datasets results in less insertion time when
using the augmented structure. The decrease in insertion time is proportional to the increase in the α
value, as a higher α value leads to a reduction in the number of unique nodes, as illustrated in Table 2.

In addition, we conduct experiments to compare the performance of standard binary
search trees and standard skip lists. In particular, we generate datasets of size n ∈
{5000, 10000, 15000, 20000, 25000, 30000, 35000, 40000, 45000, 50000, }. For each fixed value of
n, each element of the dataset is generated uniformly at random in [2n], i.e., uniformly at random
from {1, 2, . . . , 2n}. Because the dataset is generated uniformly at random, then learning-augmented
data structures will perform similar to oblivious data structures. We measure the construction time of
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(a) Uniform Distribution (b) α = 1.25

(c) α = 1.5 (d) α = 2

Figure 7: Query time for synthetic datasets with a uniform distribution and under different α values
of the Zipfian distribution for both classic and augmented skip lists. This figure compares the query
time of the classic and augmented skip lists for both uniform distribution and Zipfian distribution at
various α values. Similar to insertion, the query time is significantly reduced under different query
sizes with the implemented augmentation. The performance enhancement is especially pronounced
for the high skewness of the dataset.

the data structures, based on the input dataset. Our results demonstrate that as expected, skip lists
perform significantly better than balanced binary search trees across all values of n, due to the latter’s
necessity of constantly rebalancing the data structure. In fact, skip lists performed almost 4× better
than BSTs in some cases, e.g., n = 20000. We illustrate our results in Figure 8.

D.1.2 AOL DATASET

The AOL dataset (G. Pass, 2006) features around 20M web queries collected from 650k users over
three months. The distribution of the queries is shown in Figure 9. The AOL dataset is a less skewed
dataset than CAIDA with an alpha value of 0.75.

Figure 9 shows the distribution of the AOL queries with an estimated alpha value of 0.75. The AOL
dataset resembles more to a slightly skewed uniform distribution with very few highly frequent items,
which accounts for a lower improvement as in the case of AOL shown in Figure 10. The total number
of queries for items with higher than 1000 frequency accounts for only 5% of the total number of
queries for the AOL datasets. The learning-augmented skip list still outperforms the traditional skip
list on this slightly skewed dataset. This result is also in line with the results from the synthetic data
shown in Table 1 where lower alpha values have resulted in a lower speedup factor.

D.2 KD TREES

For KD Trees, first describe our methodology for evaluating our data structure on synthetic data. We
then describe our empirical evaluations on real-world datasets.

The computer used for KD tree benchmarking is a desktop machine with an Intel Core i9-14900KF@
3200MHz, with 64GB RAM, and 2TB of Solid State Drive. The tests were conducted in Windows
10 Enterprise, version 10.0.19045 Build 19045.
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Figure 8: BST vs skip list construction times

(a) AOL data distribution (b) Zipfian fit (α = 0.75)

Figure 9: AOL datasets distribution characterization. This figure illustrates how the α value of 0.75
is obtained for the AOL dataset. The AOL dataset shows a much smaller α value compared to the
CAIDA dataset so AOL almost resembles a uniform distribution despite very few high-frequency
nodes. This also explains why the performance of the augmented skip list is close to the classic
implementation.

D.2.1 SYNTHETIC DATASETS WITH PERFECT KNOWLEDGE

First, consider a dataset with a Zipfian distribution. In order to construct this dataset, we first
select n unique data points in [∆]d uniformly. We then generate Zipfian frequencies, fi ≈ 1

(i+b)a ,
and randomly pair the frequencies to the data points to serve as both the construction and query
frequencies. We construct either a traditional KD tree, or our learned KD tree on this dataset. Then,
we evaluate the performance of querying by sampling the known datapoints with probabilities given
by their Zipfian probabilities.
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(a) Insert time on AOL (b) Query time on AOL

Figure 10: Insertion and query time on AOL of classic and augmented skip lists

In Table 3, we use a Zipfian distribution with parameters a = 1 and b = 2.7. This data demonstrates
that our method outperforms a traditional KD tree, given that the Zipfian distribution has the given
parameters. In Figure 11, we vary the Zipfian parameters of our dataset. As expected, our learned
KD tree performance increases with how skew the distribution is. Moreover, we find that our method
outperforms the traditional KD tree on all tested Zipfian distributions.

type dim const time avg query(s) avg query depth
traditional 1 1.267E-01 2.645E-05 1.330E+01
learned 1 2.387E-01 2.181E-05 1.086E+01
traditional 2 1.266E-01 2.709E-05 1.341E+01
learned 2 3.232E-01 2.221E-05 1.086E+01
traditional 3 1.253E-01 2.700E-05 1.334E+01
learned 3 3.981E-01 2.264E-05 1.097E+01
traditional 4 1.185E-01 2.724E-05 1.336E+01
learned 4 4.549E-01 2.256E-05 1.089E+01
traditional 5 1.300E-01 2.743E-05 1.336E+01
learned 5 5.286E-01 2.296E-05 1.096E+01
traditional 10 1.277E-01 2.896E-05 1.340E+01
learned 10 8.642E-01 2.403E-05 1.091E+01
traditional 20 1.295E-01 3.121E-05 1.344E+01
learned 20 1.543E+00 2.564E-05 1.085E+01
traditional 40 1.361E-01 3.558E-05 1.340E+01
learned 40 2.911E+00 2.902E-05 1.078E+01

Table 3: We construct and query KD trees with our method and with a traditional KD tree on synthetic
datasets of various dimensionality. We construct our tree on 10k points, and query 1M times. We find
that, independent of the data dimensionality, our method produces lower average query depths.

D.2.2 SYNTHETIC DATASETS WITH NOISY KNOWLEDGE

In reality, it is rarely the case that we have perfect knowledge in constructing a model. In order
to evaluate the performance of our method on noisy data, we create a synthetic dataset with noisy
training information.

As before, we generate world points and assign them Zipfian weights. When constructing the tree,
each weight us updated to be Mpi +A, where M and A are drawn from uniform distributions. This
new noisy distribution is normalized in order to form a valid probability distribution. Then, points are
queried many times with their ground truth Zipfian probabilities. For the fixed Zipfian distribution
with a = 5, b = 2, we plot the effects of different ranges of M and A to demonstrate the effect noise
has in Fig. 4. This figure demonstrates that, even with moderate amounts of noise, our method still
outperforms a traditional KD tree. Moreover, our method still remains on par with the traditional KD
tree when significant noise is present, due to our robustness guarantees.
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Figure 11: We generate datasets of 212 points in 3-dimentional space, with frequencies given by
a Zipfian distribution with parameters a, b. We then query the tree 214 times, with point queries
selected by the same Zipfian distribution. We repeat this process 32 times, and report the median of
the average query depth across all runs. We find that our method is able to outperform the traditional
KD tree method across all tested Zipfian distributions. Moreover, our performances increases as a
increases and b decreases, making the Zipfian distribution most skew. Notably, when a = 0, all points
have uniform weights, at which point our method performs equivalently to the traditional KD tree.

D.2.3 REAL-WORLD DATASETS

In addition to evaluating our method on synthetic data, we also evaluate results on real-world data.

First, we consider n-grams in various languages. We test on a pre-processed subset of the Google
N-Gram dataset (Goog; Google, 2012).

In order to evaluate our method, we convert an n-gram to a vector in Zn with each entry indexing the
words in the n-gram. We construct the learning-augmented and traditional KD trees, and show the
performance of lookup with queries weighted by their ground truth frequency in Table 4. In all cases,
we find that the learning-augmented KD tree outperforms the traditional KD tree at average lookup
depth.

Additionally, we test our method on a dataset of neuron activity, as provided by Aitchison et al.
(2014), which has shown to be Zipfian. This dataset consists of vectors in {0, 1}30, indicating which
of 30 cells fire at agiven time. As in their work, we bin in 20ms increments when constructing these
vectors. We similarly ignore the time of observations, and build our learning-augmented KD tree with
frequencies given by the rate of appearance of vectors. We find that, when querying with probabilities
equivalent to the training distribution, a traditional KD tree has an average query depth of 23.7. Using
our learning-augmented KD tree, however, we are able to achieve an average query depth of 14.9.

27



1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511

Under review as a conference paper at ICLR 2025

Dataset Traditional Avg Query Depth Learned Avg Query Depth
2grams chinese simplified 14.8388 12.1144
2grams english-fiction 14.216 11.6232
2grams english 14.7253 11.6647
2grams french 14.5123 11.5999
2grams german 13.9473 11.7066
2grams hebrew 13.5322 12.0007
2grams italian 14.5231 11.8027
2grams russian 14.5769 11.8082
2grams spanish 15.1763 11.6582
3grams chinese simplified 12.343 11.4211
3grams english-fiction 13.5264 11.3183
3grams english 15.002 11.3632
3grams french 14.9235 11.3529
3grams german 14.129 11.4285
3grams hebrew 13.0887 9.6663
3grams italian 13.3839 11.3616
3grams russian 15.2475 11.1415
3grams spanish 15.3855 11.3635
4grams chinese simplified 11.5823 9.8661
4grams english-fiction 12.5141 9.7589
4grams english 13.4464 9.7793
4grams french 12.6383 9.835
4grams german 12.3911 9.8765
4grams hebrew 9.3198 7.4493
4grams italian 11.3456 9.6834
4grams russian 13.2406 9.6274
4grams spanish 12.9712 9.8191
5grams chinese simplified 11.5373 9.8982
5grams english-fiction 12.8027 9.8069
5grams english 12.5607 9.5967
5grams french 12.402 9.835
5grams german 11.6912 9.8432
5grams hebrew 7.097 6.2143
5grams italian 11.3061 9.7771
5grams russian 12.885 9.6805
5grams spanish 12.111 9.8079

Table 4: We construct traditional and learning-augmented KD trees for n-grams for various languages,
and of various lengths n. Our method outperforms a traditional KD tree in all cases.
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