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Abstract

The advent of natural language interaction with machines has ushered in new
innovations in text-guided generation of images, audio, video, and more. In this
arena, we introduce Biological Multi-Modal Model (BioM3), as a novel framework
for designing functional proteins via natural language prompts. This framework
integrates natural language with protein design through a three-stage process:
aligning protein and text representations in a joint embedding space learned using
contrastive learning, refinement of the text embeddings, and conditional genera-
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tion of protein sequences via a discrete autoregressive diffusion model. BioM3
synthesizes protein sequences with detailed descriptions of the protein structure,
lineage, and function from text annotations to enable the conditional generation
of novel sequences with desired attributes through natural language prompts. We
present in silico validation of the model predictions for subcellular localization
prediction, reaction classification, remote homology detection, scaffold in-painting,
and structural plausibility, and in vivo and in vitro experimental tests of natural
language prompt-designed synthetic analogs of Src-homology 3 (SH3) domain
proteins that mediate signaling in the Sho1 osmotic stress response pathway in
baker’s yeast. BioM3 possesses state-of-the-art performance in zero-shot prediction
and homology detection tasks, and generates proteins with native-like tertiary folds
and wild-type levels of experimentally assayed function.

1 Introduction

Millions of years of evolution have shaped the diversity of extant protein sequences through mutation
and selection to encode precise three-dimensional structures and biological functions and map primary
sequences to multifaceted phenotypes, including foldability, biochemical activities, specificity, and
organismal fitness in natural biological contexts [1, 2, 3, 4, 5]. These functional characteristics are
encoded as patterns within the amino acid sequences. With the explosion of sequence data and
computational resources, deep generative models have emerged as a powerful tool to learn these
design principles and use these rules to generate novel proteins with controlled phenotypic properties.
As these models learn the underlying design rules, our capacity to generate new hypotheses for protein
mechanisms and design variants with novel sequences and functions dramatically improves, opening
avenues in medicine, biotechnology, chemical engineering, and public health [6, 7, 8, 9]. Indeed,
by learning from evolutionary patterns, both structure-based and sequence-based protein generative
models have been shown to generate novel sequences with enhanced protein function [10, 11, 12, 13],
produce libraries enriched with functional variants [14, 15, 16, 17], and enable design of sequences
with engineered structure and function [18, 19, 20, 21]. A relatively untapped resource in this
endeavor is the extensive corpus of textual annotations accompanying protein sequences within large
databases that provide natural language descriptions of lineage, properties, and function. This raises
the intriguing possibility that the rich information within this literature that could further inform deep
generative models and complement protein-based models to enhance our understanding of protein
function and guide protein design through natural language prompting.

Integrating natural language processing (NLP) with protein language models (pLMs) presents a
means to harness both evolutionary sequence information and human knowledge embedded in protein
sequence annotations. ProtST [22] was the first model to align protein and text representations,
demonstrate the feasibility of joint embedding spaces, and accomplish downstream prediction tasks,
while ProteinDT [23] was the first to leverage these joint representations to guide novel protein
sequence generation and conduct in silico validation of the model predictions. Our framework,
Biological Multi-Modal Model (BioM3), builds upon these pioneering studies by scaling the training
corpus to 45M text-protein pairs, enriching text prompts with detailed family descriptions, and
introducing homologous relationships within the joint embedding space. The model also incorporates
a novel conditional autoregressive diffusion model that permits order-agnostic in-painting, expanding
on EvoDiff [24] by introducing text-prompt conditioning of sequence generation. This informs a
three-stage process comprising alignment of biomedical language models with protein language
models, refinement of these embeddings, and text-guided generation of protein sequences (Fig. 1A).
Since BioM3 has been trained over a vast corpus of protein sequences drawn from thousands of
different families, it represents a generic and transferable model capable of text-guided generative
design of protein sequences with diverse structure and function. Moreover, through the alignment
of protein sequence and text annotations within a joint latent space, the model can also locate the
closest annotations within the joint embedding for a particular protein sequence in order to perform
protein sequence annotation and property prediction. We present in silico validations of the model in
applications to subcellular localization prediction, reaction classification, remote homology detection,
scaffold in-painting, and structural plausibility. We also conduct in vivo and in vitro assays of designed
analogs of Src-homology 3 (SH3) domain proteins that mediate signaling in the Sho1 osmotic stress
response pathway in baker’s yeast (Fig. 1B). To the best of our knowledge, this represents the first
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Figure 1: Overview of the BioM3 framework for protein design via natural language prompts.
(A) The framework consists of three stages: (1) integration of a biomedical Language Model (bLM)
and a protein Language Model (pLM) into a joint latent embedding space using Protein embeddings
with natural language using Contrastive Learning (PenCL), (2) refinement and enhancement of the
text embeddings (Facilitator), and (3) generation of novel protein sequences via text-conditioned
autoregressive discrete diffusion (ProteoScribe). Training is performed over a corpus of 45M text-
protein pairs. (B) The trained model is used to design protein sequences based on natural language
text prompts providing textual descriptions for the lineage, properties, and/or function of desired
target proteins. The generated protein sequences are subjected to in vivo and in vitro experimental
validation via gene synthesis, high-throughput selection assays, next-generation sequencing, and
biochemical binding assays to measure fitness and phenotype. Portions of this image were created in
BioRender. BioRender.com/r83g055.

experimental validation of functional proteins designed using natural language text prompts. The
integration of NLP and pLMs opens new frontiers in protein engineering, enabling intuitive and
flexible protein design through text prompts, democratizing the process of functional process design,
and paving the way for advances in synthetic biology and biotechnology.

2 Related Work

Protein Representation Learning: Protein Language Models (pLM) have played a pivotal role
in learning effective protein representations for downstream applications in predictions of structure
and function and understanding evolutionary lineage and design rules [25, 26, 27, 16, 28, 11]. The
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predominant training objectives for these pLMs are self-supervised learning tasks, notably masked
token prediction [25, 29, 30], a technique borrowed from successes in natural language processing
with BERT-based architectures [31]. Unlike structure-based representation learning, which infers
protein structures at various levels [32, 33, 34, 35, 36, 37], pLMs are capable of learning from the
vastly larger corpus of sequenced proteins, which far exceeds those with experimentally validated
structures [38, 39]. As pLMs scale in size, they have demonstrated the ability to produce robust
protein representations for downstream prediction tasks that are competitive with leading methods
like AlphaFold2 without the need for multiple-sequence alignments [26]. Variational Autoencoders
(VAEs) have been utilized to infer phylogeny and generate libraries that enrich functional vari-
ants [15], while the CLEAN model employs contrastive learning with the InfoNCE loss to categorize
enzymes based on their Enzyme Commission (EC) numbers, effectively predicting the reactions
of uncharacterized sequences [40]. pLMs are not limited to particular protein families and can be
trained over diverse protein types, including enzymes, binding domains, membrane receptors, and
transporters [7] to learn transferable principles underpinning the syntax of protein sequences and offer
great versatility in classifying and predicting diverse protein functions. Our work extends the use of
pLMs by pretraining them to develop a joint latent embedding with a biomedical language model
(bLM) that aligns protein sequences with natural language annotations to expose new understanding
of protein homology and function and facilitate the guided design of proteins using text prompts.

Multimodal Representation Learning: Leveraging natural language and textual representations has
significantly enhanced representation learning across various modalities such as images [41, 42, 43,
44], video [45, 46, 47], speech [48, 49], and small molecules [50, 51]. Notably, recent advancements
have aligned protein Language Models (pLMs) with biomedical Language Models (bLMs) using
a multimodal InfoNCE loss originally implemented with the CLIP model [41] to attract and repel
text-protein pairs in a joint embedding space [22, 23]. Herein, we build upon this prior work by
increasing the training data abundance to 45M text-protein pairs curated from the SwissProt and Pfam
databases [38], enriching the text prompts to incorporate additional protein attributes, and introducing
a protein family contrastive loss to better infer homology within the joint embedding space.

Conditional Generation for Protein Design: Generative protein design has historically been
engaged through structure-based and sequence-based paradigms. In structure-based design, Denoising
Diffusion Probabilistic Models (DDPMs) have emerged as powerful tools and have been applied to
protein design [52] and secondary structure and fold engineering [53, 54]. RFDiffusion has been
produced experimentally validated novel structures conditioned on desired functional motifs [55], and
Chroma has shown success in conditional protein design using classifier guidance [56]. Sequence-
based generation appeals to the sequence-structure-function paradigm wherein sequence encodes
the salient information needed to predict both structure and function [1, 2, 3, 4, 5], and offers
advantages in generative protein design relative to structure-based paradigms in the size of training
data (O(109) known sequences vs. O(105) solved structures) [38, 39], elimination of the need for
inverse-folding models since sequences are directly designed [20, 57], and seamless integration with
high-throughput functional enrichment assays using next-gen sequencing to probe sequence-function
relationships [58]. Sequence-based generative models, such as autoregressive models [59, 60] and
VAEs [15, 61], have shown experimental validation but are often limited by their conditioning
capabilities. For example, ProGen uses control tags such as gene ontology and species labels to guide
generation with an autoregressive language model [16], yet lacks the flexibility and simplicity of
natural language prompting of conditional image generation models like DALL-E [43]. ProtST [22]
aligns text embeddings in a joint space but has not been used for conditional generation with a protein
decoder, whereas ProteinDT [23] generates in silico validated proteins using both autoregressive and
discrete diffusion decoders, allowing for flexible sequence generation guided by text prompts. Our
work leverages a richer and larger dataset of 45M text-protein pairs and implements an order-agnostic
autoregressive diffusion model conditioned on textual descriptions that enables full sequences design
or in-painting of desired regions similar to EvoDiff [24], but with the added capability of guided
protein design through conditional generation using text prompts. Lastly, our work demonstrates the
first demonstration, to the best of our knowledge, of the in vivo and in vitro validation of functional
proteins designs based on natural language text prompts.
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3 Methods

We summarize methodological details of curation of text-protein pairs, the three components –
Protein embeddings with natural language using Contrastive Learning (PenCL), refinement and
enhancement of the joint embedding (Facilitator), and generation of novel sequences via text-
conditioned autoregressive discrete diffusion (ProteoScribe) – of the BioM3 model, and the in vivo
and in vitro validation of designed SH3 sequences. Additional information is provided in Appendix A.

3.1 Dataset Curation and Assembly

We curated a corpus of 45M pairs of protein sequences and text annotations from the SwissProt and
Pfam databases [38]. Similar to ProtST [22], we retrieved information from SwissProt and added
prefixes to delimit annotations from different fields: “PROTEIN NAME”, “FUNCTION”, “SUBCEL-
LULAR LOCATION”, and “SIMILARITY”. We also gathered information for additional prefixes,
including: “CATALYTIC ACTIVITY”, “DOMAIN”, “LINEAGE”, “FAMILY NAME”, “ACTIVITY
REGULATION”, “BIOPHYSICOCHEMICAL PROPERTIES”, “PTM”, “TISSUE SPECIFICITY”,
“MISCELLANEOUS”, “COFACTOR”, “PATHWAY”, “BIOTECHNOLOGY”, and “INDUCTION”.
We expanded our training data by appealing to the Pfam database, which sorts domains from se-
quences in UniProt and assembles protein families and clans. For these data, we added two more
prefixes: “FAMILY DESCRIPTION” and “GENE ONTOLOGY”. Since the Pfam database is as-
sembled based on protein families, the “FAMILY DESCRIPTION” field enriches our text prompt,
although the previously mentioned fields might not always be available. Statistics on the availability
of information for each field from the two databases is detailed in Tables S1 and S2. The full text
description for each protein sequence is formed by concatenating all fields into a single prompt.
Examples of text-protein pairs from the SwissProt and Pfam databases are presented in Tables S3 and
S4. Additional details on the data curation are provided in Appendix A.1.

3.2 Stage 1: Protein embeddings with natural language using Contrastive Learning (PenCL)

During PenCL pretraining, we aim to infer a joint embedding space that aligns protein representations
with natural language representations of textual protein descriptions. First, an intermediate protein
representation hp is inferred from a single-modality pretrained protein Language Model (pLM) and
then further transformed into a protein representation zp within the joint embedding space using a
simple multi-layer perceptron module, often referred to as a projection head [62]. Similarly, we infer
an intermediate text representation ht using a single-modality pretrained biomedical Language Model
(bLM) and then further transform it into a text representation zt within the joint embedding space
using a projection head. For the pLM, we used ESM2 [26] with 650M parameters, pretrained on
protein sequences from the UniProt database with a masked language model loss. For the bLM, we
used PubMedBERT-full [63] with 100M parameters, trained on PubMed full-text articles to extract
representations of arbitrary textual descriptions.

To induce multimodal pretraining and align text representations with protein representations, we lever-
age the InfoNCE loss [64], originally implemented on multimodal text-image data with CLIP [41],
and we call this objective, originally coined by ProtST [22], the Global Contrastive loss LGC :

LGC = − 1

2M

M∑
i=1

(
log

exp(mij · zpi · zti/τ)∑M
j=1 exp(mij · zpi · ztj/τ)

+ log
exp(mij · zti · z

p
i /τ)∑M

j=1 exp(mij · zpj · zti/τ)

)
(1)

where mij is a masking matrix defined as:

mij =

{
−∞ if (i, j) corresponds to unwanted pairs
1 otherwise

where τ is a temperature hyperparameter, M equals 2N where N is the batch size for SwissProt and
Pfam and we curate the batch such that each sequence i = 1...N in the SwissProt batch corresponds
to a sequence i = (N + 1)...M in the Pfam batch based on homology (i.e., matching Pfam labels),
zt is the text representation, and zp is the protein representation. The masking matrix mij ensures
that specific pairs do not contribute by setting the value to −∞, effectively excluding them from the
calculation. This exclusion is necessary to eliminate false negatives corresponding, for example, to
homologs i = k and j = N + k sampled from the SwissProt and Pfam databases. This masking
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aligns with the pretraining approach, avoiding misleading associations between particular pairs while
still enforcing robust contrastive learning.

We also introduce a homology contrastive loss to take advantage of the homology information
contained in the Pfam database that we term the Protein Family Contrastive Loss LPFC :

LPFC =
1

2N

N∑
k=1

[
ℓPFC(k,N + k) + ℓPFC(N + k, k)

]
(2)

ℓPFC(i, j) = − log
exp(zpi · z

p
j /τ)∑2N

k=1 1{k ̸=i} exp(z
p
i · z

p
k/τ)

(3)

where τ is a temperature hyperparameter, N is the batch size, 1{k ̸=i} is an indicator function, and zp
is the protein representation. This loss further attracts (repels) homologs from the same (different)
protein families as classified by Pfam, thereby introducing a molecular evolution inductive bias.
Along with these two contrastive losses, we continue to train the bLM and pLM with standard
masked language model losses LbML and LpML, further improving it’s ability to reconstruct protein
sequences and our curated textual prompts. Thus, the total loss for PenCL is LPenCL = LGC +
LPFC + LbML + LpML, which we minimize with respect to the weights of the bLM, pLM, and
the two projection heads. The model is trained over text-protein batches curated from SwissProt
and Pfam and infers them in parallel with the bLM and pLM (Figs. S2, S3, S6A). More details
on the architecture and lossess are provided in Appendix A.2.1, pretraining details are provided in
Appendix A.2.2, and ablation analysis details are provided in Appendix A.2.3.

3.3 Stage 2: Facilitator

The second stage is to use a module referred to as a Facilitator, which acts as an alignment module
on top of PenCL to further improve the text embeddings. This module was originally introduced
by ProteinDT [23] and was found to empirically improve sequence generation. The Facilitator is a
simple autoencoder architecture, where the input is the text embedding zt, the output embedding is an
augmented text embedding zc, and the objective is to reconstruct zp. Instead of a mean-square error
loss similar to ProteinDT, we used a max-mean discrepancy (MMD) loss to compute the similarity
between the distributions of zp and zc. MMD metric operates in a high-dimensional feature space,
enabling more nuanced comparisons and better handling of high-dimensional data [65]. The Stage 2
training loss objective for the Facilitator is given by:

LFacilitator = Ep(zp),p(z′
p)
[k(zp, z

′
p)]− 2Ep(zp),q(zc)[k(zp, zc)] + Eq(zc),q(z′

c)
[k(zc, z

′
c)]

= 2(1− Ep(zp),q(zc)[k(zp, zc)])
(4)

where p(zp) is the distribution over zp, q(zc) is the distribution over zc, and k(·, ·) is a Gaussian

kernel k(xi, xj) = exp
(
−∥xi−xj∥2

2σ2

)
where σ is a hyperparameter. The simplification after the

second equality results from the fact that the first and third terms evaluate to unity. We minimize the
loss function with respect to the weights of the Facilitator model. Alternatively, we can replace MMD
loss and compute the mean-squared error (MSE) loss between zp and zc, although the MMD loss
appears to be more robust and less prone to overfitting (Fig. S4A). Empirically, we found that a key
function of the Facilitator is to improve the agreement between the norm of text embedding ∥zt∥ and
protein embedding ∥zp∥ (Fig. S4B). More details of the architecture and loss objectives are provided
in Appendix A.3.1, and pretraining details are provided in Appendix A.3.2.

3.4 Stage 3: Protein Generation with Textual Descriptions (ProteoScribe)

To generate artificial sequences that are compatible with a given text prompt, we pretrain a decoder
model on the text-protein pairs from the SwissProt database. While ProteinDT [23] has shown
that sequences can be generated by conditioning on a text prompt with an autoregressive language
decoder or discrete diffusion decoder, we instead choose to implement a discrete order-agnostic
autoregressive diffusion model (ARDM) [66]. This architecture allows us to flexibly generate
complete sequences or in-paint arbitrary (non-contiguous) motifs in an order agnostic fashion.
EvoDiff [24] presented an early implementation of ARDM for proteins, and we expand upon this
architecture by incorporating conditional capabilities to enable the model to accept conditioning on
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natural language text prompts. The pretraining process involves sampling time points t, corrupting
protein sequences x with absorbing states based on these sampled time points, and denoising the
remaining sequence by reconstruction while conditioned on both the uncorrupted sequence tokens
and the zc embedding (Figure S5). Thus, loss objective for ProteoScribe is given by:

LProteoScribe =DEtEσ∼U(SD)

[
1

D − t+ 1

∑
k∈σ(>t)

log p(xk|xσ(<t), zc)

]
(5)

where D is the number of timesteps, t is the timestep, U(SD) is the uniform distribution of all possible
orderings of positions σ ∈ SD, x is the protein sequence, xk is the kth token of the protein sequence,
xσ(<t) is the set of (possibly non-contiguous) tokens specified or decoded prior to time t, and
zc = fFacilitator(zt) is the protein sequence representation produced by the Facilitator. We implement
this as an efficient transformer model [67, 68, 69]. Further details of the architecture and loss
objectives are provided in Appendix A.4.1, pretraining details are provided in Appendix A.4.2, and
the sampling procedures for generating sequences or in-painting motifs is provided in Appendix A.4.3.

3.5 Experimental Validation of Prompt Engineering for Proteins

We experimentally validate the trained BioM3 model by conducting in vivo and in vitro experimental
tests of generated protein sequences conditioned on text prompts containing information about Src
homology 3 (SH3) sequences capable of functioning like natural Sho1SH3 domains by binding their
cognate pbs2 ligand and effecting the osmosensing mechanism in S. cerevisiae (baker’s yeast). To
do so we fine tuned the ProteoScribe model on a curated library of 25,030 SH3 domain-containing
sequences. The fine-tuned model thus integrates the text-protein alignment capabilities of the PenCL
and Facilitator stages with the specialized knowledge of SH3 domain structure and function within
ProteoScribe. After fine-tuning is complete, we constructed five text prompts of varying similarity to
SwissProt and Pfam annotation styles and deployed the BioM3 model to generate artificial sequences.
The generated sequences – 984 across all five prompts – were then subjected to gene synthesis,
assembly, and in vivo and in vitro tests of function. We tested the functional capacity of the designed
sequences to rescue activity and promote survival under selective conditions in vivo using a high-
throughput select-seq assay that couples a high-osmolarity challenge with next-generation sequencing
to measure the relative enrichment (r.e.) of the post-selection population in a particular allele
variant relative to a null gene and wild-type S. cerevisiae [15]. The r.e. score provides a quantitative
measurement of the degree to which our designed SH3 domains are functional in vivo and capable of
activating a homeostatic osmoprotective response. Additionally, we selected a handful of designed
sequences for purification and measurement of in vitro activity in a biochemical binding assay.
Full details of the preparation of the SH3 dataset is presented in Appendix A.5.1, the fine-tuning
of ProteoScribe in Appendix A.5.2, the five text prompts and sampling of designed sequences in
Appendix A.5.3, and the experimental details of the in vivo and in vitro assays in Appendix A.5.4 and
Appendix A.5.5.

4 Experiments and Results

We conducted a series of tests to evaluate the performance of our BioM3 framework in designing
functional protein sequences guided by natural language prompts. Our results demonstrate the
efficacy of our approach across multiple dimensions, including in silico validations of subcellular
localization prediction, reaction classification, remote homology detection, scaffold in-painting, and
structural plausibility, and in vivo and in vitro assays of natural language prompt-designed synthetic
analogs of Src-homology 3 (SH3) domain proteins.

4.1 Visualization of PenCL Protein-Text Embedding

The PenCL architecture effectively integrates protein sequences and text descriptions into a unified
joint embedding space. The Global Contrastive Loss (LGC) aligned text and protein embeddings,
while the Protein Family Contrastive Loss (LPFC) ensured that homologous sequences from the
same family were closely clustered (Fig. S6A). The clustering performance was assessed using the
Calinski-Harabasz Index (CHI) and Davies-Bouldin Index (DBI) [70], with results indicating higher
clustering quality for PenCL compared to single modality models (Fig. S6B). A Principal Component
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Analysis (PCA) embedding of the joint embedding space exposed distinct clustering of protein
families based on their textual descriptions and a clear separation of inter-clan and intra-clan clusters
(Fig. S7), thereby confirming the model’s ability to infer homology and functional relationships from
the text-protein pairs.

4.2 Benchmarking PenCL in Zero-Shot and Homolog Detection Tasks

PenCL’s performance was further benchmarked in zero-shot and homolog detection tasks, focusing
on subcellular localization prediction, reaction classification, and remote homology detection. In zero-
shot evaluations, PenCL demonstrated excellent performance in predicting subcellular localization and
enzyme reaction classification, achieving accuracies on par with or exceeding that of the ProST [22]
multimodal model (Table S5). For zero-shot remote homology detection, PenCL outperformed
BLASTp [71], ProtST [22], ProtT5 [29], and ESM2 [29] in identifying homologous relationships
between proteins, highlighting the performance capabilities realized by leveraging joint text-sequence
embeddings for evolutionary and functional inference (Table S6). In addition, an ablation analysis
was conducted on the remote homology detection task, demonstrating that the LPFC plays a crucial
role in performance (Table S7). These benchmarks underscore PenCL’s robustness and versatility in
handling diverse and complex protein-related tasks without fine-tuning. More details on the results
and capabilities of PenCL are presented in Appendix B.1.

4.3 Sequence Generation and Structural Plausibility

We next tested the capability of the trained BioM3 model to produce structurally plausible protein
sequences across a wide range of lengths and complexities based on distinct text prompts. In Figure S8,
we present five text prompts drawn from the SwissProt training data and passed to BioM3 as an
in-distribution test of its capacity to recapitulate protein sequence and structure within the training
set. Structures were predicted in silico using ColabFold [72] and compared with experimentally
solved or predicted structures retrieved from the AlphaFold2 database [73] corresponding to the text
prompt. TMScores exceeding 0.922 and RMSD values below 2.32 Å indicate excellent agreement
between the structure of the native sequence and that produced by BioM3. We also retrieved the
nearest sequence using BLASTp to demonstrate that in all cases we recover a sequence with the same
name and function as contained within the text prompt, but that the generated sequences possess
high sequence diversity, sharing as little as 53.59% sequence similarity with the nearest BLASTp hit.
We also tested the capacity of BioM3 for scaffold in-painting by retaining the functional motif of a
compact calmodulin protein and generating novel scaffold regions conditioned on the sequence of
the functional motif and a calmodulin text prompt (Appendix B.3). The functional motif remains
consistent across all designs while generating diverse scaffoldings. These results showcase the
expressive capabilities of text-guided generation, underscoring the potential in flexible and precise
protein design. More details on the capabilities of ProteoScribe are presented in Appendix B.3.

4.4 Experimental Validation of Text-Guided Protein Designs

As a final test, we evaluated the in vivo and in vitro functionality of SH3 domain sequences generated
using five distinct text prompts (Fig. 2A). The five prompts are presented in Appendix A.5.3. The
first corresponds to the prompt annotation for Sho1SH3 that was seen during fine-tuning. The second
and third are ablated versions of the first: the second prompt retains functional information, whereas
the third includes only the name of the Sho1SH3 domain. The fourth and fifth prompts were entirely
new: the fourth includes only the protein name, and the fifth incorporates the name and functional
description. The trained BioM3 model with a ProteoScribe block fine-tuned on SH3 was primed
with each of these prompts and generated 200, 200, 67, 200, and 317 artificial sequences with
prompt 1, 2, 3, 4, and 5, with 984 prompt designs selected for experimental validation (Section 3.5,
Appendix A.5.3). These sequences were then subjected to in vivo tests of osmosensing function by
assessing the capacity of S. cerevisiae cells containing these designed protein variants to survive
under high-osmolarity conditions as quantified by the relative enrichment (r.e.) scores measured
in a high-throughput select-seq assay (Fig. 2B, Appendix A.5.4). The sequences generated by the
various prompts exhibited a range of sequence identities compared to the closest natural SH3 domain
spanning approximately 20-80%. Interestingly, the sequence identities are quite tightly clustered
for each prompt, but the r.e. scores exhibit a range of values. Notably, sequences generated from
prompts that included both name and functional descriptions tended to produce more functional alleles
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Figure 2: Experimental validation of BioM3 text-guided protein designs. (A) Illustration of
text-guided protein design where the BioM3 model is prompted with a text description of the Sho1SH3

binding domain. SH3 domains are protein interaction modules that bind to polyproline-containing
target ligands. For the Sho1 paralog, binding between the protein and the target peptide sequence in
the pbs2 MAP kinase mediates responses to fluctuations in external osmotic pressure by controlling
the production of internal osmolytes. We illustrate the experimentally solved structure of the S.
cerevisiae Sho1SH3 domain (PDB:2VKN) in complex with the pbs2 peptide ligand. (B) Experimental
assessment of the text-prompted, generatively-designed synthetic Sho1SH3 domains is conducted
using a high-throughput select-seq assay that quantifies in vivo rescue of osmosensing function
via the relative enrichment (r.e.) score. (C) Plots reporting the r.e. scores for the 984 sequences
designed by the BioM3 model under each of the five prompts. The relative enrichment (r.e.) scores
quantify the fitness of the designed proteins relative to wild-type (r.e. = 0) and the Levenshtein
distance relative to the closest natural SH3 measures sequence divergence from natural. The blue
dotted vertical line represents the r.e. = (-3.29 ± 0.76) for a null allele, with the blue-highlighted
interval indicating the uncertainty determined by error propagation. The red dotted vertical line
shows the r.e. = (0.00 ± 0.11) corresponding to wild-type S. cerevisiae Sho1SH3, with its associated
uncertainty also determined by error propagation highlighted in red. The various prompts induce
different distributions of sequence divergence and osmosensing rescue. Notably, Prompt 1 and 5
both generate a number of sequences with wild-type-level function and as little as 47% sequence
similarity. [Illustrations in A and B are adapted from Refs. [15] and [17].]

(Prompts 1, 2, and 5), while less descriptive prompts resulted in more novel sequences (Prompts 3
and 4) achieving as little as 40% identity while preserving residual function (Fig. 2C). We conducted
low-throughput in vitro biochemical measurements of the binding affinity to the pbs2 ligand for
four selected sequences from Prompt 5 spanning a range of r.e. values (Table S8). Notably, one
design exhibited a significantly lower dissociation constant (i.e., higher binding affinity) of Kd =
(0.31 ± 0.04) compared to Kwt

d = (0.9 ± 0.44) for the wild-type. Additionally, we observe that one
functional design from Prompt 4 emerged as the most novel sequence to survive the selection media,
having only two BLAST hits in the NCBI database (web browser) [74], neither of which returned
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a Sho1SH3 domain. Indeed, its closest identity to the wild-type Sho1SH3 was just 28% and to any
natural SH3 domain in the library just 38% (Table S9). Further experimental statistics, data analysis,
and discussion are provided in Appendix B.4. These results provide experimental confirmation that
natural language prompts can effectively guide the design of unique and functional proteins.

5 Conclusion and Future Work

In this work, we introduced BioM3 as a framework for the generative design of functional protein
sequences conditioned on natural language prompts. By learning a joint embedding space between a
protein language model (pLM) and a biomedical language model (bLM) and coupling this embedding
as a conditioning to an autoregressive diffusion model, our approach effectively learns a mapping
between protein sequence and text annotations and leverages this to guide the generation of novel
sequences with desired functional attributes. Our in silico validations demonstrate the capability
of the model to compete with or outperform state-of-the-art models for zero-shot prediction tasks
and homology detection. We also present the first, to the best of our knowledge, in vivo and in vitro
experimental tests of artificial proteins designed using natural language text prompts. In an application
to the design of synthetic analogs of Src-homology 3 (SH3) domain proteins, all five prompts studied
generated sequences with measurable function and revealed that prompts incorporating both name and
functional descriptions tended to yield more functional designs. Notably, the very simple Prompt 5 that
is quite distinct from the formal annotations in the training data – “Key transmembrane SH3 domain
protein in osmotic sensing for filamentous growth and HOG pathways, involving Cdc42p/MAP
kinase interactions and phosphorylation” – produced 25/317 sequences with comparable in vivo
function to the wild-type Sho1SH3. In future work, we plan to expand our experimental tests of text-
guided proteins to a wider class of protein types, including catalytic enzymes, transporter proteins,
and therapeutic proteins, and perform scaffold in-painting to enable precise and flexible design of
multi-domain and multi-functional proteins. The promising results of BioM3 underscore the powerful
potential of combining natural language processing with protein design, offering a powerful tool for
the intuitive and flexible creation of novel proteins and democratization of protein design tools to
non-expert users through the use of simple natural language text prompts.
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Appendix and Supplementary Materials

A Detailed Methods

A.1 Data Curation, Assembly, and Statistics

To curate the pretraining dataset for BioM3, we integrated sequences and annotations from the
SwissProt and Pfam databases [38]. This approach aimed to create a richly annotated dataset that
could effectively guide text-to-protein generative tasks, allowing for the development of functionally
relevant and structurally plausible protein sequences.

SwissProt Database Curation: We retrieved 569,516 sequences from SwissProt [38] and system-
atically annotated each with detailed textual fields. Standard fields utilized in previous models
like ProtST included “PROTEIN NAME,” “FUNCTION,” “SUBCELLULAR LOCATION,” and
“SIMILARITY.” To enhance the dataset, we introduced several additional fields such as “CATALYTIC
ACTIVITY,” “DOMAIN,” “LINEAGE,” “FAMILY NAME,” “ACTIVITY REGULATION,” “BIO-
PHYSICOCHEMICAL PROPERTIES,” “PTM,” “TISSUE SPECIFICITY,” “MISCELLANEOUS,”
“COFACTOR,” “PATHWAY,” “BIOTECHNOLOGY,” and “INDUCTION.” These novel fields, high-
lighted in blue in Table S1, were not previously utilized in similar datasets, enrich the text prompts
with comprehensive information about protein functions and properties.

Pfam Database Curation: We further expanded our dataset by incorporating the Pfam database [38],
which organizes proteins into families and clans based on sequence homology and domain structure.
The Pfam dataset included over 44 million sequences annotated with unique fields, such as “FAMILY
DESCRIPTION” and “GENE ONTOLOGY,” highlighted in red in Table S2. These fields provide an
added layer of biological context, describing family-specific functions and gene-level annotations.
This integration of detailed family descriptions and gene ontology significantly broadens the dataset’s
corpus, providing diverse and informative text prompts that are critical for effective model training.

Visualizing Database Content: To emphasize the differences in annotation content between Swis-
sProt and Pfam, we generated word clouds for each database (Figure S1). The word clouds illustrate
the prevalence of various keywords, with larger words indicating higher frequency. For SwissProt,
terms like “ribosomal,” “cytoplasmic,” and “subunit” dominate, highlighting the database’s emphasis
on subcellular localization and protein complexes. In contrast, the Pfam word cloud shows a broader
array of terms, such as “binding,” “domain,” and “activity,” reflecting the detailed functional and
structural annotations provided by the Pfam database. This visualization highlights how the combined
use of SwissProt and Pfam data enriches the dataset, contributing to the model’s ability to generate
functionally and structurally diverse proteins. The distinct word clouds underscore the complemen-
tary nature of these databases in providing a comprehensive set of annotations for protein sequence
generation.

Statistics and Overview: Tables S1 and S2 summarize the statistics of the SwissProt and Pfam
databases, respectively, highlighting the distribution of different annotation fields. The SwissProt
dataset shows a high prevalence of functional descriptions, with 81% of sequences having a defined
function, while the Pfam dataset is characterized by detailed family annotations, with 100% of
sequences labeled with “FAMILY DESCRIPTION.” The unique keywords retrieved from both
databases, particularly those new to our dataset, play a crucial role in enhancing the richness and
diversity of text prompts for pretraining.

Example Text-Protein Pairs

Tables S3 and S4 provide examples of text-protein pairs from SwissProt and Pfam, demonstrating
the dataset’s ability to capture comprehensive biological information. Each pair includes a protein
sequence aligned with a corresponding text description generated by concatenating all available fields,
showcasing the breadth of annotations and their informational capacity to guide generative models in
creating biologically relevant and functional protein sequences.
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Figure S1: Word clouds visualizing the most frequent terms in the SwissProt (left) and Pfam
(right) databases [38]. The size of each word corresponds to its frequency in the respective
database. The SwissProt word cloud emphasizes terms related to cellular components and protein
classification, with prominent words like “Cytoplasm,” “Belongs,” and “family.” The Pfam word
cloud highlights functional and structural terms, with “domain,” “binding,” and “activity” being
notably prominent. These visualizations illustrate the complementary nature of the two databases in
providing comprehensive protein annotations for the BioM3 training dataset.

Table S1: Distribution of keyword headers in the SwissProt Database, showing sample sizes and
percentages for various annotation fields. Blue highlighted keywords represent novel information
added to text prompts compared to datasets curated by ProtST [23] and ProteinDT [22].

SwissProt Database
KEYWORD HEADER Sample Size Percentage
PROTEIN NAME 569516 100.00%
FUNCTION 461869 81.10%
CATALYTIC ACTIVITY 250254 43.94%
SUBUNIT 283309 49.75%
DOMAIN 47211 8.29%
LINEAGE 567077 99.57%
FAMILY NAMES 567095 99.57%
ACTIVITY REGULATION 15861 2.78%
BIOPHYSICOCHEMICAL PROPERTIES 10417 1.83%
SUBCELLULAR LOCATION 353235 62.02%
SIMILARITY 510971 89.72%
PTM 40613 7.13%
TISSUE SPECIFICITY 46658 8.19%
MISCELLANEOUS 37275 6.54%
COFACTOR 118219 20.76%
PATHWAY 128325 22.53%
BIOTECHNOLOGY 1277 0.22%
INDUCTION 23210 4.08%
TOTAL 569516 100.00%
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Table S2: Summary statistics of Pfam database entries, showing sample sizes and percentages
for various keyword headers. Blue highlighted keywords represent novel information added to text
prompts compared to datasets curated by ProtST [23] and ProteinDT [22]. Red highlighted keywords
are uniquely retrieved from the Pfam database, allowing expansion of the text-protein dataset corpus
while maintaining meaningful text prompts.

Pfam Database
KEYWORD HEADER Sample Size Percentage
PROTEIN NAME 42797279 95.56%
FUNCTION 6426970 14.36%
CATALYTIC ACTIVITY 5893975 13.16%
SUBUNIT 3277681 7.32%
DOMAIN 458266 1.02%
LINEAGE 43088859 96.25%
FAMILY NAMES 44767154 100.00%
ACTIVITY REGULATION 81415 0.18%
BIOPHYSICOCHEMICAL PROPERTIES 15681 0.03%
SUBCELLULAR LOCATION 9418016 21.04%
SIMILARITY 17398665 38.86%
PTM 190700 0.04%
TISSUE SPECIFICITY 0 0.00%
MISCELLANEOUS 179241 0.40%
COFACTOR 4358989 9.74%
PATHWAY 3089004 6.90%
BIOTECHNOLOGY 0 0.00%
INDUCTION 16136 0.04%
FAMILY DESCRIPTION 44767154 100.00%
GENE ONTOLOGY 43088859 96.25%
TOTAL 44767154 100.00%
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Table S3: Examples of text-protein pairs from the SwissProt database [38]. This table illustrates the alignment of protein sequences with their corresponding
detailed text descriptions. The blue text in the Text Description column indicates headers that were uniquely retrieved for our database, expanding the annotation
beyond standard fields. The table includes various annotation fields such as protein name, function, subcellular location, and family names. The rightmost column
shows associated Pfam labels.

SwissProt Database
Primary

Accession
Protein Sequence Text Description Pfam

Labels
A1VXH9 MFIDSVKITLASGDGGKGAVSFRREKHVPLGGPDGGDG

GNGGDIIFVCDNNTHTLVNFKGKRELRAQNGAGGMGRN
KNGKKGENLELIVPEGTQVIDAQTNEILLDLTEEGQRE
LFLKGGKGGLGNTHFKHATNQRPDYAQPGIKGESRLVR
LELKLIADVGLVGFPNVGKSTLISVVSNAKPEIANYEF
TTLTPKLGLVDVNEYNSFVMADIPGIIEGASGGKGLGL
AFLKHIERTSFLLFVLDPMRQMPLKEQFIVLRKELEKF
SNELFGRKFGIMISKSDSVRLGEEFAEQIALNINELDN
YLKEINNPQSFLIKVSSLEKTGLKELKFMLLEEIKTLR
NNKKNFNNLGSVLY

PROTEIN NAME: GTPase Obg. FUNCTION: An essential
GTPase which binds GTP, GDP and possibly (p)ppGpp with
moderate affinity, with high nucleotide exchange rates and a
fairly low GTP hydrolysis rate. Plays a role in control of the cell
cycle, stress response, ribosome biogenesis and in those bacteria
that undergo differentiation, in morphogenesis control.
COFACTOR: Mg(2+). SUBUNIT: Monomer.
SUBCELLULAR LOCATION: Cytoplasm. SIMILARITY:
Belongs to the TRAFAC class OBG-HflX-like GTPase
superfamily. OBG GTPase family. LINEAGE: The organism
lineage is Bacteria, Pseudomonadota, Epsilonproteobacteria,
Campylobacterales, Campylobacteraceae, Campylobacter.
FAMILY NAMES: Family names are GTP1/OBG, 50S
ribosome-binding GTPase.

PF01018,
PF01926

P58181 MKRQNQSCVVEFILLGFSNFPELQVQLFGVFLVIYVVT
LMGNAIITVIISLNQSLHVPMYLFLLNLSVVEVSFSAV
ITPEMLVVLSTEKTMISFVGCFAQMYFILLFGGTECFL
LGAMAYDRFAAICHPLNYPVIMNRGVFMKLVIFSWISG
IMVATVQTTWVFSFPFCGPNEINHLFCETPPVLELVCA
DTFLFEIYAFTGTILIVMVPFLLILLSYIRVLFAILKM
PSTTGRQKAFSTCASHLTSVTLFYGTANMTYLQPKSGY
SPETKKLISLAYTLLTPLLNPLIYSLRNSEMKRTLIKL
WRRKVILHTF

PROTEIN NAME: Olfactory receptor 10A3. FUNCTION:
Odorant receptor. SUBCELLULAR LOCATION: Cell
membrane. SIMILARITY: Belongs to the G-protein coupled
receptor 1 family. LINEAGE: The organism lineage is
Eukaryota, Metazoa, Chordata, Craniata, Vertebrata,
Euteleostomi, Mammalia, Eutheria, Euarchontoglires, Primates,
Haplorrhini, Catarrhini, Hominidae, Homo. FAMILY NAMES:
Family names are Olfactory receptor.

PF13853
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Table S4: Examples of text-protein pairs from the Pfam database [38]. This table demonstrates the alignment of protein sequences with their corresponding detailed
text descriptions. The red text in the Text Description column highlights headers uniquely retrieved from the Pfam database, such as “FAMILY DESCRIPTION” and
“GENE ONTOLOGY”, which expand the annotation corpus. Blue text indicates other important annotation fields. The table includes various annotation fields such as
family name, protein name, similarity, and lineage. The rightmost column shows the associated Pfam labels.

Pfam Database
Primary

Accession
Protein Sequence Text Description Pfam

Labels
A0A6G1QHX5 SVLLINSPTEQVAKDIGRAIMERRLAASINILAR

TFTMYYWKGKIEDGNEILMLVKTKTSMIKQVVDY
VRSVHPYANPEVLSFRVEDGSLPYMKWMDEA

FAMILY NAME: CutA1 divalent ion tolerance protein.
FAMILY DESCRIPTION: Several gene loci with a possible
involvement in cellular tolerance to copper have been identified .
One such locus in eubacteria and archaebacteria, cutA, is
thought to be involved in cellular tolerance to a wide variety of
divalent cations other than copper. The cutA locus consists of
two operons, of one and two genes. The CutA1 protein is a
cytoplasmic protein, encoded by the single-gene operon and has
been linked to divalent cation tolerance. It has no recognised
structural motifs . This family also contains putative proteins
from eukaryotes (human and Drosophila). PROTEIN NAME:
Protein CutA-like protein. SIMILARITY: Belongs to the CutA
family. SUBUNIT: Homotrimer. GENE ONTOLOGY:
membrane, response to metal ion. LINEAGE: The organism
lineage is Eukaryota, Metazoa, Chordata, Craniata, Vertebrata,
Euteleostomi, Actinopterygii, Neopterygii, Teleostei,
Neoteleostei, Acanthomorphata, Anabantaria, Anabantiformes,
Channoidei, Channidae, Channa.

PF03091

A0A161X1J3 ALVVDDDPVGRMILVAMLRRHDFETCSAENGREA
VDLIRSGRQFDVIFMDVVMPVMNGIQATRVLRAM
RVKTMIVGMGPYSRGDNPIEAGMDRVYEKPITPV IIISIRQ

FAMILY NAME: Response regulator receiver domain.
FAMILY DESCRIPTION: This domain receives the signal
from the sensor partner in bacterial two-component systems. It
is usually found N-terminal to a DNA binding effector
domain.PROTEIN NAME: Response regulatory
domain-containing protein. GENE ONTOLOGY:
phosphorelay signal transduction system. LINEAGE: The
organism lineage is Eukaryota, Viridiplantae, Streptophyta,
Embryophyta, Tracheophyta, Spermatophyta, Magnoliopsida,
eudicotyledons, Gunneridae, Pentapetalae, asterids,
campanulids, Apiales, Apiaceae, Apioideae, Scandiceae,
Daucinae, Daucus, Daucus sect. Daucus.

PF00072
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A.2 Stage 1: Protein embeddings with natural language using Contrastive Learning (PenCL)

A.2.1 Architecture and Loss of PenCL

The first stage of our model framework creates a joint embedding space aligning protein representa-
tions with natural language representations of textual protein descriptions. This stage, termed PenCL
(Protein embeddings with natural language using Contrastive Learning), forms the foundation of our
model’s ability to understand and align protein sequences with their textual descriptions.

Our approach employs two separate language models: a protein Language Model (pLM) and a
biomedical Language Model (bLM). The pLM is based on ESM2 [26] with 650M parameters, while
the bLM utilizes PubMedBERT-full [63] with 100M parameters.

The embedding process occurs in two steps for each modality. For proteins, an intermediate protein
representation (hp) is first inferred from the pLM. For text, an intermediate text representation (ht)
is inferred from the bLM. Importantly, both hp and ht are taken as the first hidden token from their
respective language models. These representations are then transformed into a protein representation
(zp) and a text representation (zt) within the joint embedding space using multi-layer perceptron
modules, referred to as projection heads [62]. Thus the inference to acquire representations for the
protein sequences has the following pipeline:

xp
fpLM−−−→ fpLM (xp) = hp

gpLM−−−→ gpLM (hp) = zp (6)

where xp is the protein sequence input features, fpLM is the functional mapping from the protein
Language Model (pLM), hp is the hidden representation along the starting token position that the
transformer-based pLM infers, gpLM is the projection head, and zp is the final latent protein sequence
representation in the joint embedding space. Similarly, for the inference to acquire representations
for text prompts has the following pipeline:

xt
fbLM−−−→ fbLM (xt) = ht

gbLM−−−→ gbLM (ht) = zt (7)

where xt is the protein sequence input features, fbLM is the functional mapping from the biomedical
Language Model (bLM), ht is the hidden representation along the starting token position that the
transformer-based bLM infers, gbLM is the projection head, and zt is the final latent text representation
in the joint embedding space.

The overall loss function for our PenCL architecture is defined as follows:

Stage 1 Pretraining Loss

The Stage 1 pretraining loss objective for PenCL is the following:

LPenCL︸ ︷︷ ︸
Stage 1 loss

loss

= LGC︸︷︷︸
Global

Contrastive loss

+ LPFC︸ ︷︷ ︸
Protein Family
Contrastive loss

+ LbML︸ ︷︷ ︸
biomedical Masked

Language loss

+ LpML︸ ︷︷ ︸
protein Masked
Language loss

where

LGC → Learns representations that align protein sequence and natural text.

LPFC → Learns representations that are invariant to various homologs from the same
family, while also being able to distinguish between different families.

LbML + LpML → Learns to infer a masked word (amino acid) from its context, learning
rich language representations that encompass word (amino acid) meaning and grammatical
(coevolution) relationships.

The components of this loss function are defined as follows:
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Stage 1 Pretraining Loss Equation Components

The Stage 1 pretraining loss objective for PenCL is defined by the following components:

LGC = − 1

2M

M∑
i=1

(
log

exp(mij · zpi · zti/τ)∑M
j=1 exp(mij · zpi · ztj/τ)

+ log
exp(mij · zti · z

p
i /τ)∑M

j=1 exp(mij · zpj · zti/τ)

)

LPFC =
1

2N

N∑
k=1

(lPFC(k,N + k) + lPFC(N + k, k))

LbML = Ext∼Xt
EM

∑
i∈M

− log p(xt,i|xt/M )

LpML = Exp∼Xp
EM

∑
i∈M

− log p(xp,i|xp/M )

where

lPFC(i, j) = − log
exp(zpi · z

p
j /τ)∑2N

k=1 1{k ̸=i} exp(z
p
i · z

p
k/τ)

τ is a temperature parameter that scales the distribution of the dot products, and mij is a
masking matrix defined as:

mij =

{
−∞ if (i, j) corresponds to unwanted pairs (e.g., i = 1, j = N + 1)
1 otherwise

1{k ̸=i} is the indicator function ensuring that masked entries do not contribute as negative
pairs.

In these equations, τ is a temperature hyperparameter, M = 2N where N is the batch size for
SwissProt and Pfam, zt is the text representation, and zp is the protein representation. Importantly
for implementation of our loss functions, we curate the batch such that each sequence i = 1...N
in the SwissProt batch corresponds to a sequence i = (N + 1)...M in the Pfam batch based on
homology (i.e., matching Pfam labels) (cf. Supplementary Algorithm 1). The Global Contrastive
loss (LGC) aligns text representations with protein representations. The Protein Family Contrastive
Loss (LPFC) leverages homology and the structure of the Pfam database, introducing a molecular
evolution inductive bias into our model architecture. The masked language model losses (LbML and
LpML) for both the bLM and pLM allow our model to simultaneously optimize for protein sequence
reconstruction and textual prompt understanding.

This comprehensive loss function enables our model to create a unified representation space where
proteins and their textual descriptions can be meaningfully compared and analyzed, setting the stage
for various downstream tasks in our overall framework.

A.2.2 PenCL Pretraining

The PenCL model is pretrained to align protein sequences with their corresponding textual descrip-
tions using a contrastive learning framework that integrates ESM2, a protein language model, and
PubMedBERT, a biomedical language model. This process forms a joint embedding space that not
only captures the complex relationships between proteins and their natural language descriptions
but also contrasts homology to leverage molecular evolution inductive bias. This dual approach is
especially important given the absence of an exhaustive large-scale protein-text data corpus, allowing
PenCL to effectively generalize across protein-text modalities and utilize evolutionary context for
tasks such as functional annotation and protein design.
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Figure S2 provides an overview of PenCL’s joint embedding and masked language loss objectives.
The figure illustrates how protein sequences from the Swiss-Prot and Pfam databases are processed
to compute both the Global Contrastive loss (LGC) and Protein Family Contrastive loss (LPFC).
For each training pass, a batch size N is sampled from Swiss-Prot, and sequences from Pfam
with matching Pfam labels are selected to form positive and negative pairs. This setup allows the
simultaneous computation of both LGC and LPFC in a single forward pass, efficiently leveraging
labeled data to train PenCL. The masked language modeling losses (LbML and LpML) are computed
using sequences with masked tokens, enhancing the model’s ability to capture contextual and semantic
relationships within both the protein sequences and textual descriptions.

The dataloader algorithm (Supplementary Algorithm 1) details the sampling process of protein-text
pairs along with their homologs, while the pretraining algorithm (Supplementary Algorithm 2) de-
scribes the step-by-step workflow involved in PenCL’s training. As detailed in the algorithm, each
minibatch of protein and text data is processed through the pLM and bLM to generate intermediate
representations (hp and ht), which are projected into the joint latent space (zp and zt). The com-
bined loss function, LPenCL, is calculated using the similarity matrices between these embeddings,
incorporating both contrastive and masked language modeling losses to guide the learning process.
The final transformer blocks of both pLM and bLM are fine-tuned using LPenCL, alongside the
projection heads gpLM and gbLM .

The training was conducted on four NVIDIA A100 GPUs, leveraging data distributional training to
facilitate a large negative batch size’s crucial factor in contrastive learning. As shown in Figure S3,
the AllGather function is employed to concatenate representations from each GPU, enabling the
computation of full similarity matrices across the distributed system. This approach ensures robust
and scalable training, with backpropagation occurring across all GPUs using PyTorch. The latent
embedding size for the protein (zp) and text (zt) joint embedding space were set to 512, with an Adam
optimizer used at a base learning rate of 0.0016, adjusted according to global_batch_size/256 ×
base_lr. The temperature parameter for both LGC and LPFC was set to 0.8, and dropout within
the projection heads was set to 0.1. Sequence lengths were capped at 512 tokens for text and 1024
tokens for proteins, including special start and end tokens. The hp and ht embeddings were sized at
1280 and 768, respectively, with input dimensions for the projection heads adjusted accordingly. The
training utilized floating-point 16 precision.

Our final PenCL model, used for benchmarking evaluations, was pretrained for 20 epochs, with the
5-epoch checkpoint employed for design experiment evaluations. The validation set was created
from a 20% random split of the combined Swiss-Prot and Pfam datasets, enabling comprehensive
evaluation across diverse protein families and textual descriptions.

This comprehensive pretraining strategy integrates multiple loss objectives and distributed computing
techniques to effectively train PenCL, creating a biologically meaningful and semantically rich
representation space that bridges protein sequences and textual descriptions.

A.2.3 PenCL Ablation Pretraining Analysis

To evaluate the impact of different loss components in the PenCL model, we conducted a series of
ablation experiments. Each ablation modifies the pretraining loss terms to assess their individual
contributions to the model’s performance. The ablations and their pretraining setups are detailed as
follows:

No ablation: The full loss function (LPenCL) is employed, combining the Global Contrastive loss
(LGC), the Protein Family Contrastive loss (LPFC), and the masked language modeling losses for
both text (LbML) and protein sequences (LpML). This configuration leverages the full SwissProt and
Pfam datasets by sampling pairs from both databases and fine-tuning the language models in PenCL
model.

Ablation 1: The Protein Family Contrastive loss (LPFC) is removed, setting its contribution to zero
while retaining the other loss terms (LGC + LbML + LpML). This setup still samples pairs from
both SwissProt and Pfam, thus utilizing the full dataset, and fine-tunes the language models in the
PenCL model. This configuration tests the importance of homology-based learning by excluding
explicit family contrastive learning.

Ablation 2: The Protein Family Contrastive loss (LPFC) is removed, setting its contribution to zero
while retaining the other loss terms (LGC + LbML + LpML). Unlike other setups, this ablation only
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Figure S2: Overview of PenCL’s joint embedding loss and masked language loss objectives. The
figure demonstrates the data flow from Swiss-Prot and Pfam databases into the contrastive learning
and masked language modeling components of the model. Losses LGC , LPFC , LbML, and LpML

are computed to align protein sequences and their descriptions within the joint embedding space.

samples from the SwissProt database and does not utilize Pfam data, limiting the homology context
and relying mainly on cross-modal alignment. The mask m in Supplementary Algorithm 2 is not
applied since Pfam database is not sampled alongside the Swissprot database. The language models
in the PenCL model is still fine-tuned, including the language models.

Ablation 3: This configuration retains only the Global Contrastive loss (LGC ), excluding the Protein
Family Contrastive and masked language modeling losses. It samples data from SwissProt database
and fine-tunes the language models in the PenCL model, focusing on cross-modal protein-text
alignment without leveraging homology or intra-modal context.

Ablation 4: The final ablation retains the Global Contrastive loss (LGC) but with a distinct configu-
ration indicated by the symbols in the figure, possibly modifying the contrastive alignment strategy.
Unlike other ablations, this setup does not fine-tune the language models, and the remaining training
is restricted to the projection heads. This setup explores the effect of alignment learning without
further adjusting the pretrained language models.

These ablations are designed to probe the significance of particular loss components and the impact
of sampling strategies on model performance, and expose the need for balanced cross-modal and
intra-modal objectives in the absence of extensive protein-text corpora. PenCL performance under
these ablations in a remote homology task is reported in Table S7.
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Algorithm 1 Stage 1 Dataloader for PenCL Pretraining
Require: SwissProt database, Pfam database, batch size N
Ensure: Batch of concatenated sequences and text pairs for contrastive learning

1: Initialize batch size N
2: Load SwissProt and Pfam datasets
3: Sample SwissProt data:
4: Randomly sample a batch of size N from the SwissProt database:
5: (xswissprot

p , xswissprot
t )← Sample N pairs from SwissProt

6: Extract Pfam labels:
7: For each sequence in xswissprot

p , extract the corresponding Pfam labels ypfam
8: Sample Pfam data:
9: for each label ypfam do

10: Randomly sample a matching sequence-text pair from the Pfam database:
11: (xpfam

p , xpfam
t )← Sample N pairs from Pfam based on ypfam

12: end for
13: Concatenate SwissProt and Pfam batches:
14: Concatenate sequences and text descriptions from SwissProt and Pfam to form the final batch:
15: xp ← [xswissprot

p , xpfam
p ]

16: xt ← [xswissprot
t , xpfam

t ]
17: return (xp, xt)

A.3 Stage 2: Improving text prompt conditioning with Facilitator module

A.3.1 Facilitator Architecture and Loss

The second stage of the PenCL model incorporates an additional module known as the Facilitator,
designed to further refine the alignment of text embeddings with protein embeddings generated by
PenCL. This Facilitator module, originally introduced by ProteinDT [23] and shown to empirically
improve the generative stage, is a simple autoencoder that improves text embeddings by reconstructing
the protein embeddings. Unlike ProteinDT, which employs mean-square error (MSE) loss, we utilize
a Maximum Mean Discrepancy (MMD) loss to enhance the alignment between protein sequence
representation (zp) and the augmented text representation (zc = fFacilitator(zt)). This loss is defined as
follows:

Stage 2 Pretraining Loss

The Stage 2 training loss objective for the Facilitator is given by:

LFacilitator = Ep(zp),p(z′
p)
[k(zp, z

′
p)]− 2Ep(zp),q(zc)[k(zp, zc)] + Eq(zc),q(z′

c)
[k(zc, z

′
c)]

= 2(1− Ep(zp),q(zc)[k(zp, zc)])

where we compute the maximum mean discrepancy (MMD) loss between the protein sequence
representation zp and the produced protein sequence representation (i.e., zc = fFacilitator(zt)),
p(zp) is the distribution over zp, q(zc) is the distribution over zc, and k(·, ·) is a Gaussian kernel,

k(xi, xj) = exp

(
−∥xi − xj∥2

2σ2

)
.

and σ is a hyperparameter. The simplification after the second equality results from the fact that
the first and third terms evaluate to unity.

Over the training epochs, both the training and validation losses for MMD consistently decrease
without evident signs of overfitting, while the MSE loss shows slight overfitting towards the later
epochs (Fig. S4A). This suggests that MMD loss is more robust in aligning the text and protein
embeddings without the risk of overfitting, which is particularly beneficial in a multi-modal setting.
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Algorithm 2 PenCL’s main pretraining algorithm.
Require: batch size N , temperature τ , pretrained protein Language Model (fpLM ), pretrained

biomedical Language Model (fbLM )
1: for sampled minibatch {(xp, xt)}2Nk=1 do
2: for each k ∈ {1, . . . , 2N} do
3: Sample mask m̃ for xp and xt

4: xmasked
p = xp ⊙ m̃ # masked protein sequence

5: xmasked
t = xt ⊙ m̃ # masked text sequence

6: hp = fpLM (xp) # protein representation
7: zp = gpLM (hp) # protein projection
8: ht = fbLM (xt) # text representation
9: zt = gbLM (ht) # text projection

10: h̃p = fpLM (xmasked
p ) # masked protein representation

11: h̃t = fbLM (xmasked
t ) # masked text representation

12: end for
13: Define mask matrix mij where:
14: mij = −∞ when (i ∈ {1, . . . , N} and j ∈ {N + 1, . . . , 2N}) or (i ∈ {N +

1, . . . , 2N} and j ∈ {1, . . . , N}).
15: mij = 1 otherwise.
16: Compute LGC :

LGC = − 1

2M

M∑
i=1

(
log

exp(mij · zpi · zti/τ)∑M
j=1 exp(mij · zpi · ztj/τ)

+ log
exp(mij · zpi · zti/τ)∑M
j=1 exp(mij · zpj · zti/τ)

) (8)

17: Compute LPFC :

LPFC =
1

2N

N∑
k=1

[ℓPFC(k,N + k) + ℓPFC(N + k, k)] (9)

18: where

ℓPFC(i, j) = − log
exp(zpi · z

p
j /τ)∑2N

k=1 1{k ̸=i} exp(z
p
i · z

p
k/τ)

(10)

19: Compute masked language model loss LbML:

LbML = Ext,m

[
− log p(xt|xmasked

t )
]

(11)

20: Compute masked language model loss LpML:

LpML = Exp,m

[
− log p(xp|xmasked

p )
]

(12)

21: Compute total loss:

LPenCL = LGC + LPFC + LbML + LpML (13)

22: Update networks (fpLM , fbLM , gpLM , gbLM ) to minimize LPenCL

23: end for
24: return Trained encoder networks (fpLM , fbLM ) and trained projection heads (gpLM , gbLM )
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Figure S3: PenCL’s architecture and forward pass for similarity computation. Protein and text
representations are generated by their respective language models, projected into the joint embedding
space, and used to compute similarity matrices critical for defining LGC and LPFC . The AllGather
function is employed to concatenate representations across GPUs, ensuring robust loss computation
during training.

The Facilitator employs a simple multilayer perceptron (MLP) architecture where the input and output
dimensions are matched, defined as follows:

# Main neural network structure
self.main = nn.Sequential(

weight_norm(nn.Linear(in_dim, hid_dim), dim=None), # Weight-normalized linear layer
nn.GELU(), # GELU activation function
nn.Dropout(dropout, inplace=True), # Dropout layer
weight_norm(nn.Linear(hid_dim, out_dim), dim=None) # Weight-normalized output layer

)

Here, nn.Linear is PyTorch’s linear affine transformation, weight_norm applies weight normaliza-
tion by decoupling the magnitude of the weight tensor from its direction, nn.GELU() is the non-linear
activation function, and nn.Dropout() serves as a regularization layer to reduce overfitting. The
input (in_dim) and output (out_dim) dimensions match the joint embedding space dimensions,
which, in our case, is 512. The hidden dimension size (hid_dim) is 1024.

The training process was configured with specific hyperparameters tailored to optimize the perfor-
mance of the Facilitator module. We set the validation size to 0.2, with a batch size of 512 and 64
workers for efficient data loading. The model was trained using a single GPU with a precision of
32-bit. The dataset type used was “default”, with the model type specified as “pfam” and the loss
function set to Maximum Mean Discrepancy (MMD). A dropout rate of 0.0 was employed, and the
learning rate was set at 1e-3, optimized using the Adam optimizer. We trained two versions of the
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Facilitator: one for the benchmarked PenCL model, which was pretrained for 20 epochs, and another
for the finetuned SH3 experimental design model, trained for 15 epochs. This configuration ensured
that each Facilitator was specifically adapted to its respective model context, enhancing the alignment
between the protein and text embeddings for their intended applications.

A.3.2 Facilitator Pretraining

The pretraining of the Facilitator involves fine-tuning the autoencoder to improve the alignment
between the text and protein embeddings. Supplementary Algorithm 3 outlines the pretraining
protocol for the Facilitator module.

Algorithm 3 Stage 2 Pretraining of Facilitator
Require: Text embedding zt, protein embedding zp, Facilitator model fFacilitator, Gaussian kernel

function k(·, ·), kernel hyperparameter σ
Ensure: Augmented text embedding zc

1: Initialize Facilitator parameters ϕ
2: Forward Pass:
3: Infer the augmented text embedding from the Facilitator:

zc ← fFacilitator(zt) (14)

4: Compute Loss:
5: Calculate the MMD loss between the protein and augmented text embeddings:

LFacilitator = Ep(zp),p(z′
p)
[k(zp, z

′
p)]− 2Ep(zp),q(zc)[k(zp, zc)] + Eq(zc),q(z′

c)
[k(zc, z

′
c)]

= 2(1− Ep(zp),q(zc)[k(zp, zc)])
(15)

6: Optional:
7: Replace MMD loss with mean-squared error loss:

LFacilitator = ∥zp − zc∥2 (16)

8: Backward Pass:
9: Update Facilitator parameters ϕ to minimize the loss:

min
ϕ
LFacilitator (17)

10: return Facilitator parameters ϕ and augmented text embedding zc

This training process ensures that the Facilitator refines the text embeddings by aligning them more
closely with their corresponding protein embeddings, enhancing the overall performance of the
PenCL model. Empirically, we found that improved agreement between the norm of text embedding
∥zt∥ and protein embedding ∥zp∥ induced by the facilitator was a key factor in improving overall
performance of the BioM3 model (Fig. S4B).

A.4 Stage 3: Order-Agnostic AutoRegressive Diffusion Model with Text Description
Conditioning (ProteoScribe)

A.4.1 Architecture and Loss of ProteoScribe

In Stage 3, we employ an order-agnostic autoregressive diffusion model (ARDM) to generate artificial
protein sequences guided by textual descriptions, referred to as ProteoScribe (Figure S5). Unlike
previous approaches such as ProteinDT [23], which use autoregressive or discrete diffusion decoders,
our ARDM implementation allows flexible order-agnostic sequence generation or in-painting of
(non-contiguous) motifs. Inspired by EvoDiff [24], which first applied ARDM to proteins, our model
further incorporates text-prompted conditionals, enhancing the capacity to generate sequences based
on text inputs.

The architecture of ProteoScribe integrates an efficient transformer [67, 68, 75] with several optimiza-
tions to handle long sequences efficiently. The backbone of the model is an efficient transformer with
linear attention, allowing it to scale linearly with sequence length. Key components include:
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Figure S4: Performance of the Facilitator Module in PenCL Stage 2 Pretraining. (A) Comparison
of training and validation loss curves for the MSE (left) and MMD (right) losses over epochs. The
MMD loss demonstrates a more stable reduction with less overfitting after 10 epochs compared
to the MSE loss, indicating better alignment performance between text and protein embeddings.
(B) Distribution of embedding norms for protein embeddings (∥zp∥), text embeddings (∥zt∥), and
augmented text embeddings produced by the Facilitator (∥zc∥ = ∥fFacilitator(zt)∥). The Facilitator
effectively matches the norms of the text and protein embeddings, enhancing the compatibility and
alignment between the modalities, and improving overall performance of the BioM3 model.

• Sinusoidal Time Embeddings: These embeddings encode diffusion steps, rescaled to match
the training step scale (total diffusion steps D = 1024), providing unique encoding for each
diffusion time point, which is critical for tracking sequence degradation and subsequent
reconstruction.

• Axial Positional Embeddings: A technique used in machine learning, particularly in
transformer-based models, to encode positional information in a more efficient and scalable
manner than traditional positional embeddings.

• Transformer Blocks: The transformer consists of 16 blocks, each with 16 attention heads
and an embedding dimension of 512, resulting in a model with approximately 90M parame-
ters. This configuration provides a context window of 1024, matching the diffusion length.
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Figure S5: Schematic Illustration of Text-guided ProteoScribe. Illustration of the conditioned
transformer-based architecture pretrained with an order-agnostic autoregressive diffusion process
for proteins (ProteoScribe). This allows for conditioned embeddings inferred from text prompts and
achieves order-agnostic autoregressive in-painting.

Sequences are trained to a length of 1022, with the start and end tokens appended, and
padding added if sequences are shorter than 1024.

• Input Embeddings: We employ a token embedding layer with 29 input token representa-
tions, including 20 amino acids, 3 special tokens, 5 alphabetic special tokens found in the
UniProt database, and 1 absorbing state placeholder token.

• Multilayer Perceptron (MLP) Embeddings: An MLP architecture with a structure of
a linear layer, softmax activation, and another linear layer is used to embed the time and
augmented text latent embeddings zc, crucial for integrating information from the text
prompt into the sequence generation process.

The training loss objective for ProteoScribe is defined by an order-agnostic objective function,
allowing the model to reconstruct sequences in any arbitrary order, enhancing the flexibility of
sequence generation:
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Stage 3 Pretraining Loss

The pretraining loss objective for Stage 3, referred to as ProteoScribe, employs a text-guided
autoregressive diffusion model. This objective combines diffusion-based noise prediction, autore-
gressive sequence modeling, and contrastive learning, and is formally defined as follows:

LProteoScribe = D Et∼U(1,...,D)Eσ∼U(SD)

[
1

D − t+ 1

∑
k∈σ(>t)

log p
(
xk | xσ(<t), zc

)
where D is the number of timesteps, t is the timestep, U(SD) is the uniform distribution of all
possible orderings of positions σ ∈ SD, x is the protein sequence, xk is the kth token of the
protein sequence, xσ(<t) is the set of (possibly non-contiguous) tokens specified or decoded
prior to time t, and zc = fFacilitator(zt) is the protein sequence representation produced by the
Facilitator.

A.4.2 ProteoScribe Pretraining

The pretraining of ProteoScribe involves fine-tuning the discrete diffusion model to generate se-
quences conditioned on text prompts. The training protocol consists of sampling time points,
corrupting sequences at these points using absorbing states and reconstructing the sequence by
conditioning on the remaining uncorrupted sequence and the text-derived embedding zc as detailed
in Supplementary Algorithm 4. This approach enables the model to flexibly adapt the reconstruction
order, allowing in-painting of specific sequence motifs or regions based on the conditioning context
and leverages the order-agnostic nature of the ARDM while expanding generation capabilities by
enhancing latent variable conditioning of augmented text embedding zc. This allows for flexible
sequence reconstruction driven by the text prompt. This capability makes ProteoScribe a powerful
tool for generating sequences that align closely with natural language descriptions, opening new
avenues in protein design and annotation tasks.

Algorithm 4 Stage 3 Pretraining Protocol for ProteoScribe
Require: Precomputed text embeddings zt, Facilitator’s augmented text embeddings zc, protein

sequence x, discrete diffusion model fProteoScribe, total diffusion steps D
Ensure: Pretrained discrete diffusion model parameters

1: Initialize discrete diffusion model parameters.
2: for each training iteration do
3: Sample a time step t ∼ U(1, ..., D).
4: Sample an ordering σ ∼ U(SD), where SD is the set of all possible permutations of sequence

indices.
5: Compute the mask m← (σ < t) and the update mask n← (σ = t).
6: Corrupt sequence x using the masks:

x′ ∼ C(x | f(m⊙ x, zc)) (18)

7: Update the sequence:
x← (1− n)⊙ x+ n⊙ x′ (19)

8: end for
9: Optimize model parameters by minimizing the Stage 3 ProteoScribe loss L:

LProteoScribe ← D · Et∼U(1,...,D)

 1

D − t+ 1

∑
k∈σ(>t)

log p
(
xk | xσ(<t), zc

) (20)

10: return Pretrained discrete diffusion model parameters.
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The experimental design model of ProteoScribe was pretrained using an AdamW optimizer with a
learning rate of 1× 10−4, weight decay of 1× 10−6, and a warmup period of 500 steps. This training
was conducted over 100 epochs on an 80/20 random split of the SwissProt dataset, utilizing a local
batch size of 32 distributed across 4 NVIDIA A100 GPUs with the ZeRO optimizer (DeepSpeed
Stage 2), ensuring efficient scaling and resource utilization. This model configuration was primarily
used for experimental design applications.

Additionally, a second model, with identical architecture and parameter settings, underwent a more
extensive pretraining regimen. Initially, it was trained for 600 epochs on the SwissProt split dataset.
Following this, the optimal checkpoint – selected based on performance on the validation set – was
further fine-tuned on a combined 80/20 split of the SwissProt and Pfam datasets. This additional
phase consisted of 3 million training steps, equivalent to approximately 10 epochs. This two-phase
pretraining approach was designed to enhance the model’s performance for in silico benchmarking
and evaluation tasks, leveraging the expanded data set to capture a broader representation of protein
sequences.

A.4.3 Sampling and In-painting with ProteoScribe

After pretraining ProteoScribe, the model can be used to generate new protein sequences guided by
text prompts or to in-paint missing motifs in existing sequences. The generation process leverages the
augmented text embeddings zc, derived from the Facilitator, to condition the ProteoScribe ARDM
during the sampling process.

Sampling New Sequences: The process of sampling new sequences given a text prompt is detailed
in Supplementary Algorithm 5. Here, the generation starts by initializing the sequence x with a start
token. The ordered denoising positions, denoted by σ, can either be predefined, randomly sampled,
or uniformly sampled from all possible permutations of sequence indices. During each time step, the
model generates the next token by conditioning on the already generated parts of the sequence and
the Facilitator embedding zc. This iterative denoising process continues until the entire sequence is
completed, resulting in a sequence that aligns with the provided text prompt.

In-painting Motifs: ProteoScribe can also be utilized for in-painting motifs within sequences, as
shown in Supplementary Algorithm 6. In this scenario, a specific motif is provided at predefined
positions within the sequence. The starting time step tstart controls when the in-painting process
begins, and the ordered denoising positions σ determine where the model will perform decoding. The
process ensures that the known motif remains fixed, while the surrounding sequence is generated to
fill in any missing regions, creating a complete, coherent sequence. This flexibility to specify motif
positions and adjust the denoising trajectory makes ProteoScribe particularly powerful for targeted
sequence design.

Both algorithms highlight the versatility of ProteoScribe in generating novel protein sequences and
filling in gaps with biologically relevant motifs. The ability to control denoising positions either
randomly or through user-defined settings offers significant flexibility for various protein design
applications, providing precise control over how sequences are generated or modified.

A.5 Finetuning Model Details and Experimental Protocol for SH3 Design

A.5.1 Details and Preparation of the SH3 Dataset

To fine-tune the ProteoScribe model for the design and experimental testing of SH3 domains, we
curated a comprehensive SH3 dataset consisting of text-protein pairs from three primary sources,
each matched with the Pfam label PF00018. The first source, SwissProt [38], provided 599 protein-
text pairs, representing multimeric proteins that include SH3 domains within their original, natural
context. These sequences typically reflect the full-length proteins where SH3 domains are naturally
embedded, capturing the broader functional landscape of SH3 domains as integral parts of larger
protein complexes. The second source, the Pfam database [38], contributed 16,566 protein-text pairs
focusing specifically on isolated SH3 domains rather than full-length proteins. This dataset offers a
broad representation of SH3 domain sequences, including variations and homologs across different
organisms, but lacks the surrounding protein context found in multimeric forms. Additionally, we in-
cluded 7,865 protein-text pairs consisting of isolated SH3 domains [15]. For this dataset, text prompts
were constructed by retrieving the paralog name (SH3 PARALOG NAME) and the functional annotation
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Algorithm 5 Sampling New Sequences with ProteoScribe
Require: Facilitator’s augmented text embeddings zc, discrete diffusion model fProteoScribe, total

diffusion steps D, denoising positions σ (can be uniformly/randomly sampled or predefined)
Ensure: Generated sequence x

1: Initialize sequence x with start tokens.
2: If σ is not predefined, sample an ordering σ ∼ U(SD), where SD is the set of all possible

permutations of sequence indices.
3: for each time step t = D down to 1 do
4: Compute the mask m← (σ < t) and the update mask n← (σ = t).
5: Generate the next token conditioned on the partial sequence and Facilitator embedding:

x′ ∼ C(x | fProteoScribe(m⊙ x, t, zc)) (21)

6: Update the sequence:
x← (1− n)⊙ x+ n⊙ x′ (22)

7: end for
8: return Generated sequence x.

Algorithm 6 In-painting Motifs or Scaffolds in a Sequence with ProteoScribe
Require: Facilitator’s augmented text embeddings zc, discrete diffusion model fProteoScribe, motif

xmotif at specific positions, total diffusion steps D, starting time step tstart, denoising positions σ
(can be uniformly/randomly sampled or predefined)

Ensure: Infilled sequence x
1: Initialize the sequence x with the motif xmotif placed at its specified positions.
2: If σ is not predefined, sample an ordering σ ∼ U(SD), where SD is the set of all possible

permutations of sequence indices.
3: for each time step t = tstart down to 1 do
4: Compute the mask m← (σ < t) ensuring motif positions remain fixed.
5: Generate the infill for the remaining sequence conditioned on the known motif and Facilitator

embedding:
x′ ∼ C(x | fProteoScribe(m⊙ x, t, zc)) (23)

6: Update the sequence:
x← (1−m)⊙ x+m⊙ x′ (24)

7: end for
8: return Infilled sequence x.

description (PARALOG FUNCTION) associated with each domain. An example of a constructed prompt
is:

PROTEIN NAME: SH3 domain. LINEAGE: The organism lineage is cellular or-
ganisms; Eukaryota; Opisthokonta; Fungi; Dikarya; Ascomycota; Saccharomyceta;
Saccharomycotina; Saccharomycetes; Saccharomycetales; Saccharomycetaceae;
Torulaspora; Torulaspora delbrueckii. SH3 PARALOG NAME: BEM1. PARA-
LOG FUNCTION: Protein containing SH3-domains; involved in establishing cell
polarity and morphogenesis; functions as a scaffold protein for complexes that
include Cdc24p, Ste5p, Ste20p, and Rsr1p.

The combined dataset was split into an 80/20 training-validation ratio to ensure robust model fine-
tuning and evaluation. Sequences longer than 1,022 amino acids were excluded to conform to
the sequence length constraints of the ProteoScribe model. This curated SH3 dataset provides a
diverse set of sequences and functional descriptions, allowing the model to learn and generalize
the intricate relationships between SH3 domains and their corresponding textual annotations. By
including multimeric proteins from SwissProt, which reflect the natural contextual embedding of
SH3 domains, along with isolated domains from the Pfam database and other sources, the dataset
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enhances the model’s ability to capture both the specific functional features of SH3 motifs and their
roles within larger protein assemblies.

A.5.2 SH3 Finetuning of ProteoScribe

The finetuning of ProteoScribe for SH3 domain design involved utilizing the pretrained Stage 1
PenCL model (epoch 5 checkpoint) and the corresponding Stage 2 Facilitator checkpoint. Both
the PenCL and Facilitator models were kept frozen during finetuning, maintaining their pretrained
weights. The embeddings zt and zc were inferred directly from the text prompts associated with
the SH3 domains, allowing the model to leverage the learned representations from the initial stages
without further modification.

The finetuning process followed the same training hyperparameters and architectural settings as
described in Appendix A.4.1, ensuring consistency across stages. The training was conducted with
a local batch size of 32 over 1,000 epochs using 4 NVIDIA A100 GPUs. However, it is important
to note that the hardware does not necessarily need to be A100 GPUs specifically; any CUDA-
compatible GPUs with sufficient VRAM and support for deep learning software and tools can be
utilized for this process. Distributed training was implemented using the DeepSpeed Stage 2 ZeRO
optimizer, facilitating efficient multi-GPU scaling and memory management.

The final model used for SH3 design was selected based on the checkpoint that demonstrated optimal
validation loss without overfitting, which occurred at epoch 53. This strategy ensured that the
model retained the ability to generalize to new SH3 sequences while leveraging the rich contextual
information encoded during the pretraining phases. The fine-tuned model thus integrates the text-
protein alignment capabilities of the PenCL and Facilitator stages with the specialized knowledge of
SH3 domain structures and functions, providing a robust platform for experimental design.

A.5.3 Procedure of Sampling SH3 Designs with Five Prompts

To evaluate the effectiveness of the ProteoScribe model in generating functional SH3 domain se-
quences, we sampled a total of 5,000 sequences across five distinct textual prompts. These prompts
were designed to explore different ways of guiding the generation of sequences that emulate the func-
tional characteristics of Sho1SH3 domains. The first corresponds to the text annotation for Sho1SH3

that was seen during finetuning. The second and third are ablated versions of the first: the second
prompt retains functional information, whereas the third includes only the name of the Sho1SH3

domain. The fourth and fifth prompts were entirely new: the fourth includes only the protein name,
and the fifth incorporates the name and functional description.

SHO1 Prompt 1

PROTEIN NAME: SH3 domain. LINEAGE: The organism lineage is cellular organisms;
Eukaryota; Opisthokonta; Fungi; Dikarya; Ascomycota; saccharomyceta; Saccharomycotina;
Saccharomycetes; Saccharomycetales; Saccharomycetaceae; Saccharomyces; Saccharomyces
cerevisiae; Saccharomyces cerevisiae S288C. SH3 PARALOG NAME: SHO1. PARALOG
FUNCTION: Transmembrane osmosensor for filamentous growth and HOG pathways;
involved in activation of the Cdc42p- and MAP kinase-dependent filamentous growth pathway
and the high-osmolarity glycerol (HOG) response pathway; phosphorylated by Hog1p;
interacts with Pbs2p, Msb2p, Hkr1p, and Ste11p.

SHO1 Prompt 2

PROTEIN NAME: SH3 domain. SH3 PARALOG NAME: SHO1. PARALOG FUNC-
TION: Transmembrane osmosensor for filamentous growth and HOG pathways; involved in
activation of the Cdc42p- and MAP kinase-dependent filamentous growth pathway and the
high-osmolarity glycerol (HOG) response pathway; phosphorylated by Hog1p; interacts with
Pbs2p, Msb2p, Hkr1p, and Ste11p.
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SHO1 Prompt 3

PROTEIN NAME: Src Homolog 3 (SH3) domain in the high osmolarity signaling protein
SHO1. FAMILY NAMES: Family names are Src Homolog 3 (SH3) domain.

SHO1 Prompt 4

Src homology 3 (SH3) domain-containing members of the SHO1 family.

SHO1 Prompt 5

Key transmembrane SH3 domain protein in osmotic sensing for filamentous growth and HOG
pathways, involving Cdc42p/MAP kinase interactions and phosphorylation.

A total of 1,000 sequences were generated under each prompt and structurally predicted using
ColabFold with MMSeqs2 [72] for fast MSA retrieval to enhance alignment speed and maintain
alignment quality. For each design, five structural predictions were generated, and the TM-score
computed against the wild-type Sho1SH3 domain from Saccharomyces cerevisiae. Sequences with an
average TM-score above 0.5 were considered structurally similar to the wild-type SH3 domain.

From each set of 1,000 sequences per prompt, 200 designs were randomly selected based on structural
similarity and functional relevance. Specifically, sequences were required to have top BLAST hits in
the NCBI non-redundant database with terms relevant to Sho1 function, including “osmosensor”,
“transmembrane”, “SHO1”, “SH3”, “osmolarity”, “kinase”, and “Src Homolog 3”. Due to poor
structural predictions for sequences generated from Prompt 3, which were likely caused by high
novelty and diversity, the 200 designs with the highest TM-scores were selected without strict BLAST
hit criteria. This resulted in fewer than 200 sequences from Prompt 3 meeting the BLAST criteria,
and thus, the remaining designs to fill the quota were incorporated into the pool of Prompt 5 designs.

The final distribution of SH3 designs included 200 sequences each from prompts 1, 2, and 4; 67
sequences from prompt 3; and 333 sequences from prompt 5. Additional controls included the
wild-type Sho1SH3 sequence from S. cerevisiae and a null allele, along with a calibration curve
consisting of a mutation screen of the wild-type allele with various phenotypic effects [15]. In total,
the final gene designs synthesized included 200, 200, 67, 200, and 317 sequences for Prompts 1, 2, 3,
4, and 5, respectively, for a total of 984 sequences across all five prompts.

While this approach specifically assesses our model’s ability to generate functional SH3 domains, the
broader framework exemplifies the potential of starting from textual descriptions of desired functions
to infer latent variables that guide protein generation. This demonstrates how natural language inputs
can direct protein design, ultimately enabling the synthesis of proteins with enhanced functionalities
based on textual and conceptual inputs.

A.5.4 Experimental Details of the In Vivo Assay

The in vivo assay for evaluating SH3 domain designs was based on previously published protocols [15],
with specific adjustments made to suit the current study’s objectives.

Gene Construction: Synthetic SH3 domains were generated by reverse translating the protein
sequences into DNA sequences, followed by codon optimization for yeast expression, focusing on
balanced GC content and optimized codon usage for S. cerevisiae. The oligonucleotides corresponding
to each gene were synthesized on microarray chips (Twist Inc.) and included primer annealing sites
and padding sequences to ensure uniform amplification conditions. PCR amplification was conducted
using KAPA HiFi polymerase with specific forward and reverse primers. The amplified products
were then digested with EcoRI and BamHI, ligated into the PRS316 plasmid backbone containing a
Sho1 N-terminal membrane domain, and subsequently transformed into Agilent Electrocompetent
XL1-Blue cells. The cells were grown in LB media containing ampicillin, and plasmids were purified
and pooled.

Yeast Transformation: The constructed plasmids were transformed into the haploid yeast strain
SS101, built on the W303 background, featuring genetic knockouts of Ssk2 and Ssk22 to remove
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the Sho1-independent osmosensory pathway components. Transformation was carried out using a
LiAc-PEG high-efficiency transformation protocol. Transformed yeast cells were grown in Sc-Ura
media and repeatedly passaged until the transformed allele pool achieved normal growth and doubling
times.

SH3 Domain Selection Assay: The SH3 domain selection assay followed the protocol detailed in
Ref. [15], with modifications to extend the selection period to 72 hours to provide a longer observation
window for assessing the functionality of each SH3 domain design in vivo. Cultures were grown in
Sc-Ura media initially, then transferred to YPD media supplemented with KCl to apply selective
pressure. This extended selection period allowed for a more thorough evaluation of the designed SH3
sequences under osmotic stress conditions. After the 72-hour selection, plasmids were extracted, and
amplicon libraries were prepared for Illumina sequencing. The relative enrichment (r.e.) of each
designed SH3 sequence x was calculated using the following expression:

r.e.(x) = log10

(
fx
72

fx
0

)
− log10

(
fwt
72

fwt
0

)
(25)

where fx
72 and fx

0 are the frequencies of observing the sequence x at the 72-hour and 0-hour time
points, respectively, and fwt

72 and fwt
0 are the corresponding frequencies for the wild-type SH3 domain.

This equation quantifies the enrichment of each design relative to the wild-type, providing insight
into the evolutionary advantage conferred by each synthetic SH3 domain under selective conditions.

This adapted assay allowed for a comprehensive evaluation of synthetic SH3 domains over an
extended selection period, offering valuable insights into the adaptability and performance of the
designs in the yeast cellular environment.

A.5.5 Experimental Details of the In Vitro Assay

The in vitro binding assay was conducted to evaluate the binding affinity of the designed SH3 domains
to their target ligand, pbs2 MAPKK, following previously established protocols [15]. The protocol
involves measuring the intrinsic tryptophan fluorescence of the SH3 domain upon titration with a
synthetic peptide ligand, which serves as an indicator of binding events.

Peptide Synthesis and Protein Expression: The pbs2 MAPKK peptides were synthesized using
standard 9-fluorenylmethoxycarbonyl (Fmoc) chemistry by the Protein Chemistry Technology Center
at UT Southwestern Medical Center. The peptide’s molecular mass was verified via mass spectrometry,
and concentrations were confirmed by quantitative amino acid analysis.

Individual SH3 domains were cloned into the pET28b-P expression vector to generate N-terminal
His6-tagged proteins. For protein expression, the plasmids were transformed into E. coli BL21 (DE3)
cells and cultured in TB media with 50 µg/mL kanamycin. Protein expression was induced with 200
µM IPTG when cultures reached an OD600 of 0.8-1.2, followed by incubation at 18◦C overnight.
Cells were harvested, lysed, and proteins were purified using Ni-NTA affinity chromatography,
followed by further purification using size exclusion chromatography. Purified SH3 proteins were
aliquoted, flash-frozen using liquid nitrogen, and stored at (-80)◦C.

Binding Assay Protocol: The binding affinity between Sho1SH3 domains and synthetic pbs2 MAPKK
ligands was measured by observing the changes in intrinsic tryptophan fluorescence upon titration
of the peptide ligand into a fixed concentration (0.25 µM) of Sho1SH3 protein in HEPES buffer (20
mM HEPES, 50 mM NaCl, pH 7.3-7.6). The fluorescence measurements were performed using a
Fluorolog-3 spectrofluorometer with excitation and emission wavelengths set to 296 nm and 330 nm,
respectively.

Data Analysis: The resulting fluorescence readings were fitted to a binding curve using the equation:

y = Fmin + (Fmax − Fmin)

(
x

Kd + x

)
where y represents the fluorescence reading, x is the ligand concentration, Kd is the dissociation
constant, and Fmin and Fmax are the minimum and maximum fluorescence values, respectively. The
fitting was performed using the scipy.optimize.curve_fit module in Python. This approach
allowed us to quantitatively assess the binding affinity of the designed SH3 domains.
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B Supplementary Results

B.1 Stage 1: Detailed Results and Analysis of PenCL

Inter-Clan and Intra-Clan Clustering Analysis

Figure S6 presents the PenCL architecture and its performance in integrating protein sequences and
text descriptions within a unified joint embedding space. The architecture utilizes two pretrained
language models: the biomedical Language Model (bLM) for processing text and the protein
Language Model (pLM) for processing protein sequences. Embeddings from both models are
projected into a common space, facilitating cross-modal alignment through the Global Contrastive
Loss (LGC), which aligns correct protein-text pairs while separating unrelated pairs. The Protein
Family Contrastive Loss (LPFC) further refines this alignment by ensuring that sequences from the
same protein family are more tightly clustered, distinguishing them from other families (Fig. S6A).

The clustering performance was assessed using the Calinski-Harabasz Index (CHI) and the Davies-
Bouldin Index (DBI) [70], standard metrics for clustering quality evaluation. PenCL demonstrated
significant improvements over single-modality models, including ProtT5 [29], and ESM2 [29], as
indicated by higher CHI scores and lower DBI values (Fig. S6B). This evaluation was particularly
relevant in inter-clan clustering, which measures the ability to separate all superfamilies within the
BioM3 curated Pfam database. PenCL also showed substantial improvements in intra-clan clustering,
which assesses the ability to separate protein families within a given superfamily for all superfamilies
presented in the BioM3 Pfam database (Fig. S6C). Notably, PenCL outperformed the state-of-the-art
multimodal language model ProtST [22], suggesting that PenCL’s enhancements stem from more
than merely including the natural language modality. This underscores PenCL’s effectiveness in
capturing the structural and functional nuances of protein families based on textual information.

Visualization of Intra-Clan and Inter-Clan Clustering of Protein-Text Samples

PenCL’s joint embedding space was visualized using PCA projections to evaluate the model’s capacity
to distinguish between inter-clan (superfamily) and intra-clan (family) clusters (Fig. S7). The inter-
clan clusters represent broader superfamily classifications, while intra-clan clusters correspond to
specific protein family groupings. The separation of these clusters within the PCA space demonstrates
PenCL’s ability to capture hierarchical relationships within protein families, informed by both
sequence and text data.

Figure S7 shows distinct PCA clusters for various protein families, such as PF01926 and PF00009,
illustrating how PenCL effectively maps homologous sequences and their corresponding text prompts
into similar regions of the embedding space. This alignment not only facilitates the clustering of
proteins within the same family but also enhances the interpretability of the model’s embeddings in
representing the functional and structural diversity of protein sequences.

Benchmarking Performance in Zero-Shot and Remote Homology Detection Tasks

PenCL’s performance was further evaluated in zero-shot learning tasks for subcellular localization and
enzyme classification using text-guided protein retrieval (Table S5). PenCL’s multimodal embeddings
allowed it to perform competitively with ProtST [22] in predicting subcellular localization and
enzyme function without task-specific fine-tuning, using prompts previously defined for ProtST.
This suggests that further performance improvements could be achieved through prompt engineering
specifically tailored for PenCL. The best-performing text annotation recovered by PenCL achieved
an accuracy of 0.402 for subcellular localization and 0.531 for enzyme classification, highlighting the
impact of well-crafted text prompts.

In remote homology detection tasks (Table S6), PenCL significantly outperformed traditional se-
quence comparison methods like BLASTp [71] and multimodal models such as ProtST [22]. Homol-
ogy detection accuracy was assessed at multiple levels: fold, superfamily, and family. PenCL achieved
the highest top 1 and top 5 accuracy scores across these levels, particularly excelling in family-level
retrieval with top 1 accuracy of 0.977 and top 5 accuracy of 0.987. These results underscore PenCL’s
superior ability to detect distant homologs, which is critical in protein engineering and functional
annotation. PenCL also outperformed state-of-the-art single-modality language models such as
ProtT5 [29] and ESM2 [26], further highlighting the robust representations learned by PenCL.

Ablation studies conducted on the remote homology detection task revealed that LPFC played
a crucial role in enhancing performance (Table S7), particularly in distinguishing closely related
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Figure S6: Multimodal Pretraining of Protein Sequences and Text Descriptions in Stage 1.
(A) Illustration of the PenCL architecture integrating protein sequences and text descriptions. The
biomedical Language Model (bLM, blue) processes text, and the protein Language Model (pLM,
red) processes sequences. The joint embedding space combines these, with triangles representing
text and squares representing sequences. Different colors and sizes indicate different protein families
and textual descriptions. Global Contrastive loss (LGC) aligns correct text-sequence pairs and
separates incorrect ones, while Protein Family Contrastive loss (LPFC) aligns homolog pairs from
the same family and separates those from different families. More details of the losses in Stage 1
are in the Appendix A.2. (B-C) Comparison of clustering performance of PenCL against single
modality models (ProtT5 [29], ESM2 [26]) and multimodal models (ProtST [22]) for both inter-clan
(superfamily) and intra-clan (protein family) clustering. Performance is measured using the Calinski-
Harabasz Index (CHI) and Davies-Bouldin Index (DBI). Higher CHI and lower DBI values indicate
better performance. Red bars show clustering based on protein embeddings, and blue bars show
clustering based on text embeddings. Overall, the intra-clan and inter-clan clustering metrics show
that multimodal models like ProtST and PenCL elevate the interpretation of protein sequences and
improve the disentangling of clans and protein families over state-of-the-art single-modality models
like ProtT5 and ESM2, with PenCL showing improvement over ProtST.

families. This finding emphasizes the importance of aligning text and protein embeddings at both a
global and family-specific level, demonstrating how PenCL’s design facilitates nuanced understanding
of homology and functional relationships across diverse protein sequences.

Interpretation and Implications

The detailed results of PenCL Stage 1 pretraining and benchmarking highlight the advantages of
integrating multimodal protein-text representations. By aligning sequence and textual information,
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Table S5: Multimodal benchmarking performance using zero-shot text retrieval for subcel-
lular localization and enzyme classification tasks. For each task, a protein sequence is supplied
and matched against a set of text prompts describing various subcellular locations or enzyme reac-
tions, with the highest dot product score determining the predicted class. This task was defined by
ProtST [22]. The table shows accuracy scores for predicting subcellular localization and classifying
enzymes. Green indicates the top performer and yellow indicates the second-best performer for each
task.

Model Subcellular
Localization

Enzyme
Classification

PenCL (ours) best prompt 0.402 0.531
PenCL (ours) average score across prompts 0.2705 0.506
ProtST 0.42 0.3

Table S6: Performance comparison of different models on a zero-shot homology retrieval task.
The table shows accuracy scores for retrieving sequences with homologous folds, superfamilies, and
families. Accuracy is measured by whether the correct sequence with the homologous structure
was retrieved evaluated across different classification levels (fold, superfamily, family) and for the
top 1 and top 5 predictions. Green indicates the top performer, while yellow corresponds to the
second-best performer for each metric.

Model Fold Superfamily Family

Top 1 Top 5 Top 1 Top 5 Top 1 Top 5

BLASTp 0.0292 0.0613 0.175 0.272 0.942 0.954
ProtT5 (cosine similarity) 0.085 0.160 0.168 0.282 0.659 0.759
ProtT5 (Euclidean distance) 0.136 0.228 0.391 0.512 0.949 0.972
ESM2 (cosine similarity) 0.00975 0.0487 0.00319 0.0175 0.0173 0.0763
ESM2 (Euclidean distance) 0.130 0.227 0.382 0.513 0.933 0.9615
ProtST 0.0794 0.160 0.376 0.511 0.903 0.958
PenCL (ours) 0.149 0.248 0.586 0.721 0.977 0.987

Table S7: Performance comparison of ablated PenCL variants on the zero-shot homology
retrieval task. Details of the four ablations are provided in Appendix A.2.3. The table shows accuracy
scores for retrieving sequences with homologous folds, superfamilies, and families. Accuracy is
measured for top 1 and top 5 predictions across different classification levels. Green indicates the
top performer, while yellow corresponds to the second-best performer for each metric. Ablation
analyses were conducted with model checkpoints at 5 epochs, in contrast to the 20 epochs used in
benchmarking evaluations, and, as such, the numerical values differ slightly for the “No Ablation”
case from those reported in Table S6.

Model Fold Superfamily Family

Top 1 Top 5 Top 1 Top 5 Top 1 Top 5

No Ablation 0.149 0.252 0.589 0.723 0.973 0.990
Ablation 1 0.0724 0.153 0.342 0.522 0.922 0.971
Ablation 2 0.0905 0.180 0.364 0.525 0.939 0.976
Ablation 3 0.0752 0.149 0.314 0.486 0.917 0.966
Ablation 4 0.105 0.171 0.356 0.477 0.891 0.935
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Figure S7: Visualization of the Hierarchical Multimodal Representations for Protein Families
and Text Descriptions. PCA visualization of protein-text embeddings. The five most abundant
superfamilies are shown in 2D space (Inter-Clan Clusters), and the most abundant clan (CL0023)
is isolated for protein family clustering (Intra-Clan Clusters). Examples of sequences and textual
descriptions are provided for families PF01926 and PF00009. The PCA visualization shows the
alignment between bLM and pLM within the joint embedding space, using text-sequence pairs from
training/validation splits. Text embeddings zt are represented by triangles and sequence embeddings
zp by squares. Various clans and families are distinguished by color. These visualizations demonstrate
the enhanced alignment of protein-text embeddings achieved through the PenCL model, highlighting
its efficacy in capturing the relationships within and between protein families.

PenCL not only improves clustering quality and functional annotation but also enhances the inter-
pretability of relationships between protein families. These findings underscore PenCL’s potential to
expand the toolkit of computational protein engineering, offering a robust approach for understanding
and manipulating protein functions through the use of natural language text prompts.

B.2 Stage 2: Results and Capabilities

B.2.1 Facilitator Module Performance and Analysis

Figure S4 illustrates the training and validation performance of the Facilitator module, which plays
a key role in aligning text and protein embeddings in Stage 2 of PenCL. The Facilitator employs a
Maximum Mean Discrepancy (MMD) loss to refine text embeddings zt by augmenting them into
zc = fFacilitator(zt), aligning them closely with the protein embeddings zp. This alignment is crucial
for enhancing text conditioning in the subsequent generative stage.

Training and Validation Loss Comparison: In Figure S4A, we compare the MSE and MMD losses
over training epochs. The MMD loss consistently shows a slightly better alignment performance,
with a smooth reduction in both training and validation losses and minimal overfitting beyond 10
epochs compared to the MSE loss. This suggests that MMD loss is more robust for maintaining the
alignment quality between text and protein embeddings without compromising the generalization
ability of the Facilitator.

Norm Matching of Embeddings: One of the primary functions of the Facilitator is to better match the
norms of the embeddings between zp and zt. As shown in Figure S4B, the distribution of embedding
norms demonstrates that the Facilitator effectively aligns the norm of the augmented text embeddings
∥zc∥ = ∥fFacilitator(zt)∥ closer to that of the protein embeddings ∥zp∥. This norm matching indicates a
more coherent integration of text and protein modalities, enhancing the compatibility of the augmented
embeddings with the generative model’s requirements.

Empirical Justification for Facilitator Integration: The incorporation of the Facilitator module,
introduced in ProteinDT [23], was motivated by empirical observations that addition of this module
led to significant improvements in downstream protein design tasks. By improving the alignment
and norm matching of embeddings, the Facilitator strengthens the overall text conditioning process,
making the augmented embeddings more effective when used in the PenCL generative decoder.
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These results affirm the Facilitator’s critical role in Stage 2, as it not only enhances the alignment
between text and protein embeddings but also ensures that the embeddings maintain the necessary
properties for high-quality generative performance in PenCL.

B.3 Stage 3: Results and Capabilities

In this section, we provide an in-depth analysis of the Stage 3 results from ProteoScribe, where the
model is used to generate novel protein sequences conditioned on text prompts. The effectiveness of
ProteoScribe in generating structurally plausible proteins is demonstrated through a combination of
sequence generation, motif conditioning, and scaffold in-painting strategies, all guided by distinct
textual inputs.

Figure S5 illustrates the model architecture of ProteoScribe, a transformer-based order-agnostic
autoregressive diffusion model. The architecture leverages both time and positional encodings
alongside the input sequence embeddings, allowing for flexible and controlled sequence in-painting.
The figure highlights the key stages of the diffusion process, where sequences are incrementally
corrupted and reconstructed, capturing the model’s ability to flexibly generate or repair sequence
motifs based on the provided text descriptions.

Text-Guided Sequence Generation with Structural Validation: Figure S8 aims to demonstrate
the model’s ability to generate plausible protein sequences validated by in silico predictions from
five text prompts drawn from the SwissProt training data as an in-distribution test of its capacity
to recapitulate protein sequence and structure. The figure showcases ProteoScribe’s capability to
generate a diverse set of protein sequences with varying lengths, ranging from 72 to 617 amino acids.
The designed proteins exhibit a high degree of novelty, with sequence identities to the nearest natural
proteins spanning from 53.59% to 81.43%. The structural predictions, generated using ColabFold
with MMSeqs2 [72] for sequence alignment, are compared against experimentally solved or predicted
structures from the AlphaFold2 database. Structural alignment metrics, such as TMscore and RMSD,
indicate strong structural agreement with corresponding natural proteins, demonstrating the model’s
ability to maintain structural integrity while exploring novel sequence space.

Text-Guided Sequence Generation for Motif-Scaffold Problem: Figure S9 highlights the motif
conditioning and scaffold in-painting capabilities of ProteoScribe. Using the compact calmodulin
protein (PDB:1PRW) as a baseline, the figure demonstrates how the model preserves the functional
motif (depicted in grey) while generating diverse scaffold designs conditioned on textual prompts.
The three scaffold designs (Replicas 1, 2, and 3) maintain close RMSD values for the functional
motif, confirming the model’s precise control over motif preservation. The generated scaffolds exhibit
significant structural divergence, as evidenced by the RMSD values ranging from 2.587-5.437 Å, and
sequence identities to 1PRW from 34.21-45.45%. These results underscore the model’s capability to
generate structurally sound and novel protein designs that align closely with the guided textual inputs.
The text prompt used to guide the scaffold generation was as follows:

PROTEIN NAME: Calmodulin. FUNCTION: Calmodulin acts as part of a cal-
cium signal transduction pathway by mediating the control of a large number of
enzymes, ion channels, aquaporins and other proteins through calcium-binding.
Calcium-binding is required for the activation of calmodulin. Among the enzymes
to be stimulated by the calmodulin-calcium complex are a number of protein
kinases, such as myosin light-chain kinases and calmodulin-dependent protein
kinase type II (CaMK2), and phosphatases. Together with CCP110 and centrin, is
involved in a genetic pathway that regulates the centrosome cycle and progression
through cytokinesis. Is a regulator of voltage-dependent L-type calcium chan-
nels. Mediates calcium-dependent inactivation of CACNA1C. Positively regulates
calcium-activated potassium channel activity of KCNN2. Forms a potassium
channel complex with KCNQ1 and regulates electrophysiological activity of the
channel via calcium-binding. Acts as a sensor to modulate the endoplasmic retic-
ulum contacts with other organelles mediated by VMP1:ATP2A2. SUBUNIT:
Interacts with CEP97, CCP110, TTN/titin and SRY. Interacts with MYO5A and
RRAD (By similarity). Interacts with USP6; the interaction is calcium dependent
(By similarity). Interacts with CDK5RAP2. Interacts with SCN5A. Interacts with
RYR1 and RYR2 (By similarity). Interacts with FCHO1. Interacts with MIP
in a 1:2 stoichiometry; the interaction with the cytoplasmic domains from two
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MIP subunits promotes MIP water channel closure. Interacts with ORAI1; this
may play a role in the regulation of ORAI1-mediated calcium transport. Interacts
with SYT7 (By similarity). Interacts with MYO10 and MYO1C. Interacts with
SLC9A1 in a calcium-dependent manner (By similarity). Interacts with HINT1;
interaction increases in the presence of calcium ions (By similarity). Interacts with
HINT3 (By similarity). SUBCELLULAR LOCATION: Cytoplasm. PTM: Phos-
phorylation results in a decreased activity. MISCELLANEOUS: This protein has
four functional calcium-binding sites. SIMILARITY: Belongs to the calmodulin
family. LINEAGE: The organism lineage is Eukaryota, Metazoa, Chordata, Crani-
ata, Vertebrata, Euteleostomi, Mammalia, Eutheria, Laurasiatheria, Artiodactyla,
Ruminantia, Pecora, Bovidae, Bovinae, Bos. FAMILY NAMES: Family names are
EF-hand domain pair.

Overall, these results demonstrate ProteoScribe as a robust tool for text-guided protein design,
allowing for the generation of sequences with high structural plausibility and significant functional
relevance. The alignment between predicted and natural structures, coupled with the ability to
maintain specific functional motifs, emphasizes the utility of ProteoScribe in protein engineering
and synthetic biology applications. Further experimental validation of these designed sequences,
particularly focusing on their functional activities in biological systems, could provide additional
insights into the practical applicability of this approach.

Figure S8: Pretrained Text-guided ProteoScribe Generates Novel and Structurally Plausible
Proteins. Demonstration of ProteoScribe’s ability to generate plausible sequences based on in-
distribution text annotations of proteins drawn from the SwissProt training data for sequences of
various lengths (72 to 617 amino acids). The text prompt corresponding to each generated sequence
is shown in the grey boxes. The nearest sequence was retrieved using BLASTp, with the percentage
identity and corresponding protein name displayed. The structure of the artificial sequence (red) is
predicted with ColabFold [72], and compared with the experimentally solved or predicted structure
retrieved from the AlphaFold2 database [73] of the natural protein (grey) corresponding to the text
prompt. Structural agreement between the natural and designed sequences is computed and displayed
as TMscore and root-mean-square-distance (RMSD).

B.4 Experimental Validation of Prompt Engineering

To further elucidate the performance and characteristics of our text-guided protein design approach
for the Sho1SH3 domain, we conducted additional analyses and experiments. These supplemen-
tary results provide deeper insights into the reproducibility, fitness distributions, sequence novelty,
biochemical properties, and evolutionary context of our designed proteins. We present three supple-
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Figure S9: llustration of Motif Conditioning and Scaffold In-painting using Text-Guided Protein
Design with ProteoScribe. The left panel shows the wild-type structure of the compact calmodulin
(PDB:1PRW) protein, where the grey regions represent the scaffold, and the blue highlights the
functional motif. ProteoScribe generates new scaffold designs conditioned on maintaining the
functional motif using a text prompt (Appendix B.3). The three designs (Replica 1, 2, and 3) on the
right display the predicted scaffold structures (red) generated using ColabFold with MMSeqs2 [72]
for sequence alignment and structure prediction. The functional motif (grey) remains consistent
across all designs, highlighting the success of the model in preserving motif integrity while generating
diverse scaffold structures.

mentary figures and two supplementary tables that complement and extend the findings discussed in
the main text.

The count statistics for time points t0[0M ],t72[0M ], and t72[1M ], where 0M and 1M indicate KCl
concentration in the media and ti indicates count frequencies at different time points i in hours
(Figure S10). These plots display the count distributions for the input population in both trials,
population at 72 hours in 0 M KCl and 1 M KCl, providing a baseline for interpreting our results.
Figure S11 demonstrates the reproducibility of our experimental results between two independent
trials. This figure includes error bars, which were computed using error propagation while assuming
Poisson statistics, to illustrate the consistency of our measurements

Figure S12 presents a histogram showing the overall fitness distribution of our designed sequences,
and a plot illustrating the percentage of functional rescue achieved by sequences generated from each
of the five prompts (Appendix A.5.3). This allows us to assess the general performance of our designs
and compare the efficacy of different prompt strategies. A designed sequence is classified as functional
if its own uncertainty doesn’t statistically significant overlap with the null allele’s uncertainty. We
note that while Prompts 3 and 4 only achieve 0 and 1 in vivo functional designs, respectively, the
functional designed sequence is the most novel generated among all prompts. With this information,
and knowing that the designed sequences were selected based on acceptable TM-score scores, this
hints that Prompt 3 and 4 designs sequences might still be foldable and functional sequences, albeit
not with a function capable of rescuing Sho1 osmosensing in S. cerevisisae. Table S9 presents
an alignment of the most novel sequence generated from Prompt 4 with the wild-type Sho1SH3

sequence. This table illustrates the poor local alignment and lack of apparent homology between the
two sequences, and that this highly divergent sequence, despite its novelty, maintains function while
showing minimal similarity to known SH3 domains in BLAST searches.

Table S8 reports in vitro biochemical measurements of binding affinity for four designed sequences
from Prompt 5 using a tryptophan quenching assay. Variants demonstrate varying affinities for the
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Figure S10: Frequency distribution of sequencing read counts for the Sho1SH3 domain os-
mosensing selection experiment. Histograms show the log10-transformed read counts at different
time points and osmotic conditions: t0 (initial time point), t72 [0M] (72 hours, no osmotic stress), and
t72 [1M] (72 hours, 1M KCl osmotic stress) for two independent experiments (A and B). Each row
represents a different condition, while columns show experimental replicates. The x-axis displays
log10(counts), and the y-axis shows frequency. Data was generated using a MiSeq V2 500 cycle kit,
demonstrating reproducibility of sequencing depths and population distributions across samples, time
points, and osmotic conditions in the Sho1SH3 domain selection assay.

pbs2 ligand, with Prompt 5, replica 866 showing a significantly lower dissociation constant Kd

compared to the wild-type, indicating stronger binding of the designed mutant.

Table S8: Biochemical characterization of wild-type Sho1SH3 and designed protein variants
from Prompt 5 on pbs2 ligand binding using a tryptophan quenching assay. The table shows the
dissociation constant (Kd) with mean and standard deviation, relative enrichment (r.e.) scores after 72
hours in selective conditions, and sequence identity to the wild-type Sho1SH3. Variants demonstrate
varying affinities for the pbs2 ligand, with Prompt 5, replica 866 showing a significantly lower Kd

compared to the wild-type, indicating stronger binding. The sequence identities to the wild-type
sequence highlight the novelty of the designs while retaining functional binding capabilities.

Protein Kd (mean ± std) r.e. (72 hours) Seq id to WT (%)
WT Sho1SH3 0.9 ± 0.44 0 100
Prompt 5, replica 10 1.42 ± 0.5 -0.317 45.45
Prompt 5, replica 98 2.02 ± 0.62 -0.593 51.52
Prompt 5, replica 866 0.31 ± 0.04 -0.540 47.70
Prompt 5, replica 99 1.27 ± 0.45 -2.401 46.03

44



Figure S11: Reproducibility of relative enrichment scores for designed Sho1SH3 domain se-
quences after 72 hours of selection. The scatter plot compares relative enrichment (r.e.) scores
between two experimental replicates (A and B) for text-guided designed Sho1SH3 domain sequences
and calibration controls. Gray dots represent individual designed sequences, the blue dot indicates
the null allele, and the red dot represents the wild-type (WT) Sho1SH3 domain. Error bars show
the uncertainty for each measurement. The high R2 value (0.9785) and extremely low p-value
(6.37e-264) demonstrate strong correlation and statistical significance between replicates, indicating
high reproducibility of the selection assay. The plot illustrates the range of fitness effects observed
among the designed Sho1SH3 sequences under osmotic stress conditions and serves as a calibration
curve for assessing the performance of the designs.

Table S9: Comparison of the most novel design sequence against any SH3 domain and the
wild-type Sho1SH3, along with a search for the closest hits using BLASTp against the NCBI
non-redundant database.

Attribute Value
Protein Prompt 4, replica 403
r.e. [72 hours] (mean ± std) -1.73 ± 0.10
Sequence identity to any SH3 (%) 38
Sequence identity to WT (%) 28
Classification Functional
Closest BLASTp Hit (NCBI) brain-specific angiogenesis inhibitor 1-associated protein 2-like isoform

X2
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Figure S12: Distribution of relative enrichment scores and rescue efficiency of designed Sho1SH3

domains. (A) Histogram showing the distribution of relative enrichment (r.e.) scores for all sequences,
including designed and control alleles. The blue dashed line and shaded region represent the null
allele and its confidence interval, while the red dashed line indicates the wild-type allele. (B) Bar
plot displaying the percentage of designs that rescue Sho1SH3 function for each of the five prompts
(Appendix A.5.3). Rescue is determined by designs having relative enrichment scores significantly
higher than the null allele’s confidence region. Numbers above each bar indicate the count of rescuing
designs among the 200, 200, 67, 200, and 317 sequences experimentally tested for Prompts 1, 2, 3, 4,
and 5, respectively.
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