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Abstract
Translation elongation is essential for cellular proteostasis
and is implicated in cancer and neurodegeneration. Accu-
rately predicting the rate of ribosome elongation in each
codon (also called ribosomal A site) on mRNA is important
for understanding and modulating protein synthesis. How-
ever, predicting elongation rates is challenging due to the
trade-off between capturing distal codon interactions and fo-
cusing on proximal codon effects at the A site. Approaches
capturing distal codon interactions in the coding sequences
(CDS) of mRNA fail to effectively differentiate critical re-
gions (codons near the A site) due to insufficient effective
mechanisms for focusing on these regions. Conversely, due
to the limitations of models when handling long mRNA
sequences, some methods simplify inputs by conditioning
solely on proximal codons surrounding the A site, leading
to the loss of important information from distal codons. To
address this issue, we leverage Mamba’s success in capturing
long-range dependencies to enable the consideration of dis-
tant codons’ impact on the A site. Additionally, we introduce
a sliding window attention mechanism to emphasize the prox-
imal codons around the A site during ribosome elongation.
Building on these advancements, we present Sliding Window
Attention Mamba (SWAMamba), a novel framework that si-
multaneously leverages both proximal and distal codon ef-
fects on the A site. We conduct comprehensive evaluations on
ribosome data across four species and find that SWAMamba
significantly outperformed current state-of-the-art methods in
predicting translation elongation rates.

Introduction
Translation elongation is a critical phase of protein synthe-
sis that significantly affects cellular function and protein
homeostasis (Brar 2016; Ingolia 2016; Shao et al. 2024).
This process involves ribosomes moving along mRNAs at
variable rates, recruiting tRNAs to the ribosomal A site for
accurate codon-anticodon pairing, and sequentially adding
amino acids to the growing polypeptide chain (Figure 1)
(Tian et al. 2021). Designing coding sequences based on
translation elongation rates can lead to substantial differ-
ences in protein output (Tunney et al. 2018; Zhao, Yu, and
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Figure 1: Translation elongation phase

Liu 2017). Therefore, accurately predicting these rates is
crucial for understanding and modulating protein synthesis.

The emergence of ribosome profiling has significantly ad-
vanced our comprehension of mRNA translation elongation
(Andreev et al. 2017; Ingolia, Hussmann, and Weissman
2019). Ribosome profiling involves sequencing the reads of
ribosome-protected fragments (RPFs) (Ingolia et al. 2009;
Ingolia 2014). After normalization, these RPFs counts di-
rectly reflect the ribosome density distribution along the
CDS. Moreover, Codons with higher ribosome density have
slower translation rates, while those with lower ribosome
density translate faster (Tunney et al. 2018).

A variety of computational approaches have been devel-
oped from the accumulating public ribosome profiling data.
Tunney et al. (2018) demonstrated the critical role of codons
near the A site in accurately predicting ribosome density,
emphasizing their importance in computational models. In
contrast, Tian et al. (2021) found that codons far from the
A site also affect ribosome density predictions, highlighting
the need to model ribosome density across the entire CDS
region of mRNAs to capture long-range codon influences.
However, models modeling the CDS region of mRNA over-
look crucial codons near the A site due to insufficient effec-
tive mechanisms for focusing on these codons. Meanwhile,
architectural limitations with long mRNA sequences com-
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pel methods to simplify inputs by conditioning solely on
proximal codons around the A site, which fails to capture
the influence of long-range codons. These conflicting issues
arise from the complexity of ribosome elongation and high-
light the need to integrate both the A site proximal and distal
codons effect into computational models.

Predicting translation elongation rates by integrating both
A site proximal and distal codon effects into computa-
tional models presents two key challenges: efficiently pro-
cessing long mRNA sequences, and considering both prox-
imal and distal codon effects simultaneously. For the first
challenge, Tian et al. (2021) used a bidirectional gated
recurrent unit (Bi-GRU) network to extract information
from the CDS region. However, recurrent neural networks
(RNNs) struggle with long-distance dependencies due to the
vanishing gradient problem (Al-Selwi et al. 2023). While
Transformer-based models are widely used for sequence
modeling (Vaswani et al. 2017), these models face signif-
icant issues when processing long mRNA sequences due
to the quadratic computational complexity of self-attention
(Hatamizadeh and Kautz 2024). For the second challenge, a
straightforward solution is to design a mechanism that effec-
tively focuses on proximal codons near the A site while also
capturing distal codon effects. Traditional methods address-
ing proximal codons at the A site typically use data segmen-
tation rather than incorporating this focus into the model,
leading to models that cannot effectively emphasize proxi-
mal codons or capture distant codon influences.

Recently, the Mamba model has emerged as a promis-
ing alternative to Transformer-based architectures, demon-
strating significant advantages in modeling long-range de-
pendencies without incurring quadratic computational costs
(Gu and Dao 2023; Dao and Gu 2024). Mamba has out-
performed Transformer-based models in DNA sequencing
problems (Schiff et al. 2024), showcasing its potential for
mRNA modeling. However, despite its strengths in han-
dling long sequences, Mamba struggles with effectively fo-
cusing on important proximal codons from long mRNA se-
quences. Consequently, applying Mamba to translation elon-
gation rate prediction without modifications is far from suf-
ficient. Therefore, a mechanism to further enhance Mamba’s
focus on codons near the A site is necessary.

Inspired by the natural progression of ribosomes along
mRNA sequences, which protect approximately 28 to 29 nu-
cleotides, and recognizing the significant influence of these
protected regions on ribosome density predictions at the
A site (Tunney et al. 2018), we propose a sliding window
mechanism to model codons near the A site during trans-
lation elongation. This natural alignment between biolog-
ical processes and computational techniques offers an ef-
fective approach for capturing localized effects on transla-
tion dynamics. The window constraint allows us to incorpo-
rate local inductive bias (Pan et al. 2023) while preserving
Mamba’s efficiency in processing long-range dependencies
without quadratic complexity. As ribosomes move, the com-
position of codons within the window continuously evolves,
presenting a challenge in accurately capturing the chang-
ing relevance of each codon. To alleviate this dilemma, we
further augment the sliding window with an attention-based

mechanism, which dynamically learns to focus on the most
relevant codons within each window, allowing the model to
adaptively weigh the importance of proximal codons as the
ribosome progresses, thereby capturing the changing critical
codons for accurate translation elongation prediction.

In this work, we introduce SWAMamba, a novel frame-
work designed to emphasize codons near the A site while
capturing the long-range influence of mRNA codons to pre-
dict translation elongation rates accurately. Our approach
innovatively combines the Mamba model’s capability to
model long-range codon effects with a sliding window at-
tention mechanism that focuses on proximal codons at the A
site, enabling a comprehensive consideration of both proxi-
mal and distal codon impacts. Additionally, we implement
a dual-stage attention mechanism. The first stage focuses
on the fundamental properties of codons near the A site,
while the second stage refines the representation by re-
emphasizing relevant codon features proximal to the A site
in light of the global context. To the best of our knowledge,
this work presents the first integration of the Mamba model
with sliding window attention for biological sequence mod-
eling, making it particularly suitable for predicting mRNA
translation elongation rates. The major contributions of our
work are as follows:

• We introduce SWAMamba, a novel framework integrat-
ing Mamba’s long-range dependency modeling with a
biologically-inspired sliding window attention mecha-
nism, enhancing translation elongation rate prediction by
capturing both distal and proximal codon effects.

• We propose a sliding window attention mechanism to ef-
fectively balance proximal and distal codon influences on
ribosomal A site, addressing the trade-off between long-
range and local effects in translation dynamics.

• The comprehensive experiments across four species
show SWAMamba significantly outperforms state-of-
the-art methods, offering a powerful tool for investigat-
ing mRNA translation dynamics and protein synthesis.

Related Work
Translation Elongation Rates Problem Prediction.
O’Connor, Andreev, and Baranov (2016) introduces a ro-
bust normalization method RUST for Ribo-seq data, which
prediction ribosome footprint density and reveals sequence
features that affect ribosome footprint density. Liu and
Song (2016) presents a kernel smoothing method to predict
ribosome footprint profiles from transcript sequences in
yeast datasets and suggests diverse applications. Zhang
et al. (2017) introduces ROSE, a deep learning framework
for analyzing ribosome profiling data to predict ribosome
stalling events, to further decipher the complex regulatory
mechanisms behind the translation elongation dynamics
encoded in mRNA sequences. Tunney et al. (2018) presents
a neural network model predicting ribosome density based
on codon sequence, revealing factors influencing translation
elongation and demonstrating its application in protein
expression control. Hu et al. (2021) introduces Riboexp,
a deep reinforcement learning framework for predicting
ribosome density, and demonstrates practical applications
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in codon optimization for increased protein production.
Tian et al. (2021) presents RiboMIMO, a deep learning
approach for modeling full-length CDS ribosome density
distributions, outperforming existing methods and revealing
long-range codon impacts on translation elongation. Shao
et al. (2024) introduces Riboformer, a transformer-based
deep learning model for predicting ribosome densities,
and correcting experimental artifacts. Despite these ad-
vancements, existing methods can’t effectively utilize both
proximal and distal codon effects at the ribosomal A site.

Structured State-Space Sequence Model. Gu, Goel, and
Ré (2021) proposes a Structured State-Space Sequence (S4)
model, which is used to handle long-range dependency and
is an alternative to transformer (Gu et al. 2022; Zhu et al.
2024). Gu and Dao (2023) introduces Mamba, a new neu-
ral network architecture using selective state space mod-
els, outperforming transformers in efficiency and perfor-
mance across various sequence modeling tasks. Schiff et al.
(2024) introduces Caduceus, a reverse complement equiv-
ariant bi-directional long-range DNA language model based
on MambaDNA, outperforming larger models in long-range
genomic sequence tasks. Despite these advancements and
the enhanced capabilities of existing models for the S4
model, they still face challenges in effectively addressing lo-
calized issues that require concentrated attention.

Problem Formulation and Method
In this section, we first define the problem of predicting
translation elongation rates. Then, we describe in detail the
key components of the SWAMamba framework.

Problem Formulation
The mRNA translation elongation rates prediction problem
involves using an mRNA sequence s = (x1, x2, ..., xT ) of
length T to predict ribosome density at each codon, de-
noted as y = (v1, v2, ..., vT ). Here, xi represents a codon
in the mRNA sequence, and vi represents the ribosome den-
sity at codon xi. We denote the set of mRNA sequences as
S = {s1, s2, ..., sn} and the corresponding ribosome densi-
ties as Y = {y1, y2, ..., yn}. Here, n represents the number
of mRNA sequences. Together, these sets S and Y form our
dataset D = {(s1, y1), (s2, y2), ..., (sn, yn)}.

Overview of SWAMamba
We present the SWAMamba framework, a novel approach
for predicting translation elongation rates in mRNA se-
quences. The main workflow of our algorithm is illustrated
in Figure 2A. The model takes an mRNA sequence as in-
put, where codons, nucleotides, and amino acids are iden-
tified and encoded. These three encoding forms constitute
the fused encoding, which is processed by our SWAMamba
module to capture both proximal and distal codon effects. Fi-
nally, a fully connected layer predicts ribosome density for
each codon in the mRNA sequence. The ribosome density
value reflects the rate of translation at that codon. Figure 2B
shows the architecture of the SWAMamba module. The pro-
cess begins by capturing the properties of codons near the A
site using sliding window attention. These features are then

processed by the Bidirectional Mamba (BiMamba) (Schiff
et al. 2024) module to capture the distal codons effect. Slid-
ing window attention is applied again to the BiMamba out-
put to re-emphasize relevant proximal codons features. This
iterative approach allows the model to refine its understand-
ing of the mRNA sequence, moving from proximal to dis-
tal codon effects and then back to proximal information. In
the following sections, we provide a detailed explanation of
each component of our framework.

mRNA Sequence Encoding. To effectively model ribo-
some density, a comprehensive encoding of mRNA se-
quences is essential. mRNA sequences are composed of
codons, each consisting of three nucleotides selected from
A, U, C, and G. This arrangement results in 64 possi-
ble codon combinations. To represent each codon xi, We
represent each codon xi using one-hot encoding, denoted
as ecodoni ∈ {0, 1}64. However, this codon-level encoding
alone is insufficient to capture nucleotide-level differences
and the relationships between encoded amino acids. Follow-
ing previous work (Tian et al. 2021), we incorporate addi-
tional encodings for both nucleotides and amino acids to
enable more fine-grained representation. For nucleotide en-
coding, we use one-hot encoding for each of the four nu-
cleotides and concatenate the three nucleotide encodings
within a codon, resulting in enti ∈ {0, 1}(4×3). To capture
amino acid properties, we encode the 20 standard amino
acids and a stop codon, represented as eaai ∈ {0, 1}21. The
fused encoding for each codon xi is obtained by concatenat-
ing these three representations:

ei = concat([ecodoni , enti , eaai ]) ∈ R97. (1)

The complete encoded mRNA sequence is thus represented
as se = (e1, e2, ..., eT ), This comprehensive encoding strat-
egy captures the full spectrum of sequence information from
nucleotide to codon to amino acid level.

Focusing on Proximal Codons’ Effects with Sliding
Window Attention. Drawing inspiration from the well-
established importance of codons proximal to the ribosomal
A site in translation elongation (Hu et al. 2021; Tunney et al.
2018), we incorporate this crucial biological insight through
an innovative sliding window attention mechanism, emulat-
ing the process of ribosome translation elongation. This ap-
proach is specifically designed to capture and emphasize the
effects of codons near the A site. Specifically, for each codon
ei in the sequence, we define a fixed-size attention window
of width w, enabling the codon to attend to 1

2w tokens on
either side. We then apply three distinct linear transforma-
tions to obtain query, key, and value vectors: Q = seW

Q,
K = seW

K , V = seW
V , reflecting the standard atten-

tion mechanism paradigm but tailored to our sliding window
context. The attention scores for codon ei for its neighboring
codons within the window are calculated as:

aij =
(QiK

T
j )√

dk
, (2)

where j ∈ [i − w/2, i + w/2] and dk is the key dimension.
The weighted sum of attention within the sliding window at
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Figure 2: The main workflow of SWAMamba. (A) This figure shows how SWAMamba works. It takes an mRNA sequence
as input and outputs the ribosome density for each codon, which reflects the translation elongation rates. (B) The diagram
illustrates the Sliding Window Attention Mamba process, focusing on both proximal and distal codons relative to the A site.

position i is then computed as:

zi =
∑

j∈[i−w/2,i+w/2]

softmax(aij)Vj . (3)

This formulation allows the model to dynamically weigh the
importance of each codon proximal to the A site. This opera-
tion aggregates information from proximal codons, resulting
in a new more representative codon feature representation
Z = {z1, z2, ..., zT }. By incorporating this sliding window
attention mechanism, our model gains the ability to dynami-
cally focus on the most relevant proximal codons, enhancing
its capacity to capture translation dynamics.

Capturing Distal Codon Effects with BiMamba Model-
ing. While proximal codons play a crucial role in trans-
lation elongation, the influence of distal codons on the A
site cannot be overlooked. To comprehensively model these
long-range dependencies, we introduce a Mamba module,
extending our model’s capacity to capture complex, distant

interactions within the mRNA sequence. The Mamba mod-
ule, based on the State Space Model (SSM), maps input
zt ∈ RD to output ot ∈ RD through an intermediate repre-
sentation ht ∈ R, where D is the dimension of zt and ot. For
discrete data inputs, the Mamba module can be expressed as:

ht+1 = Aht +Bzt, ot+1 = Cht +Dzt, (4)

where C and D are system parameters, and A and B are
discretized versions of continuous parameters A and B:

A = exp(∆A), B = A−1(exp(∆A)− I)B, (5)

where ∆ is an additional time scale parameter. A selective
SSM (Gu and Dao 2023) is incorporated into the models by
allowing their parameters to be input-dependent, enabling
B, C, and ∆ to depend on the input zt:

Bt = LinearB(zt) Ct = LinearC(zt)

∆t = softplus(Linear∆(zt)),
(6)
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where Linear(·) represents a linear projection and
softplus(·) = log(1 + exp(·)).

We input the sequence representation Z =
{z1, z2, ..., zT } into the selective SSM to obtain outputs
O = {o1, o2, ..., oT } that aggregate upstream codon infor-
mation. However, this approach only captures information
from upstream codons in a unidirectional manner. Given
that downstream codons also influence the translation elon-
gation rate at the A site, we introduce a BiMamba to capture
bidirectional mRNA sequence, crucial for understanding
both upstream and downstream influences on translation.
We subsequently construct Flip(Z) = {zT , zT−1, ..., z1}.
After processing by the Mamba model, we obtain outputs
O′ = {o′T , o′T−1, ..., o

′
1}. We then fuse this bidirectional

information using element-wise addition:

Oadd = O + Flip(O′) = {o1 + o′1, o2 + o′2, ..., oT + o′T }.
(7)

By incorporating this BiMamba module, our model gains
the ability to capture and integrate long-range dependencies
in the mRNA sequence, thereby providing a more compre-
hensive and detailed understanding of the factors affecting
translation elongation at the A site.

Context-Informed Local Refinement with Sliding Win-
dow Attention. The final stage of our SWAMamba frame-
work represents a crucial synthesis of global and local infor-
mation, allowing for a more nuanced interpretation of prox-
imal codon effects in light of the broader sequence context.
Having captured long-range dependencies through the Bi-
Mamba module, we now return our focus to the local envi-
ronment of each codon. This second application of sliding
window attention operates on globally informed representa-
tions, enabling a context-rich analysis of local features. This
approach is motivated by the fact that while distant codons
can influence translation, the immediate context of the A
site remains critically important. We apply three new linear
transformations to Oadd to obtain query, key, and value vec-
tors: Q′ = OaddW

′Q, K ′ = OaddW
′K , V ′ = OaddW

′V ,
similar to the first stage of sliding window attention, we
focus on a window of size w around each position. The
weighted sum of attention within this window at position
i is computed as:

mi =
∑

j∈[i−w/2,i+w/2]

softmax

(
Q′

iK
′
j
T

√
dk

)
V ′
j (8)

This process yields a refined local codon feature representa-
tion M = {m1,m2, ...,mT }, which encapsulates both the
proximal codon effects and the relevant global context for
each codon. The final step in our prediction pipeline involves
processing each refined feature vector mi through a fully
connected neural network. This network maps the multi-
scale features captured by our model to a scalar value rep-
resenting the predicted ribosome density at each codon po-
sition. The output of this network is a sequence of predicted
ribosome densities y′ = (v′1, v

′
2, ...., v

′
T ), where each v′i cor-

responds to the predicted density at the i-th codon. The time

and space complexity of sliding window attention is O(n·w)
(Beltagy, Peters, and Cohan 2020), avoiding the O(n2) com-
plexity of the self-attention mechanism in transformers. By
incorporating sliding window attention, the Mamba model
still maintains its efficient time and space complexity. The
SWAMamba framework uses Mean Squared Error as the
loss function to minimize the difference between predicted
and observed ribosome densities (Appendix B.3 for details).

Experiments
In this section, we demonstrate SWAMamba’s effectiveness
in translation elongation rate prediction across four species.

Baseline
• IXnos (Jan et al. 2018) models translation elongation us-

ing a feed-forward neural network to predict ribosome
density for each codon based on codons near the A site.

• Riboexp (Hu et al. 2021) uses policy networks in rein-
forcement learning to perform context-sensitive feature
selection near the A site for ribosome density modeling.

• RiboMIMO (Tian et al. 2021) utilizes two layers of the
Bi-GRU network to model full-length mRNA CDS re-
gions for predicting ribosome density.

• Riboformer (Shao et al. 2024) uses near the A site
codons with a transformer model to predict ribosome
density.

Performance Comparison
We evaluated SWAMamba on datasets from E. coli (Mo-
hammad, Green, and Buskirk 2019), S. cerevisiae (Stein
et al. 2022), C. elegans (Stein et al. 2022), and Humans
(Iwasaki, Floor, and Ingolia 2016) using five-fold cross-
validation (data details in Appendix A1). Table 1 shows the
performance measured using the average pearson correlation
coefficients between predicted and experimental ribosome
densities. SWAMamba consistently outperformed baseline
methods across four species, due to its powerful ability to
capture distal codons while maintaining a focus on proximal
codons. It is noteworthy that Riboformer’s performance de-
clined significantly compared to its original report, primarily
due to the limitations of the data-splitting method employed
in the original Riboformer study, which oversimplified the
task. To keep a more fair setting consistent with Inxnos and
Riboexp (Tunney et al. 2018; Hu et al. 2021), we applied a
more appropriate and widely accepted data splitting method
for Riboformer. We introduce this method in Appendix B.1
and outline the limitations of the original Riboformer data-
splitting approach in Appendix B.2. To enable a more in-
depth comparison, we modified Riboformer to model the
entire mRNA CDS, as the original version only consid-
ers codons near the A site. This modification allowed us
to evaluate the performance of a Transformer-based model
on full-length mRNA CDS. Although this adjustment im-
proved Riboformer’s performance, it still fell short of SWA-
Mamba, which better captures long-range sequence depen-
dencies due to its Mamba architecture. Full results and im-

1https://github.com/reset001/SWAMambaappendix.
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C. elegans S. cerevisiae Humans E. coli
IXnos 0.504 0.502 0.507 0.549
Riboexp 0.531 0.587 0.572 0.566
RiboMIMO 0.576 0.612 0.607 0.572
Riboformer 0.495 0.482 0.476 0.552
SWAMamba 0.596 0.630 0.641 0.640

Table 1: Comparison of average pearson correlation coeffi-
cients between predicted and experimental ribosome densi-
ties across methods using four datasets.

1.0

0.8

0.6

0.2

0.0

0.4

𝑵
𝒐

𝒓
𝒎

𝒂
𝒍𝒊

𝒛
𝒆

𝒅
 𝑪

𝑰𝑺
𝒅

E. coli

-1000    -750      -500      -250         0          250      500        750      1000 
Offset from A site(codon) 

Figure 3: Relationship between codon contributions and dis-
tance on predicted ribosomal density at the A site in E. coli.

plementation details are provided in Appendix C.2 and B.5,
respectively. Details on SWAMamba are in Appendix B.4,
and the experimental setup is in Appendix B.6.

SWAMamba Enhances Codon Attention Near the
A Site
To evaluate the impact of codons on prediction, we used the
Codon Impact Score (CIS) (Tian et al. 2021), which quanti-
fies the effect of a codon feature at position i on the predicted
ribosome density at position j in the same gene, defined as:

CISij =
∂yj
∂ei

, (9)

where ei represents the input codon feature at position i, and
yj denotes the ribosome density at position j predicted by
SWAMamba. To evaluate how the distance between codons
at positions i and j, with a relative distance d = i − j, af-
fects the predicted ribosome density at position j, we uti-
lized CISd (Tian et al. 2021). Specifically, CISd quantifies
the contribution of the distance d between codons to the ri-
bosome density prediction at position j, and is defined as:

CISd =

∑
i,j |CISi,j | · I(i− j = d)∑

i,j I(i− j = d)
, (10)

where I(i− j = d) equals 1 if i− j = d and 0 otherwise.
To conduct a more comprehensive evaluation, Figure 3

analyzes the relationship between codon contributions and

distance on predicted ribosomal density at the A site in E.
coli, with similar trends observed for other species (details
in Appendix C.1). The horizontal axis represents the offset
from the input codon to the A site codon, while the vertical
axis denotes the normalized CISd value, which represents
the extent of influence on the predicted ribosome density at
the A site. These findings align with previous research, in-
dicating that codons surrounding the A site typically domi-
nate ribosome density prediction (Tunney et al. 2018; Tian
et al. 2021). We further examined codons near the A site, as
depicted in Figure 4, using normalized CISd for compari-
son. This analysis highlights the critical importance of these
nearby codons in predicting ribosome density at the A site
and demonstrates the effect of our sliding window attention
mechanism. Graphs a-d in Figure 4 present zoomed-in views
of codon contributions to predicted ribosome density around
the A site across four datasets. These magnified views under-
score the significance of nearby codons in predicting ribo-
some density at the A site. Graphs e-h compare codon con-
tributions near the A site with and without sliding window
attention. As evident in these graphs, the model with sliding
window attention (blue line) focuses more on codons near
the A site compared to the model without this mechanism
(green line). This visualization effectively illustrates how the
sliding window attention mechanism enhances the model’s
ability to capture the importance of codons near the A site,
thereby improving the prediction of ribosome density.

SWAmamba Captures Distal Codon Influences
Although the codons’ contribution diminishes with distance
in both directions, codons located far from the A site can
still influence the predicted ribosome density. To quantify
this effect, we used CISd to assess the contribution at a dis-
tance d from the A site. We randomly selected a CDS se-
quence from E. coli and randomly designated position 97 as
the A site. Figure 5 illustrates the CISd values at different
positions relative to the predicted ribosome density at posi-
tion j = 97. The influence of positions around 80 codons
away from the A site appears as strong as codons near it.
The results demonstrate that codons distal from the A site
can indeed influence the predicted ribosome density over
extended ranges, corroborating previous observations (Tian
et al. 2021). This finding shows that our model effectively
captures distal effects between codons.

Ablation Experiment
To evaluate the effectiveness of our sliding window attention
mechanism and the inclusion of amino acid and nucleotide
features in improving the model’s prediction accuracy, we
conducted an ablation study. Table 2 presents the average
pearson correlation coefficients between the predicted and
experimental ribosome densities. The results show that the
dual-stage sliding window attention mechanism improves
performance compared to the model without it. We further
ablated the models by removing the first sliding window at-
tention (1st atten) and second sliding window attention (2nd
atten), demonstrating that dual-stage attention yields better
results. Additionally, we ablated the models by excluding
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Figure 4: Graphs a-d show codon contributions to ribosome density prediction at the A site. The shading indicates the ribosome-
protected region, which is considered to have a significant influence on ribosome density predictions at the A site. Graphs e-h
compare these contributions with (blue line) and without (green line) sliding window attention.
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Figure 5: Codons impact on ribosome density prediction in
E. coli. The graph illustrates CISd values for codons relative
to A site (position 97) in a randomly chosen CDS sequence.

amino acid and nucleotide features, finding that these fea-
tures also enhance prediction accuracy.

Conclusion and Future Work
In this paper, we introduce SWAMamba, a novel method for
predicting translation elongation rates. SWAMamba builds
on Mamba’s strength in capturing long-range dependen-
cies by effectively accounting for the influence of distant
codons on the A site. Additionally, it integrates a slid-

C. elegans S. cerevisiae Humans E. coli
SWAMamba 0.596 0.630 0.641 0.640
w/o dual atten 0.593 0.621 0.638 0.626
w/o 1st atten 0.589 0.612 0.638 0.629
w/o 2nd atten 0.591 0.627 0.641 0.639
w/o nucleotide 0.590 0.622 0.630 0.632
w/o amino acid 0.591 0.626 0.636 0.640

Table 2: Comparison of pearson correlation coefficients be-
tween predicted and experimental ribosome density values
with and without different modules.

ing window attention mechanism to emphasize the role of
nearby codons at the A site. As a result, SWAMamba ef-
fectively addresses both proximal and distant codon effects
on the A site. To evaluate SWAMamba’s effectiveness, we
compared it with state-of-the-art methods in ribosome den-
sity prediction tasks across four species. Our analysis con-
firmed that SWAMamba can capture both proximal and dis-
tal codon effects at the A site simultaneously. Furthermore,
ablation experiments showed that the sliding window atten-
tion mechanism significantly improved SWAMamba’s per-
formance. Overall, SWAMamba captures complex relation-
ships between mRNA sequence features and ribosome den-
sities, ultimately providing a powerful tool for investigating
the intricate dynamics of mRNA translation to understand
and modulate protein synthesis. In future work, we plan to
refine SWAMamba further and apply it to a broader range of
species and experimental conditions to enhance its predic-
tion accuracy and generalization ability.
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